
Intel A rchitecture
Software Developer’s

Manual

Volume 3:
System Programming

NOTE
�

: The Intel Architecture Software Developer’s Manual consists of
th
�

ree volumes: Basic Ar
�

chitecture, Order� Number 243190; Instruction Set
Refer

�
ence, Order Number 243191; and the Sys

�
tem Programming Guide,

Order
�

Number 243192.
Pleas
�

e refer to all three volumes when evaluating your design needs.

1999

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
o� r otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and
Co

	
nditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied

wa
 rranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Intel’s Intel Architecture processors (e.g., Pentium®, Pentium® II, Pentium® III, and Pentium® Pro processors) may
c� ontain design defects or errors known as errata which may cause the product to deviate from published
s� pecifications. Current characterized errata are available on request.

C
	

ontact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

C
	

opies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or by visiting Intel©s literature center at http://www.intel.com.

COPYRIGHT © INTEL CORPORATION 1999
*THIRD-PARTY BRANDS AND NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

iii

T

ABLE OF CONTENTS

CHAPTER 1
ABOUT THIS MANUAL
1.1. P6 FAMILY PROCESSOR TERMINOLOGY . 1-1
1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL,

VOLUME 3: SYSTEM PROGRAMMING GUIDE. 1-1
1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL,

VOLUME 1: BASIC ARCHITECTURE 1-3
1.4. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL,

VOLUME 2: INSTRUCTION SET REFERENCE 1-5
1.5. NOTATIONAL CONVENTIONS. 1-5
1.5.1. Bit and Byte Order .1-6
1.5.2. Reserved Bits and Software Compatibility .1-6
1.5.3. Instruction Operands .1-7
1.5.4. Hexadecimal and Binary Numbers .1-7
1.5.5. Segmented Addressing .1-7
1.5.6. Exceptions. .1-8
1.6. RELATED LITERATURE . 1-9

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE 2-1
2.1.1. Global and Local Descriptor Tables .2-3
2.1.2. System Segments, Segment Descriptors, and Gates .2-3
2.1.3. Task-State Segments and Task Gates .2-4
2.1.4. Interrupt and Exception Handling .2-4
2.1.5. Memory Management .2-5
2.1.6. System Registers .2-5
2.1.7. Other System Resources .2-6
2.2. MODES OF OPERATION . 2-6
2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER 2-8
2.4. MEMORY-MANAGEMENT REGISTERS . 2-10
2.4.1. Global Descriptor Table Register (GDTR). .2-10
2.4.2. Local Descriptor Table Register (LDTR) .2-11
2.4.3. IDTR Interrupt Descriptor Table Register .2-11
2.4.4. Task Register (TR) .2-11
2.5. CONTROL REGISTERS . 2-12
2.5.1. CPUID Qualification of Control Register Flags .2-18
2.6. SYSTEM INSTRUCTION SUMMARY . 2-18
2.6.1. Loading and Storing System Registers .2-20
2.6.2. Verifying of Access Privileges .2-20
2.6.3. Loading and Storing Debug Registers. .2-21
2.6.4. Invalidating Caches and TLBs. .2-21
2.6.5. Controlling the Processor .2-22
2.6.6. Reading Performance-Monitoring and Time-Stamp Counters 2-22
2.6.7. Reading and Writing Model-Specific Registers .2-23
2.6.8. Loading and Storing the Streaming SIMD Extensions Control/Status Word2-23

TABLE OF CONTENTS

iv

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1. MEMORY MANAGEMENT OVERVIEW . 3-1
3.2. USING SEGMENTS. 3-3
3.2.1. Basic Flat Model .3-3
3.2.2. Protected Flat Model .3-4
3.2.3. Multisegment Model .3-5
3.2.4. Paging and Segmentation .3-6
3.3. PHYSICAL ADDRESS SPACE . 3-6
3.4. LOGICAL AND LINEAR ADDRESSES . 3-6
3.4.1. Segment Selectors .3-7
3.4.2. Segment Registers .3-8
3.4.3. Segment Descriptors .3-9
3.4.3.1. Code- and Data-Segment Descriptor Types. .3-13
3.5. SYSTEM DESCRIPTOR TYPES . 3-15
3.5.1. Segment Descriptor Tables. .3-16
3.6. PAGING (VIRTUAL MEMORY) . 3-18
3.6.1. Paging Options .3-19
3.6.2. Page Tables and Directories .3-20
3.6.2.1. Linear Address Translation (4-KByte Pages) .3-20
3.6.2.2. Linear Address Translation (4-MByte Pages). .3-21
3.6.2.3. Mixing 4-KByte and 4-MByte Pages. .3-22
3.6.3. Base Address of the Page Directory .3-23
3.6.4. Page-Directory and Page-Table Entries .3-23
3.6.5. Not Present Page-Directory and Page-Table Entries .3-28
3.7. TRANSLATION LOOKASIDE BUFFERS (TLBS) . 3-28
3.8. PHYSICAL ADDRESS EXTENSION . 3-29
3.8.1. Linear Address Translation With Extended

Addressing Enabled (4-KByte Pages) .3-30
3.8.2. Linear Address Translation With Extended Addressing Enabled

(2-MByte or 4-MByte Pages) .3-32
3.8.3. Accessing the Full Extended Physical Address Space With the

Extended Page-Table Structure .3-32
3.8.4. Page-Directory and Page-Table Entries With Extended Addressing Enabled . .3-33
3.9. 36-BIT PAGE SIZE EXTENSION (PSE) . 3-35
3.9.1. Description of the 36-bit PSE Feature .3-36
3.9.2. Fault Detection .3-39
3.10. MAPPING SEGMENTS TO PAGES . 3-40

CHAPTER 4
PROTECTION
4.1. ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION 4-2
4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND

PAGE-LEVEL PROTECTION 4-2
4.3. LIMIT CHECKING . 4-5
4.4. TYPE CHECKING . 4-6
4.4.1. Null Segment Selector Checking. .4-7
4.5. PRIVILEGE LEVELS . 4-8
4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS 4-9
4.6.1. Accessing Data in Code Segments .4-12
4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER 4-12

v

TABLE OF CONTENTS

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS 4-12

4.8.1. Direct Calls or Jumps to Code Segments . 4-13
4.8.1.1. Accessing Nonconforming Code Segments . 4-14
4.8.1.2. Accessing Conforming Code Segments . 4-15
4.8.2. Gate Descriptors . 4-16
4.8.3. Call Gates . 4-16
4.8.4. Accessing a Code Segment Through a Call Gate . 4-17
4.8.5. Stack Switching . 4-21
4.8.6. Returning from a Called Procedure . 4-23
4.9. PRIVILEGED INSTRUCTIONS . 4-25
4.10. POINTER VALIDATION . 4-25
4.10.1. Checking Access Rights (LAR Instruction) . 4-26
4.10.2. Checking Read/Write Rights (VERR and VERW Instructions) 4-27
4.10.3. Checking That the Pointer Offset Is Within Limits (LSL Instruction) 4-28
4.10.4. Checking Caller Access Privileges (ARPL Instruction) 4-28
4.10.5. Checking Alignment . 4-30
4.11. PAGE-LEVEL PROTECTION. 4-30
4.11.1. Page-Protection Flags . 4-31
4.11.2. Restricting Addressable Domain . 4-31
4.11.3. Page Type . 4-32
4.11.4. Combining Protection of Both Levels of Page Tables . 4-32
4.11.5. Overrides to Page Protection. 4-32
4.12. COMBINING PAGE AND SEGMENT PROTECTION . 4-33

CHAPTER 5
�

INTERRUPT AND EXCEPT
�

ION HANDLING
5.1. INTERRUPT AND EXCEPTION OVERVIEW . 5-1
5.1.1. Sources of Interrupts . 5-1
5.1.1.1. External Interrupts. 5-2
5.1.1.2. Maskable Hardware Interrupts . 5-2
5.1.1.3. Software-Generated Interrupts . 5-3
5.1.2. Sources of Exceptions . 5-3
5.1.2.1. Program-Error Exceptions . 5-3
5.1.2.2. Software-Generated Exceptions . 5-3
5.1.2.3. Machine-Check Exceptions . 5-4
5.2. EXCEPTION AND INTERRUPT VECTORS . 5-4
5.3. EXCEPTION CLASSIFICATIONS . 5-4
5.4. PROGRAM OR TASK RESTART. 5-7
5.5. NONMASKABLE INTERRUPT (NMI). 5-8
5.5.1. Handling Multiple NMIs . 5-8
5.6. ENABLING AND DISABLING INTERRUPTS. 5-8
5.6.1. Masking Maskable Hardware Interrupts . 5-8
5.6.2. Masking Instruction Breakpoints . 5-9
5.6.3. Masking Exceptions and Interrupts When Switching Stacks 5-10
5.7. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 5-10
5.8. INTERRUPT DESCRIPTOR TABLE (IDT) . 5-11
5.9. IDT DESCRIPTORS. 5-13
5.10. EXCEPTION AND INTERRUPT HANDLING . 5-15
5.10.1. Exception- or Interrupt-Handler Procedures . 5-15
5.10.1.1. Protection of Exception- and Interrupt-Handler Procedures 5-17
5.10.1.2. Flag Usage By Exception- or Interrupt-Handler Procedure. 5-18

TABLE OF CONTENTS

vi

5.10.2. Interrupt Tasks. .5-18
5.11. ERROR CODE. 5-20
5.12. EXCEPTION AND INTERRUPT REFERENCE . 5-21

CHAPTER 6
TASK MANAGEMENT
6.1. TASK MANAGEMENT OVERVIEW. 6-1
6.1.1. Task Structure .6-1
6.1.2. Task State .6-2
6.1.3. Executing a Task. .6-3
6.2. TASK MANAGEMENT DATA STRUCTURES. 6-4
6.2.1. Task-State Segment (TSS) .6-4
6.2.2. TSS Descriptor .6-6
6.2.3. Task Register .6-8
6.2.4. Task-Gate Descriptor .6-8
6.3. TASK SWITCHING . 6-10
6.4. TASK LINKING. 6-14
6.4.1. Use of Busy Flag To Prevent Recursive Task Switching 6-16
6.4.2. Modifying Task Linkages. .6-16
6.5. TASK ADDRESS SPACE . 6-17
6.5.1. Mapping Tasks to the Linear and Physical Address Spaces.6-17
6.5.2. Task Logical Address Space. .6-18
6.6. 16-BIT TASK-STATE SEGMENT (TSS) . 6-19

CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT
7.1. LOCKED ATOMIC OPERATIONS. 7-2
7.1.1. Guaranteed Atomic Operations. .7-2
7.1.2. Bus Locking .7-3
7.1.2.1. Automatic Locking .7-3
7.1.2.2. Software Controlled Bus Locking .7-4
7.1.3. Handling Self- and Cross-Modifying Code .7-5
7.1.4. Effects of a LOCK Operation on Internal Processor Caches.7-6
7.2. MEMORY ORDERING. 7-6
7.2.1. Memory Ordering in the Pentium®

�
 and Intel486™ Processors.7-7

7.2.2. Memory Ordering in the P6 Family Processors. .7-7
7.2.3. Out of Order Stores From String Operations in P6 Family Processors7-9
7.2.4. Strengthening or Weakening the Memory Ordering Model7-9
7.3. PROPAGATION OF PAGE TABLE ENTRY CHANGES TO

MULTIPLE PROCESSORS 7-11
7.4. SERIALIZING INSTRUCTIONS. 7-11
7.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC). 7-13
7.5.1. Presence of APIC .7-14
7.5.2. Enabling or Disabling the Local APIC .7-14
7.5.3. APIC Bus. .7-14
7.5.4. Valid Interrupts .7-15
7.5.5. Interrupt Sources. .7-15
7.5.6. Bus Arbitration Overview. .7-15
7.5.7. The Local APIC Block Diagram. .7-16
7.5.8. Relocation of the APIC Registers Base Address. .7-19
7.5.9. Interrupt Destination and APIC ID .7-20
7.5.9.1. Physical Destination Mode .7-20

vii

TABLE OF CONTENTS

7.5.9.2. Logical Destination Mode . 7-20
7.5.9.3. Flat Model . 7-21
7.5.9.4. Cluster Model . 7-21
7.5.9.5. Arbitration Priority . 7-22
7.5.10. Interrupt Distribution Mechanisms . 7-22
7.5.11. Local Vector Table. 7-23
7.5.12. Interprocessor and Self-Interrupts . 7-25
7.5.13. Interrupt Acceptance . 7-30
7.5.13.1. Interrupt Acceptance Decision Flow Chart . 7-30
7.5.13.2. Task Priority Register . 7-31
7.5.13.3. Processor Priority Register (PPR). 7-32
7.5.13.4. Arbitration Priority Register (APR) . 7-32
7.5.13.5. Spurious Interrupt . 7-33
7.5.13.6. End-Of-Interrupt (EOI) . 7-33
7.5.14. Local APIC State . 7-33
7.5.14.1. Spurious-Interrupt Vector Register . 7-34
7.5.14.2. Local APIC Initialization . 7-35
7.5.14.3. Local APIC State After Power-Up Reset. 7-35
7.5.14.4. Local APIC State After an INIT Reset. 7-35
7.5.14.5. Local APIC State After INIT-Deassert Message . 7-35
7.5.15. Local APIC Version Register . 7-36
7.5.16. APIC Bus Arbitration Mechanism and Protocol . 7-36
7.5.16.1. Bus Message Formats . 7-37
7.5.16.2. APIC Bus Status Cycles . 7-40
7.5.17. Error Handling . 7-42
7.5.18. Timer . 7-43
7.5.19. Software Visible Differences Between the Local APIC and the 82489DX. 7-44
7.5.20. Performance Related Differences between the Local APIC and the 82489DX . 7-45
7.5.21. New Features Incorporated in the Pentium®

