15-213
“The Class That Gives CMU Its Zip!”

Bits and Bytes
Aug. 28, 2003

Topics

- Why bits?
- Representing information as bits
 - Binary/Hexadecimal
 - Byte representations
 - numbers
 - characters and strings
 - Instructions
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
Why Don’t Computers Use Base 10?

Base 10 Number Representation

- That’s why fingers are known as “digits”
- Natural representation for financial transactions
 - Floating point number cannot exactly represent $1.20
- Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically

- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 11101101101101_{2}
- Represent 1.20_{10} as $1.0011001100110011[0011]..._{2}$
- Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

![Waveform diagram showing voltage levels at 0.0V, 0.5V, 2.8V, and 3.3V with a voltage transition from 0 to 1 to 0]
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- **Binary**: 00000000₂ to 11111111₂
- **Decimal**: 0₁₀ to 255₁₀
- **Hexadecimal**: 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as 0xFA1D37B
 - Or 0xFA1D37B

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
 Literary Hex

Common 8-byte hex filler:

- 0xdeadbeef
- Can you think of other 8-byte fillers?

Hex poetry (Bruce “the Bard” Maggs, 2003):

61cacafe
afadacad
abaddeed
adebfeda
cacabead
adeaddeeb
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address $\approx 1.8 \times 10^{19}$ bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0004</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0005</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0006</td>
</tr>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0007</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0008</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0009</td>
</tr>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0011</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0012</td>
</tr>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0013</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0014</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0015</td>
</tr>
</tbody>
</table>
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Compaq Alpha</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

* Or any other pointer*
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Sun’s, Mac’s are “BigEndian” machines
 - Least significant byte has highest address
- Alphas, PC’s are “LittleEndian” machines
 - Least significant byte has lowest address
Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable \(x \) has 4-byte representation \(0x01234567 \)
- Address given by \&x is \(0x100 \)

Big Endian

<table>
<thead>
<tr>
<th>(0x100)</th>
<th>(0x101)</th>
<th>(0x102)</th>
<th>(0x103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(01)</td>
<td>(23)</td>
<td>(45)</td>
<td>(67)</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>(0x100)</th>
<th>(0x101)</th>
<th>(0x102)</th>
<th>(0x103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(67)</td>
<td>(45)</td>
<td>(23)</td>
<td>(01)</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers

- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n",
                start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

int A = 15213;
int B = -15213;
long int C = 15213;

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

Two’s complement representation (Covered next lecture)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Alpha Address</th>
<th>Sun Address</th>
<th>Linux Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex:</td>
<td>Hex:</td>
<td>Hex:</td>
</tr>
<tr>
<td>1 F F F F F F F C A 0</td>
<td>E F F F F F B 2 C</td>
<td>B F F F F F 8 D 4</td>
</tr>
<tr>
<td>Binary:</td>
<td>Binary:</td>
<td>Binary:</td>
</tr>
<tr>
<td>0001 1111 1111 1111 1111 1111 1100 1010 0000</td>
<td>1110 1111 1111 1111 1111 1011 0010 1100</td>
<td>1011 1111 1111 1111 1111 1000 1101 0100</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects.
Representing Floats

Float \(F = 15213.0; \)

<table>
<thead>
<tr>
<th>IEEE Single Precision Floating Point Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex: 4 6 6 D B 4 0 0</td>
</tr>
<tr>
<td>Binary: 0100 0110 0110 1101 1011 0100 0000 0000</td>
</tr>
<tr>
<td>15213: 1110 1101 1011 01</td>
</tr>
</tbody>
</table>

Not same as integer representation, but consistent across machines

Can see some relation to integer representation, but not obvious
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 » Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
- Text files generally platform independent
 - Except for different conventions of line termination character(s)!
 » Unix (‘\n’ = 0x0a = ^J)
 » Mac (‘\r’ = 0x0d = ^M)
 » DOS and HTTP (‘\r\n’ = 0x0d0a = ^M^J)

```
char S[6] = "15213";
```
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 » Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 » Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- A&B = 1 when both A=1 and B=1

<table>
<thead>
<tr>
<th>&</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Or

- A|B = 1 when either A=1 or B=1

<table>
<thead>
<tr>
<th></th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Not

- ~A = 1 when A=0

<table>
<thead>
<tr>
<th>~</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- A^B = 1 when either A=1 or B=1, but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \neg B \mid \neg A \& B \]

\[\neg A \& B \]

\[= A^\wedge B \]
Integer Algebra

Integer Arithmetic

- \(\mathbb{Z}, +, *, -, 0, 1\) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
- \(-\) is additive inverse
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra

- $\langle \{0,1\}, \mid, \&, \sim, 0, 1 \rangle$ forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- \sim is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra ≈ Integer Ring

- **Commutativity**
 \[A \lor B = B \lor A \quad \text{and} \quad A \land B = B \land A \]
 \[A + B = B + A \quad \text{and} \quad A \times B = B \times A \]

- **Associativity**
 \[(A \lor B) \lor C = A \lor (B \lor C) \quad \text{and} \quad (A \land B) \land C = A \land (B \land C) \]
 \[(A + B) + C = A + (B + C) \quad \text{and} \quad (A \times B) \times C = A \times (B \times C) \]

- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A \times (B + C) = A \times B + A \times C \]

- **Sum and product identities**
 \[A \lor 0 = A \quad \text{and} \quad A + 0 = A \]
 \[A \land 1 = A \quad \text{and} \quad A \times 1 = A \]

