15-213
“The course that gives CMU its Zip!”

Integers
Sep 3, 2002

Topics

- Numeric Encodings
 - Unsigned & Two’s complement

- Programming Implications
 - C promotion rules

- Basic operations
 - Addition, negation, multiplication

- Programming Implications
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide
C Puzzles

- Taken from old exams
- Assume machine with 32 bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

 - \(x < 0 \Rightarrow ((x \times 2) < 0) \)
 - \(\text{ux} >= 0 \)
 - \(x & 7 == 7 \Rightarrow (x<<30) < 0 \)
 - \(x > -1 \)
 - \(x > y \Rightarrow -x < -y \)
 - \(x \times x >= 0 \)
 - \(x > 0 && y > 0 \Rightarrow x + y > 0 \)
 - \(x >= 0 \Rightarrow -x <= 0 \)
 - \(x <= 0 \Rightarrow -x >= 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

$x = 15213: \quad 00111011 \ 01101101$

$y = -15213: \quad 11000100 \ 10010011$

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum

15213 15213 -15213 -15213
Numeric Ranges

Unsigned Values
- $U_{\text{Min}} = 0$
 \[
 000\ldots0
 \]
- $U_{\text{Max}} = 2^w - 1$
 \[
 111\ldots1
 \]

Two’s Complement Values
- $T_{\text{Min}} = -2^{w-1}$
 \[
 100\ldots0
 \]
- $T_{\text{Max}} = 2^{w-1} - 1$
 \[
 011\ldots1
 \]

Other Values
- Minus 1
 \[
 111\ldots1
 \]

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

Observations

- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 \times Tmax + 1$

C Programming

- `#include <limits.h>`
 - K&R App. B11
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform-specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>(\text{B2U}(\chi))</th>
<th>(\text{B2T}(\chi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ **Can Invert Mappings**
- \(\text{U2B}(\chi) = \text{B2U}^{-1}(\chi) \)
 - Bit pattern for unsigned integer
- \(\text{T2B}(\chi) = \text{B2T}^{-1}(\chi) \)
 - Bit pattern for two’s comp integer
Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

<table>
<thead>
<tr>
<th>C Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>short int x = 15213;</td>
</tr>
<tr>
<td>unsigned short int ux = (unsigned short) x;</td>
</tr>
<tr>
<td>short int y = -15213;</td>
</tr>
<tr>
<td>unsigned short int uy = (unsigned short) y;</td>
</tr>
</tbody>
</table>

Resulting Value

- No change in bit representation
- Nonnegative values unchanged
 - $ux = 15213$
- Negative values change into (large) positive values
 - $uy = 50323$
Relation between Signed & Unsigned

Two’s Complement \[x \] T2U \[T2B \] B2U \[X \] Unsigned \[ux \]

Maintain Same Bit Pattern

\[
\begin{array}{c}
x \rightarrow T2U \\
\text{T2B} \\
\text{B2U} \\
X \\
\rightarrow ux
\end{array}
\]

\[
\begin{array}{c}
w-1 & 0 \\
ux & + + + \cdots + + + \\
- x & - + + \cdots + + + \\
+2^{w-1} - -2^{w-1} = 2*2^{w-1} = 2^w
\end{array}
\]

\[
ux = \begin{cases}
x & x \geq 0 \\
x + 2^w & x < 0
\end{cases}
\]
Relation Between Signed & Unsigned

<table>
<thead>
<tr>
<th>Weight</th>
<th>-15213</th>
<th>50323</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>1</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>1</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>1</td>
<td>-32768</td>
</tr>
</tbody>
</table>

Sum | -15213 | 50323 |

| uy | $y + 2 \times 32768$ | $y + 65536$ |
Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have “U” as suffix

0U, 4294967259U

Casting

- Explicit casting between signed & unsigned same as U2T and T2U

```c
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

- Implicit casting also occurs via assignments and procedure calls

```c
tx = ux;
uy = ty;
```
Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for $W = 32$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

2’s Comp. Range

TMin

TMax

0

-1

-2

UMax

UMax – 1

TMax + 1

TMax

Unsigned Range
Sign Extension

Task:
- Given \(w \)-bit signed integer \(x \)
- Convert it to \(w+k \)-bit integer with same value

Rule:
- Make \(k \) copies of sign bit:
- \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0 \)
Sign Extension Example

```c
short int x = 15213;
int    ix = (int) x;
short int y = -15213;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93 11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Justification For Sign Extension

Prove Correctness by Induction on k

- Induction Step: extending by single bit maintains value

Key observation: $-2^{w-1} = -2^w + 2^{w-1}$

Look at weight of upper bits:

\[
\begin{align*}
X & \quad -2^{w-1} x_{w-1} \\
X' & \quad -2^w x_{w-1} + 2^{w-1} x_{w-1} = -2^{w-1} x_{w-1}
\end{align*}
\]
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonzero
- C compilers on some machines generate less efficient code
  ```c
  unsigned i;
  for (i = 1; i < cnt; i++)
      a[i] += a[i-1];
  ```

