15913 Web History

“The course that gives CMU its Zip!”

1945:
m Vannevar Bush, “As we may think”, Atlantic Monthly, July,
W b S . 1945.
e ervices ® Describes the idea of a distributed hypertex t system.
NOV 26 2002 ® A “memex " that mimics the “web of trails” in our m inds.
3
1989:
. m Tim Berners -Lee (CERN) writes internal proposal to develop
Topics a distributed hypertext system.
u HTT'_:’ . e Connects “a web of note s with links.”
m Serving static content @ Intended to help CERN phys icists in large projec ts share and
| SeI‘VIng dynamIC content manage information
1990:
m Tim BL writes a graphical browser for Next machines.
class27.ppt -2- 15-213, F'02
Web History (cont) Internet Hosts
1992 Internet Domain Survey Host Count
m NCSA server rele ased
m 26 WWW servers worldwide 180.000.000
160,000,000 1
1993 140,000,000 +
m Marc Andreessen releases first version of NCSA M osaic]Eggggggg 1 —=—0ld
browser s '
_ _ _ _ 80,000,000 4 —s—Adjusted
m Mosaic version released for (W indows, Mac, Unix). 50.000.000 4 —s—New
m Web (port 80) traffic at 1% of NSFNET backbone traffic. 40,000,000 +
m Over 200 WWW serv ers worldwide. 20,000,000 +
0
1994 P P A P
m Andreessen and colleagues leave NCSA to form "Mosaic 5 5 8 8 § 5 & B % B & &
Communications Corp" (now Netscape).

Source: Internet Software Consortium [www._isc.org)
15-213, F02 -4 15-213, F'02

Web Servers

Clients and servers
communicate using the
HyperText Transfer
Protocol (HTTP)

m Client and server
establish TCP connec tion

m Client requests conten t

m Server responds with
requested content

m Client and server clos e

connection (usually)
Current version is HTTP/1.1
m RFC 2616, June, 1999.

Web Content

Web servers return content to clients

m content: a sequence of bytes with an associated MIME
(Multipurpose Internet Mail Extensions) type

Example MIME types

HTTP request

Web Web m text/html HTML document
(br%l\lsgér) server m text/plain Unformatted text
HTTP response m application/postscript Postcript document
(content) m image/gif Binary image encoded in GIF format
® image/jpeg Binary image encoded in JPEG
format
15-213, F'02 -6- 15-213, F'02

Static and Dynamic Content URLs

The content returned in HTTP responses ca n be either

static or dynamic .

Each file managed by a se rver has a unique name call ed a
URL (Universal Resource Locator)

m Static content: content stored in files and retrieved in URLSs for static content:
response to an HTTP request m http://www.cs.cmu.edu:80/index.html

® Examples: HTML files, im ages, audio clips .
m Dynamic content: content produced on-the-fly in response to

an HTTP request

® Example: content produ ced by a program exe cuted by the

m http://www.cs.cmu.edu/index.html

m http://www.cs.cmu.edu
® |dentifies a file ¢ alled index.html, managed by a Web server at
www.cs.cmu.edu that is listening on port 80.

server on behalf of the client.

Bottom line: All Web content is associated with a file
that is managed by the server.

URLSs for dynamic content:

m http://www.cs.cmu.edu:8000/cgi-bin/adder?15000&213
® |dentifies an exe cutable file called adder, managed by a Web
server at www.cs.cmu.edu that is listening on p ort 8000, that
should be called with two argument strings: 15000 and 213.

15-213, F02 -8-— 15-213, F'02

How Clients and Servers Use URLS Anatomy of an HTTP Transaction

Example URL: http: //ww .aol.com:80 unix> telnet www.aol.com 80 Client: open connectio n to server
Trying 205.188.146.23... Telnet prints 3 lines to the terminal
i i o . H . Connected to aol.com.
Clients use prefix (http://www.aol.com:80) to infer: Hacape character is 'A] .
m What kind of server to contact (Web server) GET / HTTP/1.1 Client: request line
. host: www.aol.com Client: required HTTP /1.1 HOST header
= Where the server is (www.aol.com) Client: empty line termin ates headers .
m What port it is listening on (80) HTTP/1.0 200 OK Server: response line
MIME-Version: 1.0 Server: followed by five response headers

Servers use suffix () to:

m Determine if request is for static or dynamic content.
® No hard and fast rules fo r this.
® Convention: executab les reside in cgi-bin directory

m Find file on file system.

@ Initial “ /” in suffix denote s home directory for reque sted

content.

Date: Mon, 08 Jan 2001 04:59:42 GMT
Server: NaviServer/2.0 AOLserver/2.3.3

® Minimal suffix is“ /", which all servers e xpand to some defa ult

home page (e.g., index.html).

HTTP Requests

HTTP request is a request line , followed by zero or
more request headers

Request line: <method> <uri> <version>

m <version>is HTTP version of request (HTTP/1.0 or
HTTP/1.1)

m <uri> is typically URL for proxies, URL suffix for serve

B <method> is either GET, POST, OPTIONS, HEAD,
DELETE, Or TRACE.

