
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:
� Theme

� Five great realities of computer systems

� How this fits within CS curriculum

CS 213 F ’03class01a.ppt

15-213
“ The Class That Gives CMU Its Zip!”

Andreas G. Nowatzyk
August 26, 2003

– 2 – 15-213, F’03

AcknowledgementAcknowledgement

1515--213 was developed and fine213 was developed and fine--tuned by tuned by
Randal E. Bryant and David Randal E. Bryant and David O’HallaronO’Hallaron. .
They wrote They wrote The BookThe Book !!

– 3 – 15-213, F’03

Course ThemeCourse Theme
� Abstraction is good, but don’t forget reality!

Courses to date emphasize abstractionCourses to date emphasize abstraction
� Abstract data types

� Asymptotic analysis

These abstractions have limitsThese abstractions have limits
� Especially in the presence of bugs

� Need to understand underlying implementations

Useful outcomesUseful outcomes
� Become more effective programmers

� Able to find and eliminate bugs efficiently
� Able to tune program performance

� Prepare for later “ systems” classes in CS & ECE
� Compilers, Operating Systems, Networks, Computer

Architecture, Embedded Systems – 4 – 15-213, F’03

Great Reality #1Great Reality #1

Int’sInt’s are not Integers, Float’s are not are not Integers, Float’s are not RealsReals

ExamplesExamples
� Is x2 � 0?

� Float’s: Yes!
� Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

� Is (x + y) + z = x + (y + z)?
� Unsigned & Signed Int’s: Yes!
� Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14

» 1e20 + (-1e20 + 3.14) --> ??

– 5 – 15-213, F’03

Computer ArithmeticComputer Arithmetic

Does not generate random valuesDoes not generate random values
� Arithmetic operations have important mathematical

properties

Cannot assume “ usual” propertiesCannot assume “ usual” properties
� Due to finiteness of representations

� Integer operations satisfy “ ring” properties
� Commutativity, associativity, distributivity

� Floating point operations satisfy “ ordering” properties
� Monotonicity, values of signs

ObservationObservation
� Need to understand which abstractions apply in which

contexts

� Important issues for compiler writers and serious application
programmers

– 6 – 15-213, F’03

Great Reality #2Great Reality #2

You’ve got to know assemblyYou’ve got to know assembly

Chances are, you’ll never write program in assemblyChances are, you’ll never write program in assembly
� Compilers are much better & more patient than you are

Understanding assembly key to machineUnderstanding assembly key to machine--level level
execution modelexecution model
� Behavior of programs in presence of bugs

� High-level language model breaks down

� Tuning program performance
� Understanding sources of program inefficiency

� Implementing system software
� Compiler has machine code as target
� Operating systems must manage process state

– 7 – 15-213, F’03

Assembly Code ExampleAssembly Code Example

Time Stamp CounterTime Stamp Counter
� Special 64-bit register in Intel-compatible machines

� Incremented every clock cycle

� Read with rdtsc instruction

ApplicationApplication
� Measure time required by procedure

� In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

– 8 – 15-213, F’03

Code to Read CounterCode to Read Counter
� Write small amount of assembly code using GCC’s asm

facility

� Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

– 9 – 15-213, F’03

Code to Read CounterCode to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{

access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{

unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

– 10 – 15-213, F’03

Measuring TimeMeasuring Time

Trickier than it Might LookTrickier than it Might Look
� Many sources of variation

ExampleExample
� Sum integers from 1 to n

n Cycles Cycles/n
100 961 9.61

1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

– 11 – 15-213, F’03

Great Reality #3Great Reality #3

Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an
unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
� It must be allocated and managed
� Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
� Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
� Cache and virtual memory effects can greatly affect program

performance
� Adapting program to characteristics of memory system can

lead to major speed improvements

– 12 – 15-213, F’03

Memory Referencing Bug ExampleMemory Referencing Bug Example

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

Alpha MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

– 13 – 15-213, F’03

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

� Out of bounds array references

� Invalid pointer values

� Abuses of malloc/free

Can lead to nasty bugsCan lead to nasty bugs
� Whether or not bug has any effect depends on system and

compiler

� Action at a distance
� Corrupted object logically unrelated to one being accessed
� Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
� Program in Java, Lisp, or ML

� Understand what possible interactions may occur

� Use or develop tools to detect referencing errors
– 14 – 15-213, F’03

Memory Performance ExampleMemory Performance Example

Implementations of Matrix MultiplicationImplementations of Matrix Multiplication
� Multiple ways to nest loops

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

– 15 – 15-213, F’03

0

20

40

60

80

100

120

140

160

matrix size (n)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

– 16 – 15-213, F’03

Blocked matmult perf (Alpha 21164)Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

bijk

bikj

ijk

ikj

– 17 – 15-213, F’03

Real Memory PerformanceReal Memory Performance

From Tom Womack’s
memory latency benchmark

Pointer-Chase Results

1

10

100

1000

It
er

at
io

n
 T

im
e

[n
s]

– 18 – 15-213, F’03

Great Reality #4Great Reality #4

There’s more to performance than asymptotic There’s more to performance than asymptotic
complexitycomplexity

Constant factors matter too!Constant factors matter too!
� Easily see 10:1 performance range depending on how code

written

� Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
� How programs compiled and executed

� How to measure program performance and identify
bottlenecks

� How to improve performance without destroying code
modularity and generality

– 19 – 15-213, F’03

Great Reality #5Great Reality #5

Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
� I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
� Many system-level issues arise in presence of network

� Concurrent operations by autonomous processes
� Coping with unreliable media
� Cross platform compatibility
� Complex performance issues

– 20 – 15-213, F’03

Role within CurriculumRole within Curriculum

Transition from Abstract to Transition from Abstract to
Concrete!Concrete!
� From: high-level language

model

� To: underlying
implementation

CS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 113
C Programming

– 21 – 15-213, F’03

Course PerspectiveCourse Perspective

Most Systems Courses are BuilderMost Systems Courses are Builder--CentricCentric
� Computer Architecture

� Design pipelined processor in Verilog

� Operating Systems
� Implement large portions of operating system

� Compilers
� Write compiler for simple language

� Networking
� Implement and simulate network protocols

– 22 – 15-213, F’03

Course Perspective (Cont.)Course Perspective (Cont.)

Our Course is ProgrammerOur Course is Programmer--CentricCentric
� Purpose is to show how by knowing more about the

underlying system, one can be more effective as a
programmer

� Enable you to
� Write programs that are more reliable and efficient
� Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers

� Not just a course for dedicated hackers
� We bring out the hidden hacker in everyone

� Cover material in this course that you won’t see elsewhere

