15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation Il
Nov 7, 2002

Topics
m Explicit doubly-linked free lists
m Segregated free lists
m Garbage collection
m Memory-related perils and pitfalls

class22.ppt

Keeping Track of Free Blocks

® Method 1 : Implicit list using len gths -- links all blocks

5 4 6 2

® Method 2 : Explicit list among the free blocks using
pointers within the free blocks

/\

5 - 4 6 2

® Method 3 : Segregated free lists
m Different free lists for different size classes

® Method 4 : Blocks sorted by size (not discus sed)

m Can use a balanced tree (e.g. Red-Blac k tree) with pointers
within each free block, and the length used as a key

—2_ 15-213, F'02

Explicit Free Lists

—
A [8

—» - >
<_

Use data space for link pointers
m Typically doubly linked
m Still need boundary tags for coalescing

<« Forward links

& /Back links

m [t is important to realize that links are not necessatrily in the
same order as the blocks

15-213, F'02

Allocating From Explicit Free Lists

Before:

After:
(with splitting)

pred succ

free block

pred succ

free block

15-213, F02

Freeing With Explicit Free Lists

Insertion policy : Where in the free list do you put a
newly freed block?
m LIFO (last-in-first-out) policy
® |nsert freed block at the beginning of the free list
® Pro: simple and cons tant time
® Con: studies suggest fragmentation is worse than address
ordered.
m Address-ordered policy

® |nsert freed blocks s o that free list blocks are always in addres s
order

» l.e. addr(pred) < addr(curr) < addr(succ)
® Con: requires search
® Pro: studies suggest fragmentation is better tha n LIFO

—5_ 15-213, F'02

Freeing With a LIFO Policy

Case 1: a-a-a

m Insert self at beginn ing of "
free list a € a
- - T T-TTTTT T T T-T=T==T=T= =777 I
: P S !
|
.I
Case 2: a-a-f before: | ¢ ¢ :
|
m Splice out next, coa lesce ! a self f :
self and next, and add to S '
beginning of free list [mmmmmmmmmmmm e m e m = :
' <+—»S
after: | P :
| a f !
| |
| |

-6 — 15-213, F'02

Freeing With a LIFO Pollcy (cont)

| P :

before: i ¢ ¢ :

Case 3: f-a-a . f self a |
m Splice out prev, coalesce L e l

with self, and add to] _p_ —>s 7 !
beginning of free list after: : :

! f a I

-1 1

L opl sl p 2 52 !

| P S P S |

- p o before: : ¢ ¢ ¢ ¢ :
ase 4. -a- ! f self f |
m Splice out prev and next, —_—
coalesce with self, and S .

add to beginning of li st 1 pl 45l p2 +»s2 |

after: | |

| f |

~7- s "15-713, Fos !

Explicit List Summary

Comparison to implicit list:

m Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

m Slightly more complicated allocate and free since n eeds to
splice blocks in and out of the list

m Some extra space for the links (2 extra words ne eded for
each block)

Main use of linked lists I s In conjunction with
segregated free lists

m Keep multiple linked lists of different size classes, or
possibly for different types of objects

-8 - 15-213, F'02

Keeping Track of Free Blocks

Method 1 : Implicit list using lengths -- links all blocks

5 4 6 2

Method 2 : Explicit list among the free blocks using
pointers within the free blocks

T ;

Method 3 : Segregated free list
m Different free lists for different size classes

Method 4 : Blocks sorted by size

m Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

-9 - 15-213, F'02

Segregated Storage

Each size class has its own collection of blocks

1-2 —> —> > —>
3 —> —> > —> —>
4 —> —> L
5-8 —> —>
9-16 5

m Often have separate size class for every small size (2,3,4,...)
m For larger sizes typically have a size ¢ lass for each power of 2

_ 10— 15-213, F'02

Simple Segregated Storage

Separate heap and free list for each s ize class
No splitting

To allocate a block of size n:

m If free list for size n is not empty,
® allocate first block on list (no te, list can be implicit o r explicit)

m If free list is empty
® get a new page
® create new free list from all blocks in page
® allocate first block on list

m Constant time

To free a block:
m Add to free list
m If page is empty, return the page for use by another size (optiona)

Tradeoffs:
m Fast, but can fragme nt badly 15913, F'02

Segregated Fits

Array of free lists, each one for some size class

To allocate a block of size n:
m Search appropriate free list for block of size m > n

m If an appropriate block is found:
® Split block and plac e fragment on appropriate list (optional)

m If no block is found, try next larger class
m Repeat until block is found

To free a block:
m Coalesce and place on appropria te list (optional)

Tradeoffs

m Faster search than sequential fits (i.e., log time for power of
two size classes)

m Controls fragmentation of simple segregated storage

m Coalescing can increase s earch times

® Deferred coalescing ¢ an help
—-12 —

15-213, F'02

For More Info on Allocators

D. Knuth , “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973

m The classic reference on dyna mic storage allocation

Wilson et al, “Dynamic Storage All ocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross , Scotland, Sept, 1995.

m Comprehensive survey
m Available from CS:APP student site (csapp .cs.cmu .edu)

13- 15-213, F'02

Implicit Memory Management:
Garbage Collection

Garbage collection : automatic reclamation of heap-
allocated storage -- application nev er has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

}

Common in functional languages, scri pting languages,
and modern object oriented languages:

m Lisp, ML, Java, Perl, Mathematica ,

Variants (conservative garbage col lectors) exist for C
and C++

m Cannot collect all garbage
— 14 — 15-213, F02

Garbage Collection

How does the memory manager know w hen memory
can be freed?

m In general we cannot know what is going to be used in the
future since it depends on conditionals

m But we can tell that certain blocks cannot be used if there
are no pointers to them

Need to make certain assumptions about po inters

m Memory manager can distinguish pointers from non-
pointers

m All pointers point to the start of a block

m Cannot hide pointers (e.g., by coercing them to an int, and
then back again)

15 15-213, F'02

Classical GC algorithms

Mark and sweep collection (McCarthy, 1 960)
m Does not move blocks (unless you also “compac t”)

Reference counting (Collins, 1960)
m Does not move blocks (not discussed)

Copying collection (Minsky , 1963)

m Moves blocks (not discussed)

For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 199 6.

