
Programming with Threads
Dec 5, 2002

Programming with Threads
Dec 5, 2002

TopicsTopics
n Shared variables

n The need for synchronization

n Synchronizing with semaphores

n Thread safety and reentrancy

n Races and deadlocks

class29.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Shared Variables in Threaded C
Programs
Shared Variables in Threaded C
Programs
Question: Which variables in a threaded C program areQuestion: Which variables in a threaded C program are

shared variables?shared variables?
n The answer is not as simple as “global variables are shared”

and “stack variables are priva te”.

Requires answers to the following questions:Requires answers to the following questions:
n What is the memory model for threads?

n How are variables mapped to memory instanc es?

n How many threads reference eac h of these instances?

– 3 – 15-213, F’02

Threads Memory ModelThreads Memory Model

Conceptual model:Conceptual model:
n Each thread runs in the context of a process .

n Each thread has its own separate thread conte xt.
l Thread ID, stack, stack poin ter, program counter, con dition codes, and

general purpose regi sters.

n All threads share the re maining process con text.
l Code, data, heap, an d shared library segmen ts of the process virtual

address space.
l Open files and installed handlers

Operationally, this model is not strictly enforced:Operationally, this model is not strictly enforced:
n While register value s are truly separate a nd protected....

n Any thread can read a nd write the stack of any other thread.

Mismatch between the conceptual and operation model is a sourc eMismatch between the conceptual and operation model is a sourc e
of confusion and errors.of confusion and errors.

– 4 – 15-213, F’02

Example of Threads Accessing
Another Thread’s Stack
Example of Threads Accessing
Another Thread’s Stack

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[N] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int svar = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++svar);
}

Peer threads acces s main thread’s stac k
indirectly through globa l ptr variable

– 5 – 15-213, F’02

Mapping Variables to Mem. InstancesMapping Variables to Mem. Instances

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[N] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int svar = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++svar);
}

Global var : 1 instance (ptr [data])

Local static var : 1 instance (svar [data])

Local automatic vars : 1 instance (i.m, msgs.m)

Local automatic var: 2 instances (
 myid.p0[peer thread 0’s s tack],
 myid.p1[peer thread 1’s sta ck]
)

– 6 – 15-213, F’02

Shared Variable AnalysisShared Variable Analysis

Which variables are shared?Which variables are shared?
Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
svar no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.p1 no no yes

Answer: A variable x is shared Answer: A variable x is shared iff iff multiple threadsmultiple threads
reference at least one instance of x. Thus:reference at least one instance of x. Thus:
n ptr, svar, and msgs are shared.

n i and myid are NOT shared.

– 7 – 15-213, F’02

badcnt.c: An Improperly
Synchronized Threaded Program
badcnt.c: An Improperly
Synchronized Threaded Program
unsigned int cnt = 0; /* shared */

int main() {
 pthread_t tid1, tid2;
 Pthread_create(&tid1, NULL,
 count, NULL);
 Pthread_create(&tid2, NULL,
 count, NULL);

 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 if (cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n",
 cnt);
 else
 printf("OK cnt=%d\n",
 cnt);
}

/* thread routine */
void *count(void *arg) {
 int i;
 for (i=0; i<NITERS; i++)
 cnt++;
 return NULL;
}

linux> ./badcnt
BOOM! cnt=198841183

linux> ./badcnt
BOOM! cnt=198261801

linux> ./badcnt
BOOM! cnt=198269672

cnt should be
equal to 200,000,000.
What went wrong?!

– 8 – 15-213, F’02

Assembly Code for Counter LoopAssembly Code for Counter Loop

.L9:
movl -4(%ebp),%eax
cmpl $99999999,%eax
jle .L12
jmp .L10

.L12:
movl cnt,%eax # Load
leal 1(%eax),%edx # Update
movl %edx,cnt # Store

.L11:
movl -4(%ebp),%eax
leal 1(%eax),%edx
movl %edx,-4(%ebp)
jmp .L9

.L10:

Corresponding asm code
(gcc -O0 -fforce-mem)

for (i=0; i<NITERS; i++)
 cnt++;

C code for counter loop

Head (Hi)

Tail (T i)

Load cnt (L i)
Update cnt (Ui)

Store cnt (Si)

– 9 – 15-213, F’02

Concurrent ExecutionConcurrent Execution

Key idea: In general, any sequentially consistentKey idea: In general, any sequentially consistent
interleaving is possible, but some are incorrect!interleaving is possible, but some are incorrect!
n Ii denotes that thread i executes instruction I
n %eax i is the contents of %eax in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instr i cnt%eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2

– 10 – 15-213, F’02

Concurrent Execution (cont)Concurrent Execution (cont)

Incorrect ordering: two threads increment the c ounter,Incorrect ordering: two threads increment the c ounter,
but the result is 1 instead of 2.but the result is 1 instead of 2.

