Cache Memories
Oct. 10, 2002

Topics
- Generic cache memory organization
- Direct mapped caches
- Set associative caches
- Impact of caches on performance

Cache Memories are small, fast SRAM-based memories managed automatically in hardware.
- Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main memory.

Typical bus structure:

Inserting an L1 Cache Between the CPU and Main Memory

The transfer unit between the CPU register file and the cache is a 4-byte block.

The small fast L1 cache has room for two 4-word blocks.

The big slow main memory has room for many 4-word blocks.

General Org of a Cache Memory

Cache is an array of sets.
Each set contains one or more lines.
Each line holds a block of data.

Cache size: \(C = B \times E \times S \) data bytes
Addressing Caches

Address A:

- \(t \) bits
- \(s \) bits
- \(b \) bits

The word at address A is in the cache if the tag bits in one of the \(<\text{valid}>\) lines in set \(<\text{set index}>\) match <tag>

The word contents begin at offset <block offset> bytes from the beginning of the block.

Direct-Mapped Cache

Simplest kind of cache

Characterized by exactly one line per set.

Accessing Direct-Mapped Caches

Set selection

- Use the set index bits to determine the set of interest.

Line matching and word selection

- **Line matching**: Find a valid line in the selected set with a matching tag
- **Word selection**: Then extract the word

(1) The valid bit must be set

(2) The tag bits in the cache line must match the tag bits in the address

(3) If (1) and (2), then cache hit, and block offset selects starting byte.
Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 entry/set

Address trace (reads):
0 [0000₂], 1 [0001₂], 13 [1101₂], 8 [1000₂], 0 [0000₂]

Why Use Middle Bits as Index?

High-Order Bit Indexing
- Adjacent memory lines would map to same cache entry
- Poor use of spatial locality

Middle-Order Bit Indexing
- Consecutive memory lines map to different cache lines
- Can hold C-byte region of address space in cache at one time

Set Associative Caches

Characterized by more than one line per set

Accessing Set Associative Caches

Set selection
- Identical to direct-mapped cache
Accessing Set Associative Caches

Line matching and word selection
- must compare the tag in each valid line in the selected set.

\[
\begin{array}{c|cccccc}
\text{selected set (i)} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
1 & 1001 & 0 & 0 & 0 & 0 & 0 \\
1 & 0110 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

- (1) The valid bit must be set.
- (2) The tag bits in one of the cache lines must match the tag bits in the address.
- (3) If (1) and (2), then cache hit, and block offset selects starting byte.

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

Processor

\[
\begin{array}{c}
\text{Processor Chip} \\
\text{L1 Instruction} \\
16\,KB, 4-way assoc \text{Write-back} \\
32B lines \Rightarrow \text{Main Memory Up to 4GB} \\
\text{L1 Data} \\
1\text{cycle latency} \\
16\,KB \\
4-way assoc \text{Write-through} \\
32B lines \Rightarrow \text{L2 Unified} \\
128KB--2\,MB \\
4-way assoc \text{Write-back} \\
32B lines \Rightarrow \text{Memory} \\
\text{Main Memory} \\
Up to 4GB \Rightarrow \text{disk} \\
\text{L1 i-cache} \\
128KB--2\,MB \\
4-way assoc \text{Write-back} \\
32B lines \Rightarrow \text{L1 d-cache} \\
16\,KB, 4-way \text{associative} \\
32B lines \Rightarrow \text{Regs} \\
\end{array}
\]

Memory

- size: 200 B, 8-64 KB, 1-4MB SRAM, 128 MB DRAM, 30 GB
- speed: 3 ns, 3 ns, 6 ns, 60 ns, 8 ms
- $/Mbyte: $100/MB, $1.50/MB, $0.05/MB
- line size: 8 B, 32 B, 32 B, 8 KB

Intel Pentium Cache Hierarchy

- L1 Instruction: 16 KB, 4-way 32B lines
- L1 Data: 1 cycle latency 16 KB 4-way assoc Write-through 32B lines
- L2 Unified: 128KB--2 MB 4-way assoc Write-back Write allocate 32B lines
- Main Memory: Up to 4GB

Cache Performance Metrics

Miss Rate
- Fraction of memory references not found in cache
 (misses/references)
- Typical numbers:
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
- Time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache)
- Typical numbers:
 - 1 clock cycle for L1
 - 3-8 clock cycles for L2

Miss Penalty
- Additional time required because of a miss
 - Typically 25-100 cycles for main memory
Writing Cache Friendly Code

Repeated references to variables are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Examples:
- cold cache, 4-byte words, 4-word cache blocks

```c
int sumarrayrows(int a[M][N])
{
    int i, j, sum = 0;
    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
    return sum;
}
```

```c
int sumarraycols(int a[M][N])
{
    int i, j, sum = 0;
    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
    return sum;
}
```

Miss rate = $\frac{1}{4} = 25\%$

Miss rate = 100%

The Memory Mountain

Read throughput (read bandwidth)
- Number of bytes read from memory per second (MB/s)

Memory mountain
- Measured read throughput as a function of spatial and temporal locality.
- Compact way to characterize memory system performance.

