
Code Optimization I:
Machine Independent Optimizations

Sept. 26, 2002

Code Optimization I:
Machine Independent Optimizations

Sept. 26, 2002

TopicsTopics
n Machine-Independent Optimizations

l Code motion
l Reduction in strength
l Common subexpression sharing

n Tuning
l Identifying performance bottlenecks

class10.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Great Reality #4Great Reality #4

There’s more to performance than asymptoticThere’s more to performance than asymptotic
complexitycomplexity

Constant factors matter too!Constant factors matter too!
n Easily see 10:1 performance range depending on how code

is written

n Must optimize at multiple levels:
l algorithm, data represe ntations, procedures, a nd loops

Must understand system to optimize performanceMust understand system to optimize performance
n How programs are compiled and execu ted

n How to measure program performance and identify
bottlenecks

n How to improve performance without destroying code
modularity and generality

– 3 – 15-213, F’02

Optimizing CompilersOptimizing Compilers

Provide efficient mapping of program to machi neProvide efficient mapping of program to machi ne
n register allocation

n code selection and ordering

n eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficienc yDon’t (usually) improve asymptotic efficienc y
n up to programmer to select best overall algorithm

n big-O savings are (often) more important than constant
factors
l but constant factors a lso matter

Have difficulty overcoming “optimization bl ockers”Have difficulty overcoming “optimization bl ockers”
n potential memory aliasing

n potential procedure side-effects

– 4 – 15-213, F’02

Limitations of Optimizing CompilersLimitations of Optimizing Compilers
Operate Under Fundamental ConstraintOperate Under Fundamental Constraint

n Must not cause any c hange in program behav ior under any
possible condition

n Often prevents it from mak ing optimizations when would only affect
behavior under patholo gical conditions.

Behavior that may be obvious to the programmer ca n beBehavior that may be obvious to the programmer ca n be
obfuscated by languages and coding stylesobfuscated by languages and coding styles
n e.g., data ranges m ay be more limited than variable types suggest

Most analysis is performed only within proceduresMost analysis is performed only within procedures
n whole-program analysis is too expensive in most cases

Most analysis is based only on Most analysis is based only on staticstatic information information
n compiler has difficu lty anticipating run-time inputs

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

– 5 – 15-213, F’02

Machine-Independent OptimizationsMachine-Independent Optimizations
n Optimizations you should do regardless of processor /

compiler

Code MotionCode Motion
n Reduce frequency with which computation performed

l If it will always produce same result
l Especially movin g code out of loop

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

– 6 – 15-213, F’02

Compiler-Generated Code MotionCompiler-Generated Code Motion
n Most compilers do a good job with array code + simple loop

structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

 imull %ebx,%eax # i*n
 movl 8(%ebp),%edi # a
 leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop
.L40:
 movl 12(%ebp),%edi # b
 movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
 movl %eax,(%edx) # *p = b[j]
 addl $4,%edx # p++ (scaled by 4)
 incl %ecx # j++
 jl .L40 # loop if j<n

for (i = 0; i < n; i++) {
 int ni = n*i;
 int *p = a+ni;
 for (j = 0; j < n; j++)
 *p++ = b[j];
}

– 7 – 15-213, F’02

Reduction in StrengthReduction in Strength

n Replace costly operation with simpler one

n Shift, add instead of multiply or divide
16*x --> x << 4
l Utility machine depe ndent
l Depends on cost of m ultiply or divide instruc tion
l On Pentium II or III, integ er multiply only requires 4 CPU cycles

n Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

– 8 – 15-213, F’02

Make Use of RegistersMake Use of Registers

n Reading and writing registers much faster than
reading/writing memory

LimitationLimitation
n Compiler not always able to determine whether variable ca n

be held in register

n Possibility of Aliasing

n See example later

– 9 – 15-213, F’02

Machine-Independent Opts. (Cont.)Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

n Reuse portions of expressions

n Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

 leal -1(%edx),%ecx # i-1
 imull %ebx,%ecx # (i-1)*n
 leal 1(%edx),%eax # i+1
 imull %ebx,%eax # (i+1)*n
 imull %ebx,%edx # i*n