�
 and P6 Family

Processors Local APIC . 7-45
7.6. DUAL-PROCESSOR (DP) INITIALIZATION PROTOCOL. 7-45
7.7. MULTIPLE-PROCESSOR (MP) INITIALIZATION PROTOCOL. 7-46
7.7.1. MP Initialization Protocol Requirements and Restrictions 7-46
7.7.2. MP Protocol Nomenclature . 7-47
7.7.3. Error Detection During the MP Initialization Protocol. 7-48
7.7.4. Error Handling During the MP Initialization Protocol . 7-48
7.7.5. MP Initialization Protocol Algorithm . 7-48

CHAPTER 8
�

PROCESSOR MANAGEMENT AND INITIALIZATION
8.1. INITIALIZATION OVERVIEW. 8-1
8.1.1. Processor State After Reset . 8-2
8.1.2. Processor Built-In Self-Test (BIST) . 8-2
8.1.3. Model and Stepping Information . 8-5
8.1.4. First Instruction Executed . 8-6
8.2. FPU INITIALIZATION . 8-6
8.2.1. Configuring the FPU Environment . 8-6
8.2.2. Setting the Processor for FPU Software Emulation. 8-8
8.3. CACHE ENABLING . 8-8
8.4. MODEL-SPECIFIC REGISTERS (MSRS) . 8-8
8.5. MEMORY TYPE RANGE REGISTERS (MTRRS) . 8-9
8.6. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION 8-10

TABLE OF CONTENTS

viii

8.6.1. Real-Address Mode IDT .8-10
8.6.2. NMI Interrupt Handling .8-10
8.7. SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION 8-11
8.7.1. Protected-Mode System Data Structures .8-12
8.7.2. Initializing Protected-Mode Exceptions and Interrupts .8-12
8.7.3. Initializing Paging. .8-12
8.7.4. Initializing Multitasking. .8-13
8.8. MODE SWITCHING. 8-13
8.8.1. Switching to Protected Mode. .8-14
8.8.2. Switching Back to Real-Address Mode .8-15
8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE. 8-16
8.9.1. Assembler Usage .8-19
8.9.2. STARTUP.ASM Listing .8-19
8.9.3. MAIN.ASM Source Code. .8-29
8.9.4. Supporting Files. .8-29
8.10. P6 FAMILY MICROCODE UPDATE FEATURE . 8-31
8.10.1. Microcode Update .8-32
8.10.2. Microcode Update Loader .8-35
8.10.2.1. Update Loading Procedure. .8-36
8.10.2.2. Hard Resets in Update Loading .8-36
8.10.2.3. Update in a Multiprocessor System .8-37
8.10.2.4. Update Loader Enhancements .8-37
8.10.3. Update Signature and Verification. .8-37
8.10.3.1. Determining the Signature .8-38
8.10.3.2. Authenticating the Update .8-38
8.10.4. P6 Family Processor Microcode Update Specifications 8-39
8.10.4.1. Responsibilities of the BIOS .8-39
8.10.4.2. Responsibilities of the Calling Program .8-40
8.10.4.3. Microcode Update Functions .8-43
8.10.4.4. INT 15h-based Interface. .8-43
8.10.4.5. Return Codes .8-50

CHAPTER 9
MEMORY CACHE CONTROL
9.1. INTERNAL CACHES, TLBS, AND BUFFERS . 9-1
9.2. CACHING TERMINOLOGY . 9-4
9.3. METHODS OF CACHING AVAILABLE . 9-5
9.3.1. Buffering of Write Combining Memory Locations .9-7
9.3.2. Choosing a Memory Type .9-8
9.4. CACHE CONTROL PROTOCOL. 9-9
9.5. CACHE CONTROL . 9-9
9.5.1. Precedence of Cache Controls (P6 Family Processor) .9-13
9.5.2. Preventing Caching .9-14
9.6. CACHE MANAGEMENT INSTRUCTIONS . 9-15
9.7. SELF-MODIFYING CODE . 9-15
9.8. IMPLICIT CACHING (P6 FAMILY PROCESSORS) . 9-16
9.9. EXPLICIT CACHING . 9-16
9.10. INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS) 9-17
9.11. WRITE BUFFER . 9-17
9.12. MEMORY TYPE RANGE REGISTERS (MTRRS) . 9-18
9.12.1. MTRR Feature Identification .9-20
9.12.2. Setting Memory Ranges with MTRRs .9-21

ix

TABLE OF CONTENTS

9.12.2.1. MTRRdefType Register . 9-21
9.12.2.2. Fixed Range MTRRs . 9-22
9.12.2.3. Variable Range MTRRs . 9-23
9.12.3. Example Base and Mask Calculations . 9-25
9.12.4. Range Size and Alignment Requirement. 9-26
9.12.4.1. MTRR Precedences . 9-26
9.12.5. MTRR Initialization. 9-27
9.12.6. Remapping Memory Types . 9-27
9.12.7. MTRR Maintenance Programming Interface . 9-28
9.12.7.1. MemTypeGet() Function . 9-28
9.12.7.2. MemTypeSet() Function . 9-29
9.12.8. Multiple-Processor Considerations . 9-31
9.12.9. Large Page Size Considerations . 9-32
9.13. PAGE ATTRIBUTE TABLE (PAT) . 9-33
9.13.1. Background . 9-33
9.13.2. Detecting Support for the PAT Feature . 9-34
9.13.3. Technical Description of the PAT . 9-34
9.13.4. Accessing the PAT . 9-35
9.13.5. Programming the PAT . 9-38

CHAPTER 1
�

0
MMX™ TECHNOLOGY SYSTEM PROGRAMMING
10.1. EMULATION OF THE MMX™ INSTRUCTION SET . 10-1
10.2. THE MMX™ STATE AND MMX™ REGISTER ALIASING 10-1
10.2.1. Effect of MMX™ and Floating-Point Instructions on the FPU Tag Word 10-3
10.3. SAVING AND RESTORING THE MMX™ STATE AND REGISTERS. 10-4
10.4. DESIGNING OPERATING SYSTEM TASK AND CONTEXT

SWITCHING FACILITIES 10-5
10.4.1. Using the TS Flag in Control Register CR0 to Control MMX™/FPU

State Saving . 10-5
10.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING

MMX™ INSTRUCTIONS 10-7
10.5.1. Effect of MMX™ Instructions on Pending Floating-Point Exceptions 10-8
10.6. DEBUGGING . 10-8

CHAPTER 1
�

1
STREAM
�

ING SIMD EXTENSIONS SYSTEM PROGRAMMING
11.1. EMULATION OF THE STREAMING SIMD EXTENSIONS 11-1
11.2. MMX™ STATE AND STREAMING SIMD EXTENSIONS 11-1
11.3. NEW PENTIUM® III PROCESSOR REGISTERS . 11-1
11.3.1. SIMD Floating-point Registers. 11-2
11.3.2. SIMD Floating-point Control/Status Registers . 11-2
11.3.2.1. Rounding Control Field . 11-3
11.3.2.2. Flush-to-Zero . 11-5
11.4. ENABLING STREAMING SIMD EXTENSIONS SUPPORT. 11-6
11.4.1. Enabling Streaming SIMD Extensions Support . 11-6
11.4.2. Device Not Available (DNA) Exceptions . 11-6
11.4.3. FXSAVE/FXRSTOR as a Replacement for FSAVE/FRSTOR. 11-7
11.4.4. Numeric Error flag and IGNNE# . 11-7
11.5. SAVING AND RESTORING THE STREAMING SIMD EXTENSIONS STATE . . . 11-7
11.6. DESIGNING OPERATING SYSTEM TASK AND CONTEXT

SWITCHING FACILITIES 11-8

TABLE OF CONTENTS

x

11.6.1. Using the TS Flag in Control Register CR0 to Control SIMD Floating-Point
State Saving .11-8

11.7. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING STREAMING SIMD
EXTENSIONS INSTRUCTIONS 11-11

11.7.1. SIMD Floating-point Non-Numeric Exceptions .11-12
11.7.2. SIMD Floating-point Numeric Exceptions .11-13
11.7.2.1. Exception Priority .11-13
11.7.2.2. Automatic Masked Exception Handling .11-14
11.7.2.3. Software Exception Handling - Unmasked Exceptions.11-15
11.7.2.4. Interaction with x87 numeric exceptions. .11-16
11.7.3. SIMD Floating-point Numeric Exception Conditions and

Masked/Unmasked Responses. .11-16
11.7.3.1. Invalid Operation Exception(#IA) .11-17
11.7.3.2. Division-By-Zero Exception (#Z). .11-18
11.7.3.3. Denormal Operand Exception (#D) .11-19
11.7.3.4. Numeric Overflow Exception (#O) .11-19
11.7.3.5. Numeric Underflow Exception (#U) .11-20
11.7.3.6. Inexact Result (Precision) Exception (#P) .11-21
11.7.4. Effect of Streaming SIMD Extensions Instructions on Pending

Floating-Point Exceptions .11-22
11.8. DEBUGGING . 11-22

CHAPTER 12
SYSTEM MANAGEMENT MODE (SMM)
12.1. SYSTEM MANAGEMENT MODE OVERVIEW . 12-1
12.2. SYSTEM MANAGEMENT INTERRUPT (SMI) . 12-2
12.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR

OPERATING MODES 12-2
12.3.1. Entering SMM .12-2
12.3.1.1. Exiting From SMM .12-3
12.4. SMRAM . 12-4
12.4.1. SMRAM State Save Map. .12-5
12.4.2. SMRAM Caching. .12-7
12.5. SMI HANDLER EXECUTION ENVIRONMENT . 12-8
12.6. EXCEPTIONS AND INTERRUPTS WITHIN SMM . 12-10
12.7. NMI HANDLING WHILE IN SMM. 12-11
12.8. SAVING THE FPU STATE WHILE IN SMM . 12-11
12.9. SMM REVISION IDENTIFIER . 12-12
12.10. AUTO HALT RESTART . 12-13
12.10.1. Executing the HLT Instruction in SMM .12-14
12.11. SMBASE RELOCATION . 12-14
12.11.1. Relocating SMRAM to an Address Above 1 MByte. .12-15
12.12. I/O INSTRUCTION RESTART . 12-15
12.12.1. Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used12-16
12.13. SMM MULTIPLE-PROCESSOR CONSIDERATIONS. 12-17

CHAPTER 13
MACHINE-CHECK ARCHITECTURE
13.1. MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE. 13-1
13.2. COMPATIBILITY WITH PENTIUM®

�
PROCESSOR . 13-1

13.3. MACHINE-CHECK MSRS . 13-2
13.3.1. Machine-Check Global Control MSRs. .13-2

xi

TABLE OF CONTENTS

13.3.1.1. MCG_CAP MSR . 13-2
13.3.1.2. MCG_STATUS MSR . 13-3
13.3.1.3. MCG_CTL MSR . 13-4
13.3.2. Error-Reporting Register Banks. 13-4
13.3.2.1. MCi_CTL MSR . 13-4
13.3.2.2. MCi_STATUS MSR . 13-5
13.3.2.3. MCi_ADDR MSR . 13-6
13.3.2.4. MCi_MISC MSR . 13-7
13.3.3. Mapping of the Pentium®

�
Processor Machine-Check Errors to the P6

Family Machine-Check Architecture . 13-7
13.4. MACHINE-CHECK AVAILABILITY. 13-7
13.5. MACHINE-CHECK INITIALIZATION . 13-7
13.6. INTERPRETING THE MCA ERROR CODES . 13-8
13.6.1. Simple Error Codes . 13-9
13.6.2. Compound Error Codes. 13-9
13.6.3. Interpreting the Machine-Check Error Codes for External Bus Errors. 13-11
13.7. GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE 13-14
13.7.1. Machine-Check Exception Handler . 13-14
13.7.2. Pentium®

