CS 213
Introduction to Computer Systems

Course Organization

David O’Hallaron
August 28, 2001

Topics:
• Staff, text, and policies
• Lecture topics and assignments
• Lab rationale
Teaching staff

Instructors
– Prof. Randy Bryant (Wed 10:00-11:00, WeH 4220)
– Prof. David O’Hallaron (Tue 10:30-11:30, WeH 8125)

TA’s
– Balaji Sarpeshkar (TBD, Wean Cluster)
– Sanjit Sesha (TBD, WeH 4126)
– Cory Williams (TBD, Wean Cluster)
– Yinglian Xie (TBD, WeH 4112)

Course Admin
– Rosemary Battenfelder (WeH 4218)

These are the nominal office hours. Come talk to us anytime!
(Or send email)
Textbooks

Brian Kernighan and Dennis Ritchie,
 • *The C Programming Language, Second Edition*
 • Prentice Hall, 1988

Randy Bryant and David O’Hallaron,
 • *Computer Systems: A Programmer’s Perspective*
 • To be published by Prentice Hall, Summer, 2002.
 • We’ll be using a preliminary version.
Course Components

Lectures
- higher level concepts

Recitations
- applied concepts, important tools and skills for labs, clarification of lectures, exam coverage
- recitation problems (assigned in lecture the previous Thursday)

Labs
- the heart of the course
- 1 or 2 weeks
- provide in-depth understanding of an aspect of systems
- programming and measurement
Getting Help

Web
- www.cs.cmu.edu/afs/cs/academic/class/15213-f01/www
- Copies of lectures, assignments, exams, solutions
- Clarifications to assignments
- Summaries of performance on exams and assignments

Newsgroup
- cmu.cs.class.cs213
- Clarifications to assignments, general discussion

Personal help
- Professors: door open means come on in (no appt necessary)
- TAs: please mail or zephyr first.
Policies: Assignments

Work groups
- You may do all labs in groups of up to 2

Handins
- Assignments due at 11:59pm on specified due date.
- Either 11:59pm Monday evening or 11:59pm Wednesday evening.
- Electronic handins only.

Makeup exams and assignments
- OK, but must make PRIOR arrangements with either Prof. Bryant or O’Hallaron.

Appealing grades
- Within 7 days of due date or exam date.
- Assignments: Talk to the lead person on the assignment
- Exams: Talk to either Prof. Bryant or O’Hallaron.
Policies: Grading

Exams (50%)
- Two in class exams (12.5% each)
- Final (25%)
- All exams are open book/open notes.

Labs (50%)
- 7 labs, 4-12% each

Grading Characteristics
- Lab scores tend to be high
 - Serious handicap if you don’t hand a lab in
- Tests have big bearing on letter grade
 - Wider range of scores
 - Only chance for us to evaluate individual performance
Facilities

Assignments will use Intel Computer Systems Cluster (aka “the fish machines”)

- 25 Pentium III Xeon servers donated by Intel for CS 213
- 550 MHz with 256 MB memory.
- Rack mounted in the 3rd floor Wean machine room.
- We’ll be setting up your accounts this week.

Getting help with the cluster machines:

- See “Information about the Intel Cluster” on the 213 homepage.
- Please direct questions to the CS Help Desk (identify yourself as a CS 213 student),
 - help@cs.cmu.edu
 - x8-4231 (24x7)
 - WeH 3613 9-5pm
Programs and Data (8)

Topics
- Bits operations, arithmetic, assembly language programs, representation of C control and data structures
- Includes aspects of architecture and compilers

Assignments
- L1: Manipulating bits
- L2: Defusing a binary bomb
- L3: Defusing a buffer bomb
Performance (3)

Topics
• High level processor models, code optimization (control and data), measuring time on a computer
• Includes aspects of architecture, compilers, and OS

Assignments
• L4: Optimizing Code Performance
The Memory Hierarchy (2)

Topics
- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS.

Assignments
- L4: Optimizing Code Performance
Linking and Exceptional Control Flow (3)

Topics

- Object files, static and dynamic linking, libraries, loading
- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments

- L5: Writing your own shell with job control
Virtual memory (4)

Topics
• Virtual memory, address translation, dynamic storage allocation
• Includes aspects of architecture and OS

Assignments
• L6: Writing your own malloc package
I/O, Networking, and Concurrency (6)

Topics

• High level and low-level I/O, network programming, Internet services, Web servers
• concurrency, concurrent server design, threads, I/O multiplexing with select.
• Includes aspects of networking, OS, and architecture.

Assignments

• L7: Writing a Web proxy
Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle or winning a contest.

- Defusing a binary bomb.
- Winning a performance contest.

Doing a lab should result in new skills and concepts

- Bit Manipulation: computer arithmetic, digital logic.
- Bombs: assembly language, using a debugger, understanding stack
- Perf: profiling, measurement, performance debugging.
- Shell: understanding Unix process control and signals
- Malloc: understanding pointers and nasty memory bugs.
- Proxy: network programming, server design

We try to use competition in a fun and healthy way.

- Set a threshhold for full credit.
- Post intermediate results (anonymized) on Web page for glory!