# 15-213 "The course that gives CMU its Zip!"

### System-Level I/O Nov 14, 2002

#### **Topics**

- Unix I/O
- Robust reading and writing
- Reading file metadata
- Sharing files
- I/O redirection
- Standard I/O

class24.ppt

### Reading a Disk Sector: Step 1



### **A Typical Hardware System**



### Reading a Disk Sector: Step 2



-3-

15-213, F'02

### Reading a Disk Sector: Step 3



#### **Unix Files**

A Unix *file* is a sequence of *m* bytes:

$$\blacksquare$$
  $B_0, B_1, \dots, B_k, \dots, B_{m-1}$ 

All I/O devices are represented as files:

- /dev/sda2 (/usr disk partition)
- | /dev/tty2 (terminal)

Even the kernel is represented as a file:

- /dev/kmem (kernel memory image)
- /proc (kernel data structures)

-6-

### **Unix File Types**

#### Regular file

- Binary or text file.
- Unix does not know the difference!

#### **Directory file**

A file that contains the names and locations of other files.

#### Character special and block special files

■ Terminals (character special) and disks (block special)

#### FIFO (named pipe)

A file type used for interprocess comunication

#### Socket

A file type used for network communication between processes

### Unix I/O

The elegant mapping of files to devices allows kernel to export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a consistent and uniform way.

**Basic Unix I/O operations (system calls):** 

- Opening and closing files
  - open()and close()
- Changing the *current file position* (seek)
  - lseek (not discussed)
- Reading and writing a file
  - read() and write()

### **Opening Files**

Opening a file informs the kernel that you are getting ready to access that file.

```
int fd; /* file descriptor */
if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
    perror("open");
    exit(1);
}</pre>
```

Returns a small identifying integer file descriptor

■ fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with three open files associated with a terminal:

- 0: standard input
- 1: standard output
- \_9\_ 2: standard error

## **Closing Files**

Closing a file informs the kernel that you are finished accessing that file.

```
int fd;  /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
   perror("close");
   exit(1);
}</pre>
```

Closing an already closed file is a recipe for disaster in threaded programs (more on this later)

Moral: Always check return codes, even for seemingly benign functions such as close ()

# Reading Files

Reading a file copies bytes from the current file position to memory, and then updates file position.

```
char buf[512];
int fd;    /* file descriptor */
int nbytes;    /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
    perror("read");
    exit(1);
}</pre>
```

Returns number of bytes read from file fd into buf

- nbytes < 0 indicates that an error occurred.</p>
- short counts (nbytes < sizeof(buf)) are possible and are not errors!

15-213, F'02

### **Writing Files**

- 10 -

Writing a file copies bytes from memory to the current file position, and then updates current file position.

```
char buf[512];
int fd;    /* file descriptor */
int nbytes;    /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
    perror("write");
    exit(1);
}</pre>
```

Returns number of bytes written from buf to file fd.

- nbytes < 0 indicates that an error occurred.
- As with reads, short counts are possible and are not errors!

Transfers up to 512 bytes from address buf to file fd

-11 - 15-213, F'02 -12 - 15-213, F'02

15-213, F'02

### Unix I/O Example

Copying standard input to standard output one byte at a time.

Note the use of error handling wrappers for read and write (Appendix B).

#### **Dealing with Short Counts**

Short counts can occur in these situations:

- Encountering (end-of-file) EOF on reads.
- Reading text lines from a terminal.
- Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:

- Reading from disk files (except for EOF)
- Writing to disk files.

How should you deal with short counts in your code?

■ Use the RIO (Robust I/O) package from your textbook's csapp.c file (Appendix B).

- 13 - 15-213, F'02 - 14 - 15-213, F'02

### The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in applications such as network programs that are subject to short counts.

RIO provides two different kinds of functions

- Unbuffered input and output of binary data
  - rio readn and rio writen
- Buffered input of binary data and text lines
  - rio readlineb and rio readnb
  - Cleans up some problems with Stevens's readline and readn functions.
  - Unlike the Stevens routines, the buffered RIO routines are thread-safe and can be interleaved arbitrarily on the same descriptor.

#### **Download from**

```
csapp.cs.cmu.edu/public/ics/code/src/csapp.c
csapp.cs.cmu.edu/public/ics/code/include/csapp.h
```

### Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network sockets

```
#include "csapp.h"
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(nt fd, void *usrbuf, size_t n);
Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error
```

- rio readn returns short count only it encounters EOF.
- rio\_writen never returns a short count.
- Calls to rio\_readn and rio\_writen can be interleaved arbitrarily on the same descriptor.

- 15 - 15-213, F'02 - 16 - 15-213, F'02

### Implementation of rio\_readn

```
* rio readn - robustly read n bytes (unbuffered)
ssize t rio readn(int fd, void *usrbuf, size t n)
    size t nleft = n;
   ssize t nread;
   char *bufp = usrbuf;
   while (nleft > 0) {
       if ((nread = read(fd, bufp, nleft)) < 0) {</pre>
           if (errno == EINTR) /* interrupted by sig
                                   handler return */
               nread = 0:
                               /* and call read() again */
           else
                               /* errno set by read() */
               return -1;
       else if (nread == 0)
                                /* EOF */
           break;
       nleft -= nread;
       bufp += nread:
                                 /* return >= 0 */
   return (n - nleft);
```

15-213, F'02

### **Buffered RIO Input Functions**

Efficiently read text lines and binary data from a file partially cached in an internal memory buffer

```
#include "csapp.h"
void rio_readinitb(rio_t *rp, int fd);
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);
Return: num. bytes read if OK, 0 on EOF, -1 on error
```

- rio\_readlineb reads a text line of up to maxlen bytes from file fd and stores the line in usrbuf.
  - Especially useful for reading text lines from network sockets.
- rio readnb reads up to n bytes from file fd.
- Calls to rio\_readlineb and rio\_readnb can be interleaved arbitrarily on the same descriptor.
  - Warning: Don't interleave with calls to rio readn

15-213, F'02

### **RIO Example**

Copying the lines of a text file from standard input to standard output.

```
#include "csapp.h"
int main(int argc, char **argv)
{
   int n;
   rio_t rio;
   char buf[MAXLINE];

   Rio_readinitb(&rio, STDIN_FILENO);
   while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
        Rio_writen(STDOUT_FILENO, buf, n);
   exit(0);
}
```

#### File Metadata

- 18 -

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat and fstat functions.

```
/* Metadata returned by the stat and fstat functions */
struct stat {
                               /* device */
   dev t
                  st dev;
                  st ino;
                               /* inode */
   ino t
                  st mode;
                               /* protection and file type */
   mode t
   nlink t
                  st nlink:
                               /* number of hard links */
   uid t
                  st uid;
                               /* user ID of owner */
   gid t
                  st gid;
                               /* group ID of owner */
   dev t
                  st rdev;
                               /* device type (if inode device) */
   off t
                  st size;
                               /* total size, in bytes */
   unsigned long st blksize; /* blocksize for filesystem I/O */
   unsigned long st blocks;
                              /* number of blocks allocated */
    time t
                  st atime;
                               /* time of last access */
                               /* time of last modification */
    time t
                  st mtime;
    time t
                  st ctime;
                               /* time of last change */
```

– 19 – 15-213, F'02

### **Example of Accessing File Metadata**

```
/* statcheck.c - Querying and manipulating a file's meta data */
#include "csapp.h"
                                           bass> ./statcheck statcheck.c
int main (int argc, char **argv)
                                           type: regular, read: yes
                                           bass> chmod 000 statcheck.c
    struct stat stat;
                                           bass> ./statcheck statcheck.c
    char *type, *readok;
                                           type: regular, read: no
    Stat(argv[1], &stat);
    if (S ISREG(stat.st mode)) /* file type*/
       type = "regular";
    else if (S ISDIR(stat.st mode))
       type = "directory";
       type = "other";
    if ((stat.st mode & S IRUSR)) /* OK to read?*/
       readok = "yes";
    else
       readok = "no";
   printf("type: %s, read: %s\n", type, readok);
    exit(0);
-21-
                                                              15-213, F'02
```

# **How the Unix Kernel Represents Open Files**

Two descriptors referencing two distinct open disk files.

Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.



### **File Sharing**

# Two distinct descriptors sharing the same disk file through two distinct open file table entries

■ E.g., Calling open twice with the same filename argument



#### **How Processes Share Files**

A child process inherits its parent's open files. Here is the situation immediately after a fork



-23-

#### I/O Redirection

Question: How does a shell implement I/O redirection?
unix> ls > foo.txt

Answer: By calling the dup2 (oldfd, newfd) function

 Copies (per-process) descriptor table entry oldfd to entry newfd



– 25 – 15-213, F'02

### I/O Redirection Example (cont)

After calling dup2 (4,1), stdout is now redirected to the disk file pointed at by descriptor 4.