�
Processor Machine-Check Exception Handling 13-16

13.7.3. Logging Correctable Machine-Check Errors . 13-16

CHAPTER 1
�

4
CO
�

DE OPTIMIZATION
14.1. CODE OPTIMIZATION GUIDELINES . 14-1
14.1.1. General Code Optimization Guidelines . 14-1
14.1.2. Guidelines for Optimizing MMX™ Code . 14-2
14.1.3. Guidelines for Optimizing Floating-Point Code . 14-2
14.1.4. Guidelines for Optimizing SIMD Floating-point Code . 14-3
14.2. BRANCH PREDICTION OPTIMIZATION. 14-4
14.2.1. Branch Prediction Rules . 14-4
14.2.2. Optimizing Branch Predictions in Code . 14-5
14.2.3. Eliminating and Reducing the Number of Branches . 14-5
14.3. REDUCING PARTIAL REGISTER STALLS ON P6 FAMILY PROCESSORS. . . . 14-7
14.4. ALIGNMENT RULES AND GUIDELINES . 14-9
14.4.1. Alignment Penalties . 14-9
14.4.2. Code Alignment . 14-9
14.4.3. Data Alignment . 14-9
14.4.3.1. Alignment of Data Structures and Arrays Greater Than 32 Bytes 14-10
14.4.3.2. Alignment of Data in Memory and on the Stack . 14-10
14.5. INSTRUCTION SCHEDULING OVERVIEW . 14-12
14.5.1. Instruction Pairing Guidelines . 14-12
14.5.1.1. General Pairing Rules. 14-12
14.5.1.2. Integer Pairing Rules . 14-13
14.5.1.3. MMX™ Instruction Pairing Guidelines . 14-17
14.5.2. Pipelining Guidelines . 14-18
14.5.2.1. MMX™ Instruction Pipelining Guidelines . 14-18
14.5.2.2. Floating-Point Pipelining Guidelines . 14-18
14.5.3. Scheduling Rules for P6 Family Processors . 14-22
14.6. ACCESSING MEMORY . 14-24
14.6.1. Using MMX™ Instructions That Access Memory. 14-24
14.6.2. Partial Memory Accesses With MMX™ Instructions . 14-25
14.6.3. Write Allocation Effects . 14-27

TABLE OF CONTENTS

xii

14.7. ADDRESSING MODES AND REGISTER USAGE . 14-29
14.8. INSTRUCTION LENGTH . 14-30
14.9. PREFIXED OPCODES . 14-31
14.10. INTEGER INSTRUCTION SELECTION AND OPTIMIZATIONS. 14-32

CHAPTER 15
DEBUGGING AND PERFORMANCE MONITORING
15.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES 15-1
15.2. DEBUG REGISTERS. 15-2
15.2.1. Debug Address Registers (DR0-DR3). .15-4
15.2.2. Debug Registers DR4 and DR5 .15-4
15.2.3. Debug Status Register (DR6) .15-4
15.2.4. Debug Control Register (DR7) .15-5
15.2.5. Breakpoint Field Recognition. .15-6
15.3. DEBUG EXCEPTIONS . 15-7
15.3.1. Debug Exception (#DB)—Interrupt Vector 1 .15-8
15.3.1.1. Instruction-Breakpoint Exception Condition .15-8
15.3.1.2. Data Memory and I/O Breakpoint Exception Conditions 15-9
15.3.1.3. General-Detect Exception Condition .15-10
15.3.1.4. Single-Step Exception Condition .15-10
15.3.1.5. Task-Switch Exception Condition .15-11
15.3.2. Breakpoint Exception (#BP)—Interrupt Vector 3 .15-11
15.4. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING 15-11
15.4.1. DebugCtlMSR Register .15-11
15.4.2. Last Branch and Last Exception MSRs. .15-13
15.4.3. Monitoring Branches, Exceptions, and Interrupts .15-13
15.4.4. Single-Stepping on Branches, Exceptions, and Interrupts 15-14
15.4.5. Initializing Last Branch or Last Exception/Interrupt Recording 15-14
15.5. TIME-STAMP COUNTER . 15-14
15.6. PERFORMANCE-MONITORING COUNTERS . 15-15
15.6.1. P6 Family Processor Performance-Monitoring Counters 15-15
15.6.1.1. PerfEvtSel0 and PerfEvtSel1 MSRs. .15-16
15.6.1.2. PerfCtr0 and PerfCtr1 MSRs .15-18
15.6.1.3. Starting and Stopping the Performance-Monitoring Counters 15-18
15.6.1.4. Event and Time-Stamp Monitoring Software .15-18
15.6.2. Monitoring Counter Overflow. .15-19
15.6.3. Pentium®

�
 Processor Performance-Monitoring Counters.15-20

15.6.3.1. Control and Event Select Register (CESR) .15-20
15.6.3.2. Use of the Performance-Monitoring Pins .15-21
15.6.3.3. Events Counted .15-22

CHAPTER 16
8086 EMULATION
16.1. REAL-ADDRESS MODE . 16-1
16.1.1. Address Translation in Real-Address Mode .16-3
16.1.2. Registers Supported in Real-Address Mode .16-4
16.1.3. Instructions Supported in Real-Address Mode .16-4
16.1.4. Interrupt and Exception Handling .16-6
16.2. VIRTUAL-8086 MODE . 16-9
16.2.1. Enabling Virtual-8086 Mode .16-9
16.2.2. Structure of a Virtual-8086 Task .16-9
16.2.3. Paging of Virtual-8086 Tasks .16-10

xiii

TABLE OF CONTENTS

16.2.4. Protection within a Virtual-8086 Task . 16-11
16.2.5. Entering Virtual-8086 Mode . 16-11
16.2.6. Leaving Virtual-8086 Mode . 16-13
16.2.7. Sensitive Instructions. 16-14
16.2.8. Virtual-8086 Mode I/O . 16-14
16.2.8.1. I/O-Port-Mapped I/O . 16-15
16.2.8.2. Memory-Mapped I/O . 16-15
16.2.8.3. Special I/O Buffers . 16-15
16.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE 16-15
16.3.1. Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode . 16-17
16.3.1.1. Handling an Interrupt or Exception Through a Protected-Mode Trap or

Interrupt Gate . 16-17
16.3.1.2. Handling an Interrupt or Exception With an 8086 Program Interrupt or

Exception Handler. 16-19
16.3.1.3. Handling an Interrupt or Exception Through a Task Gate 16-20
16.3.2. Class 2—Maskable Hardware Interrupt Handling in Virtual-8086

Mode Using the Virtual Interrupt Mechanism. 16-20
16.3.3. Class 3—Software Interrupt Handling in Virtual-8086 Mode 16-23
16.3.3.1. Method 1: Software Interrupt Handling . 16-25
16.3.3.2. Methods 2 and 3: Software Interrupt Handling . 16-26
16.3.3.3. Method 4: Software Interrupt Handling . 16-26
16.3.3.4. Method 5: Software Interrupt Handling . 16-26
16.3.3.5. Method 6: Software Interrupt Handling . 16-27
16.4. PROTECTED-MODE VIRTUAL INTERRUPTS . 16-27

CHAPTER 1
�

7
M
�

IXING 16-BIT AND 32-BIT CODE
17.1. DEFINING 16-BIT AND 32-BIT PROGRAM MODULES . 17-2
17.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT. 17-2
17.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS 17-3
17.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 17-4
17.4.1. Code-Segment Pointer Size . 17-5
17.4.2. Stack Management for Control Transfer . 17-5
17.4.2.1. Controlling the Operand-Size Attribute For a Call. 17-7
17.4.2.2. Passing Parameters With a Gate . 17-7
17.4.3. Interrupt Control Transfers. 17-8
17.4.4. Parameter Translation . 17-8
17.4.5. Writing Interface Procedures . 17-8

CHAPTER 1
�

8
INTEL ARCHITECTURE COMPATIBILITY
18.1. INTEL ARCHITECTURE FAMILIES AND CATEGORIES 18-1
18.2. RESERVED BITS. 18-1
18.3. ENABLING NEW FUNCTIONS AND MODES . 18-2
18.4. DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE . 18-2
18.5. MMX™ TECHNOLOGY . 18-3
18.6. STREAMING SIMD EXTENSIONS . 18-3
18.7. NEW INSTRUCTIONS IN THE PENTIUM®

�
 AND LATER INTEL

ARCHITECTURE PROCESSORS 18-3
18.7.1. Instructions Added Prior to the Pentium®

�
 Processor. 18-5

18.8. OBSOLETE INSTRUCTIONS . 18-5
18.9. UNDEFINED OPCODES . 18-6

TABLE OF CONTENTS

xiv

18.10. NEW FLAGS IN THE EFLAGS REGISTER. 18-6
18.10.1. Using EFLAGS Flags to Distinguish Between 32-Bit Intel

Architecture Processors .18-6
18.11. STACK OPERATIONS. 18-7
18.11.1. PUSH SP. .18-7
18.11.2. EFLAGS Pushed on the Stack .18-7
18.12. FPU . 18-7
18.12.1. Control Register CR0 Flags. .18-8
18.12.2. FPU Status Word. .18-8
18.12.2.1. Condition Code Flags (C0 through C3) .18-8
18.12.2.2. Stack Fault Flag .18-9
18.12.3. FPU Control Word .18-9
18.12.4. FPU Tag Word. .18-9
18.12.5. Data Types .18-10
18.12.5.1. NaNs. .18-10
18.12.5.2. Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 18-10
18.12.6. Floating-Point Exceptions .18-11
18.12.6.1. Denormal Operand Exception (#D) .18-11
18.12.6.2. Numeric Overflow Exception (#O) .18-11
18.12.6.3. Numeric Underflow Exception (#U) .18-12
18.12.6.4. Exception Precedence .18-12
18.12.6.5. CS and EIP For FPU Exceptions .18-12
18.12.6.6. FPU Error Signals. .18-12
18.12.6.7. Assertion of the FERR# Pin .18-13
18.12.6.8. Invalid Operation Exception On Denormals .18-13
18.12.6.9. Alignment Check Exceptions (#AC) .18-13
18.12.6.10. Segment Not Present Exception During FLDENV .18-14
18.12.6.11. Device Not Available Exception (#NM). .18-14
18.12.6.12. Coprocessor Segment Overrun Exception .18-14
18.12.6.13. General Protection Exception (#GP) .18-14
18.12.6.14. Floating-Point Error Exception (#MF) .18-14
18.12.7. Changes to Floating-Point Instructions .18-14
18.12.7.1. FDIV, FPREM, and FSQRT Instructions .18-15
18.12.7.2. FSCALE Instruction .18-15
18.12.7.3. FPREM1 Instruction .18-15
18.12.7.4. FPREM Instruction .18-15
18.12.7.5. FUCOM, FUCOMP, and FUCOMPP Instructions. .18-15
18.12.7.6. FPTAN Instruction .18-15
18.12.7.7. Stack Overflow .18-16
18.12.7.8. FSIN, FCOS, and FSINCOS Instructions .18-16
18.12.7.9. FPATAN Instruction .18-16
18.12.7.10. F2XM1 Instruction. .18-16
18.12.7.11. FLD Instruction .18-16
18.12.7.12. FXTRACT Instruction .18-17
18.12.7.13. Load Constant Instructions. .18-17
18.12.7.14. FSETPM Instruction .18-17
18.12.7.15. FXAM Instruction .18-17
18.12.7.16. FSAVE and FSTENV Instructions .18-18
18.12.8. Transcendental Instructions .18-18
18.12.9. Obsolete Instructions. .18-18
18.12.10. WAIT/FWAIT Prefix Differences .18-18
18.12.11. Operands Split Across Segments and/or Pages .18-18

xv

TABLE OF CONTENTS

18.12.12. FPU Instruction Synchronization . 18-19
18.13. SERIALIZING INSTRUCTIONS . 18-19
18.14. FPU AND MATH COPROCESSOR INITIALIZATION . 18-19
18.14.1. Intel 387 and Intel 287 Math Coprocessor Initialization 18-19
18.14.2. Intel486™ SX Processor and Intel 487 SX Math Coprocessor Initialization . . 18-20
18.15. CONTROL REGISTERS . 18-21
18.16. MEMORY MANAGEMENT FACILITIES. 18-23
18.16.1. New Memory Management Control Flags . 18-23
18.16.1.1. Physical Memory Addressing Extension. 18-23
18.16.1.2. Global Pages . 18-23
18.16.1.3. Larger Page Sizes . 18-23
18.16.2. CD and NW Cache Control Flags . 18-23
18.16.3. Descriptor Types and Contents . 18-24
18.16.4. Changes in Segment Descriptor Loads . 18-24
18.17. DEBUG FACILITIES. 18-24
18.17.1. Differences in Debug Register DR6. 18-24
18.17.2. Differences in Debug Register DR7. 18-24
18.17.3. Debug Registers DR4 and DR5. 18-25
18.17.4. Recognition of Breakpoints . 18-25
18.18. TEST REGISTERS. 18-25
18.19. EXCEPTIONS AND/OR EXCEPTION CONDITIONS . 18-25
18.19.1. Machine-Check Architecture . 18-27
18.19.2. Priority OF Exceptions . 18-27
18.20. INTERRUPTS. 18-27
18.20.1. Interrupt Propagation Delay. 18-27
18.20.2. NMI Interrupts . 18-28
18.20.3. IDT Limit . 18-28
18.21. TASK SWITCHING AND TSS . 18-28
18.21.1. P6 Family and Pentium®

