Topics

- Numeric Encodings
  - Unsigned & Two’s complement
- Programming Implications
  - C promotion rules
- Basic operations
  - Addition, negation, multiplication
- Programming Implications
  - Consequences of overflow
  - Using shifts to perform power-of-2 multiply/divide
C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two’s complement integers
- For each of the following C expressions, either:
  - Argue that is true for all argument values
  - Give example where not true

- \( x < 0 \) \( \Rightarrow \) \((x*2) < 0\)
- \( ux >= 0 \)
- \( x & 7 == 7 \) \( \Rightarrow \) \((x<<30) < 0\)
- \( ux > -1 \)
- \( x > y \) \( \Rightarrow \) \(-x < -y\)
- \( x * x >= 0 \)
- \( x > 0 \&\& y > 0 \) \( \Rightarrow \) \( x + y > 0\)
- \( x >= 0 \) \( \Rightarrow \) \(-x <= 0\)
- \( x <= 0 \) \( \Rightarrow \) \(-x >= 0\)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Encoding Integers

Unsigned

\[ B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[ B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

short int \( x = 15213; \)
short int \( y = -15213; \)

- C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x )</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>( y )</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
  - 0 for nonnegative
  - 1 for negative
### Encoding Example (Cont.)

\[ x = 15213: 00111011 01101101 \]
\[ y = -15213: 11000100 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Sum:** 15213 -15213
Numeric Ranges

Unsigned Values
- $U_{Min} = 0$
  
  000...0
- $U_{Max} = 2^w - 1$
  
  111...1

Two’s Complement Values
- $T_{Min} = -2^{w-1}$
  
  100...0
- $T_{Max} = 2^{w-1} - 1$
  
  011...1

Other Values
- Minus 1
  
  111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{Max}$</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$T_{Max}$</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>$T_{Min}$</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
  - Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

C Programming

- #include <limits.h>
  - K&R App. B11
- Declares constants, e.g.,
  - ULONG_MAX
  - LONG_MAX
  - LONG_MIN
- Values platform-specific
# Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>( X )</th>
<th>( B2U(X) )</th>
<th>( B2T(X) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

## Equivalence
- Same encodings for nonnegative values

## Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings
- \( U2B(x) = B2U^{-1}(x) \)
  - Bit pattern for unsigned integer
- \( T2B(x) = B2T^{-1}(x) \)
  - Bit pattern for two’s comp integer
Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

\[
\begin{align*}
\text{short int} & \quad x = 15213; \\
\text{unsigned short int} & \quad ux = (\text{unsigned short}) x; \\
\text{short int} & \quad y = -15213; \\
\text{unsigned short int} & \quad uy = (\text{unsigned short}) y;
\end{align*}
\]

Resulting Value

- No change in bit representation
- Nonnegative values unchanged
  - \( ux = 15213 \)
- Negative values change into (large) positive values
  - \( uy = 50323 \)
Relation between Signed & Unsigned

Two’s Complement → T2U → T2B → B2U → Unsigned

Maintain Same Bit Pattern

\[ u_x = \begin{cases} 
  x & x \geq 0 \\
  x + 2^w & x < 0 
\end{cases} \]
Relation Between Signed & Unsigned

<table>
<thead>
<tr>
<th>Weight</th>
<th>-15213</th>
<th>50323</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>1</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>1</td>
<td>32768</td>
</tr>
<tr>
<td>Sum</td>
<td>-15213</td>
<td>50323</td>
</tr>
</tbody>
</table>

\[ u_y = y + 2 \times 32768 = y + 65536 \]
Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have “U” as suffix
  