– 10 – 15-213, F’02

Vector ADTVector ADT

ProceduresProcedures
vec_ptr new_vec(int len)

l Create vector of speci fied length
int get_vec_element(vec_ptr v, int index, int *dest)

l Retrieve vector elem ent, store at * dest
l Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)
l Return pointer to start of vec tor data

n Similar to array implementations in Pasca l, ML, Java
l E.g., always do bounds checking

length
data • • •

0 1 2 length–1

– 11 – 15-213, F’02

Optimization ExampleOptimization Example

ProcedureProcedure
n Compute sum of all elements of vector

n Store result at destination location

void combine1(vec_ptr v, int *dest)
{
 int i;
 *dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

– 12 – 15-213, F’02

Time ScalesTime Scales

Absolute TimeAbsolute Time
n Typically use nanoseconds

l 10–9 seconds

n Time scale of computer instructions

Clock CyclesClock Cycles
n Most computers controlled by high frequency clock s ignal

n Typical Range
l 100 MHz

» 108 cycles per sec ond
» Clock period = 10ns

l 2 GHz
» 2 X 109 cycles per seco nd
» Clock period = 0.5ns

n Fish machines: 550 MHz (1.8 ns clock per iod)

– 13 – 15-213, F’02

Cycles Per ElementCycles Per Element
n Convenient way to express performance o f program that

operators on vectors or lists

n Length = n

n T = CPE*n + Overhead

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Elements

C
y

c
le

s

vsum1
Slope = 4.0

 vsum2
Slope = 3.5

– 14 – 15-213, F’02

Optimization ExampleOptimization Example

ProcedureProcedure
n Compute sum of all elements of integer vector

n Store result at destination location

n Vector data structure and operations defined via abstract data
type

Pentium II/III Performance: Clock Cycles / ElementPentium II/III Performance: Clock Cycles / Element
n 42.06 (Compiled -g) 31.25 (Compiled -O2)

void combine1(vec_ptr v, int *dest)
{
 int i;
 *dest = 0;
 for (i = 0; i < vec_length(v); i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

– 15 – 15-213, F’02

Understanding LoopUnderstanding Loop

InefficiencyInefficiency
n Procedure vec_length called every iteration

n Even though result always the same

void combine1-goto(vec_ptr v, int *dest)
{
 int i = 0;
 int val;
 *dest = 0;
 if (i >= vec_length(v))
 goto done;
 loop:
 get_vec_element(v, i, &val);
 *dest += val;
 i++;
 if (i < vec_length(v))
 goto loop
 done:
}

1 iteration

– 16 – 15-213, F’02

Move vec_length Call Out of LoopMove vec_length Call Out of Loop

OptimizationOptimization
n Move call to vec_length out of inner loop
lValue does not cha nge from one iteration to n ext
lCode motion

n CPE: 20.66 (Compiled -O2)
l vec_length requires only cons tant time, but signific ant overhead

void combine2(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 *dest = 0;
 for (i = 0; i < length; i++) {
 int val;
 get_vec_element(v, i, &val);
 *dest += val;
 }
}

– 17 – 15-213, F’02

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Code Motion Example #2Code Motion Example #2

Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

n Extracted from 213 lab submissions, Fall, 19 98

– 18 – 15-213, F’02

Lower Case Conversion PerformanceLower Case Conversion Performance

n Time quadruples when double string length

n Quadratic performance

lower1

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c
o

n
d

s

– 19 – 15-213, F’02

Convert Loop To Goto FormConvert Loop To Goto Form

n strlen executed every iteration

n strlen linear in length of string
l Must scan string until find s '\0'

n Overall performance is quadratic

void lower(char *s)
{
 int i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

