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Course Theme

Abstraction is good, but don’t forget reality!
Courses to date emphasize abstraction

• Abstract data types
• Asy mptotic analysis

These abstractions have limits
• Especially in the presence of bugs
• Need to understand unde rly ing implementation s

Useful outcomes
• Become more effective prog rammers

– Able to find and eliminate bugs efficiently
– Able to tune program performance

• Prepare for later “systems” classes i n CS & ECE
– Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems
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Great Reality #1

Int’s  are not Integers, Float’s are not Reals

Examples
• Is x2 ≥ 0?

– Float’s: Yes!
– Int’s:

» 40000 * 40000  --> 1600000000

» 50000 * 50000  --> ??

• Is (x + y) + z  =  x + (y + z)?
– Unsigned & Signed Int’s: Yes!

– Float’s:
»  (1e20 + -1e20) + 3.14 --> 3.14

» 1e20 + (-1e20 + 3.14) --> ??
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Computer Arithmetic

Does not generate random values
• Arithmetic operations have importan t mathematical propertie s

Cannot assume “usual” properties
• Due to finiteness of rep resentations
• Integer operations sa tisfy “ring” properties

– Commutativity, associativity, distributivity
• Floating point operation s satisfy “ordering” properties

– Monotonicity, values of signs

Observation
• Need to understand w hich abstractions app ly in which c ontexts
• Important issues for c ompiler writers a nd serious applicatio n

programmers
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Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in a ssembly
• Compilers are much be tter & patient at this than you are

Understanding assembly key to machine-level
execution model
• Behavior of programs in presen ce of bugs

– High-level language model breaks down

• Tuning program performanc e
– Understanding sources of program inefficiency

• Implementing system software
– Compiler has machine code as target
– Operating systems must manage process state
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Assembly Code Example

Time Stamp Counter
• Special 64-bit regis ter in Intel-compatible machines
• Incremented every clock cycle
• Read with rdtsc instruction

Application
• Measure time requi red by procedure

– In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);
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Code to Read Counter

• Write small amount o f assembly code using GCC’s asm facility
• Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
   of the cycle counter.
*/
void access_counter(unsigned *hi, unsigned *lo)
{
    asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}



CS 213 F ‘01 –8–class01a.ppt

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{
    access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{
    unsigned ncyc_hi, ncyc_lo;
    unsigned hi, lo, borrow;
    /* Get cycle counter */
    access_counter(&ncyc_hi, &ncyc_lo);
    /* Do double precision subtraction */
    lo = ncyc_lo - cyc_lo;
    borrow = lo > ncyc_lo;
    hi = ncyc_hi - cyc_hi - borrow;
    return (double) hi * (1 << 30) * 4 + lo;
}
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Measuring Time

Trickier than it Might Look
• Many sources of variation

Example
• Sum integers from 1 to n
  n Cycles Cycles/n

100 961 9.61
1,000 8,407 8.41

1,000 8,426 8.43
10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37
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Great Reality #3

Memory Matters

Memory is not unbounded
• It must be allocate d and managed
• Many applications are memory dominated

Memory referencing bugs especially pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program

performance
• Adapting program to characteristi cs of memory sy stem can lead to

major speed improvemen ts
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Memory Referencing Bug Example

main ()
{
  long int a[2];
  double d = 3.14;
  a[2] = 1073741824; /* Out of bounds reference */
  printf("d = %.15g\n", d);
  exit(0);
}

main ()
{
  long int a[2];
  double d = 3.14;
  a[2] = 1073741824; /* Out of bounds reference */
  printf("d = %.15g\n", d);
  exit(0);
}

Alph a MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct res ult, but
implementing as s eparate function gives
segmentation fault.)
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Memory Referencing Errors

C and C++ do not provide any memory protection
• Out of bounds array references
• Invalid pointer values
• Abuses of malloc /free

Can lead to nasty bugs
• Whether or not bug has a ny effect depends o n system and compiler
• Action at a distance

– Corrupted object logically unrelated to one being accessed
– Effect of bug may be first observed long after it is generated

How can I deal with this?
• Program in Java, Lisp, or M L
• Understand wha t possible interactions may occur
• Use or develop tools to dete ct referencing errors

– E.g., Purify
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Memory Performance Example

Implementations of Matrix Multiplication
• Multiple wa ys to nest loops

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

}

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

}

/* jik */

for (j=0; j<n; j++) {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }

}

/* jik */

for (j=0; j<n; j++) {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }

}
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Blocked matmult perf (Alpha 21164)
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Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
• Easily see 10:1 performance range depending on how code written
• Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

Must understand system to optimize performance
• How programs co mpiled and execute d
• How to measu re program performance and identify bottlenecks
• How to improve performa nce without de stroy ing code modularity

and generality
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Great Reality #5

Computers do more than execute programs

They need to get data in and out
• I/O system critical to program reliability and performance

They communicate with each other over netw orks
• Many sy stem-level issues a rise in presence of n etwork

– Concurrent operations by autonomous processes
– Coping with unreliable media

– Cross platform compatibility
– Complex performance issues
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Role within Curriculum

Transition from Abstract to
Concrete!
• From: high-level language

model
• To: underlying implementation

CS 211
Fundamen tal

Structures

CS 213
Sys tems

CS 412
Operating
Sys tems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimizatio n

Data Structu res
Applic ations
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Archite cture

ECE 349
Embedded
Sys tems

Exec. Model
Memory Syst em
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Course Perspective

Most Systems Courses are Builder-Centric
• Computer Architecture

– Design pipelined processor in Verilog

• Operating Systems
– Implement large portions of operating system

• Compilers
– Write compiler for simple language

• Networking
– Implement and simulate network protocols



CS 213 F ‘01 –20–class01a.ppt

Course Perspective (Cont.)

Our Course is Programmer-Centric
• Purpose is to show how by knowing more about the underlying

system, one can be more effective as a programmer
• Enable you to

– Write programs that are more reliable and efficient
– Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
• Not just a course for ded icated hackers

– We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsew here