  ```c
  0U, 4294967259U
  ```

Casting

- Explicit casting between signed & unsigned same as U2T and T2U
  
  ```c
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```

- Implicit casting also occurs via assignments and procedure calls
  
  ```c
  tx = ux;
  uy = ty;
  ```
## Casting Surprises

### Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations $<, >, ==, <=, >=$
- Examples for $W = 32$

<table>
<thead>
<tr>
<th>Constant\textsubscript{1}</th>
<th>Constant\textsubscript{2}</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0\textsubscript{U}</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>&lt;</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0\textsubscript{U}</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647\textsubscript{U}</td>
<td>-2147483648</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648\textsubscript{U}</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648\textsubscript{U}</td>
<td>&gt;</td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive
Sign Extension

Task:
- Given \( w \)-bit signed integer \( x \)
- Convert it to \( w+k \)-bit integer with same value

Rule:
- Make \( k \) copies of sign bit:
\[
X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0
\]
Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D 00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93 11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Prove Correctness by Induction on \( k \)

- Induction Step: extending by single bit maintains value

Key observation: 
\[-2^{w-1} = -2^w + 2^{w-1}\]

Look at weight of upper bits:

\[
\begin{align*}
    x & \quad -2^{w-1} x_{w-1} \\
    x' & \quad -2^w x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}
\end{align*}
\]
Why Should I Use Unsigned?

**Don’t Use Just Because Number Nonzero**
- C compilers on some machines generate less efficient code
  ```c
  unsigned i;
  for (i = 1; i < cnt; i++)
    a[i] += a[i-1];
  ```
- Easy to make mistakes
  ```c
  for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
  ```

**Do Use When Performing Modular Arithmetic**
- Multiprecision arithmetic
- Other esoteric stuff

**Do Use When Need Extra Bit’s Worth of Range**
- Working right up to limit of word size
Negating with Complement & Increment

Claim: Following Holds for 2’s Complement

\( \neg x + 1 = -x \)

Complement

- Observation: \( \neg x + x = 1111...1_2 = -1 \)

\[ \begin{array}{c}
\text{x} & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\text{+} & \neg x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\text{-1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

Increment

- \( \neg x + x + (\neg x + 1) = -1 + (\neg x + 1) \)
- \( \neg x + 1 = -x \)

Warning: Be cautious treating int’s as integers

OK here
Comp. & Incr. Examples

\[ x = 15213 \]

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>(~x)</td>
<td>-15214</td>
<td>C4 92 11000100 10010010</td>
</tr>
<tr>
<td>(~x+1)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
<tr>
<td>(~0)</td>
<td>-1</td>
<td>FF FF 11111111 11111111</td>
</tr>
<tr>
<td>(~0+1)</td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: \(w\) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u}\\ \text{v}
\end{array}
\end{array}
\]

\[u + v\]

True Sum: \(w+1\) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u}\\ \text{v}
\end{array}
\end{array}
\]

Discard Carry: \(w\) bits

\[
\begin{array}{c}
\begin{array}{c}
\text{u}\\ \text{v}
\end{array}
\end{array}
\]

\[\text{UAdd}_w(u, v)\]

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic

\[s = \text{UAdd}_w(u, v) = u + v \mod 2^w\]

\[
\text{UAdd}_w(u, v) = \begin{cases} u + v & u + v < 2^w \\ u + v - 2^w & u + v \geq 2^w \end{cases}
\]
Visualizing Integer Addition

Integer Addition

- 4-bit integers $u, v$
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with $u$ and $v$
- Forms planar surface

Add$_4(u, v)$
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

$2^{w+1}$

$2^w$

0

Modular Sum

Overflow

Overflow

$\text{UAdd}_4(u, v)$
Modular Addition Forms an *Abelian Group*

- **Closed under addition**
  \[ 0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]

- **Commutative**
  \[ \text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]

- **Associative**
  \[ \text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]

- **0 is additive identity**
  \[ \text{UAdd}_w(u, 0) = u \]

- **Every element has additive inverse**
  
  Let \[ \text{UComp}_w(u) = 2^w - u \]
  
  \[ \text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: $w$ bits

\[ u \]

\[ + \]

\[ v \]

\[ u + v \]

True Sum: $w+1$ bits

Discard Carry: $w$ bits

\[ \text{TAdd}_w(u, v) \]

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:
  
  ```c
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```

- Will give $s == t$
Characterizing TAdd

Functionality

- True sum requires \( w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[ TAdd(u, v) \]

\[ \begin{array}{c|c|c}
\text{u} & \text{v} & \text{Result} \\
\hline
> 0 & > 0 & \text{PosOver} \\
\text{v} < 0 & < 0 & \text{NegOver} \\
\end{array} \]