�
 Processor TSS . 18-28

18.21.2. TSS Selector Writes . 18-28
18.21.3. Order of Reads/Writes to the TSS . 18-28
18.21.4. Using A 16-Bit TSS with 32-Bit Constructs . 18-29
18.21.5. Differences in I/O Map Base Addresses . 18-29
18.22. CACHE MANAGEMENT . 18-30
18.22.1. Self-Modifying Code with Cache Enabled . 18-31
18.23. PAGING . 18-31
18.23.1. Large Pages . 18-32
18.23.2. PCD and PWT Flags . 18-32
18.23.3. Enabling and Disabling Paging . 18-32
18.24. STACK OPERATIONS . 18-33
18.24.1. Selector Pushes and Pops . 18-33
18.24.2. Error Code Pushes . 18-33
18.24.3. Fault Handling Effects on the Stack. 18-33
18.24.4. Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate 18-34
18.25. MIXING 16- AND 32-BIT SEGMENTS . 18-34
18.26. SEGMENT AND ADDRESS WRAPAROUND. 18-35
18.26.1. Segment Wraparound . 18-35
18.27. WRITE BUFFERS AND MEMORY ORDERING . 18-36
18.28. BUS LOCKING . 18-37
18.29. BUS HOLD . 18-37
18.30. TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS. 18-37
18.31. MODEL-SPECIFIC EXTENSIONS TO THE INTEL ARCHITECTURE 18-38

TABLE OF CONTENTS

xvi

18.31.1. Model-Specific Registers. .18-38
18.31.2. RDMSR and WRMSR Instructions .18-38
18.31.3. Memory Type Range Registers. .18-39
18.31.4. Machine-Check Exception and Architecture .18-39
18.31.5. Performance-Monitoring Counters .18-40

APPENDIX A
PERFORMANCE-MONITORING EVENTS
A.1. P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS A-1
A.2. PENTIUM®

�
 PROCESSOR PERFORMANCE-MONITORING EVENTS A-12

APPENDIX B
MODEL-SPECIFIC REGISTERS

APPENDIX C
DUAL-PROCESSOR (DP) BOOTUP SEQUENCE EXAMPLE (SPECIFIC TO PENTIUM

®
�

PROCESSORS)
C.1. PRIMARY PROCESSOR’S SEQUENCE OF EVENTS . C-1
C.2. SECONDARY PROCESSOR’S SEQUENCE OF EVENTS FOLLOWING

RECEIPT OF START-UP IPI C-4

APPENDIX D
MULTIPLE-PROCESSOR (MP) BOOTUP SEQUENCE EXAMPLE (SPECIFIC TO P6 FAMILY
PROCESSORS)
D.1. BSP’S SEQUENCE OF EVENTS . D-1
D.2. AP’S SEQUENCE OF EVENTS FOLLOWING RECEIPT OF START-UP IPI D-3

APPENDIX E
PROGRAMMING THE LINT0 AND LINT1 INPUTS
E.1. CONSTANTS . E-1
E.2. LINT[0:1] PINS PROGRAMMING PROCEDURE . E-1

xvii

T

ABLE OF FIGURES

Figure 1-1. Bit and Byte Order .1-6
Figure 2-1. System-Level Registers and Data Structures. .2-2
Figure 2-2. Transitions Among the Processor’s Operating Modes2-7
Figure 2-3. System Flags in the EFLAGS Register. .2-8
Figure 2-4. Memory Management Registers. .2-10
Figure 2-5. Control Registers .2-12
Figure 3-1. Segmentation and Paging .3-2
Figure 3-2. Flat Model .3-4
Figure 3-3. Protected Flat Model. .3-4
Figure 3-4. Multisegment Model .3-5
Figure 3-5. Logical Address to Linear Address Translation .3-7
Figure 3-6. Segment Selector .3-8
Figure 3-7. Segment Registers .3-9
Figure 3-8. Segment Descriptor .3-11
Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear3-13
Figure 3-10. Global and Local Descriptor Tables .3-17
Figure 3-11. Pseudo-Descriptor Format .3-18
Figure 3-12. Linear Address Translation (4-KByte Pages) .3-21
Figure 3-13. Linear Address Translation (4-MByte Pages). .3-22
Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages

and 32-Bit Physical Addresses .3-24
Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses .3-25
Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page . . .3-28
Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled . . .3-30
Figure 3-18. Linear Address Translation With Extended Physical Addressing

Enabled (4-KByte Pages) .3-31
Figure 3-19. Linear Address Translation With Extended Physical Addressing

Enabled (2-MByte or 4-MByte Pages) .3-33
Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table

Entries for 4-KByte Pages and 36-Bit Extended Physical Addresses 3-34
Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for

2- or 4-MByte Pages and 36-Bit Extended Physical Addresses.3-35
Figure 3-22. PDE Format Differences between 36-bit and 32-bit addressing.3-38
Figure 3-23. Memory Management Convention That Assigns a Page Table to

Each Segment .3-40
Figure 4-1. Descriptor Fields Used for Protection .4-4
Figure 4-2. Protection Rings .4-8
Figure 4-3. Privilege Check for Data Access .4-10
Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels 4-11
Figure 4-5. Privilege Check for Control Transfer Without Using a Gate4-13
Figure 4-6. Examples of Accessing Conforming and Nonconforming Code

Segments From Various Privilege Levels. .4-14
Figure 4-7. Call-Gate Descriptor .4-17
Figure 4-8. Call-Gate Mechanism .4-18
Figure 4-9. Privilege Check for Control Transfer with Call Gate .4-19
Figure 4-10. Example of Accessing Call Gates At Various Privilege Levels.4-20
Figure 4-11. Stack Switching During an Interprivilege-Level Call .4-23
Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure 4-29
Figure 5-1. Relationship of the IDTR and IDT. .5-13

TABLE OF FI GURES

xviii

Figure 5-2. IDT Gate Descriptors .5-14
Figure 5-3. Interrupt Procedure Call .5-16
Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines . . .5-17
Figure 5-5. Interrupt Task Switch .5-19
Figure 5-6. Error Code .5-20
Figure 5-7. Page-Fault Error Code .5-45
Figure 6-1. Structure of a Task .6-2
Figure 6-2. 32-Bit Task-State Segment (TSS) .6-5
Figure 6-3. TSS Descriptor .6-7
Figure 6-4. Task Register .6-9
Figure 6-5. Task-Gate Descriptor .6-9
Figure 6-6. Task Gates Referencing the Same Task .6-11
Figure 6-7. Nested Tasks .6-15
Figure 6-8. Overlapping Linear-to-Physical Mappings .6-18
Figure 6-9. 16-Bit TSS Format .6-20
Figure 7-1. Example of Write Ordering in Multiple-Processor Systems7-8
Figure 7-2. I/O APIC and Local APICs in Multiple-Processor Systems 7-14
Figure 7-3. Local APIC Structure .7-17
Figure 7-4. APIC_BASE_MSR .7-19
Figure 7-5. Local APIC ID Register. .7-20
Figure 7-6. Logical Destination Register (LDR) .7-21
Figure 7-7. Destination Format Register (DFR) .7-21
Figure 7-8. Local Vector Table (LVT) .7-24
Figure 7-9. Interrupt Command Register (ICR). .7-26
Figure 7-10. IRR, ISR and TMR Registers .7-30
Figure 7-11. Interrupt Acceptance Flow Chart for the Local APIC7-31
Figure 7-12. Task Priority Register (TPR). .7-32
Figure 7-13. EOI Register .7-33
Figure 7-14. Spurious-Interrupt Vector Register (SVR) .7-34
Figure 7-15. Local APIC Version Register .7-36
Figure 7-16. Error Status Register (ESR) .7-42
Figure 7-17. Divide Configuration Register .7-43
Figure 7-18. Initial Count and Current Count Registers .7-44
Figure 7-19. SMP System. .7-49
Figure 8-1. Contents of CR0 Register after Reset .8-5
Figure 8-2. Processor Type and Signature in the EDX Register after Reset 8-5
Figure 8-3. Processor State After Reset .8-17
Figure 8-4. Constructing Temporary GDT and Switching to Protected Mode

(Lines 162-172 of List File) .8-26
Figure 8-5. Moving the GDT, IDT and TSS from ROM to RAM

(Lines 196-261 of List File) .8-27
Figure 8-6. Task Switching (Lines 282-296 of List File) .8-28
Figure 8-7. Integrating Processor Specific Updates .8-32
Figure 8-8. Format of the Microcode Update Data Block .8-35
Figure 8-9. Write Operation Flow Chart .8-47
Figure 9-1. Intel Architecture Caches .9-2
Figure 9-2. Cache-Control Mechanisms Available in the Intel Architecture Processors . .9-10
Figure 9-3. Mapping Physical Memory With MTRRs .9-20
Figure 9-4. MTRRcap Register .9-21
Figure 9-5. MTRRdefType Register .9-22
Figure 9-6. MTRRphysBasen and MTRRphysMaskn Variable-Range Register Pair9-24
Figure 9-7. Page Attribute Table Model Specific Register .9-34

xix

TABLE OF FIGURES

Figure 9-8. Page Attribute Table Index Scheme for Paging Hierarchy 9-36
Figure 10-1. Mapping of MMX™ Registers to Floating-Point Registers 10-2
Figure 10-2. Example of MMX™/FPU State Saving During an

Operating System-Controlled Task Switch . 10-6
Figure 10-3. Mapping of MMX™ Registers to Floating-Point (FP) Registers 10-9
Figure 11-1. Streaming SIMD Extensions Control/Status Register Format. 11-3
Figure 11-2. Example of SIMD Floating-Point State Saving During an

Operating System-Controlled Task Switch . 11-9
Figure 12-1. SMRAM Usage . 12-5
Figure 12-2. SMM Revision Identifier . 12-13
Figure 12-3. Auto HALT Restart Field . 12-13
Figure 12-4. SMBASE Relocation Field . 12-15
Figure 12-5. I/O Instruction Restart Field . 12-16
Figure 13-1. Machine-Check MSRs . 13-2
Figure 13-2. MCG_CAP Register . 13-3
Figure 13-3. MCG_STATUS Register . 13-3
Figure 13-4. MCi_CTL Register . 13-4
Figure 13-5. MCi_STATUS Register . 13-5
Figure 13-6. Machine-Check Bank Address Register . 13-6
Figure 14-1. Stack and Memory Layout of Static Variables . 14-11
Figure 14-2. Pipeline Example of AGI Stall . 14-29
Figure 15-1. Debug Registers . 15-3
Figure 15-2. DebugCtlMSR Register. 15-12
Figure 15-3. PerfEvtSel0 and PerfEvtSel1 MSRs . 15-17
Figure 15-4. CESR MSR (Pentium®

�
 Processor Only) . 15-21

Figure 16-1. Real-Address Mode Address Translation . 16-4
Figure 16-2. Interrupt Vector Table in Real-Address Mode. 16-7
Figure 16-3. Entering and Leaving Virtual-8086 Mode . 16-12
Figure 16-4. Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode . 16-18
Figure 16-5. Software Interrupt Redirection Bit Map in TSS . 16-25
Figure 17-1. Stack after Far 16- and 32-Bit Calls . 17-6
Figure 18-1. I/O Map Base Address Differences. 18-30

TABLE OF FI GURES

xx

xxi

T

ABLE OF TABL ES

Table 2-1. Action Taken for Combinations of EM, MP, TS, CR4.OSFXSR,
and CPUID.XMM .2-15

Table 2-2. Summary of System Instructions .2-19
Table 3-1. Code- and Data-Segment Types .3-14
Table 3-2. System-Segment and Gate-Descriptor Types .3-16
Table 3-3. Page Sizes and Physical Address Sizes .3-20
Table 3-4. Paging Modes and Physical Address Size .3-37
Table 4-1. Privilege Check Rules for Call Gates .4-19
Table 4-2. Combined Page-Directory and Page-Table Protection.4-33
Table 5-1. Protected-Mode Exceptions and Interrupts .5-6
Table 5-2. SIMD Floating-Point Exceptions Priority. .5-11
Table 5-3. Priority Among Simultaneous Exceptions and Interrupts5-12
Table 5-4. Interrupt and Exception Classes. .5-32
Table 5-5. Conditions for Generating a Double Fault .5-33
Table 5-6. Invalid TSS Conditions .5-35
Table 5-7. Alignment Requirements by Data Type .5-50
Table 6-1. Exception Conditions Checked During a Task Switch6-13
Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,

and TS Flag .6-15
Table 7-1. Local APIC Register Address Map .7-18
Table 7-2. Valid Combinations for the APIC Interrupt Command Register7-29
Table 7-3. EOI Message (14 Cycles) .7-37
Table 7-4. Short Message (21 Cycles) .7-38
Table 7-5. Nonfocused Lowest Priority Message (34 Cycles) .7-39
Table 7-6. APIC Bus Status Cycles Interpretation .7-40
Table 7-7. Types of Boot Phase IPIs .7-47
Table 7-8. Boot Phase IPI Message Format .7-47
Table 8-1. 32-Bit Intel Architecture Processor States Following Power-up,

