15-213

“The course that gives CMU its Zip!”

Virtual Memory
Oct. 29, 2002

Topics
m Motivations for VM
m Address translation
m Accelerating translation with TLBs

classl9.ppt

Motivations for Virtual Memory

Use Physical DRAM as a Cache for the Disk
m Address space of a process can exceed physical memory s ize

m Sum of address spaces of multiple process es can exceed
physical memory

Simplify Memory Management
m Multiple processes resident in main memory.
® Each process with its o wn address space

m Only “active” code and data is actually in memory
® Allocate more memory to process as need ed.

Provide Protection

m One process can't interfere with another.
® because they ope rate in different address spaces.

m User process cannot acce ss privileged information

® different sections of a ddress spaces ha ve different permission s.
—2- 15-213, F02

M_otivation #1: DRAM a “Cache” for

D|§ o
Full address space is q uite large:

m 32-bit addresses: ~4,000,000,000 (4 billion) bytes
m 64-bit addresses: ~16,000,00 0,000,000,000,000 (16 quintillion)
bytes

Disk storage is ~300X cheaper than DRAM storage
= 80 GB of DRAM: ~ $33,000
m 80 GB of disk: ~ $110

To access large amounts of data 1 n a cost-effective manner,
the bulk of the data must be stored ondis k

1GB: ~$200 /Eﬁ GB: ~$110
4 MB: ~$500 <l >

SRAM | ¢——>» DRAM |[¢—> Disk

3 S~ @ 15-213, F'02

Levels in Memory Hierarchy

size:
speed:

$/Mbyte:
line size:

CPU

regs

Register

32B
1ns

8B

cache virtual memory
< > <« >
C
88 |a| 32B |\emory [4KB

C

h

e
Cache Memory Disk Memory
32 KB-4MB 1024 MB 100 GB
2 ns 30 ns 8 ms
$125/MB $0.20/MB $0.001/MB
32B 4 KB

Iarger, slower, cheaEer ;

15-213, F'02

DRAM vs. SRAM as a “Cache”

DRAM vs. disk Is more extreme than SRAM vs. DRAM

m Access latencies:
® DRAM ~10X slower than SRAM
® Disk ~100,000X slower than DRAM

m Importance of exploiting spatial locality:
® First byte is ~ 100,000X slower than success ive bytes on disk

» Vs, ~4X improveme nt for page-mode vs. re gular accesses to
DRAM

m Bottom line:
® Design decisions m ade for DRAM caches driven by enormous cost

of misses
—
\ >

SRAM l—» DRAM |¢—» Disk

5 ~— 7 5513 F02

Impact of Properties on Design

If DRAM was to be organized similar to an SRAM ca che, how would
we set the following design parameters?

m Line size?
® Large, since disk better at transferring large blocks

m Associativity ?
e High, to mimimize miss rate

m \Write through or write back?
® Write back, since can't afford to perform small writes to disk

What would the impact of these choices be on:

m MIsSS rate
® Extremely low. << 1%
m hit time
® Must match cache/DRAM perform ance
m Miss latency
e VVery high. ~20m s
m tag storage overhead

® Low, relative to block siz e
—6— 15-213, F'02

Locating an Object in a “Cache”

SRAM Cache

m Tag stored with cache line

m Maps from cache block to memory blocks
® From cached to uncached form
® Save a few bits by on ly storing tag

m No tag for block not in cache

m Hardware retrieves information
® can quickly matc h against multiple ta gs

“Cache”

Object Name
X = X?

7 15-213, F'02

Locating an Object in “Cache” (cont.)

DRAM Cache

m Each allocated page of virtual memory has e ntry in page table
m Mapping from virtual pages to physical pages
® From uncached form to cached form

m Page table entry even if page not in memory
® Specifies disk ad dress
® Only way to indicate where to find page

m OS retrieves information

Page Table “Cache”

Object Name
X On Disk

15-213, F02

A System with Physical Memory Only

Examples:
m most Cray machines, early PC s, nearly all embedded

Physical
Addresses

m Addresses generated by the CP U correspond directly to bytes in

physical memory
9 15-213, F'02

A System with Virtual Memory

Examples: Memory
m workstations, servers, modern PCs |, etc.