True Sum

\[ TAdd(u, v) = \begin{cases} 
\text{PosOver} & \text{if } u + v < TMin_w \\
\text{NegOver} & \text{if } TMin_w \leq u + v \leq TMax_w \\
\text{PosOver} & \text{if } TMax_w < u + v 
\end{cases} \]
Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum $\geq 2^{w-1}$
  - Becomes negative
  - At most once
- If sum $< -2^{w-1}$
  - Becomes positive
  - At most once
Detecting 2’s Comp. Overflow

Task

- **Given** \( s = TAdd_w(u, v) \)
- **Determine if** \( s = \text{Add}_w(u, v) \)
- **Example**
  
  ```
  int s, u, v;
  s = u + v;
  ```

Claim

- **Overflow iff either:**
  
  \[
  u, v < 0, s \geq 0 \quad \text{(NegOver)}
  \]
  
  \[
  u, v \geq 0, s < 0 \quad \text{(PosOver)}
  \]

  \[
  \text{ovf} = (u<0 == v<0) \; \&\& \; (u<0 != s<0);
  \]
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd
- \( TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
  - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group
- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse
  
  Let \( TComp_w(u) = U2T(UComp_w(T2U(u))) \)

  \[ TAdd_w(u, TComp_w(u)) = 0 \]

\[ TComp_w(u) = \begin{cases} 
-u & u \neq Tmin_w \\
TMin_w & u = Tmin_w 
\end{cases} \]
Computing Exact Product of $w$-bit numbers $x, y$

- Either signed or unsigned

Ranges

- **Unsigned**: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
  - Up to $2^w$ bits
- **Two’s complement min**: $x \times y \geq (-2^{w-1})(2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
  - Up to $2^{w-1}$ bits
- **Two’s complement max**: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
  - Up to $2^w$ bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: $w$ bits

True Product: $2^w$ bits

Discard $w$ bits: $w$ bits

Standard Multiplication Function

- Ignores high order $w$ bits

Implements Modular Arithmetic

$$\text{UMult}_w(u, v) = u \cdot v \mod 2^w$$
Unsigned vs. Signed Multiplication

Unsigned Multiplication

```c
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to $w$-bit number $up = \text{UMult}_w(ux, uy)$
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two’s Complement Multiplication

```c
int x, y;
int p = x * y;
```

- Compute exact product of two $w$-bit numbers $x, y$
- Truncate result to $w$-bit number $p = \text{TMult}_w(x, y)$
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

Two’s Complement Multiplication

int x, y;
int p = x * y;

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p
Power-of-2 Multiply with Shift

Operation
- \( u \ll k \) gives \( u \ast 2^k \)
- Both signed and unsigned

Operands: \( w \) bits

\[
\begin{array}{c}
\text{u} \\
0 \cdots 0 1 0 \cdots 0 0
\end{array}
\]

\[
\begin{array}{c}
\ast 2^k \\
0 \cdots 0 1 0 \cdots 0 0
\end{array}
\]

True Product: \( w+k \) bits

\[
\begin{array}{c}
\text{u} \cdot 2^k \\
0 \cdots 0 0
\end{array}
\]

Discard \( k \) bits: \( w \) bits

\[
\begin{array}{c}
\text{UMult}_w(u, 2^k) \\
\text{TMult}_w(u, 2^k)
\end{array}
\]

Examples
- \( u \ll 3 \) \quad \text{==} \quad u \ast 8
- \( u \ll 5 - u \ll 3 \) \quad \text{==} \quad u \ast 24
- Most machines shift and add faster than multiply
  - Compiler generates this code automatically
C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

```asm
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
**Unsigned Power-of-2 Divide with Shift**