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instr i cnt%eax1

-
-
-
-
0
-
-
1
1
1

%eax2

Oops!

– 11 – 15-213, F’02

Concurrent Execution (cont)Concurrent Execution (cont)

How about this ordering?How about this ordering?

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instr i cnt%eax1 %eax2

We can clarify our understanding of co ncurrent
execution with the help of the progress graph

– 12 – 15-213, F’02

Progress GraphsProgress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis correspon ds to
the sequential order o f
instructions in a threa d.

Each point corresponds to
a possible execution state
(Inst 1, Inst 2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L 1 and thread
2 has completed S2.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

– 13 – 15-213, F’02

Trajectories in Progress GraphsTrajectories in Progress Graphs

A trajectory is a sequence
of legal state transi tions
that describes one possible
concurrent execution of
the threads.

Example:

H1, L1, U1, H2, L2,
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

– 14 – 15-213, F’02

Critical Sections and Unsafe RegionsCritical Sections and Unsafe Regions

L, U, and S form a
critical section with
respect to the shared
variable cnt.

Instructions in critica l
sections (wrt to some
shared variable) sh ould
not be interleaved.

Sets of states where su ch
interleaving occurs
form unsafe regions .

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

critical section wrt cnt

critical
section
wrt cnt

– 15 – 15-213, F’02

Safe and Unsafe TrajectoriesSafe and Unsafe Trajectories

Def: A trajectory is safe
iff it doesn’t touch a ny
part of an unsafe regio n.

Claim: A trajectory is
correct (wrt cnt) iff it is
safe.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe reg ion Unsafe
trajectory

Safe trajectory

critical section wrt cnt

critical
section
wrt cnt

– 16 – 15-213, F’02

SemaphoresSemaphores

Question:Question: How can we guarantee a safe trajectory? How can we guarantee a safe trajectory?
n We must synchronize the threads so that they never enter an

unsafe state.

Classic solutionClassic solution : : Dijkstra'sDijkstra's P and V operations on P and V operations on
semaphores.semaphores.
n semaphore: non-negative integer synchronization variable.

l P(s): [while (s == 0) wait(); s--;]
» Dutch for " Proberen " (test)

l V(s): [s++;]
» Dutch for " Verhogen " (increment)

n OS guarantees that operations between brackets [] are
executed indivisibly.
l Only one P or V operation a t a time can modify s.
l When while loop in P terminates , only that P can dec rement s.

Semaphore invariant: Semaphore invariant: (s >= 0)(s >= 0)

– 17 – 15-213, F’02

Safe Sharing with SemaphoresSafe Sharing with Semaphores

Here is how we would us e P and V operations toHere is how we would us e P and V operations to
synchronize the threads that update synchronize the threads that update cntcnt..

/* Semaphore s is initially 1 */

/* Thread routine */
void *count(void *arg)
{
 int i;

 for (i=0; i<NITERS; i++) {
 P(s);
 cnt++;
 V(s);
 }
 return NULL;
}

– 18 – 15-213, F’02

Safe Sharing With SemaphoresSafe Sharing With Semaphores

Provide mutually
exclusive acc ess to
shared variable by
surrounding critical
section with P and V
operations on sema phore
s (initially set to 1).

Semaphore invariant
creates a forbidden region
that encloses uns afe
region and is neve r
touched by any traje ctory.

