
Bits and Bytes
Aug. 28, 2003

TopicsTopics
� Why bits?
� Representing information as bits

� Binary/Hexadecimal
� Byte representations

» numbers
» characters and strings
» Instructions

� Bit-level manipulations
� Boolean algebra
� Expressing in C

15-213 F’03cl ass02. ppt

15-213
“ The Class That Gives CMU Its Zip!”

– 2 – 15-213, F’03

Why Don’t Computers Use Base 10?Why Don’t Computers Use Base 10?

Base 10 Number RepresentationBase 10 Number Representation
� That’s why fingers are known as “ digits”

� Natural representation for financial transactions
� Floating point number cannot exactly represent $1.20

� Even carries through in scientific notation
� 1.5213 X 104

Implementing ElectronicallyImplementing Electronically
� Hard to store

� ENIAC (First electronic computer) used 10 vacuum tubes / digit

� Hard to transmit
� Need high precision to encode 10 signal levels on single wire

� Messy to implement digital logic functions
� Addition, multiplication, etc.

– 3 – 15-213, F’03

Binary RepresentationsBinary Representations

Base 2 Number RepresentationBase 2 Number Representation
� Represent 1521310 as 111011011011012

� Represent 1.2010 as 1.0011001100110011[0011]…2

� Represent 1.5213 X 104 as 1.11011011011012 X 213

Electronic ImplementationElectronic Implementation
� Easy to store with bistable elements

� Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

– 4 – 15-213, F’03

Byte-Oriented Memory OrganizationByte-Oriented Memory Organization

Programs Refer to Virtual AddressesPrograms Refer to Virtual Addresses
� Conceptually very large array of bytes

� Actually implemented with hierarchy of different memory
types
� SRAM, DRAM, disk
� Only allocate for regions actually used by program

� In Unix and Windows NT, address space private to particular
“ process”
� Program being executed
� Program can clobber its own data, but not that of others

Compiler + RunCompiler + Run--Time System Control AllocationTime System Control Allocation
� Where different program objects should be stored

� Multiple mechanisms: static, stack, and heap

� In any case, all allocation within single virtual address space

– 5 – 15-213, F’03

Encoding Byte ValuesEncoding Byte Values

Byte = 8 bitsByte = 8 bits
� Binary 000000002 to 111111112

� Decimal: 010 to 25510

� Hexadecimal 0016 to FF16

� Base 16 number representation
� Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
� Write FA1D37B16 in C as 0xFA1D37B

» Or 0xf a1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

– 6 – 15-213, F’03

Literary HexLiterary Hex

Common 8Common 8--byte hex filler:byte hex filler:
� 0xdeadbeef

� Can you think of other 8-byte fillers?

Hex poetry (Bruce “ the Bard”Hex poetry (Bruce “ the Bard” MaggsMaggs, 2003):, 2003):

61cacafe
afadacad
abaddeed
adebfeda
cacabead
adeaddeb

– 7 – 15-213, F’03

Machine WordsMachine Words

Machine Has “ Word Size”Machine Has “ Word Size”
� Nominal size of integer-valued data

� Including addresses

� Most current machines are 32 bits (4 bytes)
� Limits addresses to 4GB
� Becoming too small for memory-intensive applications

� High-end systems are 64 bits (8 bytes)
� Potentially address ≈≈≈≈ 1.8 X 1019 bytes

� Machines support multiple data formats
� Fractions or multiples of word size
� Always integral number of bytes

– 8 – 15-213, F’03

Word-Oriented Memory
Organization
Word-Oriented Memory
Organization

Addresses Specify Byte Addresses Specify Byte
LocationsLocations
� Address of first byte in

word

� Addresses of successive
words differ by 4 (32-bit) or
8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

– 9 – 15-213, F’03

Data RepresentationsData Representations

Sizes of C Objects (in Bytes)Sizes of C Objects (in Bytes)
� C Data Type Compaq Alpha Typical 32-bit Intel IA32

� int 4 4 4
� long int 8 4 4
� char 1 1 1
� short 2 2 2
� float 4 4 4
� double 8 8 8
� long double 8 8 10/12
� char * 8 4 4

» Or any other pointer

– 10 – 15-213, F’03

Byte OrderingByte Ordering

How should bytes within multiHow should bytes within multi --byte word be ordered in byte word be ordered in
memory?memory?

