15-213
“The Class That Gives CMU Its Zip!”

Bits and Bytes
Aug. 31, 2000

Topics
• Why bits?
• Representing information as bits
 – Binary/Hexadecimal
 – Byte representations
 » numbers
 » characters and strings
 » Instructions
• Bit-level manipulations
 – Boolean algebra
 – Expressing in C
Why Don’t Computers Use Base 10?

Base 10 Number Representation

• That’s why fingers are known as “digits”
• Natural representation for financial transactions
 – Floating point number cannot exactly represent $1.20
• Even carries through in scientific notation
 – \(1.5213 \times 10^4\)

Implementing Electronically

• Hard to store
 – ENIAC (First electronic computer) used 10 vacuum tubes / digit
• Hard to transmit
 – Need high precision to encode 10 signal levels on single wire
• Messy to implement digital logic functions
 – Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation

- Represent 15213\textsubscript{10} as 11101101101101\textsubscript{2}
- Represent 1.20\textsubscript{10} as 1.0011001100110011[0011]...\textsubscript{2}
- Represent 1.5213 \times 10^4 as 1.1101101101101\textsubscript{2} \times 2^{13}

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

- Straightforward implementation of arithmetic functions
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- Binary: 00000000_2 to 11111111_2
- Decimal: 0_{10} to 255_{10}
- Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B$_{16}$ in C as 0xFA1D37B
 » Or 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines are 32 bits (4 bytes)
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems are 64 bits (8 bytes)
 - Potentially address \(\approx 1.8 \times 10^{19} \) bytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Compaq Alpha</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

Issue
• How should bytes within multi-byte word be ordered in memory

Conventions
• Alphas, PC’s are “Little Endian” machines
 – Least significant byte has lowest address
• Sun’s, Mac’s are “Big Endian” machines
 – Least significant byte has highest address

Example
• Variable \(x \) has 4-byte representation \(0x01234567 \)
• Address given by \&x is \(0x100 \)

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100 0x101</td>
<td>01 23 45 67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x100 0x101 0x102</td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to \texttt{unsigned char *} creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

\textbf{Printf directives:}
- \texttt{%p}: Print pointer
- \texttt{%x}: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result:

```c
int a = 15213;
0x11ffffffcb8  0x6d
0x11ffffffcb9  0x3b
0x11ffffffcba  0x00
0x11ffffffcbb  0x00
```
Representing Integers

\[\text{int } A = 15213; \]
\[\text{int } B = -15213; \]
\[\text{long int } C = 15213; \]

<table>
<thead>
<tr>
<th>Decimal: 15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary: 0011 1011 0110 1101</td>
</tr>
<tr>
<td>Hex: 3 B 6 D</td>
</tr>
</tbody>
</table>

Two's complement representation (Covered next lecture)
Representing Pointers

int B = -15213;
int *P = &B;

Alpha Address
Hex: 1 F F F F F F C A 0
Binary: 0001 1111 1111 1111 1111 1111 1100 1010 0000

Sun Address
Hex: E F F F F F F B 2 C
Binary: 1110 1111 1111 1111 1111 1111 1011 0010 1100

Different compilers & machines assign different locations to objects
Representing Floats

Float F = 15213.0;

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0x30
 » Digit i has code $0x30+i$
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character!

\[
\text{char } S[6] = "15213";\]
Machine-Level Code Representation

Encode Program as Sequence of Instructions

• Each simple operation
 – Arithmetic operation
 – Read or write memory
 – Conditional branch

• Instructions encoded as bytes
 – Alpha’s, Sun’s, Mac’s use 4 byte instructions
 » Reduced Instruction Set Computer (RISC)
 – PC’s use variable length instructions
 » Complex Instruction Set Computer (CISC)

• Different instruction types and encodings for different machines
 – Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not binary compatible

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- $A \& B = 1$ when both $A=1$ and $B=1$

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- $A \mid B = 1$ when either $A=1$ or $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not
- $\sim A = 1$ when $A=0$

<table>
<thead>
<tr>
<th>\sim</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- $A \wedge B = 1$ when either $A=1$ or $B=1$, but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

• 1937 MIT Master’s Thesis
• Reason about networks of relay switches
 – Encode closed switch as 1, open switch as 0

\[A \land \neg B \lor \neg A \land B = A \oplus B \]
Properties of & and | Operations

Integer Arithmetic
- \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle\) forms a “ring”
- Addition is “sum” operation
- Multiplication is “product” operation
- \(-\) is additive inverse
- 0 is identity for sum
- 1 is identity for product

Boolean Algebra
- \(\langle \{0,1\}, |, &, \sim, 0, 1 \rangle\) forms a “Boolean algebra”
- Or is “sum” operation
- And is “product” operation
- \(~\) is “complement” operation (not additive inverse)
- 0 is identity for sum
- 1 is identity for product
Properties of Rings & Boolean Algebras

Boolean Algebra

- **Commutativity**
 - \(A \lor B = B \lor A \)
 - \(A \land B = B \land A \)

- **Associativity**
 - \((A \lor B) \lor C = A \lor (B \lor C) \)
 - \((A \land B) \land C = A \land (B \land C) \)

