In-Class Handout Version
15-213
“The Class That Gives CMU Its Zip!”
Bits and Bytes
Aug. 30, 2001

Topics
• Why bits?
• Representing information as bits
 – Binary/Hexadecimal
 – Byte representations
 » numbers
 » characters and strings
 » Instructions
• Bit-level manipulations
 – Boolean algebra
 – Expressing in C

Why Don’t Computers Use Base 10?
Base 10 Number Representation
• That’s why fingers are known as “digits”
• Natural representation for financial transactions
 – Floating point number cannot exactly represent $1.20
• Even carries through in scientific notation
 – 1.5213×10^4

Implementing Electronically
• Hard to store
 – ENIAC (First electronic computer) used 10 vacuum tubes / digit
• Hard to transmit
 – Need high precision to encode 10 signal levels on single wire
• Messy to implement digital logic functions
 – Addition, multiplication, etc.

Binary Representations
Base 2 Number Representation
• Represent 15213_{10} as 11101101101101_2
• Represent 1.20_{10} as $1.001100110011011[-0011]…_2$
• Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation
• Easy to store with bistable elements
• Reliably transmitted on noisy and inaccurate wires

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses
• Conceptually very large array of bytes
• Actually implemented with hierarchy of different memory types
 – SRAM, DRAM, disk
• Only allocate for regions actually used by program
• In Unix and Windows NT, address space private to particular “process”
 – Program being executed
 – Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
• Where different program objects should be stored
• Multiple mechanisms: static, stack, and heap
• In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- Binary: 00000000₂ to 11111111₂
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal: 0₀₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as 0xFA1D37B
 » Or 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address ≈ 1.8 x 10^19 bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0003</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0009</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0012</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0013</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td>Addr =</td>
<td>Addr =</td>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>

Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Compaq Alpha</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

Issue
- How should bytes within multi-byte word be ordered in memory

Conventions
- Alphas, PC's are "Little Endian" machines
- Least significant byte has lowest address
- Sun's, Mac's are "Big Endian" machines
- Least significant byte has highest address

Example
- Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian
- 0x100 0x101 0x102 0x103

Little Endian
- 0x100 0x101 0x102 0x103

Exercising Data Representations

Representing Integers
- Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%02lx
", start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result:

int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00

Examining Data Representations

Integers
- Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%02lx
", start+i, start[i]);
 printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

show_bytes Execution Example

int A = 15213;
int B = -15213;
long int C = 15213;

Dec: 15213
Bin: 0011 1011 0110 1101
Hex: 3B 6D

Linux/Alpha A
- 6D 3B 00 00
- 00 3B 00 00
- 00 00 00 00

Sun A
- 6D 3B 00 00
- 00 3B 00 00
- 00 00 00 00

Linux/Alpha B
- 93 FF 00 00
- C4 FF 00 00
- FF C4 FF FF

Sun B
- 93 FF 00 00
- C4 FF 00 00
- FF C4 FF FF

Two’s complement representation
(Covered next lecture)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

Alpha Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0F</td>
<td>0001 1111 1111 1111 1111 1111 1111 1111 1110 1010 0000</td>
</tr>
</tbody>
</table>

Sun Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>0001 1111 1111 1111 1111 1111 1111 1111 1010 0000</td>
</tr>
</tbody>
</table>

Representing Floats

```c
Float F = 15213.0;
```

IEEE Single Precision Floating Point Representation

<table>
<thead>
<tr>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>0001 1110 1101 1011 0100 0000 0000</td>
</tr>
</tbody>
</table>

Not same as integer representation, but consistent across machines

Representing Strings

Strings in C

```c
char S[6] = "15213";
```

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 - Digit “0” has code 0x30+/
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character!

Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 - Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 - Complex Instruction Set Computer (CISC)
- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not fully binary compatible

Different machines use totally different instructions and encodings

Boolean Algebra

Developed by George Boole in 19th Century
- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And (&&)
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or (||)
- \(A \| B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not (~)
- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A^B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

![Connection diagram]

- \(A \& \sim B \mid \sim A \& B = A^B \)

Properties of & and | Operations

Integer Arithmetic
- \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
 - \(- \) is additive inverse
 - 0 is identity for sum
 - 1 is identity for product

Boolean Algebra
- \(\langle \{0,1\}, |, \& , \sim, 0, 1 \rangle \) forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
 - \(\sim \) is “complement” operation (not additive inverse)
 - 0 is identity for sum
 - 1 is identity for product
Properties of Rings & Boolean Algebras

Boolean Algebra

- **Commutativity**
 \[A \lor B = B \lor A \]
 \[A \land B = B \land A \]

