Floating Point Puzzles

For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

\[
\begin{align*}
\text{int } x &= \ldots; \\
\text{float } f &= \ldots; \\
\text{double } d &= \ldots;
\end{align*}
\]

Assume neither \(d \) nor \(f \) is NaN

\[
\begin{align*}
&x == (\text{int})(\text{float}) \ x \\
&x == (\text{int})(\text{double}) \ x \\
&f == (\text{float})(\text{double}) \ f \\
d == (\text{float}) \ d \\
f == -(-f); \\
2/3 == 2/3.0 \\
d < 0.0 \Rightarrow \ ((d\times 2) < 0.0) \\
d > f \Rightarrow -f > -d \\
d \times d >= 0.0 \\
(d+f)-d == f
\end{align*}
\]

IEEE Floating Point

IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns
- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional Binary Numbers

Representation
- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \cdot 2^k
 \]
Frac. Binary Number Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2-7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₂</td>
</tr>
</tbody>
</table>

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111₁₂ just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
- Use notation 1.0 – ε

Representable Numbers

<table>
<thead>
<tr>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Can only exactly represent numbers of the form x/2ᵏ</td>
</tr>
<tr>
<td>- Other numbers have repeating bit representations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101[01]…₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]…₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]…₂</td>
</tr>
</tbody>
</table>

Floating Point Representation

Numerical Form
- \(-1^s M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range [1.0,2.0)
 - Exponent \(E\) weights value by power of two

Encoding
- MSB is sign bit
- exp field encodes \(E\)
- frac field encodes \(M\)

Floating Point Precisions

Encoding
- MSB is sign bit
- exp field encodes \(E\)
- frac field encodes \(M\)

Sizes
- Single precision: 8 exp bits, 23 frac bits
 - 32 bits total
- Double precision: 11 exp bits, 52 frac bits
 - 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - 1 bit wasted
Normalized Encoding Example

Value

Float $F = 15213.0$;

$15213_{10} = 11101101101101_{2} = 1.1101101101101_{2} \times 2^{13}$

Significand

$M = \frac{1.1101101101101_{2}}{110110110110100000000000_{2}}$

Exponent

$E = 13$

$Bias = 127$

$Exp = 140 = 10001100_{2}$

Floating Point Representation (Class 02):

Hex: 466DB40

Binary: 01000110010110111110100110100000000000000

140: 10001110

15213: J110 1101 1011 01

Special Values

Condition

- $exp = 111...1$

Cases

- $exp = 111...1, frac = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $-1.0/-0.0 = -\infty$
- $exp = 111...1, frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\text{sqrt}(-1), \infty = -\infty$
Summary of Floating Point Real Number Encodings

-∞ - Normalized - Denorm + Denorm + Normalized + ∞

NaN −0 +0 NaN

Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

- Same General Form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity

Values Related to the Exponent

<table>
<thead>
<tr>
<th>Exp</th>
<th>exp</th>
<th>E</th>
<th>2^E</th>
</tr>
</thead>
</table>
| 0 | 0000| 06| 1/64 | (denorms)
| 1 | 0001| 06| 1/64 |
| 2 | 0010| 05| 1/32 |
| 3 | 0011| 04| 1/16 |
| 4 | 0100| 03| 1/8 |
| 5 | 0101| 02| 1/4 |
| 6 | 0110| 01| 1/2 |
| 7 | 0111| 01| 1 |
| 8 | 1000| +2| 2 |
| 9 | 1001| +3| 4 |
| 10 | 1010| +4| 8 |
| 11 | 1011| +5| 16 |
| 12 | 1100| +6| 32 |
| 13 | 1101| +7| 64 |
| 14 | 1110| +7| 128 |
| 15 | 1111| n/a| |

Dynamic Range

<table>
<thead>
<tr>
<th>s exp frac E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000 -6</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001 -6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td>0 0000 010 -6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>0 0000 110 -6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0 0001 000 -6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0 0001 001 -6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>0 0110 110 -1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0 0110 111 -1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000 0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 001 0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>0 0111 010 0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td>0 1110 110 7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0 1110 111 7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td>0 1111 000 n/a inf</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Values

6-bit IEEE-like format
- $e = 3$ exponent bits
- $f = 2$ fraction bits
- Bias is 3

Notice how the distribution gets denser toward zero.