- Easy to make mistakes
  ```c
  for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
  ```

Do Use When Performing Modular Arithmetic
- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit’s Worth of Range
- Working right up to limit of word size
Negating with Complement & Increment

Claim: Following Holds for 2’s Complement

\[\sim x + 1 == -x \]

Complement

- **Observation:** \[\sim x + x == 1111\ldots11_2 == -1 \]

\[
\begin{array}{c}
x \ \ \ \ 10011101 \\
+ \sim x \ \ 01100010 \\
\hline
-1 \ \ 1111111111
\end{array}
\]

Increment

- \[\sim x + x + (-x + 1) == -1 + (-x + 1) \]
- \[\sim x + 1 == -x \]

Warning: Be cautious treating int’s as integers

- OK here
Comp. & Incr. Examples

\(x = 15213 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>00 00 00000000 00000000</td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

\[u + v \]

True Sum: $w+1$ bits

\[u + v \]

Discard Carry: w bits

\[\text{UAdd}_w(u, v) \]

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic

\[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$\text{Add}_4(u, v)$
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

Overflow
Mathematical Properties

Modular Addition Forms an Abelian Group

- Closed under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
- Commutative
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
- Associative
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
- 0 is additive identity
 \[\text{UAdd}_w(u, 0) = u \]
- Every element has additive inverse
 - Let \(\text{UComp}_w(u) = 2^w - u \)
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{\(u \)} \\
\text{\(+ \)} \\
\text{\(v \)} \\
\hline
\text{\(u + v \)}
\end{array}
\]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\text{TAdd}_w(u, v)
\]

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:
 \[
 \text{int } s, t, u, v; \\
 s = (\text{int}) ((\text{unsigned}) u + (\text{unsigned}) v); \\
 t = u + v
 \]
- Will give \(s == t \)
Characterizing TAdd

Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd(u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < TMin_w \\
 u + v & TMin_w \leq u + v \leq Tmax_w \\
 u + v - 2^{w-1} & Tmax_w < u + v
\end{cases}
\]
Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum \(\geq 2^{w-1} \)
 - Becomes negative
 - At most once
- If sum \(< -2^{w-1} \)
 - Becomes positive
 - At most once
Detecting 2’s Comp. Overflow

Task

- Given \(s = TAdd_w(u, v) \)
- Determine if \(s = Add_w(u, v) \)
- Example

  ```c
  int s, u, v;
  s = u + v;
  ```

Claim

- Overflow iff either:

 \(u, v < 0, s \geq 0 \) (NegOver)

 \(u, v \geq 0, s < 0 \) (PosOver)

 \(\text{ovf} = (u<0 == v<0) && (u<0 != s<0) \);
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- \(\text{TAdd}_w(u, v) = \text{U2T}(\text{UAdd}_w(\text{T2U}(u), \text{T2U}(v))) \)
 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse
 - Let \(\text{TComp}_w(u) = \text{U2T}(\text{UComp}_w(\text{T2U}(u))) \)
 - \(\text{TAdd}_w(u, \text{TComp}_w(u)) = 0 \)

\[
\text{TComp}_w(u) = \begin{cases}
-u & u \neq \text{TMin}_w \\
\text{TMin}_w & u = \text{TMin}_w
\end{cases}
\]
Multiplication

Computing Exact Product of \(w \)-bit numbers \(x, y \)

- Either signed or unsigned

Ranges

- **Unsigned**: \(0 \leq x \cdot y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2w \) bits
- Two’s complement min: \(x \cdot y \geq (-2^{w-1})(2^{w-1} - 1) = -2^{2w-2} + 2^{w-1} \)
 - Up to \(2w-1 \) bits
- Two’s complement max: \(x \cdot y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2w \) bits, but only for \((\text{ Tmin}_w)^2 \)

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\begin{array}{c}
 u \\
 \times \\
 v \\
\end{array}
\end{array}
\]

True Product: \(2^w \) bits

\[
\begin{array}{c}
\begin{array}{c}
 u \cdot v \\
\end{array}
\end{array}
\]

Discard \(w \) bits: \(w \) bits

\[
\begin{array}{c}
\begin{array}{c}
 \text{UMult}_w(u, v) \\
\end{array}
\end{array}
\]

Standard Multiplication Function

- Ignores high order \(w \) bits

Implements Modular Arithmetic

\[
\text{UMult}_w(u, v) = u \cdot v \mod 2^w
\]
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

- Truncates product to \(w \)-bit number \(up = \text{UMult}_w(ux, uy) \)
- Modular arithmetic: \(up = ux \cdot uy \mod 2^w \)

Two’s Complement Multiplication

int x, y;
int p = x * y;

- Compute exact product of two \(w \)-bit numbers \(x, y \)
- Truncate result to \(w \)-bit number \(p = \text{TMult}_w(x, y) \)
Unsigned vs. Signed Multiplication