ConventionsConventions
� Sun’s, Mac’s are “ Big Endian” machines

� Least significant byte has highest address

� Alphas, PC’s are “ Little Endian” machines
� Least significant byte has lowest address

– 11 – 15-213, F’03

Byte Ordering ExampleByte Ordering Example

Big Big EndianEndian
� Least significant byte has highest address

Little Little EndianEndian
� Least significant byte has lowest address

ExampleExample
� Variable x has 4-byte representation 0x01234567

� Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

– 12 – 15-213, F’03

Reading Byte-Reversed ListingsReading Byte-Reversed Listings

DisassemblyDisassembly
� Text representation of binary machine code

� Generated by program that reads the machine code

Example FragmentExample Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab, %ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0, 0x28(%ebx)

Deciphering NumbersDeciphering Numbers
� Value: 0x12ab

� Pad to 4 bytes: 0x000012ab

� Split into bytes: 00 00 12 ab

� Reverse: ab 12 00 00

– 13 – 15-213, F’03

Examining Data RepresentationsExamining Data Representations

Code to Print Byte Representation of DataCode to Print Byte Representation of Data
� Casting pointer to unsi gned char * creates byte array

t ypedef unsi gned char * poi nt er ;

voi d show_byt es(poi nt er st ar t , i nt l en)
{

i nt i ;
f or (i = 0; i < l en; i ++)

pr i nt f (" 0x%p\ t 0x%. 2x\ n" ,
st ar t +i , st ar t [i]) ;

pr i nt f (" \ n") ;
}

Printf directives:
%p: Print pointer
%x : Print Hexadecimal

– 14 – 15-213, F’03

show_byt es Execution Exampleshow_byt es Execution Example

i nt a = 15213;

pr i nt f (" i nt a = 15213; \ n") ;

show_byt es((poi nt er) &a, s i zeof (i nt)) ;

Result (Linux):

i nt a = 15213;

0x11f f f f cb8 0x6d

0x11f f f f cb9 0x3b

0x11f f f f cba 0x00

0x11f f f f cbb 0x00

– 15 – 15-213, F’03

Representing IntegersRepresenting Integers
i nti nt A = 15213;A = 15213;
i nti nt B = B = -- 15213;15213;
l ong l ong i nti nt C = 15213;C = 15213;

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

Linux/Alpha A

3B

6D

00

00

Sun A

93

C4

FF

FF

Linux/Alpha B

C4

93

FF

FF

Sun B

Two’s complement representation
(Covered next lecture)

00

00

00

00

6D

3B

00

00

Alpha C

3B

6D

00

00

Sun C

6D

3B

00

00

Linux C

– 16 – 15-213, F’03

Representing PointersRepresenting Pointers
i nti nt B = B = -- 15213;15213;
i nti nt * P = &B;* P = &B;

Alpha Address

Hex: 1 F F F F F C A 0

Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

01

00

00

00

A0

FC

FF

FF

Alpha P

Sun Address

Hex: E F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects

FB

2C

EF

FF

Sun P

FF

BF

D4

F8

Linux P

Linux Address

Hex: B F F F F 8 D 4
Binary: 1011 1111 1111 1111 1111 1000 1101 0100

– 17 – 15-213, F’03

Representing FloatsRepresenting Floats
Fl oat F = 15213. 0;Fl oat F = 15213. 0;

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines

00

B4

6D

46

Linux/Alpha F

B4

00

46

6D

Sun F

Can see some relation to integer representation, but not obvious

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

15213: 1110 1101 1011 01

– 18 – 15-213, F’03

char S[6] = " 15213" ;char S[6] = " 15213" ;

Representing StringsRepresenting Strings

Strings in CStrings in C
� Represented by array of characters
� Each character encoded in ASCII format

� Standard 7-bit encoding of character set
� Character “ 0” has code 0x30

» Digit i has code 0x30+i

� String should be null-terminated
� Final character = 0

CompatibilityCompatibility
� Byte ordering not an issue
� Text files generally platform independent

� Except for different conventions of line termination character(s)!
» Unix (‘ \ n’ = 0x0a = ^J)
» Mac (‘ \ r ’ = 0x0d = ^M)
» DOS and HTTP (‘ \ r \ n’ = 0x0d0a = ^M̂ J)

Linux/Alpha S Sun S

32

31

31

35

33

00

32

31

31

35

33

00

– 19 – 15-213, F’03

Machine-Level Code RepresentationMachine-Level Code Representation

Encode Program as Sequence of InstructionsEncode Program as Sequence of Instructions
� Each simple operation

� Arithmetic operation
� Read or write memory
� Conditional branch

� Instructions encoded as bytes
� Alpha’s, Sun’s, Mac’s use 4 byte instructions

» Reduced Instruction Set Computer (RISC)
� PC’s use variable length instructions

» Complex Instruction Set Computer (CISC)

� Different instruction types and encodings for different
machines
� Most code not binary compatible

Programs are Byte Sequences Too!Programs are Byte Sequences Too!