- **Product distributes over sum**
 - \(A \land (B \lor C) = (A \land B) \lor (A \land C) \)
 - \(A \lor (B + C) = A \lor B + B \lor C \)

- **Sum and product identities**
 - \(A \lor 0 = A \)
 - \(A \land 1 = A \)
 - \(A + 0 = A \)
 - \(A \times 1 = A \)

- **Zero is product annihilator**
 - \(A \land 0 = 0 \)
 - \(A \times 0 = 0 \)

- **Cancellation of negation**
 - \(\sim (\sim A) = A \)
 - \(- (\neg A) = A \)

Integer Ring

- \(A + B = B + A \)
- \(A \times B = B \times A \)
- \((A + B) + C = A + (B + C) \)
- \((A \times B) \times C = A \times (B \times C) \)
- \((A + B) + C = A + (B + C) \)
- \((A \times B) \times C = A \times (B \times C) \)
Ring ≠ Boolean Algebra

Boolean Algebra Integer Ring
• Boolean: *Sum distributes over product*
 \[A \land (B \lor C) = (A \land B) \lor (A \land C) \]
 \[A + (B \land C) \neq (A + B) \land (B + C) \]
• Boolean: *Idempotency*
 \[A \land A = A \]
 \[A + A \neq A \]
 “A is true” or “A is true” = “A is true”
 \[A \lor A = A \]
 \[A \land A \neq A \]
• Boolean: *Absorption*
 \[A \land (A \lor B) = A \]
 \[A + (A \land B) \neq A \]
 “A is true” or “A is true and B is true” = “A is true”
 \[A \lor (A \land B) = A \]
 \[A \land (A + B) \neq A \]
• Boolean: *Laws of Complements*
 \[A \land \neg A = 1 \]
 \[A + \neg A \neq 1 \]
 “A is true” or “A is false”
• Ring: *Every element has additive inverse*
 \[A \land \neg A \neq 0 \]
 \[A + \neg A = 0 \]
Properties of & and ^

Boolean Ring
- \(\langle \{0,1\}, ^, &, I, 0, 1 \rangle \)
- Identical to integers mod 2
- \(I \) is identity operation: \(I(A) = A \)

\[A ^ A = 0 \]

Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Boolean Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative sum</td>
<td>(A ^ B = B ^ A)</td>
</tr>
<tr>
<td>Commutative product</td>
<td>(A & B = B & A)</td>
</tr>
<tr>
<td>Associative sum</td>
<td>((A ^ B) ^ C = A ^ (B ^ C))</td>
</tr>
<tr>
<td>Associative product</td>
<td>((A & B) & C = A & (B & C))</td>
</tr>
<tr>
<td>Prod. over sum</td>
<td>(A & (B ^ C) = (A & B) ^ (B & C))</td>
</tr>
<tr>
<td>0 is sum identity</td>
<td>(A ^ 0 = A)</td>
</tr>
<tr>
<td>1 is prod. identity</td>
<td>(A & 1 = A)</td>
</tr>
<tr>
<td>0 is product annihilator</td>
<td>(A & 0 = 0)</td>
</tr>
<tr>
<td>Additive inverse</td>
<td>(A ^ A = 0)</td>
</tr>
</tbody>
</table>
Relations Between Operations

DeMorgan’s Laws

• Express & in terms of |, and vice-versa
 A & B = ~(~A | ~B)
 » A and B are true if and only if neither A nor B is false
 A | B = ~(~A & ~B)
 » A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or

A ^ B = (~A & B) | (A & ~B)
 » Exactly one of A and B is true
A ^ B = (A | B) & ~(A & B)
 » Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

01101001
01010101
01000001

& 01101001
| 01010101
^ 01111101
~ 01010101

Representation of Sets

- Width w bit vector represents subsets of \{0, ..., w–1\}
- $a_j = 1$ if $j \in A$
 - 01101001 \{ 0, 3, 5, 6 \}
 - 01010101 \{ 0, 2, 4, 6 \}

- & Intersection 01000001 \{ 0, 6 \}
- | Union 01111101 \{ 0, 2, 3, 4, 5, 6 \}
- ^ Symmetric difference 00111100 \{ 2, 3, 4, 5 \}
- ~ Complement 10101010 \{ 1, 3, 5, 7 \}
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

• Apply to any “integral” data type
 - long, int, short, char
• View arguments as bit vectors
• Arguments applied bit-wise

Examples (Char data type)

• ~0x41 --> 0xBE
 ~01000001₂ --> 10111110₂
• ~0x00 --> 0xFF
 ~00000000₂ --> 11111111₂

• 0x69 & 0x55 --> 0x41
 01101001₂ & 01010101₂ --> 01000001₂
• 0x69 | 0x55 --> 0x7D
 01101001₂ | 01010101₂ --> 01111101₂
Contrast: Logic Operations in C

Contrast to Logical Operators

- &&, ||, !

 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1

Examples (char data type)

- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01

- 0x69 && 0x55 --> 0x01
- 0x69 || 0x55 --> 0x01

class02.ppt
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00010000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00010000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \[A \oplus A = 0 \]

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th>Step</th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>(A^B)^B = A^(B^B) = A^0 = A</td>
</tr>
<tr>
<td>3</td>
<td>(A^B)^A = (B^A)^A = B^(A^A) = B^0 = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>