Reset, or INIT .8-3
Table 8-2. Recommended Settings of EM and MP Flags on Intel

Architecture Processors .8-7
Table 8-3. Software Emulation Settings of EM, MP, and NE Flags8-8
Table 8-4. Main Initialization Steps in STARTUP.ASM Source Listing8-18
Table 8-5. Relationship Between BLD Item and ASM Source File8-31
Table 8-6. P6 Family Processor MSR Register Components .8-33
Table 8-7. Microcode Update Encoding Format .8-34
Table 8-8. Microcode Update Functions .8-43
Table 8-9. Parameters for the Presence Test .8-44
Table 8-10. Parameters for the Write Update Data Function. .8-45
Table 8-11. Parameters for the Control Update Sub-function .8-48
Table 8-12. Mnemonic Values .8-48
Table 8-13. Parameters for the Read Microcode Update Data Function.8-49
Table 8-14. Return Code Definitions .8-50
Table 9-1. Characteristics of the Caches, TLBs, and Write Buffer in

Intel Architecture Processors .9-3
Table 9-2. Methods of Caching Available in P6 Family, Pentium®

�
,

and Intel486™ Processors .9-6
Table 9-3. MESI Cache Line States. .9-9
Table 9-4. Cache Operating Modes. .9-11

TABLE OF TABLES

xxii

Table 9-5. Effective Memory Type Depending on MTRR, PCD, and PWT Settings9-14
Table 9-6. MTRR Memory Types and Their Properties .9-19
Table 9-7. Address Mapping for Fixed-Range MTRRs .9-23
Table 9-8. PAT Indexing and Values After Reset .9-35
Table 9-9. Effective Memory Type Depending on MTRRs and PAT9-37
Table 9-10. PAT Memory Types and Their Properties .9-38
Table 10-1. Effects of MMX™ Instructions on FPU State .10-3
Table 10-2. Effect of the MMX™ and Floating-Point Instructions on the

FPU Tag Word .10-3
Table 11-1. SIMD Floating-point Register Set .11-2
Table 11-2. Rounding Control Field (RC) .11-4
Table 11-3. Rounding of Positive Numbers Greater than the

Maximum Positive Finite Value. .11-5
Table 11-4. Rounding of Negative Numbers Smaller than the

Maximum Negative Finite Value. .11-5
Table 11-5. CPUID Bits for Streaming SIMD Extensions Support11-6
Table 11-6. CR4 Bits for Streaming SIMD Extensions Support .11-6
Table 11-7. Streaming SIMD Extensions Faults .11-12
Table 11-8. Invalid Arithmetic Operations and the Masked Responses to Them11-18
Table 11-9. Masked Responses to Numeric Overflow .11-20
Table 12-1. SMRAM State Save Map .12-5
Table 12-2. Processor Register Initialization in SMM .12-9
Table 12-3. Auto HALT Restart Flag Values .12-14
Table 12-4. I/O Instruction Restart Field Values .12-16
Table 13-1. Simple Error Codes .13-9
Table 13-2. General Forms of Compound Error Codes. .13-9
Table 13-3. Encoding for TT (Transaction Type) Sub-Field. .13-10
Table 13-4. Level Encoding for LL (Memory Hierarchy Level) Sub-Field 13-10
Table 13-5. Encoding of Request (RRRR) Sub-Field .13-10
Table 13-6. Encodings of PP, T, and II Sub-Fields .13-11
Table 13-7. Encoding of the MCi_STATUS Register for External Bus Errors 13-11
Table 14-1. Small and Large General-Purpose Register Pairs .14-7
Table 14-2. Pairable Integer Instructions. .14-14
Table 15-1. Breakpointing Examples. .15-7
Table 15-2. Debug Exception Conditions .15-8
Table 16-1. Real-Address Mode Exceptions and Interrupts .16-8
Table 16-2. Software Interrupt Handling Methods While in Virtual-8086 Mode.16-24
Table 17-1. Characteristics of 16-Bit and 32-Bit Program Modules.17-1
Table 18-1. New Instructions in the Pentium® and Later Intel Architecture Processors . .18-3
Table 18-1. Recommended Values of the FP Related Bits for Intel486™ SX

Microprocessor/Intel 487 SX Math Coprocessor System18-20
Table 18-2. EM and MP Flag Interpretation. .18-20
Table A-1. Events That Can Be Counted with the P6 Family Performance-

Monitoring Counters . A-2
Table A-2. Events That Can Be Counted with the Pentium®

�
 Processor Performance-

Monitoring Counters . A-12
Table B-1. Model-Specific Registers (MSRs) . B-1

1
About This Manual

1-1

CHAPTER 1
ABOUT THIS MANUAL

The
�

I
�
ntel Architecture Software Developer’s Manual, Volume 2: In

�
struction Set Reference

(Order
�

 Number 243191) is part of a three-volume set that describes the architecture and
pro� gramming environment of all Intel Architecture processors. The other two volumes in this
s� et are:

• The Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture (Ord
�

er
Numb

�
er 243190).

• Th
�

e In
�

tel Architecture Software Developer’s Manual, Volume 3: Sys
�

tem Programing Guide
(Ord

�
er Number 243192).

The
�

In
�

tel Architecture Software Developer’s Manual, Volume 1, describes the basic architecture
and � programming environment of an Intel Architecture processor; the In

�
tel Architecture Soft-

w� are Developer’s Manual, Volume 2, describes the instructions set of the processor and the
opco� de structure. These two volumes are aimed at application programmers who are writing
pro� grams to run under existing operating systems or executives. The Intel Ar

�
chitecture Software

Developer’s Manual, Volume 3, d� escribes the operating-system support environment of an Intel
Archi

�
tecture processor, including memory management, protection, task management, interrupt

and � exception handling, and system management mode. It also provides Intel Architecture
p� rocessor compatibility information. This volume is aimed at operating-system and BIOS
des

�
igners and programmers.

1.1. P6 FAMILY PROCESSOR TERMINOLOGY

This manual includes information pertaining primaril y to the 32-bit Intel Architecture proces-
s� ors, which include the Intel386™, Intel486™, and Pentium®

 processors, and the P6 family

pro� cessors. The P6 family processors are those Intel Architecture processors based on the P6
family microarchitecture. This family includes the Pentium®

!
 Pro, Pentium®

!
 II, Pentium®

"
 III

pro� cessor, and any future processors based on the P6 family microarchitecture.

1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3: SYSTEM
PROGRAMMING GUIDE

The co
�

ntents of this manual are as follows:

Ch
#

apter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tect$ ure Software Developer’s Manual. It also describes the notational conventions in these
manu% als and lists related Intel manuals and documentation of interest to programmers and hard-
ware des& igners.

1-2

ABOUT THIS MANUAL

Chapter
#

2 — System Architecture Overview. Describes the modes of operation of an Intel
Architectur
�

e processor and the mechanisms provided in the Intel Architecture to support oper-
ating � systems and executives, including the system-oriented registers and data structures and the
syst� em-oriented instructions. The steps necessary for switching between real-address and
pr� otected modes are also identified.

Chapter 3
#

 — Protected-Mode Memory Management. Describes the data structures, registers,
and� instructions that support segmentation and paging and explains how they can be used to
implemen
'

t a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4
#

 — Protection. Describes the support for page and segment protection provided in
the
�

Intel Architecture. This chapter also explains the implementation of privilege rules, stack
s� witching, pointer validation, user and supervisor modes.

Chapter 5 —
#

 Interrupt and Exception Handling. Describes the basic interrupt mechanisms
d
�
efined in the Intel Architecture, shows how interrupts and exceptions relate to protection, and

describes h
�

ow the architecture handles each exception type. Reference information for each
In
(

tel Architecture exception is given at the end of this chapter.

Ch
#

apter 6 — Task Management. Describes the mechanisms the Intel Architecture provides to
su� pport multitasking and inter-task protection.

Chapter 7
#

 — Multiple-Pr ocessor Management. Describes the instructions and flags that
s� upport multiple processors with shared memory, memory ordering, and the advanced program-
mab% le interrupt controller (APIC).

Chapter 8
#

 — Processor M anagement and Init iali zation. Defines the state of an Intel Archi-
tectu
�

re processor and its floating-point and SIMD floating-point units after reset initiali zation.
This chap
�

ter also explains how to set up an Intel Architecture processor for real-address mode
op� eration and protected- mode operation, and how to switch between modes.

Chapter 9 — M
#

emory Cache Control. Describes the general concept of caching and the
cachin) g mechanisms supported by the Intel Architecture. This chapter also describes the
memo% ry type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. MTRRs were introduced into the Intel Architecture with the Pentium®

!
 Pro

pr� ocessor. It also presents information on using the new cache control and memory streaming
in
'

structions introduced with the Pentium®
"
 III processor.

Chapter
#

10 — MMX™ Technology System Programming. Describes those aspects of the
In
(

tel MMX™ technology that must be handled and considered at the system programming level,
includ
'

ing task switching, exception handling, and compatibil ity with existing system environ-
ments. The MMX™ technology was introduced into the Intel Architecture with the Pentium®

!

pr� ocessor.

Cha
#

pter 11 — Streaming SIMD Extensions System Programming. Describes those aspects
of� Streaming SIMD Extensions that must be handled and considered at the system programming
lev
*

el, including task switching, exception handling, and compatibility with existing system
en+ vironments. Streaming SIMD Extensions were introduced into the Intel Architecture with the
Pentium®

!
 processor.

C
#

hapter 12
,
 — System Management Mode (SMM) . Describes the Intel Architecture’s system

man% agement mode (SMM), which can be used to implement power management functions.

1-3

ABOUT THIS MANUAL

Ch
#

apter 13 — Machine-Check Architecture. Describes the machine-check architecture,
wh& ich was introduced into the Intel Architecture with the Pentium®

!
 processor.

Ch
#

apter 14 — Code Optimization. Discusses general optimization techniques for program-
ming an Intel Architecture processor.

Ch
#

apter 15 — Debugging and Performance Monitoring. Describes the debugging registers
and � other debug mechanism provided in the Intel Architecture. This chapter also describes the
t
�
ime-stamp counter and the performance-monitoring counters.

Cha
#

pter 16 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the Intel
Architecture.
�

Cha
#

pter 17 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
m% odules within the same program or task.

Ch
#

apter 18 — Intel Ar chitecture Compatibility. Describes the programming differences
b
-
etween the Intel 286, Intel386™, Intel486™, Pentium®

!
, a� nd P6 family processors. The differ-

ences amo+ ng the 32-bit Intel Architecture processors (the Intel386™, Intel486™, Pentium®
!
, and�

P
�

6 family processors) are described throughout the three volumes of the In
�

tel Architecture Soft-
w� are Developer’s Manual, as� relevant to particular features of the architecture. This chapter
p� rovides a collection of all the relevant compatibility information for all Intel Architecture
pro� cessors and also describes the basic differences with respect to the 16-bit Intel Architecture
pro� cessors (the Intel 8086 and Intel 286 processors).

Ap
.

pendix A — Performance-Monitoring Events. List
/

s the events that can be counted with
the p
�

erformance-monitoring counters and the codes used to select these events. Both Pentium®
!

pro� cessor and P6 family processor events are described.

Ap
.

pendix B — Model-Specific Registers (MSRs). Lis
/

ts the MSRs available in the Pentium®
!

and � P6 family processors and their functions.

Appendix C — Dual-Processor (DP) Bootup Sequence Example (Specific to Pentium®
!

Processors). Gi
0

ves an example of how to use the DP protocol to boot two Pentium®
!
 processors

(a p
�

rimary processor and a secondary processor) in a DP system and initialize their APICs.

Appendix D — Multip le-Processor (MP) Bootup Sequence Example (Specific to P6 Family
Pr
1

ocessors). Gi
0

ves an example of how to use of the MP protocol to boot two P6 family proces-
s� ors in a MP system and initialize their APICs.

Appendix E — Programming the L INT0 and L INT1 Inputs. Gives an examp
0

le of how to
pro� gram the LINT0 and LINT1 pins for specific interrupt vectors.

1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 1: BASIC
AR

2
CHITECTURE

The co
�

ntents of the In
�

tel Architecture Software Developer’s Manual, Volume 1 are as follows:

Ch
#

apter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tect$ ure Software Developer’s Manual. It also describes the notational conventions in these

1-4

ABOUT THIS MANUAL

manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware d& esigners.

Chapter 2
#

 — In
3

troduction to the Intel Architecture. Introduces the Intel Architecture and the
families of Intel processors that are based on this architecture. It also gives an overview of the
com) mon features found in these processors and brief history of the Intel Architecture.

Chapter 3 —
#

 Basic Execution Environment. Int
(

roduces the models of memory organization
and� describes the register set used by applications.

Chapter 4
#

 — Procedure Calls, Interrupts , and Exceptions. Describes the procedure stack
and� the mechanisms provided for making procedure calls and for servicing interrupts and
excep+ tions.

Cha
#

pter 5 — Data Types and Addressing Modes. Describes the data types and addressing
mo% des recognized by the processor.

Chapter 6 — I
#

nstruction Set Summary. Gives an overview of all the Intel Architecture
instruction
'

s except those executed by the processor’s floating-point unit. The instructions are
pr� esented in functionally related groups.