Page Table

Virtual
Addresses

Physical
Addresses

Do i |

m Address Translation: Hardware conv erts virtual addresses to

physical addresses via OS -managed lookup table (page table)
10— 15-213, F'02

Page Faults (like “Cache Misses”)

What if an object is on disk ra ther than in memory?
m Page table entry indicates virtual addres s not in memory

m OS exception handler invoked to move data from disk into
memory
® current process suspe nds, others can resum e
® OS has full control over pl acement, etc.

Before fault After fault
Memory Memory
Page Table Page Table
Virtual Phvsical
] ysSIiCa ; .
Addresses A Virtual Ph |
-l ddresstai. Addresses A dd)rlglscsaes

X

DED

'''''''
‘e
LM
............

11— 15-213, F02

Servicing a Page Fault

(1) Initiate Block Read

Processor Signals Controller

m Read block of length P
starting at disk address X and
store starting at memory
address Y Cache

Processor |,

Reg (3) Read
| Done

Read Occurs |
m Direct Memory Access (DMA)

m Under control of I/O controller (2) DMA v
Transfer
| / O Controller Signals Memory troller

Completion
| Interrupt processor

m OS resumes suspended
process

Disk

N

Disk

12— 15-213, F'02

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address ¢ onflicts?
m what if two processes access something at the same

address?
K Ivirty al memory invis ible to
ernel virtu al memory user code
%esp SiCk
A
) Memory mapp ed region
Linux/x86 forshared libraries
Process A
the “ brk” ptr
memOry runtime hea p (via malloc)
image uninitiali zed data (. bss)
initialized data (.dat a)
program text (.text)
forbidden

13- 15-213, F'02

Solution: Separate Virt. Addr . Spaces

m Virtual and physical address spa ces divided into equal-sized
blocks

® Dblocks are calle d “pages” (both v irtual and physical)

m Each process has its own virtual addre ss space

® operating system ¢ ontrols how virtual pages a s assigned to
physical memory

O -
Virtual 0 Address Tra nslation Physical
Address vP1 » PP2 Address
Space for VP2 Space
Process 1: (DRAM)
N-1
(e.g., read/ only
i PP/ library code)
Virtual 0
VP 1
Address VP 2 PP 10
Space for
Process 2: M-1
N-1

- 14 - 15-213, F'02

Contrast: Macintosh Memory Model

MAC OS 1-9

m Does not use traditional virtual memory
P1 Pointer Table

Shared Address Space

Pro:w A
!7

B

“Handles” P2 Pointer Ta C
Proiw

— D

.,_
E

All program objects accessed through
m Indirect reference through pointer table

m Objects stored in shared global address spa

- 15 —

“handles”

15-213, F'02

Macintosh Memory Management

Allocation / Deallocation
m Similar to free-list management of malloc /free

Compaction

m Can move any object and just update the (unique) pointer in

pointer table

P1 Pointer Table Shared Address Space

/ B
Pro:w —>
’7 A
“Handles’
P2 PointepTable
C
Proiw
— D
.__
—
E
_ 16— 15-213, F'02

Mac vs. VM-Based Memory Mgmt

Allocating, deallocating , and moving memaory:
m can be accomplished by both techniques

Block sizes:

m Mac: variable-sized
® may be very sma Il or very large

m VM: fixed-size
® size is equal to one page (4KB on x86 Linux sys tems)
Allocating contiguous chunks of memory:

m Mac: contiguous allocation is required

m VM: can map contiguous range of virtual address es to
disjoint ranges of physical addresses

Protection
m Mac: “wild write” by one process can corrupt another’s data

17 15-213, F'02

MAC OS X

“Modern” Operating System
m Virtual memory with protection

m Preemptive multitasking

® Other versions of MAC OS require proces
relinquish control

Based on MACH OS
m Developed at CMU in late 1980’s

- 18 —

ses to voluntarily

15-213, F'02

Motivation #3: Protection

Page table entry contains acce ss rights information
m hardware enforces this protection (trap into OS if violation

occurs) Page Tables Memory
]
]
Process I: _
]
]
]
]
]
]
]
Process j:]