16— 15-213, F'02

Memory as a Graph

We view memory as a directed graph
m Each block is a n ode in the graph
m Each pointer is an e dge in the graph

m Locations not in the heap that contain poin ters into the heap are
called root nodes (e.g. registe rs, locations on the s tack, global

variables)

Root nodes O O O\
O reachable

/
Heap nodes \
Not-reachable
é / O O (gatrbage)
O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (never needed by the application)

- 17 - 15-213, F'02

Assumptions For This Lecture

Application
®m new (n): returns pointer to new bloc k with all locations cleared
m read(b,i) : read location i ofblock b into register
m write(b,i,v): write vinto location i of block b

Each block will have a header word
m addressed as b[-1], forablock b

m Used for different purposes in different collectors

Instructions used by the Garbage Collector
m is ptr(p): determines whether p is a pointer
m length (b): returns the length of bloc k b, notincluding the hea der
m get roots (): returns all the roots

_ 18— 15-213, F'02

Mark and Sweep Collecting

Can build on top of malloc /free package
m Allocate using malloc until you “run out of space”

When out of space:
m Use extra mark bit in the head of each block
m Mark: Start at roots and set mark bit on all reachable memory
m Sweep: Scan all blocks and free blocks that are not marked
Mark bit set

e [T TSR
S SUCAREE e
i

After sweep I_ free I ® free _I

19 15-213, F'02

Mark and Sweep (cont.)

Mark using depth-first travers al of the memory graph

ptr mark (ptr p) {
if ('is _ptr(p)) return;
if (markBitSet(p)) return
setMarkBit (p) ;
for (i=0; i < length(p), i++)
mark (p[i]) ;
return;

}

//
//
//
//

do nothing if not pointer
check if already marked
set the mark bit

mark all children

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);

—20 -

15-213, F'02

Conservative Mark and Sweep in C

A conservative collector for C programs

m Is ptr() determines if a word is a pointer by checking if it
points to an allocated block of memory.

m But, in C pointers can point to the middle of a block.

ptr
header ¢

So how do we find the beginni ng of the block?

m Can use balanced tree to keep track of all allocated blocks
where the key is the location

m Balanced tree pointers can be stored in he ader (use two

additional words) head data

size

/ 1\

-21- left right 15-213, F'02

Memory-Related Bugs

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

22

15-213, F02

Dereferencing Bad Pointers

The classic scanf bug

— 23—

scanf (“%d”, val);

15-213, F02

Reading Uninitialized Memory

Assuming that heap data is initiali zed to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (3=0; j<N; j++)
yl[i] += A[i]1[3]1*x[]3]~
return y;

}

—24 — 15-213, F'02

_ 25 _

Overwriting Memory

Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

15-213, F02

Overwriting Memory

Off-by-one error

int **p;
p = malloc (N*sizeof (1nt *)) ’
for (i=0; i<=N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

— 26—

15-213, F02

Overwriting Memory

Not checking the max string size

char s[8];
int i;

gets(s);

/* reads “123456789” from stdin */

Basis for classic buffer overflow a ttacks
m 1988 Internet worm

m Modern attacks on Web serve rs

m AOL/Microsoft IM war

—27 —

15-213, F'02

Overwriting Memory

Referencing a pointer instead of the objec

—28 —

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

t it points to

15-213, F'02

Overwriting Memory

Misunderstanding pointer arithmetic

— 29—

int *search(int *p, int wval) ({

while (*p && *p != val)
p += sizeof (int) ;

return p;

}

15-213, F02

Referencing Nonexistent Variables

Forgetting that local variables dis appear when a
function returns

int *foo () {
int wval;
return &val;

}

—-30- 15-213, F'02

Freeing Blocks Multiple Times

Nasty!

X = malloc (N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;

_31- 15-213, F02

Referencing Freed Blocks

Evil!

X = malloc (N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
y[i] = x[i]++;

—32_ 15-213, F02

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;

}

— 33—

15-213, F02

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

struct list {
int wval;
struct list *next;

iy

foo() {
struct list *head =
malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

— 34— 15-213, F'02

Dealing With Memory Bugs

Conventional debugger (gdb)
m Good for finding bad pointer dereferences
m Hard to detect the other memory bugs

Debugging malloc (CSRI UToronto malloc)
m \Wrapper around conventional malloc

m Detects memory bugs at malloc and free boundaries
® Memory overwrites that corrupt he ap structures
® Some instances of freeing blocks multipl e times
® Memory leaks

m Cannot detect all memory bugs
® Overwrites into the middle o f allocated blocks
® Freeing block twice tha t has been realloca ted in the interim
® Referencing freed block s

— 35—

15-213, F'02

Dealing With Memory Bugs (cont.)

Binary translator (Atom, Purify)
m Powerful debugging and analysis technique
m Rewrites text section of executable object file
m Can detect all errors as debugging malloc

m Can also check each individual re ference at runtime
® Bad pointers
® Overwriting
® Referencing outside of allocated block

Garbage collection (Boehm- Weiser Conservative GC)
m Let the system free blocks instead of the programmer.

_ 36— 15-213, F'02