Ch
#

apter 7 — Floating-Point Unit. Describes the Intel Architecture floating-point unit,
i
'
ncluding the floating-point registers and data types; gives an overview of the floating-point
in
'

struction set; and describes the processor’s floating-point exception conditions.

Chapter 8
#

 — Programming with the Intel M MX™ Technology. Describes the Intel MMX™
t
�
echnology, including MMX ™ registers and data types, and gives an overview of the MMX™
in
'

struction set.

Ch
#

apter 9 — Programming with the Streaming SIMD Extensions. Describes the Intel
S
4

treaming SIMD Extensions, including the registers and data types.

C
#

hapter 10— Input/Output. Describes
5

the processor’s I/O architecture, including I/O port
add� ressing, the I/O instructions, and the I/O protection mechanism.

Chapter
#

11 — Processor Identification and Feature Determination. Descr
5

ibes how to deter-
mine % the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference. S
4

ummarizes how the Intel Architecture instruc-
tions af
�

fect the flags in the EFLAGS register.

App
.

endix B — EFLAGS Condit ion Codes. Su
4

mmarizes how the conditional jump, move, and
b
-
yte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in

the EFLAGS regis
�

ter.

App
.

endix C — Floating-Point Exceptions Summary. Su
4

mmarizes the exceptions that can be
raised by floating-point instructions.

App
.

endix D — SIMD Floating-Point Exceptions Summary. Pro
�

vides the Streaming SIMD
Exten
6

sions mnemonics, and the exceptions that each instruction can cause.

Appendix E — Guidelines for Wr iting FPU Exception Handlers. Describes how to design
an� d write MS-DOS* compatible exception handling facilities for FPU and SIMD floating-point
excep+ tions, including both software and hardware requirements and assembly-language code

1-5

ABOUT THIS MANUAL

examp+ les. This appendix also describes general techniques for writing robust FPU exception
hand

7
lers.

Ap
.

pendix F — Guidelines for Wr iting SIMD-FP Exception Handlers. Prov
�

ides guidelines
for the Streaming SIMD Extensions instructions that can generate numeric (floating-point)
exceptio+ ns, and gives an overview of the necessary support for handling such exceptions.

1.4. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET
REFERENCE

The co
�

ntents of the In
�

tel Architecture Software Developer’s Manual, Volume 2, ar� e as follows:

Ch
#

apter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tect$ ure Software Developer’s Manual. It also describes the notational conventions in these
manu% als and lists related Intel manuals and documentation of interest to programmers and hard-
ware des& igners.

Ch
#

apter 2 — Instruction Format. Describes the m
5

achine-level instruction format used for all
Intel Ar

(
chitecture instructions and gives the allowable encodings of prefixes, the operand-iden-

ti
�

fier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement
and im� mediate bytes.

Ch
#

apter 3 — Instruction Set Reference. Des
5

cribes each of the Intel Architecture instructions
in detail, including an algorithmic description of operations, the effect on flags, the effect of
oper� and- and address-size attributes, and the exceptions that may be generated. The instructions
are ar� ranged in alphabetical order. The FPU, MMX™ T� echnology instructions, and Streaming
S

4
IMD Extensions are included in this chapter.

Ap
.

pendix A — Opcode Map. G
0

ives an opcode map for the Intel Architecture instruction set.

Ap
.

pendix B — Instruction Formats and Encodings. Gives th
0

e binary encoding of each form
of each � Intel Architecture instruction.

App
.

endix C — Compiler Intri nsics and Functional Equivalents. Giv
0

es the Intel C/C++
comp) il er intrinsics and functional equivalents for the MMX™ Technology instructions and
St

4
reaming SIMD Extensions.

1.5. NOTATIONAL CONVENTIONS

Th
�

is manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read

�
.

1-6

ABOUT THIS MANUAL

1.5.1. Bit and B yte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figu
8

re; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Archi-
tectu
�

re processors are “little endian” machines; this means the bytes of a word are numbered
st� arting from the least significant byte. Figure 1-1 illustrates theseconventions.

1.5.2. Reserved Bits and Sof tware Compat ibi lit y

In many register and memory layout descriptions, certain bits are marked as reserved. When
b
-
its are marked as reserved, it is essential for compatibili ty with future processors that software

treat these b
�

its as having a future, though unknown, effect. The behavior of reserved bits should
be reg
-

arded as not only undefined, but unpredictable. Software should follow these guidelines
in
'

 dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
co) ntain such bits. Mask out the reserved bits before testing.

• Do
5

not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• W
9

hen loading a register, always load the reserved bits with the values indicated in the
d

�
ocumentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel Archi-
t

�
ecture registers. Depending upon the values of reserved register bits will
make software dependent upon the unspecified manner in which the
p� rocessor handles these bits. Programs that depend upon reserved values risk
in

'
compatibility with future processors.

Figure 1-1. Bit and Byte O rder

Byte 3

Highest
Dat

:
a Struc t

:
ure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8
4
0 Address

Byte Offset

1-7

ABOUT THIS MANUAL

1.5.3. Inst ruct ion O perands

W
9

hen instructions are represented symbolically, a subset of the Intel Architecture assembly
lan

*
guage is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:&

• A label is an identifier which is followed by a colon.

• A
�

mn; emonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands a< rgument1,� argument2,� and� a< rgument3 are optional. There may be from
zero= to three operands, depending on the opcode. When present, they take the form of
eith+ er literals or identifiers for data items. Operand identifiers are either reserved names of
reg> isters or are assumed to be assigned to data items declared in another part of the
pr� ogram (which may not be shown in the example).

When
9

 two operands are present in an arithmetic or logical instruction, the right operand is the
s� ource and the left operand is the destination.

F
?

or example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
t

�
he destination operand, and SUBTOTAL i s the source operand. Some assembly languages put
t

�
he source and destination in reverse order.

1.5.4. Hexadecimal and Binary Numbe rs

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the ch

�
aracter H (for example, F82EH). A hexadecimal digit is a character from the following

s� et: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Bas
@

e 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character) B (for example, 1010B). The “B” designation is only used in situations where confu-
s� ion as to the type of number might arise.

1.5.5. Segmented Addres sing

The pr
�

ocessor uses byte addressing. This means memory is organized and accessed as a
s� equence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate

*
the byte or bytes of memory. The range of memory that can be addressed is called an

ad< dress space.

The processor also supports segmented addressing. This is a form of addressing where a
pro� gram may have many independent address spaces, called segA ments. For example, a program
can keep) its code (instructions) and stack in separate segments. Code addresses would always

1-8

ABOUT THIS MANUAL

refer to the code space, and stack addresses would always refer to the stack space. The following
noB tation is used to specify a byte address within a segment:

Segment-register:Byte-address

For exam
?

ple, the following segment address identifies the byte at address FF79H in the segment
p� ointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
reg> ister points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.5.6. Except ions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divid� e by zero generates an exception. However, some exceptions, such as break-
p� oints, occur under other conditions. Some types of exceptions may provide error codes. An
error + code reports additional information about the error. An example of the notation used to
show an� exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
t
�
ype of fault is reported. Under some conditions, exceptions which produce error codes may not
be
-

able to report an accurate code. In this case, the error code is zero, as shown below for a
genC eral-protection exception.

#GP(0)

Refer to Chapter 5, Interrupt and Exception Handling,� for a list of exception mnemonics and
th
�

eir descriptions.

1-9

ABOUT THIS MANUAL

1.6. RELATED LITERATURE

The following books contain additional material related to Intel processors:

• Intel
�

 Pentium® II Processor Specification Update,� Order Number 243337-010.

• Intel Pentium®
"
 Pro Processor Specification Update,� Order Number 242689-031.

• Intel Pentium®
"
 Processor Specification Update, � Order Number 242480.

• AP-48
�

5, Intel Processor Identification and the CPUID Instruction,� Order Number 241618-
00

D
6.

• AP-578, So
�

ftware and Hardware Considerations for FPU Exception Handlers for Intel
Ar

E
chitecture Processors,� Order Number 243291.

• Pentium®
"
 Pro Processor Data Book,� Order Number 242690.

• Pentium®
"

 Pro BIOS Writer’s Guide, h� ttp://www.intel.com/procs/ppro/info/index.htm.

• Pen
F

tium®
"
 Pr

F
ocessor Data Book,G Order Number 241428.

• 82
H

496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium®
"

Processor,G Order Number 241429.

• In
�

tel486™ Mi
I

croprocessor Data Book, Ord� er Number 240440.

• Intel486™ SX CPU/Intel487™ SX Math Coprocessor Data Book, Ord� er Number 240950.

• Intel486™ DX2 Microprocessor Data Book, � Order Number 241245.

• Intel
�

486™ Microprocessor Product Brief Book, Order� Number 240459.

• Intel386™ Processor Hardware Reference Manual, Order� Number 231732.

• Intel386™ Processor System Software Writer's Guide, Ord� er Number 231499.

• Intel
�

386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, � Order Number 231630.

• 37
J

6 Embedded Processor Programmer’s Reference Manual, � Order Number 240314.

• 80
H

387 DX User’s Manual Programmer’s Reference, Or� der Number 231917.

• 37
J

6 High-Performance 32-Bit Embedded Processor, Order� Number 240182.

• Intel386™ SX Microprocessor, Or� der Number 240187.

• Intel
�

 Architecture Optimization Manual, Order� Number 242816-002.

1-10

ABOUT THIS MANUAL

2
System Architecture
Overview

2-1

SYSTEM ARCHITECTURE
�

OVERVIEW

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The 3
�

2-bit members of the Intel Architecture family of processors provide extensive support for
oper� ating-system and system-development software. This support is part of the processor’s
s� ystem-level architecture and includes features to assist in the following operations:

• Memor
K

y management

• P
�

rotection of software modules

• Mu
K

ltitasking

• Excep
6

tion and interrupt handling

• Mu
K

ltiprocessing

• C
L

ache management

• Hardwar
M

e resource and power management

• Debug
5

ging and performance monitoring

This
�

 chapter provides a brief overview of the processor’s system-level architecture; a detailed
description of
�

 each part of this architecture given in the following chapters. This chapter also
describes the
�

system registers that are used to set up and control the processor at the system level
and g� ives a brief overview of the processor’s system-level (operating system) instructions.

Many of the system-level architectural features of the processor are used only by system
pro� grammers. Application programmers may need to read this chapter, and the following chap-
t
�
ers which describe the use of these features, in order to understand the hardware facilities used

by system p
-

rogrammers to create a reliable and secure environment for application programs.

NOTE

Thi
�

s overview and most of the subsequent chapters of this book focus on the
“native” or protected-mode operation of the 32-bit Intel Architecture
pr� ocessors. As described in Chapter 8, Pr

F
ocessor Management and Initial-

iz
N

ation, all � Intel Architecture processors enter real-address mode following a
po� wer-up or reset. Software must then initiate a switch from real-address
m% ode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The Intel Architecture’s system architecture consists of a set of registers, data structures, and
i
'
nstructions designed to support basic system-level operations such as memory management,

i
'
nterrupt and exception handling, task management, and control of multiple processors (multi-

pr� ocessing). Figure 2-1 provides a generalized summary of the system registers and data
s� tructures.

2-2

SYSTEM ARCHITECTURE OVERVIEW

Figu re 2-1. System-Level Regis ters and Data Structure s

Local Descriptor
T

O
able (LDT)

EFLAGS Register

Control Registers

CR1
CR2
CR3
CR4

CR0
Global Descriptor

T
O

able (GDT)

Interrupt Descriptor
T

O
able (IDT)

IDTR

GDTR

Interrupt Gate

T
O

rap Gate

LTD Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Task-State
Segment (TSS)

Code
Data

Stack

Task

Interrupt Handler

Exception Handler

Protected Procedure

T
O

SS Seg. Sel.

Call-Gate
Segment Selector

Dir Table Offset
Linear Address

Page Directory

Pg. Dir. Entry

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or
Stack Segment

Interrupt
Vector

TSS Desc.

Seg. Desc.

Task Gate

Current
TSS

Call Gate

Task-State
Segment (TSS)

Code
Data

Stack

Ta
O

sk

Seg. Desc.

Current
TS

O
S

Current
TS

O
S

Segment Selector

Linear Address

T
O

ask Register

CR3*

Page Table

Pg. Tbl. Entry

Page

Physical Addr.

LDTR

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Register

*Physical Address

Physical Address

MXCSR1

1. MXCSR is new control/status register in the Pentium®
P

 III processor.

2-3

SYSTEM ARCHITECTURE
�

OVERVIEW

2.1.1. Global and Local Descriptor T ables

W
9

hen operating in protected mode, all memory accesses pass through either the global
des

�
criptor table (GDT) or the (optional) local descriptor table (LDT), shown in Figure 2-1.

These tables contain entries called segment descriptors. A segment descriptor provides the base
addr� ess of a segment and access rights, type, and usage information. Each segment descriptor
has a segment selector a

7
ssociated with it. The segment selector provides an index into the GDT

o� r LDT (to its associated segment descriptor), a global/local flag (that determines whether the
s� egment selector points to the GDT or the LDT), and access rights information.

