15-213

“The course that gives CMU its Zip!”

Concurrent Servers

December 4, 2001

Topics
« Limitations of iterativ e servers
* Process-based conc urrent servers
» Threads-based conc urrent servers
¢ Event-based concurren t servers

class28. ppt

The fundamental flaw of iterative servers

client 1 server clien
call accept
call connect
ret connect
ret accept
call fgets
Server blocks |calread
User goes waiting for | e
out to lunch data from
Client 1
Client 1 blocks
waiting for user
to type in data v v v
Solution: use concurrent servers instead.

« Concurrent servers use m ultiple concurrent flows to s
clients at the sam e time.

class28. ppt

t2

call connect

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

erve multiple

call connect

lterative servers

Iterative servers process one re quest at a time.

client 1

ret connect

call read

ret read

close

class28.

Concurrent servers handle multiple re

ppt

client 1

call connect
ret connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

A
class28.

server

&
ret accept

write
close

client 2

call connect

call accept
ret connect
ret accept
p call read
. »
write -~ ____
———— » | ret read
close
close
4 v

Concurrent servers

quests

server

4
ppt

call read

childl/

fork

call accept

ret accept
fork
call accept

¢
ret accept

child 2

A

4

write
close

concurrently.

client 2

call connect

ret connect

call fgets
write

call read

end read
yclose

Three basic mechanisms for creating Process-based concurrent server

concurrent flows r
* echoserverp .c - A concurrent echo server based on processes
1. Processes *Usage: echoserverp <port>
. . . */
¢ Kernel provides multipl e control flows with separate address sinclude < ics.h>
spaces. _ #define BUFSIZE 1024
¢ Standard Unix process ¢ ontrol and signals. void echo(intconnfd);
2 Threads void handler(intsig),
« Kernel provides multipl e control flows (threads) runnin g in one intmain(intargc , char **argv) {
process. int listenfd , connfd;
—Each thread has its own stack and register v alues. Int portno ; o
. struct sockaddr _in clientaddr ;
—All threads share the s ame address spac e and open files. int clientlen =sizeof (struct sockaddr _in);
¢ POSIX threads (Pthreads) interface.
. . . if (argc = 2) {
3.1/0 multlplexmg wi th select() fprintf (stderr , "usage: %s <port>\n", argv [0]);
« Manually interleave th e processing of multip le open connections . }EXIt(O):
« Use Unix select() function to notice pe nding socket activi ty. portno =atoi (argvil]);
« Form of manual, app lication-level conc urrency. listenfd =open_ listenfd (portno);
« Popular for high-performance server designs.
class28. ppt class28. ppt

Process-based concurrent server (cont) Process-based concurrent server (cont)

Signal(SIGCHLD, handler); /* pare nt must reap children! */
/* main server loop */
while (1) { /* handler - reaps children as the y terminate */
connfd = Accept(listenfd , (struct sockaddr *) &clientaddr , void handler(intsig) {
& clientlen)); pld _tpid;
if (Fork() == 0) { int stat ;
Close(listenfd); /* child closes its listening socket */)) o
echo(connfd); /* child reads and echoes inpu tline */ while ((pid = waitpid(-1, & stat, WNOHANG)) > 0)
Close(connfd); /* child is done with this cli ent*/ ;
exit(0); /* child ex its */ return;
} }
Close(connfd); /* parent must close connected soc ket! */
}
}

class28. ppt class28. ppt

Implementation issues with
process-based designs

Server should restart accept call if it is interrupted by
a transfer of control to the SIGCHLD handler

« Not necessary for sys tems with POSIX signal handl ing.
—Our Signal wrapper tells kernel to automatically restart accept
¢ Required for portability on s ome older Unix syste ms.

Server must reap zombie children
¢ to avoid fatal mem ory leak.