Memory Mountain Test Function

```c
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;
    for (i = 0; i < elems; i += stride)
        result += data[i];
    sink = result; /* So compiler doesn’t optimize away the loop */
}
```

```c
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz) {
    double cycles;
    int elems = size / sizeof(int);
    test(elems, stride); /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
```

Memory Mountain Main Routine

```c
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXLEMS MAXBYTES/sizeof(int)

int data[MAXLEMS]; /* The array we’ll be traversing */

int main()
{
    int size; /* Working set size (in bytes) */
    int stride; /* Stride (in array elements) */
    double Mhz; /* Clock frequency */

    init_data(data, MAXLEMS); /* Initialize each element in data to 1 */
    Mhz = mhz(0); /* Estimate the clock frequency */
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
        for (stride = 1; stride <= MAXSTRIDE; stride++)
            printf("%.1f\t", run(size, stride, Mhz));
        printf("\n");
    }
    exit(0);
}
```
The Memory Mountain

Ridges of Temporal Locality

- Slice through the memory mountain with stride=1
 - illuminates read throughputs of different caches and memory

![Diagram of the Memory Mountain with Pentium III Xeon specifications: 550 MHz, 16 KB on-chip L1 data-cache, 16 KB on-chip L1 instruction-cache, 512 KB off-chip unified L2 cache.]

A Slope of Spatial Locality

- Slice through memory mountain with size=256KB
 - shows cache block size.

![Diagram of a slope showing spatial locality with stride and working set size axes.]

Matrix Multiplication Example

Major Cache Effects to Consider

- Total cache size
 - Exploit temporal locality and keep the working set small (e.g., by using blocking)
- Block size
 - Exploit spatial locality

Description:

- Multiply N x N matrices
- O(N^3) total operations
- Accesses
 - N reads per source element
 - N values summed per destination
 - but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
c[i][j] = sum;
```

Variable `sum` held in register
Miss Rate Analysis for Matrix Multiply

Assume:
- Line size = 32B (big enough for 4 64-bit words)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:
- Look at access pattern of inner loop

Analysis Method:
- Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

C arrays allocated in row-major order
- each row in contiguous memory locations

Stepping through columns in one row:
- for (i = 0; i < N; i++)
 - sum += a[0][i];
- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 4 bytes / B

Stepping through rows in one column:
- for (i = 0; i < n; i++)
 - sum += a[i][0];
- accesses distant elements
- no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

Matrix Multiplication (jik)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Misses per Inner Loop Iteration:

```plaintext
  A  B  C
  0.25 1.0 0.0
```

Misses per Inner Loop Iteration:

```plaintext
  A  B  C
  0.25 1.0 0.0
```
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (& **jik**):
- 2 loads, 0 stores
- misses/iter = 1.25

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

kij (& **ikj**):
- 2 loads, 1 store
- misses/iter = 0.5

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}
```

jki (& **kji**):
- 2 loads, 1 store
- misses/iter = 2.0

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}
```

Pentium Matrix Multiply Performance

Miss rates are helpful but not perfect predictors.
- Code scheduling matters, too.

```
Array size (n)
```

- **Cycles/iteration**
- **kj**
- **ki**
- **kij**
- **jki**
- **ijk**

Improving Temporal Locality by Blocking

Example: Blocked matrix multiplication

- "block" (in this context) does not mean "cache block".
- Instead, it means a sub-block within the matrix.
- Example: N = 8; sub-block size = 4

```
\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\times
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
= 
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
\]
```

Key idea: Sub-blocks (i.e., A_{xy}) can be treated just like scalars.

```
C_{11} = A_{11}B_{11} + A_{12}B_{21}
C_{12} = A_{11}B_{12} + A_{12}B_{22}
C_{21} = A_{21}B_{11} + A_{22}B_{21}
C_{22} = A_{21}B_{12} + A_{22}B_{22}
```

Blocked Matrix Multiply (bijk)

```
for (jj=0; jj<n; jj+=bsize) {
  for (i=0; i<n; i++)
    for (j=jj; j < min(jj+bsize,n); j++)
      c[i][j] = 0.0;
for (kk=0; kk<n; kk+=bsize) {
  for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++)
      sum = 0.0
      for (k=kk; k < min(kk+bsize,n); k++)
        sum += a[i][k] * b[k][j];
    c[i][j] += sum;
  }
}
```
Blocked Matrix Multiply Analysis

- Innermost loop pair multiplies a $1 \times \text{bsize}$ sliver of A by a $\text{bsize} \times \text{bsize}$ block of B and accumulates into $1 \times \text{bsize}$ sliver of C.
- Loop over i steps through n row slivers of A & C, using same B.

```c
for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
    }
}
```

Pentium Blocked Matrix Multiply Performance

Blocking (bijk and bikj) improves performance by a factor of two over unblocked versions (ijk and jik).

- relatively insensitive to array size.

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor “cache friendly code”

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)