- **Associativity**
 \[(A \lor B) \lor C = A \lor (B \lor C) \]
 \[(A \land B) \land C = A \land (B \land C) \]

- **Product distributes over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]

- **Sum and product identities**
 \[0 = A \land A \]
 \[1 = A \lor A \]

- **Zero is product annihilator**
 \[0 \land A = 0 \]

- **Cancellation of negation**
 \[\neg (\neg A) = A \]

Integer Ring

- **Commutativity**
 \[A + B = B + A \]
 \[A \cdot B = B \cdot A \]

- **Associativity**
 \[(A + B) + C = A + (B + C) \]
 \[(A \cdot B) \cdot C = A \cdot (B \cdot C) \]

- **Product distributes over sum**
 \[A \cdot (B + C) = A \cdot B + A \cdot C \]

- **Sum and product identities**
 \[0 = A + 0 \]
 \[1 = A \cdot 1 \]

- **Zero is product annihilator**
 \[0 = A \cdot 0 \]

- **Cancellation of negation**
 \[\neg (\neg A) = A \]

Ring ≠ Boolean Algebra

- **Boolean: Sum distributes over product**
 \[A \lor (B \land C) = (A \lor B) \land (A \lor C) \]

- **Boolean: Idempotency**
 \[A \lor A = A \]
 \[A \land A = A \]

- **Boolean: Absorption**
 \[A \lor (A \land B) = A \]
 \[A \land (A \lor B) = A \]

- **Boolean: Laws of Complements**
 \[A \lor \neg A = 1 \]
 \[A \land \neg A = 0 \]

- **Ring: Every element has additive inverse**
 \[A \lor \neg A = 0 \]
 \[A \land \neg A = 0 \]

Properties of & and ^

Boolean Ring

- \(\langle \{0, 1\}, \land, \lor, \neg, 0, 1 \rangle \)
- Identical to integers mod 2
- \(\lor \) is identity operation: \(\lor (A) = A \)
 \[A \lor A = 0 \]

Property

- **Commutative sum**
 \[A \lor B = B \lor A \]

- **Commutative product**
 \[A \land B = B \land A \]

- **Associative sum**
 \[(A \lor B) \lor C = A \lor (B \lor C) \]

- **Associative product**
 \[(A \land B) \land C = A \land (B \land C) \]

- **Prod. over sum**
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]

- **0 is sum identity**
 \[A \lor 0 = A \]

- **1 is prod. identity**
 \[A \land 1 = A \]

- **0 is product annihilator**
 \[A \land 0 = 0 \]

- **Additive inverse**
 \[A \lor A = 0 \]

Relations Between Operations

DeMorgan’s Laws

- Express & in terms of |, and vice-versa
 \[A \land B = \neg(\neg A \lor \neg B) \]
 \[A \lor B = \neg(\neg A \land \neg B) \]

- A and B are true if and only if neither A nor B is false
 \[A \land B = \neg(\neg A \lor \neg B) \]
 \[\neg(\neg A \lor \neg B) = \neg A \lor \neg B \]

Exclusive-Or using Inclusive Or

- \[A \lor B = \neg(A \land B) \land (A \lor B) \]
 \[A \lor B = \neg A \land B \lor A \land \neg B \]

- Exactly one of A and B is true
 \[A \lor B = \neg A \land B \lor A \land \neg B \]

- Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ^ 01010101 ~ 01010101

Representation of Sets
- Width \(w \) bit vector represents subsets of \{0, ..., w−1\}
- \(a_j = 1 \) if \(j \in A \)
- \(\neg 0101001 \)
- \(\neg 01010101 \)
- \& Union
- ^ Intersection
- ~ Complement

Contrast: Logic Operations in C

Contrast to Logical Operators
- \&\&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)
- !0x41 -->
- !0x00 -->
- !!0x41 -->
- 0x69 & 0x55 -->
- 0x69 | 0x55 -->
- p & *p (avoids null pointer access)

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C
- Apply to any "integral" data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)
- ~0x41 -->
- ~01000001 --> 10111102
- ~0x00 -->
- ~00000002 --> 11111112
- 0x69 & 0x55 -->
- 01101001 \& 01010101 --> 01000001
- 0x69 | 0x55 -->
- 01101001 \| 01010101 --> 01111112

Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Log. >> 2</td>
<td></td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Log. >> 2</td>
<td></td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td></td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \(A \oplus A = 0 \)

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th>Step</th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A(^\lor)B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A(^\lor)B</td>
<td>B</td>
</tr>
</tbody>
</table>
| 3 | A \(
| End | | |

• Bitwise Xor is form of addition
• With extra property that every value is its own additive inverse
 \(A \oplus A = 0 \)