15-213
“The Class That Gives CMU Its Zip!”

Introduction to
Computer Systems

David O'Hallaron
August 27, 2002

Topics:
- Staff, text, and policies
- Lecture topics and assignments
- Lab rationale

Teaching staff

- Instructors
 - Prof. Randy Bryant (Wed 10:00-11:00, WeH 4220)
 - Prof. David O'Hallaron (Tue 10:30-11:30, WeH 8125)

- TA's
 - Rajesh Balan (TBD, WeH 8205)
 - Shimin Chen (TBD, WeH 8019)
 - Andrew Faulring (TBD, NSH 2504)
 - Anubhav Gupta (TBD, WeH 8218)
 - Annie Luo (TBD, WeH 8402)

- Course Admin
 - Rosemary Battenfelder (WeH 4218)

These are the nominal office hours. Come talk to us anytime!
(Or phone or send email)

Textbooks

Randal E. Bryant and David R. O'Hallaron,
- csapp.cs.cmu.edu

Brian Kernighan and Dennis Ritchie,

Course Components

Lectures
- Higher level concepts

Recitations
- Applied concepts, important tools and skills for labs, clarification of lectures, exam coverage

Labs
- The heart of the course
- 1 or 2 weeks
- Provide in-depth understanding of an aspect of systems
- Programming and measurement
Getting Help

Web
- www.cs.cmu.edu/afs/cs/academic/class/15213-f02/www
- Copies of lectures, assignments, exams, solutions
- Clarifications to assignments

Newsgroup
- cmu.cs.class.cs213
- Clarifications to assignments, general discussion

Personal help
- Professors: door open means come on in (no appt necessary)
- TAs: please mail or zephyr first.

Policies: Assignments

Work groups
- You must work alone on all labs
 - (except for Lab 7: Web Proxy, with work groups of two)

Handins
- Assignments due at 11:59pm on specified due date.
- Typically 11:59pm Thursday evening (to avoid 212 conflicts)
- Electronic handins only.

Makeup exams and assignments
- OK, but must make PRIOR arrangements with either Prof. Bryant or O’Hallaron.

Appealing grades
- Within 7 days of due date or exam date.
- Assignments: Talk to the lead person on the assignment
- Exams: Talk to either Prof. Bryant or O’Hallaron.

Policies: Cheating

What is cheating?
- Sharing code: either by copying, retyping, looking at, or supplying a copy of a file.

What is NOT cheating?
- Helping others use systems or tools.
- Helping others with high-level design issues.
- Helping others debug their code.

Penalty for cheating:
- Removal from course with failing grade.

Policies: Grading

Exams (40%)
- Two in class exams (10% each)
- Final (20%)
- All exams are open book/open notes.

Labs (60%)
- 7 labs (8-12% each)

Grading Characteristics
- Lab scores tend to be high
 - Serious handicap if you don’t hand a lab in
 - We offer generous redemption programs
- Tests typically have a wider range of scores
Facilities

Assignments will use Intel Computer Systems Cluster (aka “the fish machines”)
- 25 Pentium III Xeon servers donated by Intel for CS 213
- 550 MHz with 256 MB memory.
- Rack mounted in the 3rd floor Wean machine room.
- We’ll be setting up your accounts this week.

Getting help with the cluster machines:
- See course Web page for info
- Please direct questions to your TAs

Programs and Data (8)

Topics
- Bits operations, arithmetic, assembly language programs, representation of C control and data structures
- Includes aspects of architecture and compilers

Assignments
- L1: Manipulating bits
- L2: Defusing a binary bomb
- L3: Hacking a buffer bomb

Performance (3)

Topics
- High level processor models, code optimization (control and data), measuring time on a computer
- Includes aspects of architecture, compilers, and OS

Assignments
- L4: Optimizing Code Performance

The Memory Hierarchy (2)

Topics
- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS.

Assignments
- L4: Optimizing Code Performance
Linking and Exceptional Control Flow (3)

Topics
- Object files, static and dynamic linking, libraries, loading
- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments
- L5: Writing your own shell with job control

Virtual memory (4)

Topics
- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Assignments
- L6: Writing your own malloc package

I/O, Networking, and Concurrency (6)

Topics
- High level and low-level I/O, network programming, Internet services, Web servers
- concurrency, concurrent server design, threads, I/O multiplexing with select.
- Includes aspects of networking, OS, and architecture.

Assignments
- L7: Writing your own Web proxy

Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle or winning a contest.
- Defusing a binary bomb.
- Winning a performance contest.

Doing a lab should result in new skills and concepts
- Data Lab: computer arithmetic, digital logic.
- Bomb Labs: assembly language, using a debugger, understanding the stack
- Perf Lab: profiling, measurement, performance debugging.
- Shell Lab: understanding Unix process control and signals
- Malloc Lab: understanding pointers and nasty memory bugs.
- Proxy Lab: network programming, server design

We try to use competition in a fun and healthy way.
- Set a threshold for full credit.
- Post intermediate results (anonymized) on Web page for glory!
Good Luck!