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-(23,52)} \times 2^{-(126,1022)}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-(126,1022)}$</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-(126,1022)}$</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{(127,1023)}$</td>
</tr>
</tbody>
</table>

Special Properties of Encoding

FP Zero Same as Integer Zero
- All bits = 0

Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Operations

Conceptual View
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into $\frac{1}{2}$

Rounding Modes (illustrate with $\$\$ rounding)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011_2</td>
<td>10.001_2</td>
<td><1/2—down</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110_2</td>
<td>10.010_2</td>
<td>>1/2—up</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100_2</td>
<td>11.000_2</td>
<td>1/2—up</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100_2</td>
<td>10.100_2</td>
<td>1/2—down</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Closer Look at Round-To-Even

Default Rounding Mode
- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth
 - 1.2349999 → 1.23 (Less than half way)
 - 1.2350001 → 1.24 (Greater than half way)
 - 1.2350000 → 1.24 (Half way—round up)
 - 1.2450000 → 1.24 (Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers
- “Even” when least significant bit is 0
- Half way when bits to right of rounding position = 100...

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011_2</td>
<td>10.001_2</td>
<td><1/2—down</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110_2</td>
<td>10.010_2</td>
<td>>1/2—up</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100_2</td>
<td>11.000_2</td>
<td>1/2—up</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100_2</td>
<td>10.100_2</td>
<td>1/2—down</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>

FP Multiplication

Operands
$(-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}$

Exact Result

$(-1)^{s} M 2^{E}$
- Sign s: $s_1 \wedge s_2$
- Significand M: $M_1 \times M_2$
- Exponent E: $E_1 + E_2$

Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit $\frac{1}{2}$ precision

Implementation
- Biggest chore is multiplying significands
FP Addition

Operands

\[-\frac{1}{2^{E_1}} \times M_1 \quad 2^{E_1}\]

\[-\frac{1}{2^{E_2}} \times M_2 \quad 2^{E_2}\]

- Assume \(E_1 > E_2 \)

Exact Result

\[-\frac{1}{2^{E}} \times M \]

- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \) = \(E_1 \)

Fixing

- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit float precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

- Closed under addition? YES
 - But may generate infinity or NaN
- Commutative? YES
- Associative? NO
 - Overflow and inexactness of rounding
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
 - Except for infinities & NaNs

Monotonicity

- \(a \geq b \Rightarrow a + c \geq b + c \)? ALMOST
 - Except for infinities & NaNs

Math. Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication? YES
 - But may generate infinity or NaN
- Multiplication Commutative? YES
- Multiplication is Associative? NO
 - Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity? YES
- Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding

Monotonicity

- \(a \geq b \& c \geq 0 \Rightarrow a \times c \geq b \times c \)? ALMOST
 - Except for infinities & NaNs

Floating Point in C

C Guarantees Two Levels

- *float* single precision
- *double* double precision

Conversions

- Casting between int, float, and double changes numeric values
 - Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - Generally saturates to TMin or TMax
- int to double
 - Exact conversion, as long as int has \(\leq 53 \) bit word size
- int to float
 - Will round according to rounding mode
Answers to Floating Point Puzzles

Assume neither d nor f is NAN

- \(x = \text{int}(\text{float}) \times \) No: 24 bit significand
- \(x = \text{int}(\text{double}) \times \) Yes: 53 bit significand
- \(f = \text{float}(\text{double}) \times \) Yes: increases precision
- \(d = \text{float} \) No: loses precision
- \(f = -(-f) \) Yes: Just change sign bit
- \(2/3 = 2/3.0 \) No: \(2/3 \approx 0 \)
- \(d < 0.0 \Rightarrow (d*2 < 0.0) \) Yes!
- \(d > f \Rightarrow -f > -d \) Yes!
- \(d * d >= 0.0 \) Yes!
- \((d+f) - d = f \) No: Not associative

Ariane 5

- Exploded 37 seconds after liftoff
- Cargo worth $500 million

Why

- Computed horizontal velocity as floating point number
- Converted to 16-bit integer
- Worked OK for Ariane 4
- Overflowed for Ariane 5
 - Used same software

Summary

IEEE Floating Point Has Clear Mathematical Properties

- Represents numbers of form \(M \times 2^E \)
- Can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers