
Introduction to
Computer Systems

Topics:
• Theme
• Five great realities of co mputer systems
• How this fits w ithin CS curriculum

CS 213 F ’01class01a.ppt

15-213
“The Class That Gives CMU Its Zip!”

Randal E. Bryant
August 28, 2001

CS 213 F ‘01 –2–class01a.ppt

Course Theme

Abstraction is good, but don’t forget reality!
Courses to date emphasize abstraction

• Abstract data types
• Asy mptotic analysis

These abstractions have limits
• Especially in the presence of bugs
• Need to understand unde rly ing implementation s

Useful outcomes
• Become more effective prog rammers

– Able to find and eliminate bugs efficiently
– Able to tune program performance

• Prepare for later “systems” classes i n CS & ECE
– Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems

CS 213 F ‘01 –3–class01a.ppt

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
• Is x2 ≥ 0?

– Float’s: Yes!
– Int’s:

» 40000 * 40000 --> 1600000000

» 50000 * 50000 --> ??

• Is (x + y) + z = x + (y + z)?
– Unsigned & Signed Int’s: Yes!

– Float’s:
» (1e20 + -1e20) + 3.14 --> 3.14

» 1e20 + (-1e20 + 3.14) --> ??

CS 213 F ‘01 –4–class01a.ppt

Computer Arithmetic

Does not generate random values
• Arithmetic operations have importan t mathematical propertie s

Cannot assume “usual” properties
• Due to finiteness of rep resentations
• Integer operations sa tisfy “ring” properties

– Commutativity, associativity, distributivity
• Floating point operation s satisfy “ordering” properties

– Monotonicity, values of signs

Observation
• Need to understand w hich abstractions app ly in which c ontexts
• Important issues for c ompiler writers a nd serious applicatio n

programmers

CS 213 F ‘01 –5–class01a.ppt

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in a ssembly
• Compilers are much be tter & patient at this than you are

Understanding assembly key to machine-level
execution model
• Behavior of programs in presen ce of bugs

– High-level language model breaks down

• Tuning program performanc e
– Understanding sources of program inefficiency

• Implementing system software
– Compiler has machine code as target
– Operating systems must manage process state

CS 213 F ‘01 –6–class01a.ppt

Assembly Code Example

Time Stamp Counter
• Special 64-bit regis ter in Intel-compatible machines
• Incremented every clock cycle
• Read with rdtsc instruction

Application
• Measure time requi red by procedure

– In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

CS 213 F ‘01 –7–class01a.ppt

Code to Read Counter

• Write small amount o f assembly code using GCC’s asm facility
• Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
 of the cycle counter.
*/
void access_counter(unsigned *hi, unsigned *lo)
{
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

CS 213 F ‘01 –8–class01a.ppt

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{
 access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{
 unsigned ncyc_hi, ncyc_lo;
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

CS 213 F ‘01 –9–class01a.ppt

Measuring Time

Trickier than it Might Look
• Many sources of variation

Example
• Sum integers from 1 to n
 n Cycles Cycles/n

100 961 9.61
1,000 8,407 8.41

1,000 8,426 8.43
10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

CS 213 F ‘01 –10–class01a.ppt

Great Reality #3

Memory Matters

Memory is not unbounded
• It must be allocate d and managed
• Many applications are memory dominated

Memory referencing bugs especially pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program

performance
• Adapting program to characteristi cs of memory sy stem can lead to

major speed improvemen ts

CS 213 F ‘01 –11–class01a.ppt

Memory Referencing Bug Example

main ()
{
 long int a[2];
 double d = 3.14;
 a[2] = 1073741824; /* Out of bounds reference */
 printf("d = %.15g\n", d);
 exit(0);
}

main ()
{
 long int a[2];
 double d = 3.14;
 a[2] = 1073741824; /* Out of bounds reference */
 printf("d = %.15g\n", d);
 exit(0);
}

Alph a MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct res ult, but
implementing as s eparate function gives
segmentation fault.)

CS 213 F ‘01 –12–class01a.ppt

Memory Referencing Errors

C and C++ do not provide any memory protection
• Out of bounds array references
• Invalid pointer values
• Abuses of malloc /free

Can lead to nasty bugs
• Whether or not bug has a ny effect depends o n system and compiler
• Action at a distance

– Corrupted object logically unrelated to one being accessed
– Effect of bug may be first observed long after it is generated

How can I deal with this?
• Program in Java, Lisp, or M L
• Understand wha t possible interactions may occur
• Use or develop tools to dete ct referencing errors

– E.g., Purify

CS 213 F ‘01 –13–class01a.ppt

Memory Performance Example

Implementations of Matrix Multiplication
• Multiple wa ys to nest loops

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

CS 213 F ‘01 –14–class01a.ppt

0

2 0

4 0

6 0

8 0

100

120

140

160

matrix size (n)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

CS 213 F ‘01 –15–class01a.ppt

Blocked matmult perf (Alpha 21164)

0

2 0

4 0

6 0

8 0

100

120

140

160

5 0 7 5 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

bijk
bikj

ijk

ikj

CS 213 F ‘01 –16–class01a.ppt

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
• Easily see 10:1 performance range depending on how code written
• Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

Must understand system to optimize performance
• How programs co mpiled and execute d
• How to measu re program performance and identify bottlenecks
• How to improve performa nce without de stroy ing code modularity

and generality

CS 213 F ‘01 –17–class01a.ppt

Great Reality #5

Computers do more than execute programs

They need to get data in and out
• I/O system critical to program reliability and performance

They communicate with each other over netw orks
• Many sy stem-level issues a rise in presence of n etwork

– Concurrent operations by autonomous processes
– Coping with unreliable media

– Cross platform compatibility
– Complex performance issues

CS 213 F ‘01 –18–class01a.ppt

Role within Curriculum

Transition from Abstract to
Concrete!
• From: high-level language

model
• To: underlying implementation

CS 211
Fundamen tal

Structures

CS 213
Sys tems

CS 412
Operating
Sys tems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimizatio n

Data Structu res
Applic ations
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Archite cture

ECE 349
Embedded
Sys tems

Exec. Model
Memory Syst em

CS 213 F ‘01 –19–class01a.ppt

Course Perspective

Most Systems Courses are Builder-Centric
• Computer Architecture

– Design pipelined processor in Verilog

• Operating Systems
– Implement large portions of operating system

• Compilers
– Write compiler for simple language

• Networking
– Implement and simulate network protocols

CS 213 F ‘01 –20–class01a.ppt

Course Perspective (Cont.)

Our Course is Programmer-Centric
• Purpose is to show how by knowing more about the underlying

system, one can be more effective as a programmer
• Enable you to

– Write programs that are more reliable and efficient
– Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
• Not just a course for ded icated hackers

– We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsew here