**Quotient of Unsigned by Power of 2**
- \( u >> k \) gives \( \lfloor u / 2^k \rfloor \)
- Uses logical shift

**Operands:**
\[
\begin{array}{cccccccc}
\text{u} & \cdots \\
\end{array}
\]

**Division:**
\[
\begin{array}{cccccccc}
\text{u} / 2^k & \cdots \\
\end{array}
\]

**Result:**
\[
\begin{array}{cccccccc}
\lfloor u / 2^k \rfloor & \cdots \\
\end{array}
\]

**Division Computed Hex Binary**

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x &gt;&gt; 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x &gt;&gt; 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x &gt;&gt; 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

unsigned udiv8(unsigned x)
{
    return x/8;
}

Compiled Arithmetic Operations

shrl $3, %eax

Explanation

# Logical shift
return x >> 3;

- Uses logical shift for unsigned

For Java Users

- Logical shift written as >>>

15-213, F’04
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- \( x >> k \) gives \( \lfloor x / 2^k \rfloor \)
- Uses arithmetic shift
- Rounds wrong direction when \( u < 0 \)

Operands:

\[
x \quad \lfloor \quad \quad x / 2^k \quad \rfloor
\]

Division:

\[
x / 2^k
\]

Result:

RoundDown\((x / 2^k)\)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y &gt;&gt; 1</td>
<td>-7606.5</td>
<td>E2</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>y &gt;&gt; 4</td>
<td>-950.8125</td>
<td>FC</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>y &gt;&gt; 8</td>
<td>-59.4257813</td>
<td>FF</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round Toward 0)
- Compute as $\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor$
  - In C: $(x + (1<<k) - 1) >> k$
  - Biases dividend toward 0

Case 1: No rounding

Dividend:

$$
\begin{array}{c}
\text{u} \\
+2^k-1
\end{array}
\begin{array}{c}
1 \cdots 0 \cdots 0 \\
0 \cdots 0 0 1 \cdots 1 1
\end{array}
\Rightarrow
\begin{array}{c}
1 \cdots 1 \cdots 1 1 \\
0 \cdots 0 1 0 \cdots 0 0
\end{array}
$$

Divisor:

$$
\begin{array}{c}
1 \cdots 0 \cdots 1 \\
/ \ 2^k \\
\left\lfloor u / 2^k \right\rfloor
\end{array}
\begin{array}{c}
1 \cdots 1 1 1 \cdots 1 \cdots 1 1
\end{array}
$$

**Biassing has no effect**
Case 2: Rounding

Dividend: $x + 2^k + 1$

Divisor: $2^k$

$\left\lfloor \frac{x}{2^k} \right\rfloor$

Incremented by 1

Biasing adds 1 to final result

Incremented by 1
Compiled Signed Division Code

C Function

```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp L3
```

Explanation

```assembly
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- Arith. shift written as `>>`

For Java Users

```java
int idiv8(int x) {
    if (x < 0)
        x += 7;
    return x >>> 3;
}
```
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
  \[ 0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
  \[ \text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
  \[ \text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
  \[ \text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
  \[ \text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras
- Unsigned multiplication and addition
  - Truncating to \( w \) bits
- Two’s complement multiplication and addition
  - Truncating to \( w \) bits

Both Form Rings
- Isomorphic to ring of integers mod \( 2^w \)

Comparison to Integer Arithmetic
- Both are rings
- Integers obey ordering properties, e.g.,
  \[
  u > 0 \quad \Rightarrow \quad u + v > v \\
  u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
  \]
- These properties are not obeyed by two’s comp. arithmetic
  \[
  T_{Max} + 1 = T_{Min} \\
  15213 \times 30426 = -10030 \text{ (16-bit words)}
  \]
C Puzzle Answers

- Assume machine with 32 bit word size, two’s comp. integers
- $TMin$ makes a good counterexample in many cases

- $x < 0 \quad \Rightarrow \quad ((x*2) < 0)$ False: $TMin$
- $ux >= 0$ True: $0 = UMin$
- $x & 7 == 7 \quad \Rightarrow \quad (x<<30) < 0$ True: $x_1 = 1$
- $ux > -1$ False: 0
- $x > y \quad \Rightarrow \quad -x < -y$ False: $-1, TMin$
- $x * x >= 0$ False: 30426
- $x > 0 && y > 0 \quad \Rightarrow \quad x + y > 0$ False: $TMax, TMax$
- $x >= 0 \quad \Rightarrow \quad -x <= 0$ True: $-TMax < 0$
- $x <= 0 \quad \Rightarrow \quad -x >= 0$ False: $TMin$