– 20 – 15-213, F’02

Improving PerformanceImproving Performance

n Move call to strlen outside of loop

n Since result does not change from one iteration to another

n Form of code motion

void lower(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

– 21 – 15-213, F’02

Lower Case Conversion PerformanceLower Case Conversion Performance

n Time doubles when double string length

n Linear performance

0.000001

0.00001

0.0001
0.001

0.01

0.1

1
10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c

o
n

d
s

lower1 lower2

– 22 – 15-213, F’02

Optimization Blocker: Procedure CallsOptimization Blocker: Procedure Calls
Why couldn’t the compiler move Why couldn’t the compiler move vecvec__lenlen or or strlenstrlen out of out of

the inner loop?the inner loop?
n Procedure may have side effects

l Alters global state ea ch time called

n Function may not return same value for given arguments
l Depends on other parts o f global state
l Procedure lower could interact with strlen

Why doesn’t compiler look at code for Why doesn’t compiler look at code for vecvec__lenlen or or strlenstrlen??
n Linker may overload with different version

l Unless declared sta tic

n Interprocedural optimization is not used extensively due to cost

Warning:Warning:
n Compiler treats procedure call as a bla ck box

n Weak optimizations in and around them

– 23 – 15-213, F’02

Reduction in StrengthReduction in Strength

OptimizationOptimization
n Avoid procedure call to retrieve ea ch vector element
lGet pointer to start of array be fore loop
lWithin loop just do poi nter reference
lNot as clean in terms of data abstraction

n CPE: 6.00 (Compiled -O2)
lProcedure calls are e xpensive!
lBounds checking is expensive

void combine3(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 *dest = 0;
 for (i = 0; i < length; i++) {
 *dest += data[i];
}

– 24 – 15-213, F’02

Eliminate Unneeded Memory RefsEliminate Unneeded Memory Refs

OptimizationOptimization
n Don’t need to store in destination until end
n Local variable sum held in register

n Avoids 1 memory read, 1 memory write per c ycle

n CPE: 2.00 (Compiled -O2)
lMemory references are e xpensive!

void combine4(vec_ptr v, int *dest)
{
 int i;
 int length = vec_length(v);
 int *data = get_vec_start(v);
 int sum = 0;
 for (i = 0; i < length; i++)
 sum += data[i];
 *dest = sum;
}

– 25 – 15-213, F’02

Detecting Unneeded Memory Refs.Detecting Unneeded Memory Refs.

PerformancePerformance
n Combine3
l5 instructions in 6 c lock cycles
l addl must read and write me mory

n Combine4
l4 instructions in 2 clock cyles

.L18:
movl (%ecx,%edx,4),%eax
addl %eax,(%edi)
incl %edx
cmpl %esi,%edx
jl .L18

Combine3

.L24:
addl (%eax,%edx,4),%ecx

incl %edx
cmpl %esi,%edx
jl .L24

Combine4

– 26 – 15-213, F’02

Optimization Blocker: Memory AliasingOptimization Blocker: Memory Aliasing

AliasingAliasing
n Two different memory references specify single loca tion

ExampleExample
n v: [3, 2, 17]
n combine3(v, get_vec_start(v)+2) --> ?
n combine4(v, get_vec_start(v)+2) --> ?