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Unsafe region

Forbidden regio n

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

– 19 – 15-213, F’02

POSIX SemaphoresPOSIX Semaphores

/* Initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */
void Sem_init(sem_t *sem, int pshared, unsigned int value) {
 if (sem_init(sem, pshared, value) < 0)
 unix_error("Sem_init");
}

/* P operation on semaphore sem */
void P(sem_t *sem) {
 if (sem_wait(sem))
 unix_error("P");
}

/* V operation on semaphore sem */
void V(sem_t *sem) {
 if (sem_post(sem))
 unix_error("V");
}

– 20 – 15-213, F’02

Sharing With POSIX SemaphoresSharing With POSIX Semaphores
/* goodcnt.c - properly syncÕd
counter program */
#include "csapp.h"
#define NITERS 10000000

unsigned int cnt; /* counter */
sem_t sem; /* semaphore */

int main() {
 pthread_t tid1, tid2;

 Sem_init(&sem, 0, 1); /* sem=1 */

 /* create 2 threads and wait */
 ...

 if (cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n", cnt);
 else
 printf("OK cnt=%d\n", cnt);
 exit(0);
}

/* thread routine */
void *count(void *arg)
{
 int i;

 for (i=0; i<NITERS; i++) {
 P(&sem);
 cnt++;
 V(&sem);
 }
 return NULL;
}

– 21 – 15-213, F’02

Signaling With SemaphoresSignaling With Semaphores

Common synchronization pattern:Common synchronization pattern:
n Producer waits for slot, inse rts item in buffer, and “ signals” consumer.

n Consumer waits for item, rem oves it from buffer, and “signals”
producer.
l “signals” in this context has nothing to d o with Unix signals

ExamplesExamples
n Multimedia processing:

l Producer creates MPE G video frames, consum er renders the frames

n Event-driven graphica l user interfaces
l Producer detects mouse clicks, mouse movem ents, and keyboard hi ts and

inserts corresponding events in buffer.
l Consumer retrieves events from buffer and paints the display.

producer
thread

shared
buffer

consumer
thread

– 22 – 15-213, F’02

Producer-Consumer on a Buffer
That Holds One Item
Producer-Consumer on a Buffer
That Holds One Item

/* buf1.c - producer-consumer
on 1-element buffer */
#include Òcsapp.hÓ

#define NITERS 5

void *producer(void *arg);
void *consumer(void *arg);

struct {
 int buf; /* shared var */
 sem_t full; /* sems */
 sem_t empty;
} shared;

int main() {
 pthread_t tid_producer;
 pthread_t tid_consumer;

 /* initialize the semaphores */
 Sem_init(&shared.empty, 0, 1);
 Sem_init(&shared.full, 0, 0);

 /* create threads and wait */
 Pthread_create(&tid_producer, NULL,
 producer, NULL);
 Pthread_create(&tid_consumer, NULL,
 consumer, NULL);
 Pthread_join(tid_producer, NULL);
 Pthread_join(tid_consumer, NULL);

 exit(0);
}

– 23 – 15-213, F’02

Producer-Consumer (cont)Producer-Consumer (cont)

/* producer thread */
void *producer(void *arg) {
 int i, item;

 for (i=0; i<NITERS; i++) {
 /* produce item */
 item = i;
 printf("produced %d\n",
 item);

 /* write item to buf */
 P(&shared.empty);
 shared.buf = item;
 V(&shared.full);
 }
 return NULL;
}

/* consumer thread */
void *consumer(void *arg) {
 int i, item;

 for (i=0; i<NITERS; i++) {
 /* read item from buf */
 P(&shared.full);
 item = shared.buf;
 V(&shared.empty);

 /* consume item */
 printf("consumed %d\n",
 item);
 }
 return NULL;
}

Initially: empty = 1, full = 0.

– 24 – 15-213, F’02

Thread SafetyThread Safety

Functions called from a thread must be Functions called from a thread must be thread-safethread-safe ..

We identify four (non-disjoint) classes of thread-unsa feWe identify four (non-disjoint) classes of thread-unsa fe
functions:functions:
n Class 1: Failing to protect shared variables.

n Class 2: Relying on persistent state acros s invocations.

n Class 3: Returning a pointer to a static variable.

n Class 4: Calling thread-unsafe functions.

– 25 – 15-213, F’02

Thread-Unsafe FunctionsThread-Unsafe Functions

Class 1: Failing to protect shared v ariables.Class 1: Failing to protect shared v ariables.
n Fix: Use P and V semaphore ope rations.

n Issue: Synchronization operations will slow down code.
n Example: goodcnt.c

– 26 – 15-213, F’02

Thread-Unsafe Functions (cont)Thread-Unsafe Functions (cont)
Class 2: Relying on persistent state across multipleClass 2: Relying on persistent state across multiple

function invocations.function invocations.
n Random number generator relies on static state

n Fix: Rewrite function so that caller passes in all necessa ry
state.