Server must close its copy of connfd .
« Kernel keeps referenc e for each socket.
o After fork, refcnt (connfd)=2
¢ Connection will not be cl osed until refcnt (connfd)=0.

class28. ppt

Traditional view of a process

Process = process context + code, data, and stack

Process context Code, data, and stac k
stack

Program context: SP —»

Data registers

Condition co des shared libraries

Stack pointer (SP) brk —p

Program co unter (PC) " run-time heap
Kernel context: read/write data

VM structures PC —»| read-only code/data

Descriptor table

brk pointer 0

class28. ppt

Pros and cons of process-based designs

+ Handles multiple connections concu rrently

+ Clean sharing model
« descriptors (no)
« file tables (yes)
 global variables (n 0)

+ Simple and straightforward.
- Additional overhead for process control.

- Nontrivial to share data between proce sses.
» Requires IPC (interprocess communication) mec hanisms
—FIFO’s (named pipes), Sys tem V shared memory a nd semaphores

Threads provide more efficient flows with easier
sharing of data between the flows

class28. ppt

Alternate view of a process

Process = thread + code, data, and kernel context

Thread (main thread) Code and Data

shared libraries

brk —»

SP —»‘

run-time heap
read/write data

1
1
1 1
1 1
1 1
! :
: Thread context: \
\ Data registers : PC —»| read-only code/data
1
' :
1
1 1
| |
! 1
1

Condition co des
Stack pointer (SP)
Program co unter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

class28. ppt

A process with multiple threads Logical view of threads

Threads associated with a proce ss form a pool of peers.

Multiple threads can be associ ated with a process _ _ _
* Unlike processes whic h form a tree hierarchy

¢ Each thread has its own logical control flow (sequ ence of PC values)
¢ Each thread shares th e same code, data , and kernel contex t

» Each thread has its own thread id (TID) Threads associate d with process foo

Process hierarchy

Thread 1 (main thread) Shared code and da ta Thread 2 (peer thread)

shared libraries

Thread 1 context:
Data registers
Condition co des

run-time heap
read/write data

read-only code/data

Thread 2 context:
Data registers
Condition co des

shared code, data
and kernel context

) 3

OJOXO

SP1 0 SP2

1
1 I
1 I
1 I
1 I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 |
1 |
1 |
|

()

PC1 Kernel context: pc2 e e e o o
VM structures
Descriptor table @
brk pointer
class28. ppt class28. ppt

Concurrent thread execution Threads vs . processes

Two threads run concurrently (are concurrent) if their
logical flows overlap in time.

Otherwise, they are sequential.

How threads and processes are si milar
» Each has its own logic al control flow.
» Each can run concurren tly.
» Each is context switc hed.

i Thread A Thread B Thread C
Examples:

¢ Concurrent: A & B, A&C
¢ Sequential: B & C

How threads and processes are di fferent
* Threads share code and data, processe s (typically) do not.
e Threads are somewhat less expensive than processes.

—process control (creati ng and reaping) is twice as expensive as
thread control.

—Linux /Pentium Il numbers:
» 20K cycles to crea te and reap a proces s.
» 10K cycles to crea te and reap a thread.

Time I

class28. ppt class28. ppt

Posix threads (Pthreads) interface

Pthreads : Standard interface for ~60 functions that
manipulate threads from C programs.
« Creating and reaping threa ds.
—pthread _create
—pthread _join
¢ Determining your thread ID
—pthread _self
¢ Terminating threads
—pthread _cancel
—pthread _exit
—exit [terminates all threads] , ret [terminates current thread]
¢ Synchronizing acce ss to shared variabl es
—pthread _mutex _init
—pthread _mutex _[un Jlock
—pthread _cond_ init
—pthread _cond_[timed]wait

class28. ppt

Execution of “hello, world”

call Pthread_create()

Pthread_create() retums | ", peer thread

call Pthread_join() { e 1 £ 0
print

main thread waits for
peer thread to terminate

return NULL,;
........................... (peer thread
............................ terminates)

Pthread_join() returns |«

exit() L
terminates Y

main thread and
any peer threads

class28. ppt

The Pthreads "hello, world" program

Thread attributes
(usually NULL)

/*

* hello.c - Pthreads "hello, world" program

*/
#include" csapp .h"

/

void *thread(void * vargp);
int main() {

pthread _ttid ; 1

Thread arguments
(void *p)

Pthread _create(& tid, NULL, thread, NULL);
Pthread _join(tid, NULL);

exit(0); \
}

return value
(void **p)