ObservationsObservations
n Easy to have happen in C
lSince allowed to do ad dress arithmetic
lDirect access to sto rage structures

n Get in habit of introducing local variables
lAccumulating within loops
lYour way of telling compi ler not to check for aliasing

– 27 – 15-213, F’02

Machine-Independent Opt. SummaryMachine-Independent Opt. Summary

Code MotionCode Motion
n Compilers are good at this for simple loop/array structures

n Don’t do well in presence of procedure calls and memory aliasing

Reduction in StrengthReduction in Strength
n Shift, add instead of multiply or divide

l compilers are (gene rally) good at this
l Exact trade-offs mach ine-dependent

n Keep data in registers rather than memory
l compilers are not goo d at this, since con cerned with aliasing

Share Common Share Common SubexpressionsSubexpressions
n compilers have limited algebraic reasoning capabilities

– 28 – 15-213, F’02

Important ToolsImportant Tools

MeasurementMeasurement
n Accurately compute time taken by code
lMost modern machines have built in cycle counters
lUsing them to get relia ble measurements i s tricky

n Profile procedure calling frequencies
lUnix tool gprof

ObservationObservation
n Generating assembly code
lLets you see what op timizations compile r can make
lUnderstand capabilitie s/limitations of partic ular compiler

– 29 – 15-213, F’02

Code Profiling ExampleCode Profiling Example
TaskTask

n Count word frequencies in text document

n Produce sorted list of words from most frequent to least

StepsSteps
n Convert strings to lowercase

n Apply hash function

n Read words and insert into hash table
l Mostly list operations
l Maintain counter for each unique word

n Sort results

Data SetData Set
n Collected works of Shakespeare

n 946,596 total words, 26,596 unique

n Initial implementation: 9.2 seconds
thatthat11,51911,519

inin11,72211,722

mymy12,93612,936

youyou1401014010

aa15,37015,370

ofof18,51418,514

toto20,95720,957

II21,02921,029

andand27,52927,529

thethe29,80129,801

Shakespeare’s
most frequent words

– 30 – 15-213, F’02

Code ProfilingCode Profiling
Augment Executable Program with Timing F unctionsAugment Executable Program with Timing F unctions

n Computes (approximate) amount of time spent in each
function

n Time computation method
l Periodically (~ eve ry 10ms) interrupt program
l Determine what function is currently executing
l Increment its timer by interval (e.g., 10m s)

n Also maintains counter for each function indicating number
of times called

UsingUsing
gcc ÐO2 Ðpg prog. Ðo prog
./prog
l Executes in normal fashion, but also gen erates file gmon.out

gprof prog
l Generates profile informati on based on gmon.out

– 31 – 15-213, F’02

Profiling ResultsProfiling Results

Call StatisticsCall Statistics
n Number of calls and cumulative time for each function

Performance LimiterPerformance Limiter
n Using inefficient sorting algorithm

n Single call uses 87% of CPU time

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 sort_words
 5.80 8.76 0.55 946596 0.00 0.00 lower1
 4.75 9.21 0.45 946596 0.00 0.00 find_ele_rec
 1.27 9.33 0.12 946596 0.00 0.00 h_add

– 32 – 15-213, F’02

Code
Optimizations
Code
Optimizations

n First step: Use more efficient sorting function
n Library function qsort

0

1

2

3

4

5

6

7

8

9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower
C

P
U

 S
ec

s.

Rest

Hash

Lower

List

Sort

– 33 – 15-213, F’02

Further OptimizationsFurther Optimizations

n Iter first: Use iterative function to insert elements into linked
list
l Causes code to slo w down

n Iter last: Iterative function, places new entry at end of list
l Tend to place mos t common words at front of lis t

n Big table: Increase number of hash buckets

n Better hash: Use more sophisticated hash function
n Linear lower: Move strlen out of loop

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Initial Quicksort Iter First Iter Last Big Table Bet ter Hash Linear Lower

C
P

U
 S

e
c

s
. Rest

Hash

Lower

List

Sort

– 34 – 15-213, F’02

Profiling ObservationsProfiling Observations

BenefitsBenefits
n Helps identify performance bottlenecks

n Especially useful when have complex s ystem with many
components

LimitationsLimitations
n Only shows performance for data tested

n E.g., linear lower did not show big gain, since words are
short
l Quadratic inefficiency could remain lurking i n code

n Timing mechanism fairly crude
l Only works for programs that run fo r > 3 seconds