/* rand - return pseudo-random integer on 0..32767 */
int rand(void)
{
 static unsigned int next = 1;
 next = next*1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}

/* srand - set seed for rand() */
void srand(unsigned int seed)
{
 next = seed;
}

– 27 – 15-213, F’02

Thread-Unsafe Functions (cont)Thread-Unsafe Functions (cont)
Class 3: Returning a Class 3: Returning a ptrptr to to

a a static static variable.variable.

Fixes:Fixes:
n 1. Rewrite code so caller

passes pointer to struct.
» Issue: Requires

changes in calle r
and callee .

n 2. Lock-and-copy
» Issue: Requires only

simple changes in
caller (and none in
callee)

» However, caller must
free memory.

hostp = Malloc(...));
gethostbyname_r(name, hostp);

struct hostent
*gethostbyname(char name)
{
 static struct hostent h;
 <contact DNS and fill in h>
 return &h;
}

struct hostent
*gethostbyname_ts(char *p)
{
 struct hostent *q = Malloc(...);
 P(&mutex); /* lock */
 p = gethostbyname(name);
 *q = *p; /* copy */
 V(&mutex);
 return q;
}

– 28 – 15-213, F’02

Thread-Unsafe FunctionsThread-Unsafe Functions

Class 4: Calling thread-unsafe functions.Class 4: Calling thread-unsafe functions.
n Calling one thread-unsafe function makes an entire function

thread-unsafe.

n Fix: Modify the function so it calls only thread-safe functions

– 29 – 15-213, F’02

Reentrant FunctionsReentrant Functions
A function is A function is reentrantreentrant iffiff it accesses NO shared varia bles when it accesses NO shared varia bles when

called from multiple threads.called from multiple threads.
n Reentrant functions are a proper subset of the se t of thread-safe

functions.

n NOTE: The fixes to Class 2 and 3 thread-unsafe functions require
modifying the function to make it reentrant.

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

– 30 – 15-213, F’02

Thread-Safe Library FunctionsThread-Safe Library Functions

All functions in the Standard C Library (at the back ofAll functions in the Standard C Library (at the back of
your K&R text) are thread-safe.your K&R text) are thread-safe.
n Examples: malloc, free, printf, scanf

Most Unix system calls are thread-safe, with a fewMost Unix system calls are thread-safe, with a few
exceptions:exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

– 31 – 15-213, F’02

RacesRaces

A A race race occurs when the correctness of the progra moccurs when the correctness of the progra m
depends on one thread reaching poi nt x before anotherdepends on one thread reaching poi nt x before another
thread reaches point y.thread reaches point y.

/* a threaded program with a race */
int main() {
 pthread_t tid[N];
 int i;
 for (i = 0; i < N; i++)
 Pthread_create(&tid[i], NULL, thread, &i);
 for (i = 0; i < N; i++)
 Pthread_join(tid[i], NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 int myid = *((int *)vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
} – 32 – 15-213, F’02

deadlock
region

DeadlockDeadlock

P(s) V(s)

V(t)

Thread 1

Thread 2

Initially, s=t=1

P(t)

P(t) V(t)

forbidden
region for s

forbidden
region for t

P(s)

V(s) deadlock
state

Locking introduces the
potential for deadlock:
waiting for a condition tha t
will never be true.

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state , waiting for
either s or t to become
nonzero.

Other trajectories luck ou t
and skirt the deadlo ck
region.

Unfortunate fact: deadloc k
is often non-determinis tic.

– 33 – 15-213, F’02

Threads SummaryThreads Summary

Threads provide another mechanism for w ritingThreads provide another mechanism for w riting
concurrent programs.concurrent programs.

Threads are growing in populari tyThreads are growing in populari ty
n Somewhat cheaper than processes .

n Easy to share data between threads.

However, the ease of sharing has a cost:However, the ease of sharing has a cost:
n Easy to introduce subtle synchronization errors .

n Tread carefully with threads!

For more info:For more info:
n D. Butenhof, “Programming with Posix Threads”, Addison-

Wesley, 1997.

