Recitation 7: Memory Access Patterns

Andrew Faulring
15213 Section A
21 October 2002
Andrew Faulring

• faulring@cs.cmu.edu
• Office hours:
 – NSH 2504 (lab) / 2507 (conference room)
 – Thursday 5–6

• Lab 4
 – due Thursday, 24 Oct @ 11:59pm
 – Submission is online
 • http://www2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/L4.html
Today’s Plan

• Loop Unrolling
• Blocking
Loop Unrolling

`void combine5(vec_ptr v, int *dest)`
```
    int length = vec_length(v);
    int limit = length-2;
    int *data = get_vec_start(v);
    int sum = 0;
    int i;
    /* Combine 3 elements at a time */
    for (i = 0; i < limit; i+=3) {
        sum += data[i] + data[i+1] + data[i+2];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {
        sum += data[i];
    }
    *dest = sum;
```

- **Optimization**
 - Combine multiple iterations into single loop body
 - Amortizes loop overhead across multiple iterations
 - Finish extras at end
Practice Problem

• Problem 5.12 and 5.13
Solution 5.12

```c
void inner5(vec_ptr u, vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(u);
    int limit = length-3;
    data_t *udata = get_vec_start(u);
    data_t *vdata = get_vec_start(v);
    data_t sum = (data_t) 0;

    /* Do four elements at a time */
    for (i = 0; i < limit; i += 4) {
        sum += udata[i] * vdata[i] + udata[i+1] * vdata[i+1]
            + udata[i+2] * vdata[i+2] + udata[i+3] * vdata[i+3];
    }

    /* Finish off any remaining elements */
    for (; i < length; i++)
        sum += udata[i] * vdata[i];

    *dest = sum;
}
```
Solution 5.12

A. We must perform two loads per element to read values for \texttt{udata} and \texttt{vdata}. There is only one unit to perform these loads, and it requires one cycle.

B. The performance for floating point is still limited by the 3 cycle latency of the floating-point adder.
Solution 5.13

```c
void inner6(vec_ptr u, vec_ptr v, data_t *dest)
{
    int i;
    int length = vec_length(u);
    int limit = length-3;
    data_t *udata = get_vec_start(u);
    data_t *vdata = get_vec_start(v);
    data_t sum0 = (data_t) 0;
    data_t sum1 = (data_t) 0;

    /* Do four elements at a time */
    for (i = 0; i < limit; i+=4) {
        sum0 += udata[i] * vdata[i];
        sum1 += udata[i+1] * vdata[i+1];
        sum0 += udata[i+2] * vdata[i+2];
        sum1 += udata[i+3] * vdata[i+3];
    }
    /* Finish off any remaining elements */
    for (; i < length; i++)
    {
        sum0 = sum0 + udata[i] * vdata[i];
    }
    *dest = sum0 + sum1;
}
```
Solution 5.13

- For each element, we must perform two loads with a unit that can only load one value per clock cycle.
- We must also perform one floating-point multiplication with a unit that can only perform one multiplication every two clock cycles.
- Both of these factors limit the CPE to 2.
Summary of Matrix Multiplication

\(ijk (\& jik):\)
- 2 loads, 0 stores
- \(\text{misses/iter} = 1.25\)

\(kij (\& ikj):\)
- 2 loads, 1 store
- \(\text{misses/iter} = 0.5\)

\(jki (\& kji):\)
- 2 loads, 1 store
- \(\text{misses/iter} = 2.0\)

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

```c
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

```c
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```
Improving Temporal Locality by Blocking

- Example: Blocked matrix multiplication
 - “block” (in this context) does not mean “cache block”.
 - Instead, it mean a sub–block within the matrix.
 - Example: $N = 8$; sub–block size = 4

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\times
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
=
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
\]

Key idea: Sub–blocks (i.e., A_{xy}) can be treated just like scalars.

\[
C_{11} = A_{11}B_{11} + A_{12}B_{21} \\
C_{12} = A_{11}B_{12} + A_{12}B_{22} \\
C_{21} = A_{21}B_{11} + A_{22}B_{21} \\
C_{22} = A_{21}B_{12} + A_{22}B_{22}
\]
Blocked Matrix Multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
 for (i=0; i<n; i++)
 for (j=jj; j < min(jj+bsize,n); j++)
 c[i][j] = 0.0;
 for (kk=0; kk<n; kk+=bsize) {
 for (i=0; i<n; i++)
 for (j=jj; j < min(jj+bsize,n); j++)
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }
}

- Provides temporal locality as block is reused multiple times
- Constant cache performance
Blocked Matrix Multiply Analysis

- Innermost loop pair multiplies a $1 \times bsize$ sliver of A by a $bsize \times bsize$ block of B and accumulates into $1 \times bsize$ sliver of C
- Loop over i steps through n row slivers of A & C, using same B

```c
for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
    }
}
```

Update successive elements of sliver
Pentium Blocked Matrix Multiply Performance

- Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik)
 - relatively insensitive to array size.
Summary

- All systems favor “cache friendly code”
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)