Unsigned Multiplication

unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

Two’s Complement Multiplication

int x, y;
int p = x * y;

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \times 2^k$
- Both signed and unsigned

Operands: w bits

<table>
<thead>
<tr>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{array}{c} \cdots \cdots \ \cdots \cdots \ \vdots \ \cdots \cdots \ \cdots \cdots \ \end{array}]</td>
</tr>
</tbody>
</table>

True Product: $w+k$ bits

<table>
<thead>
<tr>
<th>$u \times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{array}{c} \cdots \cdots \ \cdots \cdots \ \vdots \ \cdots \cdots \ \cdots \cdots \ \end{array} 0 \cdots 0 0]</td>
</tr>
</tbody>
</table>

Discard k bits: w bits

<table>
<thead>
<tr>
<th>$UMult_w(u, 2^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{array}{c} \cdots \cdots \ \cdots \cdots \ \vdots \ \cdots \cdots \ \cdots \cdots \ \end{array} 0 \cdots 0 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$TMult_w(u, 2^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{array}{c} \cdots \cdots \ \cdots \cdots \ \vdots \ \cdots \cdots \ \cdots \cdots \ \end{array} 0 \cdots 0 0]</td>
</tr>
</tbody>
</table>

Examples
- $u \ll 3 \quad == \quad u \times 8$
- $u \ll 5 \quad - \quad u \ll 3 \quad == \quad u \times 24$
- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

Division Illustration

<table>
<thead>
<tr>
<th>Operands: (u)</th>
<th>/ (2^k)</th>
<th>Division: (u / 2^k)</th>
<th>Result: (\lfloor u / 2^k \rfloor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(0 \ldots 0 \underline{1} 0 \ldots 0)</td>
<td>(u / 2^k)</td>
<td>(\lfloor u / 2^k \rfloor)</td>
</tr>
</tbody>
</table>

Example Computations

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2
- \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
- Uses arithmetic shift
- Rounds wrong direction when \(u < 0 \)

Diagram
- **Operands:**
 - \(x \)
 - \(/ 2^k \)
 - \(x / 2^k \)
- **Result:** \(\text{RoundDown}(x / 2^k) \)

Table
<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011000111</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 0100100100011</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 0100100100011</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\left\lfloor \frac{x}{2^k} \right\rfloor\) (Round Toward 0)
- Compute as \(\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor\)
 - In C: \((x + (1<<k) - 1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>+2^k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(\begin{array}{c} 1 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 0 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 0 \rule[-2pt]{1em}{0pt} 0 \end{array})</td>
</tr>
<tr>
<td></td>
<td>(0 \cdots 0 0 1 \cdots 1 1)</td>
</tr>
<tr>
<td>Divisor:</td>
<td>/ 2^k</td>
</tr>
<tr>
<td></td>
<td>(\begin{array}{c} 1 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 1 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 1 \rule[-2pt]{1em}{0pt} 1 \end{array})</td>
</tr>
<tr>
<td></td>
<td>(0 \cdots 0 1 0 \cdots 0 0)</td>
</tr>
<tr>
<td>Quotient:</td>
<td>(\left\lfloor \frac{u}{2^k} \right\rfloor)</td>
</tr>
<tr>
<td></td>
<td>(\begin{array}{c} 1 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 1 \rule[-2pt]{1em}{0pt} 1 1 \rule[-2pt]{1em}{0pt} \cdots \cdots \rule[-2pt]{1em}{0pt} 1 \rule[-2pt]{1em}{0pt} 1 \end{array})</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: \[x + 2^k + 1 \]

Divisor: \[x \div 2^k \]

Biasing adds 1 to final result

Incremented by 1
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras
- Unsigned multiplication and addition
 - Truncating to \(w \) bits
- Two’s complement multiplication and addition
 - Truncating to \(w \) bits

Both Form Rings
- Isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic
- Both are rings
- Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \: v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
- These properties are not obeyed by two’s comp. arithmetic

\[
T_{Max} + 1 = T_{Min}
\]

\[
15213 \times 30426 = -10030 \quad (16\text{-bit words})
\]
C Puzzle Answers

- Assume machine with 32 bit word size, two’s comp. integers
- $TMin$ makes a good counterexample in many cases

- $x < 0 \Rightarrow ((x*2) < 0)$
 False: $TMin$
- $x \geq 0$
 True: $0 = UMin$
- $x & 7 == 7 \Rightarrow (x<<30) < 0$
 True: $x_1 = 1$
- $x > -1$
 False: 0
- $x > y \Rightarrow -x < -y$
 False: $-1, TMin$
- $x * x \geq 0$
 False: 30426
- $x > 0 && y > 0 \Rightarrow x + y > 0$
 False: $TMax, TMax$
- $x \geq 0 \Rightarrow -x \leq 0$
 True: $-TMax < 0$
- $x \leq 0 \Rightarrow -x \geq 0$
 False: $TMin$