
Dynamic Memory Allocation II
 Nov 8, 2001

Topics
• doubly-linked free li sts
• segregated free lists
• garbage collection
• memory-related perils and pitfalls

class22. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’01– 2 –class22. ppt

Keeping track of free blocks
• Method 1 : implicit list using len gths -- links all blocks

• Method 2 : explicit list among the free b locks using
pointers within the free blocks

• Method 3 : segregated free lists
• Different free lists for differe nt size classes

• Method 4 : blocks sorted by size (not dis cussed)
• Can use a balance d tree (e.g. Red-Black tree) with pointers within

each free block, a nd the length used a s a key

5 4 26

5 4 26

CS 213 F’01– 3 –class22. ppt

Explicit free lists

Use data space for link pointers
• Typically doubly linked
• Still need boundary ta gs for coalescing

• It is important to realiz e that links are not necessarily in the same
order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

CS 213 F’01– 4 –class22. ppt

Allocating from explicit free lists

free block

pred succ

free block

pred succ

Before:

After:
(with splitting)

CS 213 F’01– 5 –class22. ppt

Freeing with explicit free lists
Insertion policy : Where to put the newly freed block i n

the free list
• LIFO (last-in-first-out) policy

– insert freed block at the beginning of the free list
– pro: simple and constant time

– con: studies suggest fragmentation is worse than address ordered.
• Address-ordered policy

– insert freed blocks so that free list blocks are always in address order

» i.e. addr(pred) < addr(curr) < addr(succ)
– con: requires search
– pro: studies suggest fragmentation is better than LIFO

CS 213 F’01– 6 –class22. ppt

Freeing with a LIFO policy

Case 1: a-a-a
• insert self at beginn ing of

free list

Case 2: a-a-f
• splice out next, c oalesce

self and next, and add to
beginning of free list

pred (p) succ (s)

selfa a

p s

selfa f

before:

p s

fa
after:

CS 213 F’01– 7 –class22. ppt

Freeing with a LIFO policy (cont)

Case 3: f-a-a
• splice out prev , coalesce

with self, and add to
beginning of free list

Case 4: f-a-f
• splice out prev and next,

coalesce with self, and add
to beginning of list

p s

selff a

before:

p s

f a
after:

p1 s1

selff f

before:

f
after:

p2 s2

p1 s1 p2 s2

CS 213 F’01– 8 –class22. ppt

Explicit list summary
Comparison to implicit list:

• Allocate is linear tim e in number of free bloc ks instead of total
blocks -- much fas ter allocates when mos t of the memory is full

• Slightly more complic ated allocate and free since needs to splice
blocks in and out o f the list

• Some extra space for the links (2 extra words needed for each
block)

Main use of linked lists i s in conjunction with
segregated free lists
• Keep multiple linke d lists of different siz e classes, or poss ibly for

different types of obje cts

CS 213 F’01– 9 –class22. ppt

Segregated Storage
Each size “class” has its own collection of blocks

1-2

3

4

5-8

9-16

• Often have separate c ollection for every sm all size (2,3,4, …)
• For larger sizes typi cally have a col lection for each power of 2

CS 213 F’01– 10 –class22. ppt

Simple segregated storage
Separate heap and free list for ea ch size class
No splitting
To allocate a block of size n:

• if free list for size n is not empty,
– allocate first block on list (note, list can be implicit or explicit)

• if free list is empty ,
– get a new page

– create new free list from all blocks in page
– allocate first block on list

• constant time

To free a block:
• Add to free list
• If page is empty, return the page for use by another size (optiona l)

Tradeoffs:
• fast, but can fragmen t badly

CS 213 F’01– 11 –class22. ppt

Segregated fits
Array of free lists, each one for some size class
To allocate a block of size n:

• search appropriate free list for block of size m > n
• if an appropriate block is found:

– split block and place fragment on appropriate list (optional)

• if no block is found, try next larger class
• repeat until block is found

To free a block:
• coalesce and pl ace on appropriate lis t (optional)

Tradeoffs
• faster search than s equential fits (i.e., l og time for power of two size

classes)
• controls fragmentation o f simple segregated storage
• coalescing can increase search tim es

– deferred coalescing can help

CS 213 F’01– 12 –class22. ppt

For more information of dynamic
storage allocators

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973
• the classic referen ce on dynamic stora ge allocation

Wilson et al, “Dynamic Storage All ocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
• comprehensive su rvey
• available from the course web page (see Documents page)

