Why Don’t Computers Use Base 10?

Base 10 Number Representation
- That’s why fingers are known as “digits”
- Natural representation for financial transactions
 - Floating point number cannot exactly represent 1.20
 - Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically
- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.

Binary Representations

Base 2 Number Representation
- Represent 15213_{10} as 11101101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.11011011011011 \times 2^{13}$

Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits
- Binary: 00000000₂ to 11111111₂
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal: 0₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as 0xFA1D37B
 » Or 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Literary Hex

Common 8-byte hex filler:
- 0xdeadbeef
- Can you think of other 8-byte fillers?

Hex poetry (Bruce “the Bard” Maggs, 2003):

61caca
afadacad
abaddeed
acabead
adeaddeb

Machine Words

Machine Has “Word Size”
- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address ≈ 1.8 × 10¹⁹ bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

Sizes of C Objects (in Bytes)
- C Data Type Compaq Alpha Typical 32-bit Intel IA32
 - int 4 4 4
 - long int 8 4 4
 - char 1 1 1
 - short 2 2 2
 - float 4 4 4
 - double 8 8 8
 - long double 8 8 10/12
 - char * 8 4 4

» Or any other pointer

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions
- Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address
- Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>0x101</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>0x102</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>0x101</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>0x102</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x12ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x000012ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 00 12 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab 12 00 00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examining Data Representations

Code to Print Byte Representation of Data
- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;
void show_bytes(pointer start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal

show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):
```
int a = 15213;
0x11fffcbb 0x6d
0x11fffcba 0x3b
0x11fffcba 0x00
```

Representing Integers

```c
int A = 15213;
int B = -15213;
long int C = 15213;
```

<table>
<thead>
<tr>
<th>Decimal: 15213</th>
<th>Binary: 0011 1011 0110 1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex: 3B 6D</td>
<td></td>
</tr>
</tbody>
</table>

Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th>Alpha P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
</tr>
<tr>
<td>FC</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sun P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>FB</td>
</tr>
<tr>
<td>2C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F FF FF FF FC A0</td>
</tr>
<tr>
<td>Binary: 0001 1111 1111 1111 1111 1111 1110 1010 0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linux P</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>FF</td>
</tr>
<tr>
<td>BF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>B F F F F F 8 D 4</td>
</tr>
<tr>
<td>Binary: 1011 1111 1111 1111 1111 1111 1000 1101 0100</td>
</tr>
</tbody>
</table>

Representing Pointers

```c
int C = 15213;
long int D = 15213;
```

<table>
<thead>
<tr>
<th>Linux/Alpha A</th>
<th>Sun A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6D</td>
<td>00</td>
</tr>
<tr>
<td>3B</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>6D</td>
</tr>
<tr>
<td>00</td>
<td>3B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linux/Alpha B</th>
<th>Sun B</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>FF</td>
</tr>
<tr>
<td>C4</td>
<td>FF</td>
</tr>
<tr>
<td>FF</td>
<td>C4</td>
</tr>
<tr>
<td>FF</td>
<td>93</td>
</tr>
</tbody>
</table>

Two’s complement representation (Covered next lecture)

Different compilers & machines assign different locations to objects
Representing Floats

Float $F = 15213.0$;

<table>
<thead>
<tr>
<th></th>
<th>Linux/Alpha</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>B4</td>
<td>46</td>
</tr>
<tr>
<td>$B4$</td>
<td>6D</td>
<td>B4</td>
</tr>
<tr>
<td>$6D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IEEE Single Precision Floating Point Representation

Hex: $466DB400$

Binary: 010001101101011100000000

15213: 1110110110101

Not same as integer representation, but consistent across machines

Can see some relation to integer representation, but not obvious

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit / has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
- Text files generally platform independent
 - Except for different conventions of line termination character(s)!
 - Unix (\'\n\' = 0x0a = ^J)
 - Mac (\'\r\' = 0x0d = ^M)
 - DOS and HTTP (\'\r\n\' = 0x0d0a = ^M^J)

Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!

Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

<table>
<thead>
<tr>
<th></th>
<th>Alpha sum</th>
<th>Sun sum</th>
<th>PC sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>81</td>
<td>$C3$</td>
<td>55</td>
</tr>
<tr>
<td>00</td>
<td>30</td>
<td>$E0$</td>
<td>$E5$</td>
</tr>
<tr>
<td>42</td>
<td>08</td>
<td></td>
<td>$8B$</td>
</tr>
<tr>
<td>01</td>
<td>90</td>
<td></td>
<td>$4E$</td>
</tr>
<tr>
<td>80</td>
<td>02</td>
<td></td>
<td>$0C$</td>
</tr>
<tr>
<td>FA</td>
<td>00</td>
<td></td>
<td>03</td>
</tr>
<tr>
<td>$6B$</td>
<td>09</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

<table>
<thead>
<tr>
<th>&</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th>∨</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Not

<table>
<thead>
<tr>
<th>~</th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 0</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

<table>
<thead>
<tr>
<th>^</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0</td>
</tr>
</tbody>
</table>

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \oplus B | \sim A \& B \]

\[= A \& \sim B \]

Integer Algebra

Integer Arithmetic

- \(\langle Z, +, *, -, 0, 1 \rangle \) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
- \(- \) is additive inverse
- 0 is identity for sum
- 1 is identity for product

Boolean Algebra

Boolean Algebra

- \(\langle \{0,1\}, |, \&, \sim, 0, 1 \rangle \) forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- \(\sim \) is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product
Boolean Algebra ≠ Integer Ring

- **Commutativity**
 \[A \land B = B \land A \]
 \[A \lor B = B \lor A \]
- **Associativity**
 \[(A \land B) \land C = A \land (B \land C) \]
 \[(A \lor B) \lor C = A \lor (B \lor C) \]
- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \]
- **Sum and product identities**
 \[A \land 0 = 0 \]
 \[A \land 1 = A \]
 \[A \lor 0 = A \]
 \[A \lor 1 = 1 \]
- **Zero is product annihilator**
 \[A \land 0 = 0 \]
 \[A \land 1 = A \]
- **Cancellation of negation**
 \[\neg (\neg A) = A \]
 \[(A \land B) \land C = (A \land B) \land C \]
 \[(A \lor B) \lor C = (A \lor B) \lor C \]
 \[A \land 0 = A \land 1 = A \]
 \[A \lor 0 = A \lor 1 = 1 \]
 \[A \land 0 = 0 \]
 \[A \lor 1 = 1 \]
- **Idempotency**
 \[A \land A = A \]
 \[A \lor A = A \]
- **Absorption**
 \[A \land (A \lor B) = A \]
 \[A \lor (A \land B) = A \]
- **Laws of Complements**
 \[A \land \neg A = 0 \]
 \[A \lor \neg A = 1 \]
- **Ring: Every element has additive inverse**
 \[A + (B \cdot C) = (A + B) \cdot (B + C) \]
 \[A \cdot (B + C) = A \cdot B + A \cdot C \]
 \[A + B = B + A \]
 \[A \cdot B = B \cdot A \]

Boolean Algebra = Integer Ring

- **Commutativity**
 \[A \land B = B \land A \]
 \[A \lor B = B \lor A \]
- **Associativity**
 \[(A \land B) \land C = A \land (B \land C) \]
 \[(A \lor B) \lor C = A \lor (B \lor C) \]
- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \]
- **Sum and product identities**
 \[A \land 0 = 0 \]
 \[A \land 1 = A \]
 \[A \lor 0 = A \]
 \[A \lor 1 = 1 \]
- **Zero is product annihilator**
 \[A \land 0 = 0 \]
 \[A \land 1 = A \]
- **Cancellation of negation**
 \[\neg (\neg A) = A \]
 \[(A \land B) \land C = (A \land B) \land C \]
 \[(A \lor B) \lor C = (A \lor B) \lor C \]
 \[A \land 0 = A \land 1 = A \]
 \[A \lor 0 = A \lor 1 = 1 \]
 \[A \land 0 = 0 \]
 \[A \lor 1 = 1 \]
- **Idempotency**
 \[A \land A = A \]
 \[A \lor A = A \]
- **Absorption**
 \[A \land (A \lor B) = A \]
 \[A \lor (A \land B) = A \]
- **Laws of Complements**
 \[A \land \neg A = 0 \]
 \[A \lor \neg A = 1 \]
- **Ring: Every element has additive inverse**
 \[A + (B \cdot C) = (A + B) \cdot (B + C) \]
 \[A \cdot (B + C) = A \cdot B + A \cdot C \]
 \[A + B = B + A \]
 \[A \cdot B = B \cdot A \]