- **Zero is product annihilator**
 \[A \land 0 = 0 \quad \text{and} \quad A \times 0 = 0 \]

- **Cancellation of negation**
 \[\sim (\sim A) = A \quad \text{and} \quad \sim (\sim A) = A \]
Boolean Algebra ≠ Integer Ring

- **Boolean: Sum distributes over product**

 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \quad A + (B \cdot C) \neq (A + B) \cdot (B + C) \]

- **Boolean: Idempotency**

 \[A \lor A = A \quad A + A \neq A \]

 - “A is true” or “A is true” = “A is true”

 \[A \land A = A \quad A \cdot A \neq A \]

- **Boolean: Absorption**

 \[A \lor (A \land B) = A \quad A + (A \cdot B) \neq A \]

 - “A is true” or “A is true and B is true” = “A is true”

 \[A \land (A \lor B) = A \quad A \cdot (A + B) \neq A \]

- **Boolean: Laws of Complements**

 \[A \lor \neg A = 1 \quad A + \neg A \neq 1 \]

 - “A is true” or “A is false”

- **Ring: Every element has additive inverse**

 \[A \lor \neg A \neq 0 \quad A + \neg A = 0 \]
Boolean Ring

- \{0,1\}, ^, &, I, 0, 1
- Identical to integers mod 2
- \(I\) is identity operation: \(I(A) = A\)
 - \(A \land A = 0\)

Property

- **Commutative sum**
 - \(A \lor B = B \lor A\)
- **Commutative product**
 - \(A \land B = B \land A\)
- **Associative sum**
 - \((A \lor B) \lor C = A \lor (B \lor C)\)
- **Associative product**
 - \((A \land B) \land C = A \land (B \land C)\)
- **Prod. over sum**
 - \(A \land (B \lor C) = (A \land B) \lor (B \land C)\)
- **0 is sum identity**
 - \(A \lor 0 = A\)
- **1 is prod. identity**
 - \(A \land 1 = A\)
- **0 is product annihilator**
 - \(A \land 0 = 0\)
- **Additive inverse**
 - \(A \lor A = 0\)
Relations Between Operations

DeMorgan’s Laws

- Express & in terms of |, and vice-versa
 - $A \& B = \sim(\sim A \mid \sim B)$
 - A and B are true if and only if neither A nor B is false
 - $A \mid B = \sim(\sim A \& \sim B)$
 - A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

- $A \wedge B = (\sim A \& B) \mid (A \& \sim B)$
 - Exactly one of A and B is true
- $A \wedge B = (A \mid B) \& \sim(A \& B)$
 - Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{array}{ccc}
01101001 & 01101001 & 01101001 \\
\& 01010101 & | 01010101 & ^ 01010101 & \sim 01010101 \\
01000001 & 01111101 & 00111100 & 10101010
\end{array}
\]

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation

- **Width** w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $a_j = 1$ if $j \in A$

<table>
<thead>
<tr>
<th>Bit Vector</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101001</td>
<td>${0, 3, 5, 6}$</td>
</tr>
<tr>
<td>01010101</td>
<td>${0, 2, 4, 6}$</td>
</tr>
</tbody>
</table>

Operations

- **&** Intersection
- **|** Union
- **^** Symmetric difference
- **~** Complement

<table>
<thead>
<tr>
<th>Operation</th>
<th>Bit Vector</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>01000001</td>
<td>${0, 6}$</td>
</tr>
<tr>
<td>Union</td>
<td>01111101</td>
<td>${0, 2, 3, 4, 5, 6}$</td>
</tr>
<tr>
<td>Symmetric difference</td>
<td>00111100</td>
<td>${2, 3, 4, 5}$</td>
</tr>
<tr>
<td>Complement</td>
<td>10101010</td>
<td>${1, 3, 5, 7}$</td>
</tr>
</tbody>
</table>
Bit-Level Operations in C

Operations & , | , ~ , ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \(\sim 0x41 \quad \rightarrow \quad 0xBE \)
 - \(\sim 01000001_2 \quad \rightarrow \quad 10111110_2 \)
- \(\sim 0x00 \quad \rightarrow \quad 0xFF \)
 - \(\sim 00000000_2 \quad \rightarrow \quad 11111111_2 \)
- \(0x69 \quad & \quad 0x55 \quad \rightarrow \quad 0x41 \)
 - \(01101001_2 \quad & \quad 01010101_2 \quad \rightarrow \quad 0100001_2 \)
- \(0x69 \quad | \quad 0x55 \quad \rightarrow \quad 0x7D \)
 - \(01101001_2 \quad | \quad 01010101_2 \quad \rightarrow \quad 01111101_2 \)
Contrast: Logic Operations in C

Contrast to Logical Operators

- &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01

- 0x69 && 0x55 --> 0x01
- 0x69 || 0x55 --> 0x01
- p && *p (avoids null pointer access)
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(01100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>(00011000)</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>(00011000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(10100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>(00101000)</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>(11101000)</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 - $A \oplus A = 0$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;      /* #1 */
    *y = *x ^ *y;      /* #2 */
    *x = *x ^ *y;      /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>$A \oplus B$</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>$A \oplus B$</td>
<td>($A \oplus B) \oplus B = A$</td>
</tr>
<tr>
<td>3</td>
<td>($A \oplus B) \oplus A = B$</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Main Points

It’s All About Bits & Bytes

- Numbers
- Programs
- Text

Different Machines Follow Different Conventions

- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis

- Basic form encodes “false” as 0, “true” as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets