15-213

“The course that gives CMU its Zip!”

System-Level I/O
Nov 14, 2002

Topics
m Unix /O
m Robust reading and writing
m Reading file metadata
m Sharing files
m |/O redirection
m Standard I/O

class24.ppt

Reading a Disk Sector: Step 1

CPU chip

CPU initiates a disk read by writing a
command, logical block number, and
|:> ALU destination memory address to a port
<:| (address) associated with disk controller.

) S N main
bus interface \'__14_ memory
ﬁ F 1/0 bus >

R L

register file

<

USB graphics disk
controller adapter controller
mouse keyboard monitor -

-3- 15-213, F02

A Typical Hardware System

CPU chip

register file

: ALU

system bus memory bus

L .7 !
wsmerace [T o KT man
us interface bridge memory
< HAE>
{} /O bus Expansion slots for
other devices such

USB graphics disk as network adapters.
controller adapter controller

mouse keyboard monitor -

-2- 15-213, F'02

Reading a Disk Sector: Step 2

CPU chip

Disk controller reads the sector and
performs a direct memory access (DMA)

|::> transfer into main memory.
ALU

-
17

_ :l\l/ ,j AN\ main
bus interface <:: _,\l—l/ memory
ﬁ F 1/O bus >

R J

register file

<

USB graphics disk
controller adapter contrller
mouse keyboard monitor -

-4- 15-213, F'02

Reading a Disk Sector: Step 3

CPU chip

When the DMA transfer completes, the

disk controller notifies the CPU with an

|:> ALU interrupt (i.e., asserts a special “interrupt”
pin on the CPU)

register file

_ main
bus interface <:::>|: :|<::> memory

T A

uUsB graphics disk
controller adapter controller

<

mouse keyboard monitor >

5 15-213, F'02

Unix File Types

Regular file
m Binary or text file.
= Unix does not know the difference!

Directory file
m A file that contains the names and locations of other files.

Character special and block s pecial files

m Terminals (character special) and disk s ('block special)
FIFO (named pipe)

m A file type used for interprocess comunication

Socket

m A file type used for network communication between
processes

-7- 15-213, F02

Unix Files

A Unix file is a sequence of m bytes:
mB,B;,....,By,...,Boy

All I/O devices are re presented as files:
m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:
m /dev/kmem (kernel memory image)
m /proc (kernel data structures)

_6- 15-213, F02

Unix /O

The elegant mapping of files to dev ices allows kernel to
export simple interface called Unix I/O.

Key Unix idea: All input and outputis handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
® open ()and close ()

m Changing the current file position (seek)
® lseek (not discussed)

m Reading and writing a file
® read () and write ()

-8- 15-213, F'02

Opening Files

Opening a file informs the kernel that you are getting
ready to access that file.

int £d4; /* file descriptor */

if ((fd = open(“/etc/hosts”, O _RDONLY)) < 0) {
perror (“open”) ;
exit(1l);

Returns a small identifying integer file descriptor
m £d == -1 indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated wi th a terminal:

m 0: standard input
m 1: standard output

m 2: standard error

9 15-213, F02

Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file f£d */

if ((nbytes = read(fd, buf, sizeof (buf))) < 0) {
perror (“read”) ;
exit(1l);

Returns number of bytes read from file £d into buf
m nbytes < 0 indicates that an error occurred.

m short counts (nbytes < sizeof (buf)) are possible and
are not errors!

11— 15-213, F'02

Closing Files

Closing a file informs the kernel that you are finished
accessing that file.

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror (“close”) ;
exit(l);

}

Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

Moral: Always check return codes, even for seemingly
benign functions such as close()

_10- 15-213, F02

Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof (buf)) < 0) {
perror (“write”) ;
exit(1l);
}

Returns number of bytes written from buf to file £d.
m nbytes < 0 indicates that an error occurred.

m As with reads, short counts are possible and are not errors!
Transfers up to 512 bytes from address buf to file £d

—12 - 15-213, F'02

Unix I/O Example

Copying standard input to standard output one byte at a
time.

#include "csapp.h"

int main (void)
{

char c;

while (Read (STDIN_FILENO, &c, 1) !'= 0)
Write (STDOUT_FILENO, &c, 1);
exit (0) ;

}

Note the use of error handling wrappers forre ad and write

(Appendix B).

_13- 15-213, F02

The RIO Package

RIO is a set of wrappers that provide efficient and robust 1/0O in

applications such as network programs that are su bject to short
counts.

RIO provides two different kinds of functions
m Unbuffered input and output of bina ry data
® rio_readn and rio_writen
m Buffered input of binary da ta and text lines
® rio readlineb and rio_readnb
e Cleans up some p roblems with Stevens’'s readline and readn functions.

e Unlike the Stevens routines , the buffered RIO routines are thread-safe and
can be interleaved arbitrarily o n the same descriptor.

Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp.c
csapp.cs.cmu.edu/public/ics/code/include/csapp.h

— 15— 15-213, F02

Dealing with Short Counts

Short counts can occur in these si tuations:
m Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these s ituations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short ¢ ounts in your code?

m Use the RIO (Robust 1/0) package from your textbook’s
csapp . c file (Appendix B).

14 — 15-213, F'02

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring d ata on network
sockets

#include “csapp.h”

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio writen(nt fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

m rio_readn returns short count only it encounters EOF.

m rio_writen never returns a short count.

m Callsto rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

~ 16— 15-213, F'02

Implementation of rio_readn

/*

* rio_readn - robustly read n bytes (unbuffered)
Sy

ssize_t rio_readn(int fd, void *usrbuf, size_ t n)

{

size t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handler return */
nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;
bufp += nread;
}

return (n - nleft); /* return >= 0 */

17— 15-213, F'02

RIO Example

Copying the lines of a text file from s tandard input to
standard output.

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio_t rio;
char buf [MAXLINE];

Rio_readinitb (&rio, STDIN_FILENO) ;

while((n = Rio_readlineb (&rio, buf, MAXLINE)) '= 0)
Rio writen (STDOUT FILENO, buf, n);
exit(0) ;

—~19— 15-213, F'02

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an i nternal memory buffer

#include “csapp.h”
void rio_readinitb(rio_t *rp, int £d);

ssize_t rio readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readlineb reads atextline of upto maxlen bytes from
file £d and stores the line in usrbuf.

® Especially useful for reading text lines from network sockets.
m rio_readnb reads up to n bytes from file £d.

m Callsto rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor.
® Warning: Don't interleave with callsto rio_readn
_18- 15-213, F02

File Metadata

Metadata is data about data, in this ¢ ase file data.

Maintained by kernel, acces sed by users with the stat
and fstat functions.

/* Metadata returned by the stat and fstat functions */

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st _mode; /* protection and file type */
nlink t st _nlink; /* number of hard links */
uid _t st_uid; /* user ID of owner */
gid t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off t st_size; /* total size, in bytes */
unsigned long st blksize; /* blocksize for filesystem I/O */
unsigned long st blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

1Y

Example of Accessing File Metadata How the Unix Kernel Represents

Open Files

Two descriptors referencing two distinc
Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk fil e.

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

int main (int argc, char **argv) bass> ./statcheck statcheck.c

{ type: regular, read: yes
struct stat stat; bass> chmod 000 statcheck.c
char *type, *readok; bass> ./statcheck statcheck.c

type: regular, read: no

Descriptor table

Open file table

v-node table

t open disk files.

Info in
stat
struct

Stat(argv[1l], &stat); [one table per process] [shared by all processes] [shared by all processes]
if (tsy—pIeSR_EGn(,_,se;autl':;.—.mOde)) /* file type*/ File A (terminal)
else if (S_ISDIR(stat.st mode)) i;diz Ig 2 — — File access
type = "directory"; stdou File pos File size
else stderr fd 2 -
type = "other"; id 3 refcnt=1 File type
if ((stat.st _mode & S_IRUSR)) /* OK to read?*/ fd 4 ~ :
readok = "yes";
else File B (disk) -
readok = "no"; _— " File access
: File size
printf ("type: %s, read: %s\n", type, readok); fElslpo> File t
exit(0) ; refcnt=1 12 e
} :
_o1- 15-213, F02 22—

How Processes Share Files

A child process inherits its pa

File Sharing

Two distinct descriptors sharing the same disk file

through two distinct open file table entrie s the situation immediately aftera fork
m E.g, Calling open twice with the same filename argument
Descriptor Open file table v-node table
.) tables (shared by (shared by
Descriptor table Open file table v-node table all processes) all processes)
(one table (shared by (shared by

Parent's table

per process) all processes) all processes) File A
File A fd 0 — File access
e ’ fd 1 — : —
> File size
fao | — = File access fd 2 File pos Fie.
= - — = ile type
fd 1 File pos File size fd 3 cefon s yp
fd 2 : fd 4 N g
fd 3 refcnt=1 File type
fd 4 ~ : Child's table File B :
o _—File access
File B id1 File pos File size
fd 2 — File type
File pos id 3 refcnt=2 :
refcnt=1 fd 4
-23- 15-213, F02 24—

15-213, F'02

rent’'s open files. Here is

15-213, F'02

I/O Redirection I/O Redirection Example

. . o
Question: How does a shelli mplement I/O redirection® Before calling dup2 (4, 1), stdout (descriptor 1) points

unix> ls > foo.txt to a terminal and descriptor 4 points to an open disk
Answer: By calling the dup2 (oldfd, newfd) function file.
= Copies (per-process) descriptor table entry oldfdto entry Descriptor table Open file table v-node table
newfd (one table (shared by (shared by
per process) all processes) all processes)
Descriptor table Descriptor table File A
before dup2(4,1) after dup2 (4,1) stdin fd 0 = File access
stdout fd 1 — " 7 :
stderr fd 2 File s F‘I|e Size
fdo ido id 3 refent=1 File type
fd 4 ~ 8 :
fd 1 a fd 1 b
2 > w2 .
d d FHleB —Ficaccess
fd 3 fd 3 oS File size
b b -
fd4 fd 4 refent=1 File type
—25- 15-213, F'02 —-26- : 15-213, F02

I/O Redirection Example (cont) Standard I/O Functions

After calling dup2(4,1), stdout is now redirected to the The C standard library (1ibe.a) contains a collection of
disk file pointed at by descri ptor 4. higher-level standard I/O functions
m Documented in Appendix B of K&R.
Descriptor table Open file table v-node table .
(one table (shared by (shared by Examples of standard 1/O functions:
per process) all processes) all processes) = Opening and closing files (fopen and fclose)
Wo T m Reading and writing bytes (fread and fwrite)
;3 ; ! | :F"es,ze: m Reading and writing text lines (fgets and fputs)
fd 3 ? ; | File type m Formatted reading and writing (£scanf and fprintf)
fd 4 ~ ! : ! i _____ 5_____":
\ i L _—— " File access
File pos F.ile size
refcnt=2 Flle-type

-27 - 15-213, F'02 -28- 15-213, F'02

Standard 1/O Streams

Standard I/O models open file s as streams
m Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open

—29 —

n stdio.h)

streams (defined

m stdin (standard input)
m stdout (standard output)
m stderr (standard error)

int main() {

}

#include <stdio.h>
extern FILE *stdin;
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

fprintf (stdout, “Hello, world\n”);

/* standard input (descriptor 0) */

15-213, F'02

Standard I/O Buffering in Action

You can see this buffering in a ction for yourself, using

the always fascinating Unix

#include <stdio.h>

int

{

main ()

printf ("h") ;
printf ("e") ;
printf ("1");
printf ("1");
printf ("o");
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

strace program:

Buffering in Standard 1/O

Standard I/O functions use buffered |/

printf (“h”);
printf (“e”);
printf (“17);
printf (“17);
printf (Yo”);

buf

\

O

printf (“\n”) ;

LhlellJTJlofWn].].1

—-30 -

fflush (stdout) ;

write(l, buf += 6, 6);

15-213, F'02

Unix I/O vs. Standard I/O vs. RIO

Standard I/O and RIO are impl emented using low-level

Unix 1/O.

linux> strace ./hello

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

C application prog ram

| standard /0
functions

—-31 -

execve ("./hello", ["hello"], [/* ... */]).

write (1, "hello\n", 6...) =6

_exit(0) =?
15-213, F'02

open read
write 1lseek
stat close

RIO
functions

Unix 1/O functions

(accessed via system calls)

Which ones should you use in

—-32 -

rio_readn
rio writen
rio_readinitb
rio_readlineb
rio_readnb

your programs?

15-213, F'02

Pros and Cons of Unix I/O

Pros

m Unix I/O is the most general and lowest overhead form of 1/0.
o All other I/0 packages are implemented usi ng Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

Cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addresse d by the standard 1/0 and
RIO packages.

33— 15-213, F'02

Pros and Cons of Standard I/O (cont)

Restrictions on streams:

m Restriction 1: input function cannot follow output function
without intervening call to £flush, fseek, fsetpos, or
rewind.

® | atter three functions a Il use lseek to change file po sition.

m Restriction 2: output function cannot follow an input
function with intervening callto ~ fseek, £setpos, Or rewind.

Restriction on sockets:
m You are not allowed to change the file position of a socket.

_ 35— 15-213, F'02

Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decr easing the number of
read and write system calls.

m Short counts are handled automatically.

Cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions ons treams that
interact badly with restrictions on sockets

— 34— 15-213, F'02

Pros and Cons of Standard I/O (cont)

Workaround for restriction 1:
m Flush stream after every output.

Workaround for restriction 2:

m Open two streams on the same descriptor, one for reading
and one for writing:

FILE *fpin, *fpout;

fpin = fdopen (sockfd, “r”);
fpout = fdopen (sockfd, “w”);

m However, this requires you to close the same de scriptor
twice:

fclose (fpin) ;
fclose (fpout) ;

m Creates a deadly race in conc urrent threaded programs!
— 36— 15-213, F'02

Choosing I/O Functions

General rule: Use the highest-level 1/O functions you
can.

m Many C programmers are able to do all of their work using
the standard I/O functions.

When to use standard 1/0?
m When working with disk or terminal files.

When to use raw Unix I/O
m When you need to fetch file metadata.
m |n rare cases when you need abs olute highest performance.

When to use RIO?
m When you are reading and writing network socke ts or pipes.
m Never use standard 1/O or raw Unix I/O on socke ts or pipes.

-37- 15-213, F02

For Further Information

The Unix bible:

m W. Richard Stevens, Adva nced Programming in the Unix
Environment, Addison Wesley, 19 93.

m Somewhat dated, but still useful.

Stevens is arguably the best tec hnical writer ever.
m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that ma kes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999.

— 38— 15-213, F'02