Properties of \(\land \) and \(\lor \)

- \(\{0,1\}, \lor, \land, I, 0, 1 \)
- Idempotent to integers mod 2
- \(I \) is identity operation: \(I(A) = A \)
 \[A \land A = 0 \]

Relations Between Operations

- **DeMorgan’s Laws**
 - Express \(\land \) in terms of |, and vice-versa
 - \(A \land B = \neg (\neg A \land \neg B) \)
 - A and B are true if and only if neither A nor B is false
 - \(A \lor B = \neg (\neg A \lor \neg B) \)
 - A or B are true if and only if neither A nor B is false
 - **Exclusive-Or using Inclusive Or**
 - \(A \land B = (\neg A \land B) \lor (A \land \neg B) \)
 - Exactly one of A and B is true
 - \(A \lor B = (A \land B) \lor (\neg A \land \neg B) \)
 - Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

 \[
 \begin{array}{cccc}
 01101001 & 01101001 & 01101001 \\
 \& & \& & \& \\
 01000001 & 01111101 & 00111100 & 10101010 \\
 \end{array}
 \]

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

- Width \(w\) bit vector represents subsets of \(\{0, \ldots, w-1\}\)
- \(a_j = 1\) if \(j \in A\)

<table>
<thead>
<tr>
<th>01101001</th>
<th>011010001</th>
<th>011010001</th>
<th>01010101</th>
<th>01010101</th>
<th>01010101</th>
</tr>
</thead>
</table>

\[
\begin{array}{cccc}
 01101001 & 01101001 & 01101001 \\
 \& & \& & \& \\
 01000001 & 01111101 & 00111100 & 10101010 \\
 \end{array}

 76543210
\]

Operations

- & Intersection
- | Union
- ^ Symmetric difference
- ~ Complement

<table>
<thead>
<tr>
<th>01000001</th>
<th>01111101</th>
<th>00111100</th>
<th>10101010</th>
</tr>
</thead>
</table>

\[
\begin{array}{cccc}
 01101001 & 01101001 & 01101001 \\
 \& & \& & \& \\
 01000001 & 01111101 & 00111100 & 10101010 \\
 \end{array}

 76543210
\]

Bit-Level Operations in C

Operations & , |, ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \~0x41 \longrightarrow 0xBE

 \~01000001 \longrightarrow 10111110
- \~0x00 \longrightarrow 0xFF

 \~00000000 \longrightarrow 11111111
- 0x69 & 0x55 \longrightarrow 0x41

 01101001 & 01010101 \longrightarrow 01000001
- 0x69 | 0x55 \longrightarrow 0x7D

 01101001 | 01010101 \longrightarrow 01111101
- 0x69 & & 0x55 \longrightarrow 0x01
- 0x69 | | 0x55 \longrightarrow 0x01
- p & & *p (avoids null pointer access)

Contrast: Logic Operations in C

Contrast to Logical Operators

- &&, ||, !

 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (Char data type)

- !0x41 \longrightarrow 0x00
- !0x00 \longrightarrow 0x01
- !!0x41 \longrightarrow 0x01
- 0x69 && 0x55 \longrightarrow 0x01
- 0x69 || 0x55 \longrightarrow 0x01
- p & & *p (avoids null pointer access)
Shift Operations

Left Shift: $x \ll y$
- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: $x \gg y$
- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ll 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. $\gg 2$</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. $\gg 2$</td>
<td>00011000</td>
</tr>
</tbody>
</table>

Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 $$A \land A = 0$$

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;     /* #1 */
    *y = *x ^ *y;     /* #2 */
    *x = *x ^ *y;     /* #3 */
}
```

<table>
<thead>
<tr>
<th>$*x$</th>
<th>$*y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Begin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical \gg 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \land B$</td>
</tr>
<tr>
<td>$(A \land B) \land B = A$</td>
</tr>
<tr>
<td>$(A \land B) \land A = B$</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Main Points

It’s All About Bits & Bytes
- Numbers
- Programs
- Text

Different Machines Follow Different Conventions
- Word size
- Byte ordering
- Representations

Boolean Algebra is Mathematical Basis
- Basic form encodes “false” as 0, “true” as 1
- General form like bit-level operations in C
 - Good for representing & manipulating sets