T
�
o access a byte in a segment, both a segment selector and an offset must be supplied. The

s� egment selector provides access to the segment descriptor for the segment (in the GDT or
LDT).

/
From the segment descriptor, the processor obtains the base address of the segment in the

li
*

near address space. The offset then provides the location of the byte relative to the base
addr� ess. This mechanism can be used to access any valid code, data, or stack segment in the
GD

0
T or LDT, provided the segment is accessible from the current privilege level (CPL) at which

the p
�

rocessor is operating. (The CPL is defined as the protection level of the currently executing
code seg) ment.)

In Fi
(

gure 2-1 the solid arrows indicate a linear address, the dashed lines indicate a segment
s� elector, and the dotted arrows indicate a physical address. For simplicity, many of the segment
s� electors are shown as direct pointers to a segment. However, the actual path from a segment
s� elector to its associated segment is always through the GDT or LDT.

The li
�

near address of the base of the GDT is contained in the GDT register (GDTR); the linear
addr� ess of the LDT is contained in the LDT register (LDTR).

2.1.2. System Segments, Segment Descr iptors , and Gat es

Bes
@

ides the code, data, and stack segments that make up the execution environment of a program
or p� rocedure, the system architecture also defines two system segments: the task-state segment
(TSS

�
) and the LDT. (The GDT is not considered a segment because it is not accessed by means

of a � segment selector and segment descriptor.) Each of these segment types has a segment
des

�
criptor defined for it.

The s
�

ystem architecture also defines a set of special descriptors called gates (the call gate, inter-
rup> t gate, trap gate, and task gate) that provide protected gateways to system procedures and
handlers that operate at different privilege levels than application programs and procedures.
F

?
or example, a CALL to a call gate provides access to a procedure in a code segment that is at

th
�

e same or numerically lower privi lege level (more privileged) than the current code segment.
To access a procedure through a call gate, the calling procedure1 must supply the selector of the
call) gate. The processor than performs an access rights check on the call gate, comparing the
C
L

PL with the privilege level of the call gate and the destination code segment pointed to by the
call) gate. If access to the destination code segment is allowed, the processor gets the segment
s� elector for the destination code segment and an offset into that code segment from the call gate.

1. The
O

word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine). The term is not restricted to the definition of a
procedure in the Intel Architecture assembly language.

2-4

SYSTEM ARCHITECTURE OVERVIEW

If the call requires a change in privilege level, the processor also switches to the stack for that
pr� ivil ege level. (The segment selector for the new stack is obtained from the TSS for the
cu) rrently running task.) Gates also facilitate transitions between 16-bit and 32-bit code
segments, an� d vice versa.

2.1.3. Task-State Segment s and Task Gates

The TSS (refe
�

r to Figure 2-1) defines the state of the execution environment for a task. It
includes the state of the general-purpose registers, the segment registers, the EFLAGS register,
the EIP register
�

, and segment selectors and stack pointers for three stack segments (one stack
each for+ privilege levels 0, 1, and 2). It also includes the segment selector for the LDT associated
with the task an& d the page-table base address.

All
�

program execution in protected mode happens within the context of a task, called the current
tas
�

k. The segment selector for the TSS for the current task is stored in the task register. The
si� mplest method of switching to a task is to make a call or jump to the task. Here, the segment
sel� ector for the TSS of the new task is given in the CALL or JMP instruction. In switching tasks,
the p
�

rocessor performs the following actions:

1. Stores the state of the current task in the current TSS.

2.
Q

Loads the task register with the segment selector for the new task.

3.
R

Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose registers, the
segmen� t registers, the LDTR, control register CR3 (page-table base address), the EFLAGS
r> egister, and the EIP register.

5.
S

Begins execution of the new task.

A task can
�

 also be accessed through a task gate. A task gate is similar to a call gate, except that
it pro
'

vides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Hand ling

External interrupts, software interrupts, and exceptions are handled through the interrupt
des
�

criptor table (IDT), refer to Figure 2-1. The IDT contains a collection of gate descriptors,
which p& rovide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment.� The linear address of the base of the IDT is contained in the IDT register (IDTR).

The g
�

ate descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access an
interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
nuB mber) from internal hardware, an external interrupt controller, or from software by means of
an I� NT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into the
IDT to a gate descriptor. If the selected gate descriptor is an interrupt gate or a trap gate, the asso-
ciated) handler procedure is accessed in a manner very similar to calling a procedure through a
call g) ate. If the descriptor is a task gate, the handler is accessed through a task switch.

2-5

SYSTEM ARCHITECTURE
�

OVERVIEW

2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(thro

�
ugh paging). When physical addressing is used, a linear address is treated as a physical

addr� ess. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can

(
 be paged, with only the most recently accessed pages being held in physical memory.

The location
�

 of pages (or page frames as they are sometimes called in the Intel Architecture) in
phy� sical memory is contained in two types of system data structures (a page directory and a set
of p� age tables), both of which reside in physical memory (refer to Figure 2-1). An entry in a page
director

�
y contains the physical address of the base of a page table, access rights, and memory

management information. An entry in a page table contains the physical address of a page frame,
acces� s rights, and memory management information. The base physical address of the page
di

�
rectory is contained in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
of� fsets into the page directory, the page table, and the page frame.

A s
�

ystem can have a single page directory or several. For example, each task can have its own
page di� rectory.

2.1.6. System Regist ers

To assist in initializing the processor and controlli ng system operations, the system architecture
pro� vides system flags in the EFLAGS register and several system registers:

• The system flags and IOPL field in the EFLAGS register control task and mode switching,
interr

'
upt handling, instruction tracing, and access rights. Refer to Section 2.3., “System

Flags and
?

Fields in the EFLAGS Register” for a description of these flags.

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields
for con

8
trolling system-level operations. With the introduction of the Pentium®

"
 III

pr� ocessor, CR4 now contains bits indicating support Pentium®
"
 III processor specific

cap) abilities within the OS. Refer t
�
o Section 2.5., “Control Registers” for a description of

these flag
�

s.

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
deb

�
ugging programs and systems software. Refer to Chapter 15, Debug

T
ging and

Performance Monitoring, f� or a description of these registers.

• Th
�

e GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their r

�
espective tables. Refer to Section 2.4., “Memory-Management Registers” for a

des
�

cription of these registers.

• Th
�

e task register contains the linear address and size of the TSS for the current task. Refer
to

�
 Section 2.4., “Memory-Management Registers” for a description of this register.

• Model-specific registers (not shown in Figure 2-1).

The mo
�

del-specific registers (MSRs) are a group of registers available primaril y to operating-
s� ystem or executive procedures (that is, code running at privilege level 0). These registers
contr) ol items such as the debug extensions, the performance-monitoring counters, the machine-
check arch) itecture, and the memory type ranges (MTRRs). The number and functions of these

2-6

SYSTEM ARCHITECTURE OVERVIEW

registers varies among the different members of the Intel Architecture processor families.
Secti
4

on 8.4., “Model-Specific Registers (MSRs)” in Chapter 8, Pr
F

ocessor Management and
Ini
�

tialization for more information about the MSRs and Appendix B, Mod
I

el-Specific Registers
for a complete list of the MSRs.

Most s
K

ystems restrict access to all system registers (other than the EFLAGS register) by appli-
cation) programs. Systems can be designed, however, where all programs and procedures run at
th
�

e most privileged level (privi lege level 0), in which case application programs are allowed to
mo% dify the system registers.

2.1.7. Other System Resource s

Besides the system registers and data structures described in the previous sections, the system
arch� itecture provides the following additional resources:

• Ope
�

rating system instructions (refer to Section 2.6., “System Instruction Summary”).

• Performance-monitoring counters (not shown in Figure 2-1).

• Internal caches and buffers (not shown in Figure 2-1).

The
�

performance-monitoring counters are event counters that can be programmed to count
pr� ocessor events such as the number of instructions decoded, the number of interrupts received,
or� the number of cache loads. Refer to Section 15.6., “Performance-Monitoring Counters”, in
Ch
L

apter 15, Deb
T

ugging and Performance Monitoring, f� or more information about these
cou) nters.

The pr
�

ocessor provides several internal caches and buffers. The caches are used to store both
data and
�

 instructions. The buffers are used to store things like decoded addresses to system and
ap� plication segments and write operations waiting to be performed. Refer to Chapter 9, Memory
Cache Control, � for a detailed discussion of the processor’s caches and buffers.

2.2. MODES OF OPERATION

The Intel Architecture supports three operating modes and one quasi-operating mode:

• Protected mode. This is the native operating mode of the processor. In this mode all
instru

'
ctions and architectural features are available, providing the highest performance and

capab) ilit y. This is the recommended mode for all new applications and operating systems.

• Real-address mode. This operating mode provides the programming environment of the
I

(
ntel 8086 processor, with a few extensions (such as the ability to switch to protected or

s� ystem management mode).

• Sy
U

stem management mode (SMM). The system management mode (SMM) is a standard
ar� chitectural feature in all Intel Architecture processors, beginning with the Intel386™ SL
p� rocessor. This mode provides an operating system or executive with a transparent
mec% hanism for implementing power management and OEM differentiation features. SMM
is enter

'
ed through activation of an external system interrupt pin (SMI#), which generates a

2-7

SYSTEM ARCHITECTURE
�

OVERVIEW

s� ystem management interrupt (SMI). In SMM, the processor switches to a separate address
space � while saving the context of the currently running program or task. SMM-specific
cod) e may then be executed transparently. Upon returning from SMM, the processor is
placed� back into its state prior to the SMI.

• V
V

irt ual-8086 mode. In protected mode, the processor supports a quasi-operating mode
kn

W
own as virtX ual-8086 mode. This mode allows the processor to execute 8086 software in

a pro� tected, multitasking environment.

Fi
?

gure 2-2 shows how the processor moves among these operating modes.

The pr
�

ocessor is placed in real-address mode following power-up or a reset. Thereafter, the PE
flag in control register CR0 controls whether the processor is operating in real-address or
pro� tected mode (refer to Section 2.5., “Control Registers”). Refer to Section 8.8., “Mode
S

4
witching” in Chapter 8, Pr

F
ocessor Management and Initialization for detailed information on

swi� tching between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mod% e or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generC all y carried out as part of a task switch or a return from an interrupt or exception handler
(ref

�
er to Section 16.2.5., “Entering Virtual-8086 Mode” in Chapter 16, 80

H
86 Emulation).

Y

The p
�

rocessor switches to SMM whenever it receives an SMI while the processor is in real-
addr� ess, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
pro� cessor always returns to the mode it was in when the SMI occurred.

Figu re 2-2. Transitions Amo ng the Proce ssor’s Operating Modes

Real-Address

Protected Mode

Virtual-8086
Mode

System
Management

Mode

PE=1
Reset or

VM=1VM=0

PE=0

Reset
or

RSM

SMI#

RSM

SMI#

RSM

SMI#

Reset

 Mode

2-8

SYSTEM ARCHITECTURE OVERVIEW

2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware inter-
ru> pts, debugging, task switching, and the virtual-8086 mode (refer to Figure 2-3). Only privi-
leged code (typically operating system or executive code) should be allowed to modify these
b
-
its.

The
�

functions of the system flags and IOPL are as follows:

TF Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mod% e. In single-step mode, the processor generates a debug exception after each
instruction
'

, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
in
'

struction, a debug exception is generated after the instruction that follows the POPF,
PO
�

PFD, or IRET instruction.

IF In terru pt enable (bit 9). C
L

ontrols the response of the processor to maskable hardware
interrupt requests (refer to Section 5.1.1.2., “Maskable Hardware Interrupts” in
Ch
L

apter 5, I
�
nterrupt and Exception Handling). S

Y
et to respond to maskable hardware

interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect
t
�
he generation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL,
IOPL, an
(

d the state of the VME flag in control register CR4 determine whether the IF
flag can be modified by the CLI, STI, POPF, POPFD, and IRET instructions.

IOP
(

L I/
3

O pr ivilege level field (bits 12 and 13). Indicates the I/O privilege level (IOPL) of
t
�
he currently running program or task. The CPL of the currently running program or
tas
�

k must be less than or equal to the IOPL to access the I/O address space. This field
can) only be modified by the POPF and IRET instructions when operating at a CPL of
0
D
. Refer to Chapter 10, I

�
nput/Output, of the � Intel Ar

�
chitecture Software Developer’s

Manual, Volume 1, � for more information on the relationship of the IOPL to I/O opera-
t
�
ions.

Figure 2-3. System Flags in the EFLAGS Register

31
Z

22 21 20 19 18 17 16

R
[
F

I
\
D

A
]
C

^ V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8
_

7
`

6
a

5 4 3
b

2
c

1 0
d

0
d C

^
F

A
F

P
e
F

f 1D
g
F

I
\
F

T
h
F

S
i
F

Z
j
F

N
k
T

h 0
d

0
dV

I
P

V
I

\
F

O
l
F

f
I
O

l
P

e
L

VIF — Virtual Interrupt Flag

T
O

F — Trap Flag

Reserved

Reserved (set to 0)

2-9

SYSTEM ARCHITECTURE
�

OVERVIEW

The IOPL is also one of the mechanisms that controls the modification of the IF flag
and � the handling of interrupts in virtual-8086 mode when the virtual mode extensions
are in � effect (the VME flag in control register CR4 is set).

