CS 213 Introduction to Computer Systems

Course Organization

David O'Hallaron August 28, 2001

Topics:

- Staff, text, and policies
- Lecture topics and assignments
- Lab rationale

Teaching staff

Instructors

- Prof. Randy Bryant (Wed 10:00-11:00, WeH 4220)
- Prof. David O'Hallaron (Tue 10:30-11:30, WeH 8125)

TA's

- Balaji Sarpeshkar (TBD, Wean Cluster)
- -Sanjit Sesha (TBD, WeH 4126)
- Cory Williams (TBD, Wean Cluster)
- Yinglian Xie (TBD, WeH 4112)

Course Admin

Rosemary Battenfelder (WeH 4218)

These are the nominal office hours. Come talk to us anytime! (Or send email)

Textbooks

Brian Kernighan and Dennis Ritchie,

- The C Programming Language, Second Edition
- Prentice Hall, 1988

Randy Bryant and David O'Hallaron,

- Computer Systems: A Programmer's Perspective
- To be published by Prentice Hall, Summer, 2002.
- We'll be using a preliminary version.

Course Components

Lectures

higher level concepts

Recitations

- applied concepts, important tools and skills for labs, clarification of lectures, exam coverage
- recitation problems (assigned in lecture the previous Thursday)

Labs

- the heart of the course
- 1 or 2 weeks
- provide in-depth understanding of an aspect of systems
- programming and measurement

Getting Help

Web

- www.cs.cmu.edu/afs/cs/academic/class/15213-f01/www
- Copies of lectures, assignments, exams, solutions
- Clarifications to assignments
- Summaries of performance on exams and assignments

Newsgroup

- cmu.cs.class.cs213
- Clarifications to assignments, general discussion

Personal help

- Professors: door open means come on in (no appt necessary)
- TAs: please mail or zephyr first.

Policies: Assignments

Work groups

You may do all labs in groups of up to 2

Handins

- Assignments due at 11:59pm on specified due date.
- Either 11:59pm Monday evening or 11:59pm Wednesday evening.
- Electronic handins only.

Makeup exams and assignments

 OK, but must make PRIOR arrangements with either Prof. Bryant or O'Hallaron.

Appealing grades

- Within 7 days of due date or exam date.
- Assignments: Talk to the lead person on the assignment
- Exams: Talk to either Prof. Bryant or O'Hallaron.

Policies: Grading

Exams (50%)

- Two in class exams (12.5% each)
- Final (25%)
- All exams are open book/open notes.

La s (50%)

• 7 labs, 4-12% each)

Grading Characteristics

- Lab scores tend to be high
 - Serious handicap if you don't hand a lab in
- Tests have big bearing on letter grade
 - Wider range of scores
 - -Only chance for us to evaluate individual performance

Facilities

Assignments will use Intel Computer Systems Cluster (aka "the fish machines")

- 25 Pentium III Xeon servers donated by Intel for CS 213
- 550 MHz with 256 MB memory.
- Rack mounted in the 3rd floor Wean machine room.
- We'll be setting up your accounts this week.

Getting help with the cluster machines:

- See "Information about the Intel Cluster" on the 213 homepage.
- Please direct questions to the CS Help Desk (identify yourself as a CS 213 student),
 - -help@cs.cmu.edu
 - -x8-4231 (24x7)
 - -WeH 3613 9-5pm

Programs and Data (8)

Topics

- Bits operations, arithmetic, assembly language programs, representation of C control and data structures
- Includes aspects of of architecture and compilers

Assignments

- L1: Manipulating bits
- L2: Defusing a binary bomb
- L3: Defusing a buffer bomb

Performance (3)

Topics

- High level processor models, code optimization (control and data), measuring time on a computer
- Includes aspects of architecture, compilers, and OS

Assignments

• L4: Optimizing Code Performance

The Memory Hierarchy (2)

Topics

- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS.

Assignments

• L4: Optimizing Code Performance

Linking and Exceptional Control Flow (3)

Topics

- Object files, static and dynamic linking, libraries, loading
- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments

• L5: Writing your own shell with job control

Virtual memory (4)

Topics

- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Assignments

• L6: Writing your own malloc package

I/O, Networking, and Concurrency (6)

Topics

- High level and low-level I/O, network programming, Internet services,
 Web servers
- concurrency, concurrent server design, threads, I/O multiplexing with select.
- Includes aspects of networking, OS, and architecture.

Assignments

• L7: Writing a Web proxy

Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle or winning a contest.

- Defusing a binary bomb.
- Winning a performance contest.

Doing a lab should result in new skills and concepts

- Bit Manipulation: computer arithmetic, digital logic.
- Bombs: assembly language, using a debugger, understanding stack
- Perf: profiling, measurement, performance debugging.
- Shell: understanding Unix process control and signals
- Malloc: understanding pointers and nasty memory bugs.
- Proxy: network programming, server design

We try to use competition in a fun and healthy way.

- Set a threshhold for full credit.
- Post intermediate results (anonymized) on Web page for glory!