CS 213 F’01– 13 –class22. ppt

Implicit Memory Management
Garbage collector

Garbage collection: automatic reclamation of heap-
allocated storage -- application nev er has to free

Common in functional languages, scri pting languages,
and modern object oriented languages:
• Lisp, ML, Java, Perl, Mathematica ,

Variants (conservative garbage col lectors) exist for C
and C++
• Cannot collect all ga rbage

void foo() {
 int *p = malloc (128);
 return; /* p block is now garba ge */
}

CS 213 F’01– 14 –class22. ppt

Garbage Collection
How does the memory manager know w hen memory

can be freed?
• In general we cannot k now what is going to be use d in the future

since it depends on conditionals
• But we can tell that certa in blocks cannot be used if there are no

pointers to them

Need to make certain assumptions about po inters
• Memory manager can di stinguish pointers from no n-pointers
• All pointers point to the s tart of a block
• Cannot hide pointers (e. g. by coercing them to an int , and then back

again)

CS 213 F’01– 15 –class22. ppt

Classical GC algorithms
Mark and sweep collection (McCarthy, 1 960)

• Does not move block s (unless you als o “compact”)

Reference counting (Collins, 1960)
• Does not move block s (not discussed)

Copying collection (Minsky , 1963)
• Moves blocks (not dis cussed)

For more information see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 199 6.

CS 213 F’01– 16 –class22. ppt

Memory as a graph
We view memory as a directed graph

• Each block is a n ode in the graph
• Each pointer is an e dge in the graph
• Locations not in the heap that contain poin ters into the heap are c alled

root nodes (e.g. regis ters, locations on the stack, global varia bles)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (never needed by the application)

CS 213 F’01– 17 –class22. ppt

Assumptions for this lecture
Application

• new(n) : returns pointer to new bloc k with all locations cleared
• read(b,i): read location i of block b into register

• write(b,i,v): write v into location i of block b

Each block will have a header word
• addressed as b[-1], for a block b

• Used for different purposes in different collectors

Instructions used by the Garbage Coll ector
• is_ ptr(p): d etermines whether p is a pointer
• length(b): returns the length of bloc k b, not including the hea der
• get_roots() : returns all the roots

CS 213 F’01– 18 –class22. ppt

Mark and sweep collecting
Can build on top of malloc /free package

• Allocate using malloc until you “run out of space”

When out of space:
• Use extra “mark bit” in the head of each block
• Mark: Start at roots and set mark bit on all reachable memory

• Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark Bit Set

free

CS 213 F’01– 19 –class22. ppt

Mark and sweep (cont.)

ptr mark(ptr p) {
 if (!is_ ptr(p)) return; // do nothing if not pointer
 if (markBitSet (p)) return // check if already marked
 setMarkBit (p); // set the mark bit
 for (i=0; i < length(p); i++) // mark all children
 mark(p[i]);
 return;
}

Mark using depth-first travers al of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet (p)
 clearMarkBit ();
 else if (allocateBitSet (p))
 free(p);
 p += length(p);
}

CS 213 F’01– 20 –class22. ppt

Mark and sweep in C
A C Conservative Collector

• Is_ ptr() determines if a word is a pointer by checking if it points to
an allocated bloc k of memory.

• But, in C pointers can poi nt to the middle of a bl ock.

So how do we find the beginn ing of the block
Can use balanced tree to keep track of all allocated blocks where the key

is the location

Balanced tree pointers can be stored in head (use two additional words)

head
ptr

head data

left right

size

CS 213 F’01– 21 –class22. ppt

Memory-related bugs
Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks

CS 213 F’01– 22 –class22. ppt

Dereferencing bad pointers

The classic scanf bug

scanf (“%d”, val);

CS 213 F’01– 23 –class22. ppt

Reading uninitialized memory

Assuming that heap data is
initialized to zero

/* return y = Ax */
int * matvec(int ** A, int *x) {
 int *y = malloc (N*sizeof (int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

CS 213 F’01– 24 –class22. ppt

Overwriting memory
Allocating the (possibly) wrong

sized object

int **p;

p = malloc (N*sizeof (int));

for (i=0; i<N; i++) {
 p[i] = malloc (M*sizeof (int));
}

CS 213 F’01– 25 –class22. ppt

Overwriting memory

Off-by-one

int ** p;

p = malloc (N*sizeof (int *));

for (i=0; i<=N; i++) {
 p[i] = malloc (M*sizeof (int));
}

CS 213 F’01– 26 –class22. ppt

Overwriting memory

Not checking the max string size

char s[8];
int i;

gets(s); /* reads “123456789” fro m stdin */

Basis for classic buffer overflow attacks
• 1988 Internet worm
• modern attacks on Web servers
• AOL/Microsoft IM war

CS 213 F’01– 27 –class22. ppt

Buffer overflow attacks
Description of hole:

• Servers that use C library routines such as ge ts() that
don’t check input s izes when they write into b uffers on the
stack.

• The following description is based on the IA32 stack
conventions. The details will depend on how the stack is
organized, which varie s between compilers a nd machines

64 bytes
for buffer

return addr

Saved regs . and
Local vars

proc a() {
 b(); # call procedure b
}

proc b() {
 char buffer[64]; # alloc 64 bytes on stack
 gets(buffer); # read STDIN line into buf
}

Stack
frame

for
proc a

%ebp
Stack
frame

for
proc b

%ebp

increasing
addrs

CS 213 F’01– 28 –class22. ppt

Buffer overflow attacks

Vulnerability stems from possibil ity of the gets()
routine overwriting the return address for b.
• overwrite stack frame with

– machine code instruction(s) that execs a shell
– a bogus return address to the instruction

proc a() {
 b(); # call procedure b
} # b should return h ere, instead it
 # returns to an address in side of buffer

proc b() {
 char buffer[64]; # alloc 64 bytes on stack
 gets(buffer); # read STDIN lin e to buffer
}

Stack region overwritten
by gets(buffer)

exec(“/bin/ sh”)

New return addr

Saved regs . and
Local vars

Stack
frame

for
proc a

paddingStack
frame

for
proc b

%ebp

incr
addrs

CS 213 F’01– 29 –class22. ppt

Overwriting memory

Referencing a pointer instead of the
object it points to

int * BinheapDelete (int **binheap , int *size) {
 int *packet;
 packet = binheap [0];
 binheap [0] = binheap[*size - 1];
 *size--;
 Heapify (binheap , *size, 0);
 return(packet);
}

CS 213 F’01– 30 –class22. ppt

Overwriting memory

Misunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)
 p += sizeof (int);

 return p;
}

CS 213 F’01– 31 –class22. ppt

Referencing nonexistent variables

Forgetting that local variables dis appear when a
function returns

int * foo () {
 int val ;
 return & val;
}

CS 213 F’01– 32 –class22. ppt

Freeing blocks multiple times

Nasty!

x = malloc (N*sizeof (int));
<manipulate x>
free(x);

y = malloc (M*sizeof (int));
<manipulate y>
free(x);

CS 213 F’01– 33 –class22. ppt

Referencing freed blocks

Evil!

x = malloc (N*sizeof (int));
<manipulate x>
free(x);
...
y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

CS 213 F’01– 34 –class22. ppt

Failing to free blocks
(memory leaks)

slow, long-term killer!

foo() {
 int *x = malloc (N*sizeof (int));
 ...
 return;
}

CS 213 F’01– 35 –class22. ppt

Failing to free blocks
(memory leaks)

Freeing only part of a data structure

struct list {
 int val ;
 struct list *next;
};

foo() {
 struct list *head =
 malloc(sizeof (struct list));
 head-> val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

CS 213 F’01– 36 –class22. ppt

Dealing with memory bugs
Conventional debugger (gdb)

• good for finding bad poi nter dereferences
• hard to detect the othe r memory bugs

Debugging malloc (CSRI UToronto malloc)
• wrapper around conventiona l malloc
• detects memory bug s at malloc and free boundaries

– memory overwrites that corrupt heap structures
– some instances of freeing blocks multiple times
– memory leaks

• Cannot detect all me mory bugs
– overwrites into the middle of allocated blocks
– freeing block twice that has been reallocated in the interim

– referencing freed blocks

CS 213 F’01– 37 –class22. ppt

Dealing with memory bugs (cont.)
Binary translator (Atom, Purify)

• powerful debugging and a nalysis technique
• rewrites text section of e xecutable object fi le
• can detect all errors as debugging malloc
• can also check each individual refe rence at runtime

– bad pointers

– overwriting
– referencing outside of allocated block

Garbage collection (Boehm- Weiser Conservative GC)
• let the system free blocks instead of th e programmer.