—11 -

Content-Type: text/html Server: expect HTML in the response body
Content-Length: 42092 Server: expect 42,092 bytes in the resp body
Server: empty line (* \z\n") terminates hdrs

<html> Server: first HTML line in response body

e Server: 766 lines of HTML not shown.

</html> Server: last HTML line in response body

Connection closed by foreign host. Server: closes connection

unix> Client: closes connection and terminates
15-213, F02 -10- 15-213, F02

HTTP Requests (cont)

HTTP methods:

m GET: Retrieve static or dynamic content
® Arguments for dynamic ¢ ontent are in URI
® Workhorse method (99% of requests)

POST: Retrieve dynamic content
® Arguments for dynamic ¢ ontent are in the reques t body
OPTIONS: Get server or file attributes
HEAD: Like GET but no data in response body
PUT: Write a file to the server!
DELETE: Delete a file on the server!

IS.
PUT,

TRACE: Echo request in response body
e Useful for debugging.

15-213, F02 -12- 15-213, F'02

HTTP Requests (cont) HTTP Responses

_ _ HTTP response is a response line followed by zero or
Request headers: <header name>: <header data> more response headers .

m Provide additional information to the server. .
Response line:

<version> <status code> <status msg>

Major differences between HTTP/1.1 a nd HTTP/1.0 = <version> is HTTP vers ion of the response.
m HTTP/1.0 uses a new connection for eac h transaction. m <status code> is numeric status.
m HTTP/1.1 also supports persistent connections m <status msg> is corresponding English text.
e multiple transactions over the same con nection ® 200 OK Request was handled without error
® Connection: Keep-Alive ® 403 Forbidden Server lacks permis sion to access fil e
. ® 404 Not found S ldn't find the file.
m HTTP/1.1 requires HOST header otfoun erver couldnitiind the - tile
® Host: kittyhawk.cmcl.cs.cmu.edu Response headers: <header name>: <header data>
m HTTP/1.1 adds additional support for caching m Provide additional information about response

m Content-Type: MIME type of content in response body.
m Content-Length: Length of content in response body.

-13- 15-213, F'02 -14 - 15-213, F'02

GET Request to Apache Server GET Response From Apache Server
From IE Browser

HTTP/1.1 200 OK

Date: Thu, 22 Jul 1999 04:02:15 GMT
Server: Apache/1.3.3 Ben-SSL/1.28 (Unix)
Last-Modified: Thu, 22 Jul 1999 03:33:21 GMT
ETag: "48bb2-4£f-37969101"

Accept-Ranges: bytes

Content-Length: 79

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

CRLF

<html>

<head><title>Test page</title></head>
<body>

<hl1>Test page</hl>

</html>

GET /test.html HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
Host: euro.ecom.cmu.edu

Connection: Keep-Alive

CRLF (\r\n)

-15- 15-213, F'02 -16 - 15-213, F'02

Serving Dynamic Content:

Client sends request to
server.

GET /cgi-bin/env.pl HTTP/1.1

If request URI contains the
string “ /egi-bin”, then
the server assumes that
the request is for
dynamic content.

Serving Dynamic Content (cont)

The child runs and
generates the dynamic
content.

The server captures the
content of the child and
forwards it without
modification to the client

—~19— 15-213, F02

Serving Dynamic Content (cont)

fork/exec

The server creates a child
process and runs the
program identified by the
URI in that process

_18- 15-213, F02

Issues in Serving Dynamic Content:

How does the client pass program
arguments to the server?

Request

How does the server pass these

arguments to the child?
Content Create
How does the server pass other
info relevant to the request to @

the child?

How does the server capture the
content produced by the child?

These issues are addresse d by the
Common Gateway Interface (CGl)
specification.

~20 - 15-213, F'02

CGl

Because the children are written a ccording to the CGl
spec, they are often called CGI programs .

Because many CGI programs are wri tten in Perl, they
are often called CGl scripts .

However, CGl really defines a simple standard for
transferring information between the client (browse r,
the server, and the child proce ss.

o1 15-213, F02

The add.com Experience

input URI_ host port CGl program args

1
File Edit Wiew Go b\mmunicator l \ \ Help
v l;@v Bookmarks LUCaﬁUm’lttp ://bass. cmel. cs. e, edw: 8000 /cgi-bin/adder?155 A

v v A S B | 2% o

Back Forward Reload Home Search Metscape Print Security

Stag
Welcome to add.com: THE Internet addition portal.

The answeris: 1 + 5 =6

Thanks for visiting!

—~ Output page

[e i am 2

23— 15-213, F02

add.com:
THE Internet addition portal!

Ever need to add two numbers together and you just
can't find your calculator?

Try Dr. Dave’s addition service at “add.com: THE
Internet addition portal!”
m Takes as input the two numbers you want to add together.
m Returns their sum in a tasteful personalized message.

After the IPO we’ll expand to mul tiplication!

—22 - 15-213, F'02

Serving Dynamic Content With GET

Question: How does the client pass arguments to the
server?

Answer: The arguments are appended to the URI

Can be encoded directly ina URL typed to a browser
or a URL in an HTML link

m http://add.com/cgi-bin/adder?1&2

m adder is the CGI program on the server that will do the
addition.

m argument list starts with ™2~
m arguments separated by “&”
m spaces represented by “+” or “%20”

Can also be generated by an HTML form
724<form method=get action="http://add.com/cgi—bin/postadde1:"?5_213 F02

Serving Dynamic Content With GET

URL:
m http://add.com/cgi-bin/adder?1&2

Result displayed on browser:

Welcome to add.com: THE Internet addition portal.

Theansweris: 1+2=3

Thanksfor visiting! Tell your friends.

o5 15-213, F02

Serving Dynamic Content With GET

Question: How does the server pass other i nfo relevant
to the request to the child?

Answer: In a collection of environ ment variables
defined by the CGI spec.

-27 - 15-213, F'02

Serving Dynamic Content With GET

Question : How does the server pass these
arguments to the child?
Answer: In environment variable Q UERY_STRING

m A single string containing everything after the “?”
m For add.com: QUERY STRING = "“1&2"

/* child code that accesses the argument list */

if ((buf = getenv ("QUERY STRING")) == NULL) {
exit (1) ;

}

/* extract argl and arg2 from buf and convert */
nl
n2

atoi (argl) ;
atoi (arg2) ;

— 26— 15-213, F'02

Some CGI Environment Variables

General
] SERVER;SOFTWARE
m SERVER NAME
m GATEWAY_ INTERFACE (CGI version)

Request-specific
m SERVER PORT
m REQUEST_ METHOD (GET, POST, etc)
m QUERY_ STRING (contains GET args)
m REMOTE_HOST (domain name of client)
= REMOTE_ADDR (IP address of client)

m CONTENT_TYPE (for POST, type of data in message body, e.g.,
text/html)

m CONTENT_LENGTH (length in bytes)

_ 28— 15-213, F'02

Some CGI Environment Variables

In addition, the value of eac h header of type type
received from the client is pl aced in environment
variable HTTP_type

m Examples:
® HTTP_ACCEPT
® HTTP_HOST
® HTTP_USER AGENT (any “-”is ch anged to “_")

29— 15-213, F'02

Serving Dynamic Content With GET

bass> ./tiny 8000
GET /cgi-bin/adder?1&2 HTTP/1.1
Host: bass.cmcl.cs.cmu.edu:8000

HTTP request received by
Tiny Web server

kittyhawk> telnet bass 8000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '~]'.

GET /cgi-bin/adder?1&2 HTTP/1.1

Host: bass.cmcl.cs.cmu.edu:8000 HTTP request sent by ¢ lient

HTTP/1.1 200 OK

Server: Tiny Web Server the server

Content-length:™ 102 HTTP response generate d by
Content-type: text/html the CGI program

<CRLF>

Welcome to add.com: THE Internet addition portal.
<p>The answer is: 1 + 2 = 3
<p>Thanks for visiting!

Connection closed by foreign host.

kittyhawk>
—31-— 15-213, F'02

Serving Dynamic Content With GET

Question: How does the server capture the content produced by the
child?

Answer: The child generates its output on stdout. Server uses dup2
to redirect stdout to its connected socket.

m Notice that only the ¢ hild knows the type and size of the content. Thus
the child (not the se rver) must generate the ¢ orresponding headers.

/* child generates the result string */

sprintf (content, "Welcome to add.com: THE Internet addition portal\
<p>The answer is: %d + %d = %d\
<p>Thanks for visiting!\r\n",
nl, n2, nl+n2);

/* child generates the headers and dynamic content */
printf ("Content-length: %d\r\n", strlen(content));
printf ("Content-type: text/html\r\n");

printf ("\r\n") ;

printf ("%$s", content);

~-30 - 15-213, F'02

Proxies

A proxy is an intermediary between a client and an
origin server .

m To the client, the proxy acts like a server.
m To the server, the proxy acts like a clie nt.

HTTP request HTTP request

». »

Client (Proxy (O”gm
Server
HTTP response _/ HTTP response

32— 15-213, F02

Why Proxies? For More Information

Can perform useful functions as requests and Study the Tiny Web server describe d in your text
responses pass by = Tiny is a sequential Web server
= Examples: Caching, logging, anonymization m Serves static and dynamic content to real browse rs.
@ text files, HTML files, GIF a nd JPEG images.

CT m 220 lines of commented C code.

m Also comes with an implementation of the CGI script for the
add.com addition portal.

————————————————————————————

Request foo.htn

Slower more
expensive

foo.html global network

-33- 15-213, F02 -34- 15-213, F'02