– 20 – 15-213, F’03

Representing InstructionsRepresenting Instructions
i nti nt sum(sum(i nti nt x, x, i nti nt y)y)
{{

r et ur n x+y;r et ur n x+y;
}}

Different machines use totally different instructions and encodings

00

00

30

42

Alpha sum

01

80

FA

6B

E0

08

81

C3

Sun sum

90

02

00

09

� For this example, Alpha &
Sun use two 4-byte
instructions
� Use differing numbers of

instructions in other cases

� PC uses 7 instructions with
lengths 1, 2, and 3 bytes
� Same for NT and for Linux
� NT / Linux not fully binary

compatible

E5

8B

55

89

PC sum

45

0C

03

45

08

89

EC

5D

C3

– 21 – 15-213, F’03

Boolean AlgebraBoolean Algebra
Developed by George Developed by George BooleBoole in 19th Centuryin 19th Century

� Algebraic representation of logic
� Encode “ True” as 1 and “ False” as 0

AndAnd
� A&B = 1 when both A=1 and

B=1 & 0 1
0 0 0
1 0 1

~
0 1
1 0

NotNot
� ~A = 1 when A=0

OrOr
� A|B = 1 when either A=1 or

B=1 | 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

ExclusiveExclusive--Or (Or (XorXor))
� A^B = 1 when either A=1 or

B=1, but not both

– 22 – 15-213, F’03

A

~A

~B

B

Connection when

A&~B | ~A&B

Application of Boolean AlgebraApplication of Boolean Algebra

Applied to Digital Systems by Claude ShannonApplied to Digital Systems by Claude Shannon
� 1937 MIT Master’s Thesis

� Reason about networks of relay switches
� Encode closed switch as 1, open switch as 0

A&~B

~A&B = A^B

– 23 – 15-213, F’03

Integer AlgebraInteger Algebra

Integer ArithmeticInteger Arithmetic
� �Z, +, *, –, 0, 1� forms a “ ring”
� Addition is “ sum” operation

� Multiplication is “ product” operation

� – is additive inverse

� 0 is identity for sum

� 1 is identity for product

– 24 – 15-213, F’03

Boolean AlgebraBoolean Algebra

Boolean AlgebraBoolean Algebra
� �{0,1}, |, &, ~, 0, 1� forms a “ Boolean algebra”
� Or is “ sum” operation

� And is “ product” operation

� ~ is “ complement” operation (not additive inverse)

� 0 is identity for sum

� 1 is identity for product

– 25 – 15-213, F’03

� Commutativity
A | B = B | A A + B = B + A
A & B = B & A A * B = B * A

� Associativity
(A | B) | C = A | (B | C) (A + B) + C = A + (B + C)
(A & B) & C = A & (B & C) (A * B) * C = A * (B * C)

� Product distributes over sum
A & (B | C) = (A & B) | (A & C) A * (B + C) = A * B + B * C

� Sum and product identities
A | 0 = A A + 0 = A
A & 1 = A A * 1 = A

� Zero is product annihilator
A & 0 = 0 A * 0 = 0

� Cancellation of negation
~ (~ A) = A – (– A) = A

Boolean Algebra Boolean Algebra ≈≈≈≈≈≈≈≈ Integer RingInteger Ring

– 26 – 15-213, F’03

� Boolean: Sum distributes over product
A | (B & C) = (A | B) & (A | C) A + (B * C) ≠≠≠≠ (A + B) * (B + C)

� Boolean: Idempotency
A | A = A A + A ≠≠≠≠ A

�“ A is true” or “ A is true” = “ A is true”

A & A = A A * A ≠≠≠≠ A
� Boolean: Absorption

A | (A & B) = A A + (A * B) ≠≠≠≠ A
�“ A is true” or “ A is true and B is true” = “ A is true”

A & (A | B) = A A * (A + B) ≠≠≠≠ A
� Boolean: Laws of Complements

A | ~A = 1 A + –A ≠≠≠≠ 1
�“ A is true” or “ A is false”

� Ring: Every element has additive inverse
A | ~A ≠≠≠≠ 0 A + –A = 0

Boolean Algebra Boolean Algebra ≠≠≠≠≠≠≠≠ Integer RingInteger Ring

– 27 – 15-213, F’03

Properties of & and ^Properties of & and ^Boolean RingBoolean Ring
� ����{0,1}, ^ , &, ΙΙΙΙ, 0, 1����
� Identical to integers mod 2

� ΙΙΙΙ is identity operation: ΙΙΙΙ (A) = A
A ^ A = 0

PropertyProperty Boolean RingBoolean Ring
� Commutative sum A ^ B = B ^ A

� Commutative product A & B = B & A

� Associative sum (A ^ B) ^ C = A ^ (B ^ C)

� Associative product (A & B) & C = A & (B & C)

� Prod. over sum A & (B ^ C) = (A & B) ^ (B & C)