/* thread routine */

void *thread(void * vargp){
printf ("Hello, world\n™);
return NULL,;

}

class28. ppt

Thread-based concurrent echo server

intmain(intargc , char **argv)

{
int listenfd ,*connfdp , port, clientlen ;
struct sockaddr _in clientaddr ;
pthread _ttid
if (argc !=2) {
fprintf (stderr, "usage: %s <port>\n", argv[0]);
exit(0);
}
port = atoi (argv[l]);
listenfd =open_ listenfd (port);
while (1) {
clientlen =sizeof (clientaddr);
connfdp = Malloc (sizeof(int));
* connfdp = Accept(listenfd ,(SA*) & clientaddr , &clientlen);
Pthread _create(& tid, NULL, thread, connfdp);
}
}
class28. ppt

Thread-based concurrent server (cont)

* thread routine */
void *thread(void * vargp)

{
int connfd =*(int*) vargp);

Pthread _detach(pthread _self());
Free(vargp);

echo_r(connfd); /* reentrant version of echo() */
Close(connfd);
return NULL,;

class28. ppt

Pros and cons of thread-based designs

+ Easy to share data structures between threads
¢ e.g., logging informati on, file cache.

+ Threads are more efficient than process es.

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

« The ease with which da ta can be shared is both the greatest strength
and the greatest weak ness of threads.

¢ (next lecture)

class28. ppt

Issues with thread-based servers

Must run “detached” to avoid memory leak.
» Atany pointin time, a thread is either joinable or detached.
 joinable thread can be reaped and killed by other th reads.
—must be reaped (with pthread _join) to free memory resource s.
» Detached thread cannot be reape d or killed by other threa ds.
—resources are automa tically reaped on te rmination.
¢ Default state is joinable .
—use pthread _detach(pthread _self()) to make detach ed.

Must be careful to avoid unintended sha ring.

* For example, what hap pens if we pass the a ddress of connfd to the
thread routine?

—Pthread _create(& tid , NULL, thread, (v oid ¥)& connfd);

All functions called by a thread must be thread-safe
* (next lecture)

class28. ppt

Event-based concurrent servers

An event-based approach to concurrency:
» Maintain a pool of conne cted descriptors.
» Repeat the following foreve r:
—use the Unix selectf unction to block until
» (@) new connection reque st arrives on the liste ning descriptor.
» (b) new data arrives on a n existing connecte d descriptor.
— If (a), add the new con nection to the pool of ¢ onnections.
—If (b), read any ava ilable data from the ¢ onnection
» close connection on EOF and remove it from the pool.

Writing an event-based serveris a kin to implementing
your own application-specific threads package.

class28. ppt

select() function

select() sleeps until one o r more file descriptors in the set readset
are ready for reading.

#include <sys/sel ect.h>

int select(int maxfdpl, fd_set* readset , NULL, NULL, NUL L);

readset
« opaque bit vector (max FD_SETSIZE bits) that indicates membership in
a descriptor set.
« if bit k is 1, then descriptor k is a member of the descriptor set.

maxfdpl
* maximum descriptor in descriptor set plus 1.
« tests descriptors 0, 1, 2, ..., maxfdpl - 1 for set membership.

select() returns the number of read y descriptors and sets each bit of
readset to indicate the ready status of its correspondi ng descriptor.

class28. ppt

/*

* main loop: wait for connection request or stdin command.
* If connection request, then ech o input line

* and close connection. If stdin command, then process.

*/

printf ("server>");
fflush (stdout);

while (notdone) {
/*

* select: check if the user t yped something to stdin or
* if a connection request arr ived.

*

/
FD_ZERO(& readfds); [* initialize the fd set */
FD_SET(listenfd , &readfds);/* add socket fd */
FD_SET(O, & readfds); /* add stdin fd 0) */

Select(listenfd +1, & readfds, NULL, NULL, NULL);

class28. ppt

Macros for manipulating set descriptors

void FD_ZERO(fd_set* fdset);
 turn off all bits in fdset

void FD_SET(intfd ,fd _set* fdset);
e turnon bit fd in fdset

void FD_CLR(intfd ,fd _set* fdset);
e turn off bit fd in fdset

int FD_ISSET(intfd ,* fdset);
e is bit fd in fdset turned on?

class28. ppt

select example (cont)

First we check for a pending e vent on stdin.

