CS 213 Introduction to Computer Systems

Course Organization

David O'Hallaron August 28, 2001

Topics:

- · Staff, text, and policies
- Lecture topics and assignments
- · Lab rationale

classO1b.ppt CS 213 F'01

Textbooks

Brian Kernighan and Dennis Ritchie,

- The C Programming Language, Second Edition
- Prentice Hall, 1988

Randy Bryant and David O'Hallaron,

- · Computer Systems: A Programmer's Perspective
- To be published by Prentice Hall, Summer, 2002.
- We'll be using a preliminary version.

Teaching staff

Instructors

- Prof. Randy Bryant (Wed 10:00-11:00, WeH 4220)
- Prof. David O'Hallaron (Tue 10:30-11:30, WeH 8125)

TA's

- -Balaji Sarpeshkar (TBD, Wean Cluster)
- -Sanjit Sesha (TBD, WeH 4126)
- -Cory Williams (TBD, Wean Cluster)
- Yinglian Xie (TBD, WeH 4112)

Course Admin

- Rosemary Battenfelder (WeH 4218)

These are the nominal office hours. Come talk to us anytime! (Or send email)

class01b.ppt 2 CS 213 F'01

Course Components

Lectures

· higher level concepts

Recitations

- applied concepts, important tools and skills for labs, clarification of lectures, exam coverage
- recitation problems (assigned in lecture the previous Thursday)

Labs

- the heart of the course
- 1 or 2 weeks
- · provide in-depth understanding of an aspect of systems
- · programming and measurement

class01b.ppt 3 CS 213 F'01 class01b.ppt 4 CS 213 F'01

Getting Help

Web

- www.cs.cmu.edu/afs/cs/academic/class/15213-f01/www
- . Copies of lectures, assignments, exams, solutions
- · Clarifications to assignments
- · Summaries of performance on exams and assignments

Newsgroup

- cmu.cs.class.cs213
- Clarifications to assignments, general discussion

Personal help

- · Professors: door open means come on in (no appt necessary)
- · TAs: please mail or zephyr first.

class01b.ppt 5 CS 213 F'01

Policies: Grading

Exams (50%)

- Two in class exams (12.5% each)
- Final (25%)
- All exams are open book/open notes.

La s (50%)

• 7 labs, 4-12% each)

Grading Characteristics

- · Lab scores tend to be high
 - -Serious handicap if you don't hand a lab in
- Tests have big bearing on letter grade
 - Wider range of scores
 - -Only chance for us to evaluate individual performance

Policies: Assignments

Work groups

· You may do all labs in groups of up to 2

Handins

- · Assignments due at 11:59pm on specified due date.
- Either 11:59pm Monday evening or 11:59pm Wednesday evening.
- · Electronic handins only.

Makeup exams and assignments

 OK, but must make PRIOR arrangements with either Prof. Bryant or O'Hallaron.

Appealing grades

- Within 7 days of due date or exam date.
- · Assignments: Talk to the lead person on the assignment
- Exams: Talk to either Prof. Bryant or O'Hallaron.

class01b.ppt 6 CS 213 F'01

Facilities

Assignments will use Intel Computer Systems Cluster (aka "the fish machines")

- 25 Pentium III Xeon servers donated by Intel for CS 213
- 550 MHz with 256 MB memory.
- · Rack mounted in the 3rd floor Wean machine room.
- We'll be setting up your accounts this week.

Getting help with the cluster machines:

- See "Information about the Intel Cluster" on the 213 homepage.
- Please direct questions to the CS Help Desk (identify yourself as a CS 213 student),
 - -help@cs.cmu.edu
 - -x8-4231 (24x7)
 - -WeH 3613 9-5pm

Programs and Data (8)

Topics

- Bits operations, arithmetic, assembly language programs, representation of C control and data structures
- Includes aspects of of architecture and compilers

Assignments

- . L1: Manipulating bits
- L2: Defusing a binary bomb
- L3: Defusing a buffer bomb

class01b.ppt

9

CS 213 F'01

class01b.ppt

10

CS 213 F'01

The Memory Hierarchy (2)

Topics

- Memory technology, memory hierarchy, caches, disks, locality
- · Includes aspects of architecture and OS.

Assignments

• L4: Optimizing Code Performance

Performance (3)

Topics

- High level processor models, code optimization (control and data), measuring time on a computer
- Includes aspects of architecture, compilers, and OS

Assignments

• L4: Optimizing Code Performance

Linking and Exceptional Control Flow (3)

Topics

- · Object files, static and dynamic linking, libraries, loading
- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Assignments

. L5: Writing your own shell with job control

Virtual memory (4)

Topics

- · Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Assignments

• L6: Writing your own malloc package

class01b.ppt 13 CS 213 F'01

Lab Rationale

Each lab should have a well-defined goal such as solving a puzzle or winning a contest.

- · Defusing a binary bomb.
- · Winning a performance contest.

Doing a lab should result in new skills and concepts

- Bit Manipulation: computer arithmetic, digital logic.
- · Bombs: assembly language, using a debugger, understanding stack
- · Perf: profiling, measurement, performance debugging.
- Shell: understanding Unix process control and signals
- Malloc: understanding pointers and nasty memory bugs.
- · Proxy: network programming, server design

We try to use competition in a fun and healthy way.

- · Set a threshhold for full credit.
- Post intermediate results (anonymized) on Web page for glory!

I/O, Networking, and Concurrency (6)

Topics

- High level and low-level I/O, network programming, Internet services, Web servers
- concurrency, concurrent server design, threads, I/O multiplexing with select.
- · Includes aspects of networking, OS, and architecture.

Assignments

L7: Writing a Web proxy

class01b.ppt 14 CS 213 F'01

class01b.ppt 15 CS 213 F'01