� 0 is sum identity A ^ 0 = A

� 1 is prod. identity A & 1 = A

� 0 is product annihilator A & 0 = 0

� Additive inverse A ^ A = 0

– 28 – 15-213, F’03

Relations Between OperationsRelations Between Operations

DeMorgan’sDeMorgan’s LawsLaws
� Express & in terms of |, and vice-versa

� A & B = ~(~A | ~B)
» A and B are true if and only if neither A nor B is false

� A | B = ~(~A & ~B)
» A or B are true if and only if A and B are not both false

ExclusiveExclusive--Or using Inclusive OrOr using Inclusive Or
� A ^ B = (~A & B) | (A & ~B)

» Exactly one of A and B is true
� A ^ B = (A | B) & ~(A & B)

» Either A is true, or B is true, but not both

– 29 – 15-213, F’03

General Boolean AlgebrasGeneral Boolean Algebras

Operate on Bit VectorsOperate on Bit Vectors

� Operations applied bitwise

All of the Properties of Boolean Algebra ApplyAll of the Properties of Boolean Algebra Apply

01101001
& 01010101

01000001

01101001
| 01010101

01111101

01101001
^ 01010101

00111100
~ 01010101

1010101001000001 01111101 00111100 10101010

– 30 – 15-213, F’03

Representing & Manipulating SetsRepresenting & Manipulating Sets

RepresentationRepresentation
� Width w bit vector represents subsets of {0, …, w–1}
� aj = 1 if j ∈ A

01101001 { 0, 3, 5, 6 }
76543210

01010101 { 0, 2, 4, 6 }
76543210

OperationsOperations
� & Intersection 01000001 { 0, 6 }
� | Union 01111101 { 0, 2, 3, 4, 5, 6 }
� ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
� ~ Complement 10101010 { 1, 3, 5, 7 }

– 31 – 15-213, F’03

Bit-Level Operations in CBit-Level Operations in C

Operations &, |, ~, ^ Available in COperations &, |, ~, ^ Available in C
� Apply to any “ integral” data type

� l ong, i nt , shor t , char

� View arguments as bit vectors

� Arguments applied bit-wise

Examples (Char data type)Examples (Char data type)
� ~0x41 - - > 0xBE

~010000012 - - > 101111102

� ~0x00 - - > 0xFF
~000000002 - - > 111111112

� 0x69 & 0x55 - - > 0x41
011010012 & 010101012 - - > 010000012

� 0x69 | 0x55 - - > 0x7D
011010012 | 010101012 - - > 011111012

– 32 – 15-213, F’03

Contrast: Logic Operations in CContrast: Logic Operations in C

Contrast to Logical OperatorsContrast to Logical Operators
� &&, | | , !

� View 0 as “ False”
� Anything nonzero as “ True”
� Always return 0 or 1
� Early termination

Examples (char data type)Examples (char data type)
� ! 0x41 - - > 0x00

� ! 0x00 - - > 0x01

� ! ! 0x41 - - > 0x01

� 0x69 && 0x55 - - > 0x01

� 0x69 | | 0x55 - - > 0x01

� p && * p (avoids null pointer access)

– 33 – 15-213, F’03

Shift OperationsShift Operations

Left Shift: Left Shift: x << yx << y
� Shift bit-vector x left y positions

� Throw away extra bits on left
� Fill with 0’s on right

Right Shift: Right Shift: x >> yx >> y
� Shift bit-vector x right y

positions
� Throw away extra bits on right

� Logical shift
� Fill with 0’s on left

� Arithmetic shift
� Replicate most significant bit on

right
� Useful with two’s complement

integer representation

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

– 34 – 15-213, F’03

Cool Stuff with XorCool Stuff with Xor

voi d f unny(voi d f unny(i nti nt * x, * x, i nti nt * y)* y)
{{

* x = * x ^ * y; / * #1 * /* x = * x ^ * y; / * #1 * /
* y = * x ^ * y; / * #2 * /* y = * x ^ * y; / * #2 * /
* x = * x ^ * y; / * #3 * /* x = * x ^ * y; / * #3 * /

}}

� Bitwise Xor is form
of addition

� With extra property
that every value is
its own additive
inverse

A ^ A = 0

BABegin

BA^B1

(A^B) ^B = AA^B2

A(A^B) ^A = B3

ABEnd

* y* x

– 35 – 15-213, F’03

Main PointsMain Points

It’s All About Bits & BytesIt’s All About Bits & Bytes
� Numbers

� Programs

� Text

Different Machines Follow Different ConventionsDifferent Machines Follow Different Conventions
� Word size

� Byte ordering

� Representations

Boolean Algebra is Mathematical BasisBoolean Algebra is Mathematical Basis
� Basic form encodes “ false” as 0, “ true” as 1

� General form like bit-level operations in C
� Good for representing & manipulating sets

