Topics

- **Numeric Encodings**
 - Unsigned & Two’s complement

- **Programming Implications**
 - C promotion rules

- **Basic operations**
 - Addition, negation, multiplication

- **Programming Implications**
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- C short 2 bytes long

C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

<table>
<thead>
<tr>
<th>Expression</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x < 0)</td>
<td>((x*2 < 0))</td>
</tr>
<tr>
<td>(ux > = 0)</td>
<td>(x < = 0)</td>
</tr>
<tr>
<td>(x & 7 == 7)</td>
<td>((x<<30) < 0)</td>
</tr>
<tr>
<td>(x > -1)</td>
<td>(-x < -y)</td>
</tr>
<tr>
<td>(x * x >= 0)</td>
<td>(x > 0) & (y > 0)</td>
</tr>
<tr>
<td>(x >= 0)</td>
<td>(-x <= 0)</td>
</tr>
<tr>
<td>(x <= 0)</td>
<td>(-x >= 0)</td>
</tr>
</tbody>
</table>

Encoding Example (Cont.)

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213: 00111011 01101101</th>
<th>-15213: 11000101 10010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15213</td>
<td>00111011 01101101</td>
</tr>
</tbody>
</table>
Numeric Ranges

Unsigned Values
- \(UMin = 0 \)
- \(000...0 \)
- \(UMax = 2^w - 1 \)
- \(111...1 \)

Two’s Complement Values
- \(Tmin = -2^{w-1} \)
- \(100...0 \)
- \(Tmax = 2^{w-1} - 1 \)
- \(011...1 \)

Other Values
- Minus 1
- \(111...1 \)

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>\texttt{FF FF 11111111 11111111}</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>\texttt{7F FF 01111111 11111111}</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>\texttt{80 00 10000000 00000000}</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>\texttt{FF FF 11111111 11111111}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>\texttt{00 00 00000000 00000000}</td>
</tr>
</tbody>
</table>

Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations
- \(|TMin| = Tmax + 1\)
 - Asymmetric range

C Programming
- \#include <limits.h>
- K&R App. B11
- Declares constants, e.g.,
 - \texttt{ULONG_MAX}
 - \texttt{LONG_MAX}
 - \texttt{LONG_MIN}
- Values platform-specific

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

\[
\text{short int } x = 15213; \\
\text{unsigned short int } ux = (\text{unsigned short}) x; \\
\text{short int } y = -15213; \\
\text{unsigned short int } uy = (\text{unsigned short}) y;
\]

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

\(\Rightarrow \) Can Invert Mappings
- \(\text{B2U}(x) = \text{B2U}^{-1}(x) \)
 - Bit pattern for unsigned integer
- \(\text{B2T}(x) = \text{B2T}^{-1}(x) \)
 - Bit pattern for two’s comp integer

Resulting Value
- No change in bit representation
- Nonnegative values unchanged
 - \(ux = 15213 \)
- Negative values change into (large) positive values
 - \(uy = 50323 \)
Relation between Signed & Unsigned

Two’s Complement

Maintain Same Bit Pattern

\[x' = 2^{-w+1} - 2^{-w-1} = 2 \times 2^{-1} = 2^w \]

\[u_x = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \]

Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix

 0U, 4294967259U

Casting
- Explicit casting between signed & unsigned same as U2T and T2U

 int tx, ty;
 unsigned ux, uy;
 tx = (int) ux;
 uy = (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls

 tx = ux;
 uy = ty;

Casting Surprises

Expression Evaluation
- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for \(W = 32 \)

<table>
<thead>
<tr>
<th>Constant₁</th>
<th>Constant₂</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned
- Ordering Inversion
- Negative → Big Positive

![Diagram of 2's Complement to Unsigned Conversion]

Sign Extension

Task:
- Given \(w \)-bit signed integer \(x \)
- Convert it to \(w + k \)-bit integer with same value

Rule:
- Make \(k \) copies of sign bit:
- \(X' = \underbrace{x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0}_{k \text{ copies of MSB}} \)

![Diagram illustrating sign extension]

Sign Extension Example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix 15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y -15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy -15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Justification For Sign Extension

Prove Correctness by Induction on \(k \)
- Induction Step: extending by single bit maintains value

![Diagram illustrating induction step]

- Key observation: \(-2^{w-1} = -2^w + 2^w \)
- Look at weight of upper bits:
 - \(x = -2^{w-1} x_{w-1} \)
 - \(x' = -2^w x_{w-1} + 2^w x_{w-1} = -2^{w-1} x_{w-1} \)
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonzero
- C compilers on some machines generate less efficient code
 unsigned i;
 for (i = 1; i < cnt; i++)
 a[i] += a[i-1];
- Easy to make mistakes
 for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

Do Use When Performing Modular Arithmetic
- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range
- Working right up to limit of word size

Negating with Complement & Increment

Claim: Following Holds for 2’s Complement
\[\sim x + 1 = -x \]

Complement
- Observation: \[\sim x + x = 1111...11 = -1 \]

\[x = 100110101 \]
+ \[\sim x = 01100010 \]
\[11111111 \]

Increment
- \[\sim x + x + (\sim x + 1) = -x + (\sim x + 1) \]
- \[\sim x + 1 = -x \]

Warning: Be cautious treating int’s as integers

Comp. & Incr. Examples

\(x = 15213 \)

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B 6D</td>
<td>00111011 01101101</td>
<td>15213</td>
</tr>
<tr>
<td>-15214</td>
<td>11000110 10011010</td>
<td>-15214</td>
</tr>
<tr>
<td>-15213</td>
<td>11000101 10010011</td>
<td>-15213</td>
</tr>
<tr>
<td>C4 93</td>
<td>11000101 10010111</td>
<td>C4 93</td>
</tr>
<tr>
<td>00 00</td>
<td>00000000 00000000</td>
<td>0</td>
</tr>
<tr>
<td>FF FF</td>
<td>11111111 11111111</td>
<td>-1</td>
</tr>
<tr>
<td>00 00</td>
<td>00000000 00000000</td>
<td>0</td>
</tr>
</tbody>
</table>

Unsinged Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[UAdd_w(u, v) = u + v \mod 2^w \]

Standard Addition Function
- Ignores carry output

Implements Modular Arithmetic
\[s = UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases} \]
Visualizing Integer Addition

Integer Addition
- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

Mathematical Properties

Modular Addition Forms an Abelian Group
- Closed under addition

- Commutative

- Associative

- 0 is additive identity

- Every element has additive inverse

- Signed vs. unsigned addition in C:

    ```
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```

Two's Complement Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

TAdd and UAdd have Identical Bit-Level Behavior
- Will give $s == t$
characterizing TAdd

functionality
- true sum requires \(w+1 \) bits
- drop off MSB
- treat remaining bits as 2's comp. integer

\[T\text{Add}(u, v) \]

\[
\begin{cases}
> 0 & \text{PosOver} \\
< 0 & \text{NegOver}
\end{cases}
\]

true sum

\[
\begin{array}{c|c}
0 \ldots 1 & 1 \ldots 1 \\
0 \ldots 0 & 0 \ldots 0 \\
0 \ldots 0 & 100\ldots 0 \\
1 \ldots 0 \ldots 0 & 000\ldots 0 \\
1 \ldots 0 \ldots 0 & 100\ldots 0 \\
1 \ldots 0 \ldots 0 & 011\ldots 1 \\
1 \ldots 0 \ldots 0 & 111\ldots 1 \\
\end{array}
\]

TAdd

\[
\begin{cases}
0 & \text{PosOver} \\
10 & \text{NegOver}
\end{cases}
\]

\[
\begin{align*}
T\text{Add}_w(u,v) = & \begin{cases}
\begin{align*}
u + v + 2^w & \text{if} \ u + v < T\text{Min}_w \text{ (NegOver)} \\
u + v & \text{if} \ T\text{Min}_w \leq u + v \leq T\text{Max}_w \\
u + v - 2^w & \text{if} \ T\text{Max}_w < u + v \text{ (PosOver)}
\end{align*}
\end{cases}
\end{align*}
\]

visualizing 2's comp. addition

values
- 4-bit two's comp.
- range from -8 to +7

wraps around
- if sum \(\geq 2^{w-1} \)
 - becomes negative
 - at most once
- if sum \(< -2^{w-1} \)
 - becomes positive
 - at most once

detecting 2's comp. overflow

task
- given \(s = T\text{Add}_w(u, v) \)
- determine if \(s = \text{Add}_w(u, v) \)
- example

```c
int s, u, v;
s = u + v;
```

claim
- overflow iff either:
 - \(u, v < 0, s \geq 0 \) (NegOver)
 - \(u, v \geq 0, s < 0 \) (PosOver)
- \(\text{ovf} = (u<0 == v<0) \& \& (u<0 != s<0) \);

mathematical properties of TAdd

isomorphic algebra to UAdd
- \(T\text{Add}_w(u, v) = U2T(U\text{Add}_w(T2U(u), T2U(v))) \)
 - since both have identical bit patterns

two's complement under TAdd forms a group
- closed, commutative, associative, 0 is additive identity
- every element has additive inverse
 - let \(T\text{Comp}_w(u) = U2T(U\text{Comp}_w(T2U(u)) \)
 - \(T\text{Add}_w(u, T\text{Comp}_w(u)) = 0 \)

\[
T\text{Comp}_w(u) = \begin{cases}
-u & u \neq T\text{Min}_w \\
T\text{Min}_w & u = T\text{Min}_w
\end{cases}
\]
Multiplication

Computing Exact Product of \(w \)-bit numbers \(x, y \)

- Either signed or unsigned

Ranges

- **Unsigned**: \(0 \leq x \cdot y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to 2w bits
- **Two’s complement min**: \(x \cdot y \geq (-2^{w-1})(2^{w-1}-1) = -2^{2w-2} + 2^{w-1} \)
 - Up to 2w-1 bits
- **Two’s complement max**: \(x \cdot y \leq (2^{w-1})^2 = 2^{2w-2} \)
 - Up to 2w bits, but only for \((TMin_w)^2\)

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages

Unsigned Multiplication in C

Operands: \(w \) bits

<table>
<thead>
<tr>
<th>(u)</th>
<th>(\cdot)</th>
<th>(v)</th>
</tr>
</thead>
</table>

True Product: \(2^w \) bits

\[u \cdot v \]

Discard \(w \) bits: \(w \) bits

\[\text{UMult}_w(u, v) \]

Standard Multiplication Function

- Ignores high order \(w \) bits

Implements Modular Arithmetic

\[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]

Unsigned vs. Signed Multiplication

Unsigned Multiplication

\[
\begin{align*}
\text{unsigned } ux &= (\text{unsigned}) \ x; \\
\text{unsigned } uy &= (\text{unsigned}) \ y; \\
\text{unsigned } up &= \text{ux} \ast \text{uy}
\end{align*}
\]

- Truncates product to \(w \)-bit number \(up = \text{UMult}_w(ux, uy) \)
- Modular arithmetic: \(up = \text{ux} \ast \text{uy} \mod 2^w \)

Two’s Complement Multiplication

\[
\begin{align*}
\text{int } x, y; \\
\text{int } p &= x \ast y;
\end{align*}
\]

- Compute exact product of two \(w \)-bit numbers \(x, y \)
- Truncate result to \(w \)-bit number \(p = \text{TMult}_w(x, y) \)

Unsigned vs. Signed Multiplication

Unsigned Multiplication

\[
\begin{align*}
\text{unsigned } ux &= (\text{unsigned}) \ x; \\
\text{unsigned } uy &= (\text{unsigned}) \ y; \\
\text{unsigned } up &= \text{ux} \ast \text{uy}
\end{align*}
\]

Two’s Complement Multiplication

\[
\begin{align*}
\text{int } x, y; \\
\text{int } p &= x \ast y;
\end{align*}
\]

Relation

- Signed multiplication gives same bit-level result as unsigned
- \(up == (\text{unsigned}) \ p \)
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \ast 2^k$
- Both signed and unsigned

Examples
- $u \ll 3 = u \ast 8$
- $u \ll 5 - u \ll 3 = u \ast 24$
- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2
- $u \gg k$ gives $\lfloor u / 2^k \rfloor$
- Uses logical shift

Examples
- $x \gg 1 = 7606.5 \gg 1 = 7606$
- $x \gg 4 = 950.8125 \gg 4 = 950$
- $x \gg 8 = 59.4257813 \gg 8 = 59$

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2
- $x \gg k$ gives $\lfloor x / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $u < 0$
 - Compiler generates this code automatically

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2
- Want $\lceil x / 2^k \rceil$ (Round Toward 0)
- Compute as $\lceil (x+2^k-1) / 2^k \rceil$
 - In C: $(x + (1<<k)-1) \gg k$
 - Biases dividend toward 0

Case 1: No rounding
- $u \gg k$
- $u \gg k + 2^k-1$
- $\lceil u / 2^k \rceil$

Biased addition of $+2^k-1$ has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend:

\[x = \begin{array}{|c|c|c|c|c|}
\hline
& \cdots & \cdots & \cdots & 1 \\
\hline
+2^{k-1} & 0 & \cdots & 0 & 1 \\
\hline
\end{array} \]

Divisor:

\[\begin{array}{|c|c|c|c|c|c|}
\hline
& \cdots & \cdots & 0 & 1 \\
\hline
/ 2^k & 0 & \cdots & 0 & 1 \\
\hline
\end{array} \]

\[\left\lfloor \frac{x}{2^k} \right\rfloor = \begin{array}{|c|c|c|c|c|}
\hline
& \cdots & \cdots & 1 & 0 \\
\hline
\end{array} \]

Binary Point

Incremented by 1

Biasing adds 1 to final result

Incremented by 1

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq {\text{UMult}}_u(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[{\text{UMult}}_u(u, v) = {\text{UMult}}_u(v, u) \]
- Multiplication is Associative
 \[{\text{UMult}}_u(t, {\text{UMult}}_u(u, v)) = {\text{UMult}}_u({\text{UMult}}_u(t, u), v) \]
- 1 is multiplicative identity
 \[{\text{UMult}}_u(u, 1) = u \]
- Multiplication distributes over addition
 \[{\text{UMult}}_u(t, {\text{UAdd}}_u(u, v)) = {\text{UAdd}}_u({\text{UMult}}_u(t, u), {\text{UMult}}_u(t, v)) \]

Properties of Two’s Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to \(w \) bits
- Two’s complement multiplication and addition
 - Truncating to \(w \) bits

Both Form Rings

- Isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,
 \[u > 0 \implies u + v > v \]
 \[u > 0, v > 0 \implies u \cdot v > 0 \]
- These properties are not obeyed by two’s comp. arithmetic

\[TMax + 1 = = TMin \]

C Puzzle Answers

- Assume machine with 32 bit word size, two’s comp. integers
- \(TMin \) makes a good counterexample in many cases

- \(x < 0 \) \quad \Rightarrow \quad (x*2) < 0 \quad False: \(TMin \)
- \(ux >> 0 \)
- \(x & 7 == 7 \) \quad \Rightarrow \quad (x<<30) < 0 \quad True: \(x_1 = 1 \)
- \(ux > -1 \)
- \(x > y \) \quad \Rightarrow \quad -x < -y \quad False: -1, \(TMin \)
- \(x * x >= 0 \)
- \(x > 0 \&\& y > 0 \) \quad \Rightarrow \quad x + y > 0 \quad False: \(TMax, TMax \)
- \(x >= 0 \) \quad \Rightarrow \quad -x <= 0 \quad True: -TMax < 0
- \(x <= 0 \) \quad \Rightarrow \quad -x >= 0 \quad False: \(TMin \)

- 15213 * 30426 = = -10030 (16-bit words)