/* if the user has typed a comma nd, process it */

if (FD_ISSET(0, & readfds)) {
fgets(buf, BUFSIZE, stdin);
switch (buf [0]) {
case 'c": /* print the connec tion count */
printf ("Received %d conn. requests so far.\n", connectcnt
printf ("server>");
fflush (stdout);
break;
case 'q": /* terminate the se rver */
notdone =0;
break;
default: /* bad input */
printf ("ERROR: unknown command\n");
printf ("server>");
fflush (stdout);
}
}

class28. ppt

select example (cont)

Next we check for a pending conne ction request.

Event-based concurrent echo server

/* if a connection request has a rrived, process it */

if (FD_ISSET(listenfd, & readfds)) {
connfd = Accept(listenfd
(struct sockaddr *) &clientaddr , & clientlen);
connectcnt ++;

bzero (buf, BUFSIZE);
Readn(connfd , buf, BUFSIZE);
Writen(connfd ~ , buf, strlen(buf));

Close(connfd);
}
} I* while */
class28. ppt

Event-based concurrent server (cont)

/* check command line args */

if (argc '=2) {
fprintf (stderr , "usage: %s <port>\n", argv [0]);
exit(0);

}

portno =atoi (argv[l]);

/* open the listening socket */
listenfd =open_ listenfd (portno);
/* initialize the pool of active client connections */
maxi = -1;
maxfd = listenfd ;
for (i=0; i< FD_SETSIZE; i++)
client[i] = -1;
FD_ZERO(& allset);
FD_SET(listenfd , &allset);

class28. ppt

[* echoservers .c - A concurrent echo server
#include" csapp .h"
#define BUFSIZE 1024

void echo(intconnfd);

int maxfd ; I* max descriptor value for

int client{FD_SETSIZE]; /* pool of connect
int maxi; /*

based on select */

intmain(intargc , char **argv) {
int listenfd , connfd,;
int portno
struct sockaddr _in clientaddr
int clientlen =sizeof (struct sockaddr _in);
fd_set allset ;/* descriptor set for select */
fd_set rset; /*copy of allset for select */

select */

ed descriptors */

highwater index into client pool */

int nready /* number of ready descript ors from select */
int i, sockfd ; I* misc */
class28. ppt

Event-based concurrent server (cont)

/* main server loop */
while (1) {
rset = allset ;

/* Wait until one or more desc
nready =Select(maxfd +1, &rset

riptors are ready to read */
, NULL, NULL, NULL);

class28. ppt

Event-based concurrent server (

cont)

I* PART I: a new connection re
add a new connected descrip

guest has arrived, so
tor to the pool */

if (FD_ISSET(listenfd , &rset)) {
connfd = Accept(listenfd , (struct _sockaddr *)
& clientaddr , &clientlen);
nready

/* update the client pool */
for (i=0; i<FD_SETSIZE; i++)
if (client[i] < 0) {
client[i] = connfd
break;
}
if (i == FD_SETSIZE)
app_error("Too many clients\n");

/* update the read descripto rset*/
FD_SET(connfd , &allset);
if (connfd > maxfd)
maxfd = connfd,
if (i > maxi)
maxi = i;

}

class?28 ppt

Pro and cons of event-based designs

+ One logical control flow.
+ Can single step with a debugger.
+ No process or thread control overhead.

« Design of choice for hi gh-performance Web serv ers and search

engines.

- Significantly more complex to code
thread-based designs.

- Can be vulnerable to denial o f service attack
* How?

class28. ppt

than process- or

Event-based concurrent server (

cont)

/* PART II: check the pool of
client data to read */
for (i = 0; (i <= maxi) && (

connected descriptors for

nready > 0); i++) {

sockfd = client[i];
if ((sockfd > 0) && (FD_ISSET(sockfd, & rset))) {
echo(sockfd);
Close(sockfd);
FD_CLR(sockfd, & allset);
client[i] = -1;
nready
}
} /* for */
} /* while(2) */
} /¥ main */
class28. ppt