### I/O Redirection Example

Before calling dup2 (4,1), stdout (descriptor 1) points to a terminal and descriptor 4 points to an open disk file.



#### Standard I/O Functions

The C standard library (libc.a) contains a collection of higher-level standard I/O functions

■ Documented in Appendix B of K&R.

**Examples of standard I/O functions:** 

- Opening and closing files (fopen and fclose)
- Reading and writing bytes (fread and fwrite)
- Reading and writing text lines (fgets and fputs)
- Formatted reading and writing (fscanf and fprintf)

- 27 - 15-213, F'02 - 28 - 15-213, F'02

#### Standard I/O Streams

#### Standard I/O models open files as streams

Abstraction for a file descriptor and a buffer in memory.

# C programs begin life with three open streams (defined in stdio.h)

- stdin (standard input)
- stdout (standard output)
- stderr (standard error)

```
#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */
int main() {
    fprintf(stdout, "Hello, world\n");
}
```

- 29 - 15-213, F'02 - 30 - 15-213, F'02

### Standard I/O Buffering in Action

You can see this buffering in action for yourself, using the always fascinating Unix strace program:

```
#include <stdio.h>
int main()
{
    printf("h");
    printf("e");
    printf("l");
    printf("l");
    printf("o");
    printf("\n");
    fflush(stdout);
    exit(0);
}
```

```
linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...) = 6
...
_exit(0) = ?
```

### **Buffering in Standard I/O**

#### Standard I/O functions use buffered I/O



#### Unix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are implemented using low-level Unix I/O.



Which ones should you use in your programs?

-31 - 15-213, F'02 -32 - 15-213, F'02

#### Pros and Cons of Unix I/O

#### **Pros**

- Unix I/O is the most general and lowest overhead form of I/O.
  - All other I/O packages are implemented using Unix I/O functions.
- Unix I/O provides functions for accessing file metadata.

#### Cons

- Dealing with short counts is tricky and error prone.
- Efficient reading of text lines requires some form of buffering, also tricky and error prone.
- Both of these issues are addressed by the standard I/O and RIO packages.

#### Pros and Cons of Standard I/O

#### **Pros:**

- Buffering increases efficiency by decreasing the number of read and write system calls.
- Short counts are handled automatically.

#### Cons:

- Provides no function for accessing file metadata
- Standard I/O is not appropriate for input and output on network sockets
- There are poorly documented restrictions on streams that interact badly with restrictions on sockets

- 33 - 15-213, F'02 - 34 - 15-213, F'02

### Pros and Cons of Standard I/O (cont)

#### **Restrictions on streams:**

- Restriction 1: input function cannot follow output function without intervening call to fflush, fseek, fsetpos, or rewind.
  - Latter three functions all use lseek to change file position.
- Restriction 2: output function cannot follow an input function with intervening call to fseek, fsetpos, or rewind.

#### **Restriction on sockets:**

You are not allowed to change the file position of a socket.

### Pros and Cons of Standard I/O (cont)

#### Workaround for restriction 1:

■ Flush stream after every output.

#### Workaround for restriction 2:

Open two streams on the same descriptor, one for reading and one for writing:

```
FILE *fpin, *fpout;

fpin = fdopen(sockfd, "r");
fpout = fdopen(sockfd, "w");
```

However, this requires you to close the same descriptor twice:

```
fclose(fpin);
fclose(fpout);
```

Creates a deadly race in concurrent threaded programs! 15-213, F'

### **Choosing I/O Functions**

### General rule: Use the highest-level I/O functions you can.

 Many C programmers are able to do all of their work using the standard I/O functions.

#### When to use standard I/O?

When working with disk or terminal files.

#### When to use raw Unix I/O

- When you need to fetch file metadata.
- In rare cases when you need absolute highest performance.

#### When to use RIO?

- When you are reading and writing network sockets or pipes.
- Never use standard I/O or raw Unix I/O on sockets or pipes.

#### For Further Information

#### The Unix bible:

- W. Richard Stevens, Advanced Programming in the Unix Environment, Addison Wesley, 1993.
- Somewhat dated, but still useful.

#### Stevens is arguably the best technical writer ever.

- Produced authoritative works in:
  - Unix programming
  - TCP/IP (the protocol that makes the Internet work)
  - Unix network programming
  - Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

-37 - 15-213, F'02 - 38 - 15-213, F'02