_ 19— 15-213, F02

VM Address Translation

Virtual Address Space
mV={01,..,N-1}

Physical Address Space
= P={0,1, ..., M-1}
m M<N

Address Translation
= MAP: V - P U {0}
m For virtual address a:
® MAP(a) = a’ if data at virtual address a at physical address &’
in P
® MAP(a) =0 if data at virtual address a not in phys ical memory
» Either invalid or stored o n disk

_ 20— 15-213, F'02

VM Address Translation: Hit

Processor
Hardware — M - |
» Addr Trans m ain
a Mechanism |———— > V€MOTy |
virtual address part of the physical address
on-chip

memory mgmt unit (MMU)

o1 15-213, F'02

VM Address Translation: Miss

page fault
| / fault
Processor handler l

O - ¥
R A%%I;d_}{\:%l;]es — || Main Secondary | |
a Mechanism |[———>[Memory j«——| memory |
% ‘ N N

. \ OS performs

virtual address part of the physical address this I?ransfer
on-chip (only if miss)

memory mgmt unit (MMU)

oo 15-213, F'02

VM Address Translation

Parameters

m P = 2P = page size (bytes).

m N = 2" = Virtual address limit

m M = 2" = Physical address limit

n-1

p p-1

virtual page number

page offset

|

.

p p-1

v

physical page number

page offset

virtual address

physical address

Page offset bits don’t change as a result of translation

23—

15-213, F'02

Page Tables

Virtual Page Memory resident
Number page table
(physical page .
valid ordisk ad dress) Physical Memory
1 @
1 e
0 @
1 AN
——» (1 : é
1 o
0 ! \
1 .X\ \
0 @ < \ Disk Storage
1 - N \\ (swap file or
NN \\\ \\ regular file system file)
N /
NN \
NoN] g
\\ ‘\\
No A
|

~—

—24 — 15-213, F'02

Address Translation via Page Table

virtual address

page table base register

n—1 p p-1 0
VPN acts virtual page number (VPN) page offset
as
table inde _ . \
valid access physical page nu mber (PPN]
>
iIf valid=0
then page
not in memory m—1 v p p-1 v 0

physical page nu mber (PPN) page offset

physical address
925 15-213, F02

Page Table Operation

Translation
m Separate (set of) page table(s) per process
m VPN forms index into page table (points to a page table entry)

virtual addr ess

page table base register

n-1 p p-1 0
VPN acts virtual page number (VPN) page off set

valid access physical page number (PPN)

v

if valid=0
then page
not in memory m—1 v p p-1 v 0
phys ical page number (PPN)" page offset

‘_

phy sical address

_ 26— 15-213, F'02

Page Table Operation

Computing Physical Address

m Page Table Entry (PTE) provide s information about page
e if (valid bit = 1) the n the page is in me mory.
» Use physical page number (PPN) to construct add ress
e if (valid bit = 0) the n the page is on dis k
» Page fault

virtual addr ess

page table base register

n-1 p p-1 0
VPN acts virtual page number (VPN) page off set

valid access physical page number (PPN)

v

if valid=0
then page
not in memory m-1 v p p-1 v 0
phys ical page number (PPN)" page offset

‘_

- 27 - phy sical address 15-213, F02

Page Table Operation

Checking Protection

m Access rights field indicate allowable acces s
® e.g., read-only, read -write, execute-only
® typically support mu ltiple protection modes (e.g., kernel vs. us er)

m Protection violation fault if user doesn’t have necessar

permission

page table base register

VPN acts
as
table inde

virtual addr ess
n-1 p p-1

virtual page number (VPN) page off set

valid access physical page number (PPN)

v

if valid=0
then page
not in memory

‘_

—28 —

m-1 v p p-1 v

phys ical page num ber (PPN)" page offset

phy sical address

y

15-213, F'02

Integrating VM and Cache

VA | PA miss

Trans- Main
CPU lation Cache Memory

1w 1]

Most Caches “Physically Addressed”
m Accessed by physical add resses
m Allows multiple processes to have blocks in cac he at same time
m Allows multiple processes to share pages

m Cache doesn’t need to be concerned with protection issues
® Access rights chec ked as part of address translation

Perform Address Translation Before Cache Lookup
m But this could involve a memory access itself (of the PTE)
m Of course, page table entries can also become ¢ ached

29 15-213, F'02

Speeding up Translation with a TLB

“Translation Lookaside Buffer’ (TLB)

—30 -

m Small hardware cache in MMU

m Maps virtual page numbers to physical page n

umbers

m Contains complete page table entries for small number of

pages
hit _
VA PA mISS
— > 1—>
CPU LB Cache
Lookup
— 4—
rnleT hit
Trans-
lation
L1 3 data
<

Main
Memory

15-213, F02

Address Translation with a TLB

n-1

p p-1 0

[virtual pag e number | page off set | virtual add ress)

valid tag physical p age numbe r

>

J

v
4€)
TLB hit +— v !
physical a ddress
tag index
valid tag data
4_
>0
cache hit «—(—— v data

—31-—

l byte offs et

TLB

N
> Cache

J

15-213, F02

Simple Memory System Example

Addressing
m 14-bit virtual addresses
m 12-bit physical address

m Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
(Virtual Page Number) (Virtual Page Offset)

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
(Physical Page Number) (Physical Page Offset)

—32_

15-213, F'02

Simple Memory System Page Table

— 33—

m Only show first 16 entries

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 - 0 OF 0D 1

15-213, F02

Simple Memory System TLB

TLB

m 16 entries
m 4-way associative

TLBT
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
Set Tag | PPN | valid | Tag | PPN | Valid | Tag | PPN | Vvalid | Tag | PPN | Valid
0 03 — 0 09 0D 1 00 — 0 07 02 1
1 03 2D 1 02 — 0 04 — 0 0A — 0
2 02 — 0 08 — 0 06 — 0 03 — 0
3 07 — 0 03 0D 1 0A 34 1 02 — 0
- 34 - 15-213, F02

Simple Memory System Cache

Cache
m 16 lines
m 4-byte line size
m Direct mapped

CT Cl CO —=
11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
ldx Tag | Valid BO Bl B2 B3 ldx Tag | Valid BO Bl B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 — — — — 9 2D 0 — — — —
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 — — — — B 0B 0 — — — —
4 32 1 43 6D 8F 09 C 12 0 — — — —
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 — — — — E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 — — — —
-35- 15-213, F02

Address Translation Example #1

Virtual Address 0x03D4

TLBT <— TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPN VPO
VPN __ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:
Physical Address
CT Cl CO —=
11 10 9 8 7 6 5 4 3 2 1 0
PPN PPO
Offset ClI___ CT Hit? Byte:

— 36 —

15-213, F'02

Address Translation Example #2

Virtual Address 0xOBS8F

TLBT <— TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0
VPN VPO
VPN __ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:
Physical Address
CT Cl CO —=
11 10 9 8 7 6 5 4 3 2 1 0
PPN PPO
Offset ClI___ CT Hit? Byte:

37—

15-213, F'02

Address Translation Example #3

Virtual Address 0x0040

TLBT <- TLBI =
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

VPN__ TLBI___ TLBT TLB Hit? __ Page Fault? __ PPN:

Physical Address

CT Cl CoO —=
11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO

Offset CI CT Hit? Byte:

2g 15-213, F'02

Multi-Level Page Tables

i Level 2
Given: Tables

m 4KB (21?) page size
m 32-bit address space

m 4-byte PTE Level 1

Problem: Table

m \Would need a 4 MB page table!
® 220*4 pytes

Common solution
m multi-level page tables

m e.g., 2-level table (P6)
® Level 1 table: 10 24 entries, each o f
which points to a Leve | 2 page table.
® Level 2 table: 1 024 entries, each of

Cag. which points to a page 15-213. F02

Main Themes

Programmer’s View

m Large “flat” address space
® Can allocate large b locks of contiguous a ddresses

m Processor “owns” machine
® Has private address space
® Unaffected by behav ior of other processes

System View

m User virtual address spac e created by mapping to set of
pages
® Need not be contiguous
® Allocated dynamica lly
® Enforce protection during a ddress translation

m OS manages many processes simultaneously
® Continually switching am ong processes
® Especially when one must wait for resource

40— » E.g., disk I/0O to handle page fault

15-213, F'02