NT
�

Nested
�

 task (bit 14). Controls the chaining of interrupted and called tasks. The
p� rocessor sets this flag on calls to a task initiated with a CALL instruction, an interrupt,
o� r an exception. It examines and modifies this flag on returns from a task initiated with
th

�
e IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD

inst
'

ructions; however, changing to the state of this flag can generate unexpected excep-
ti

�
ons in application programs. Refer to Section 6.4., “Task Linking” in Chapter 6, Ta

m
sk

Management for more information on nested tasks.

RF
n

Res
o

ume (bit 16). C
L

ontrols the processor’s response to instruction-breakpoint condi-
ti

�
ons. When set, this flag temporarily disables debug exceptions (#DE) from being

gC enerated for instruction breakpoints; although, other exception conditions can
c) ause an exception to be generated. When clear, instruction breakpoints wil l generate
debu

�
g exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following
a deb� ug exception that was caused by an instruction breakpoint condition. Here,
debu

�
gger software must set this flag in the EFLAGS image on the stack just prior to

returning to the interrupted program with the IRETD instruction, to prevent the instruc-
ti

�
on breakpoint from causing another debug exception. The processor then automati-

call) y clears this flag after the instruction returned to has been successfully executed,
en+ abling instruction breakpoint faults again.

Refer
n

 to Section 15.3.1.1., “I nstruction-Breakpoint Exception Condition” , in Ch
L

apter
15, Deb

T
ugging and Performance Monitoring, � for more information on the use of this

flag.

VM
p

V
V

irtual-8086 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
p� rotected mode. Refer to Section 16.2.1., “Enabling Virtual-8086 Mode” in Chapter
16, 80

H
86 Emulation for a detailed description of the use of this flag to switch to virtual-

808
q

6 mode.

AC
�

Al
.

ignment check (bit 18). S
4

et this flag and the AM flag in the CR0 register to enable
ali� gnment checking of memory references; clear the AC flag and/or the AM flag to
disable ali

�
gnment checking. An alignment-check exception is generated when refer-

ence is+ made to an unaligned operand, such as a word at an odd byte address or a
d

�
oubleword at an address which is not an integral multiple of four. Alignment-check

except+ ions are generated only in user mode (privilege level 3). Memory references that
defau

�
lt to privilege level 0, such as segment descriptor loads, do not generate this

exceptio+ n even when caused by instructions executed in user-mode.

The alignm
�

ent-check exception can be used to check alignment of data. This is useful
when exch& anging data with other processors, which require all data to be aligned. The
ali� gnment-check exception can also be used by interpreters to flag some pointers as
s� pecial by misaligning the pointer. This eliminates overhead of checking each pointer
and � only handles the special pointer when used.

2-10

SYSTEM ARCHITECTURE OVERVIEW

VIF
p

V
V

irtual I nterrupt (bit 19) . Contains a virtual image of the IF flag. This flag is used in
co) njunction with the VIP flag. The processor only recognizes the VIF flag when either
th
�

e VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 3.
(T
�

he VME flag enables the virtual-8086 mode extensions; the PVI flag enables the
p� rotected-mode virtual interrupts.) Refer to Section 16.3.3.5., “Method 6: Software
In
(

terrupt Handling” and Section 16.4., “Protected-Mode Virtual Interrupts” in Chapter
16, 8

H
086 Emulation for detailed information about the use of this flag.

VIP
p

V
V

irtual in terrupt pending (bit 20). Set b
4

y software to indicate that an interrupt is
pen� ding; cleared to indicate that no interrupt is pending. This flag is used in conjunc-
tion
�

 with the VIF flag. The processor reads this flag but never modifies it. The
p� rocessor only recognizes the VIP flag when either the VME flag or the PVI flag in
co) ntrol register CR4 is set and the IOPL is less than 3. (The VME flag enables the
vr irtual-8086 mode extensions; the PVI flag enables the protected-mode virtual inter-
ru> pts.) Refer to Section 16.3.3.5., “Method 6: Software Interrupt Handling” and
Section 16
4

.4., “Protected-Mode Virtual Interrupts” i n Chapter 16, 80
H

86 Emulation for
det
�

ailed information about the use of this flag.

ID
(

I
3
dentif ication (bit 21). The ability of a program or procedure to set or clear this flag

ind
'

icates support for the CPUID instruction.

2.4. MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that s
�

pecify the locations of the data structures which control segmented memory management
(r
�

efer to Figure 2-4). Special instructions are provided for loading and storing these registers.

2.4.1. Global D escr iptor Table Register (GDTR)

Th
�

e GDTR register holds the 32-bit base address and 16-bit table limit for the GDT. The base
ad� dress specifies the linear address of byte 0 of the GDT; the table limit specifies the number of
b
-
ytes in the table. The LGDT and SGDT instructions load and store the GDTR register, respec-

tiv
�

ely. On power up or reset of the processor, the base address is set to the default value of 0 and

Figure 2-4. Memory Management Regi sters

047

GDTR

IDTR

System Table Registers

32-bit Linear Base Address 16-Bit Table Limit

1516

32-bit Linear Base Address

0
Ta

O
sk

LDTR

System Segment

Seg. Sel.

15

Seg. Sel.

Segment Descri ptor Registers (Auto matically Load ed)

32-bit Linear Base Address Segment Limit

A
s

ttributesRegisters

32-bit Linear Base Address Segment Limit
Register

16-Bit Table Limit

2-11

SYSTEM ARCHITECTURE
�

OVERVIEW

th
�

e limit is set to FFFFH. A new base address must be loaded into the GDTR as part of the
pro� cessor initialization process for protected-mode operation. Refer to Section 3.5.1., “Segment
Des

5
criptor Tables” in Chapter 3, Pr

F
otected-Mode Memory Management for more information

on � the base address and limit fields.

2.4.2. Local Descriptor T able Regist er (LDTR)

Th
�

e LDTR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and d� escriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segmen

�
t limit specifies the number of bytes in the segment. Refer to

Sect
4

ion 3.5.1., “Segment Descriptor Tables” i n Chapter 3, Pr
F

otected-Mode Memory Manage-
mentt for more information on the base address and limit fields.

The L
�

LDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively> . The segment that contains the LDT must have a segment descriptor in the GDT.
W

9
hen the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and

d
�
escriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

W
9

hen a task switch occurs, the LDTR is automatically loaded with the segment selector and
d

�
escriptor for the LDT for the new task. The contents of the LDTR are not automatically saved

p� rior to writing the new LDT information into the register.

On p
�

ower up or reset of the processor, the segment selector and base address are set to the default
vr alue of 0 and the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descri ptor Table Register

The IDTR
�

 register holds the 32-bit base address and 16-bit table limit for the IDT. The base
addr� ess specifies the linear address of byte 0 of the IDT; the table limit specifies the number of
bytes in the table. The

-
 LIDT and SIDT instructions load and store the IDTR register, respec-

ti
�

vely. On power up or reset of the processor, the base address is set to the default value of 0 and
the l

�
imit is set to FFFFH. The base address and limit in the register can then be changed as part

o� f the processor initiali zation process. Refer to Section 5.8., “Interrupt Descriptor Table (IDT)”
in

'
 Chapter 5, In

�
terrupt and Exception Handling for more information on the base address and

limit fields.

2.4.4. Task Regist er (TR)

Th
�

e task register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and d� escriptor attributes for the TSS of the current task. It references a TSS descriptor in the
GD

0
T. The base address specifies the linear address of byte 0 of the TSS; the segment limit spec-

ifies
'

 the number of bytes in the TSS. (Refer to Section 6.2.3., “Task Register” in Chapter 6, Ta
m

sk
Management for more information about the task register.)

The L
�

TR and STR instructions load and store the segment selector part of the task register,
respectively> . When the LTR instruction loads a segment selector in the task register, the base

2-12

SYSTEM ARCHITECTURE OVERVIEW

add� ress, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
the task reg
�

ister. On power up or reset of the processor, the base address is set to the default value
o� f 0 and the limit is set to FFFFH.

W
9

hen a task switch occurs, the task register is automatically loaded with the segment selector
and� descriptor for the TSS for the new task. The contents of the task register are not automati-
cally) saved prior to writing the new TSS information into the register.

2.5. CONTROL REGISTERS

The control registers (CR0, CR1, CR2, CR3, and CR4) determine operating mode of the
pr� ocessor and the characteristics of the currently executing task (refer to Figure 2-5).

Figure 2-5. Control Re gist ers

CR1

W
P

eA
M

Page-Directory Base

V
M
E

P
S

i
E

u
T
S

i
D

D
g
E

P
V
I

P
G

v
E

M
C

^
E

P
A
E

u
P
C

^
E

u

N
W

wP
G

v C
^
D

g

P
W

w
T

P
C

^
D

Page-Fault Linear Address

P
E

uE
M

M
P

eT
S

iN
E

E
T

h

CR2

CR0

CR4

Reserved

CR3

Reserved (set to 0)

31
Z

29
c

30
Z

30 19 18 17 16 15 6 5
a

4 3 2 1 0
d

31
Z

0
d

31
Z

0
d

31
Z

12 11 5 4 3 2 0
d

31
Z

9 8
x

7
`

6
a

5 4
b

3 2
c

1 0

(PDBR)

10

OS
y

FXSR
O

y
SXMMEXCPT

2-13

SYSTEM ARCHITECTURE
�

OVERVIEW

The control registers:

• C
L

R0—Contains system control flags that control operating mode and states of the
pr� ocessor.

• CR
L

1—Reserved.

• C
L

R2—Contains the page-fault linear address (the linear address that caused a page fault).

• C
L

R3—Contains the physical address of the base of the page directory and two flags (PCD
and� PWT). This register is also known as the page-directory base register (PDBR). Only
the 20

�
 most-significant bits of the page-directory base address are specified; the lower 12

bi
-

ts of the address are assumed to be 0. The page directory must thus be aligned to a page
(4

�
-KByte) boundary. The PCD and PWT flags control caching of the page directory in the

pr� ocessor’s internal data caches (they do not control TLB caching of page-directory
in

'
formation).

W
9

hen using the physical address extension, the CR3 register contains the base address of
the pag

�
e-directory-pointer table (refer to Section 3.8., “Physical Address Extension” in

Ch
L

apter 3, Pr
F

otected-Mode Memory Management).
Y

• C
L

R4—Contains a group of flags that enable several architectural extensions, as well as
in

'
dicating the level of OS support for the Streaming SIMD Extensions.

In pro
(

tected mode, the move-to-or-from-control-registers forms of the MOV instruction allow
th

�
e control registers to be read (at privilege level 0 only) or loaded (at privilege level 0 only).

Thes
�

e restrictions mean that application programs (running at privilege levels 1, 2, or 3) are
prev� ented from reading or loading the control registers.

A program running at privilege level 1, 2, or 3 should not attempt to read or write the control
reg> isters. An attempt to read or write these registers will result in a general protection fault
(GP(0))

�
. The functions of the flags in the control registers are as follows:

PG Paging (bit 31 of CR0). Enables paging when set; disables paging when clear. When
pagin� g is disabled, all linear addresses are treated as physical addresses. The PG flag
has

7
no effect if the PE flag (bit 0 of register CR0) is not also set; in fact, setting the PG

flag when the PE flag is clear causes a general-protection exception (#GP) to be gener-
ated. � Refer to Section 3.6., “Paging (Virtual Memory)” in Chapter 3, Pr

F
otected-Mode

Memo
I

ry Management for a detailed description of the processor’s paging mechanism.

CD
L

Cache
#

Disable (bit 30 of CR0). When the CD and NW flags are clear, caching of
memor% y locations for the whole of physical memory in the processor’s internal (and
extern+ al) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 9-4, in Chapter 9, Memory Cache Control. To prevent the processor from
acces� sing and updating its caches, the CD flag must be set and the caches must be
invalidated

'
 so that no cache hits can occur (refer to Section 9.5.2., “Preventing

C
L

aching”, in Chapter 9, Memory Cache Control). R
Y

efer to Section 9.5., “Cache
Co

L
ntrol” , Chapter 9, Memory C

I
ache Control, f� or a detailed description of the addi-

ti
�

onal restrictions that can be placed on the caching of selected pages or regions of
memory.

NW
�

Not W
�

r ite-through (bit 29 of CR0). When the NW and CD flags are clear, write-back
(fo

�
r Pentium®

!
 and P6 family processors) or write-through (for Intel486™ processors)

is enabled for writes that hit the cache and invalidation cycles are enabled. Refer to

2-14

SYSTEM ARCHITECTURE OVERVIEW

Table 9-4, in Chapter 9, Memory Cache Control, f� or detailed information about the
af� fect of the NW flag on caching for other settings of the CD and NW flags.

AM
�

Ali
.

gnment Mask (bit 18 of CR0). Enables automatic alignment checking when set;
disables
�

alignment checking when clear. Alignment checking is performed only when
th
�

e AM flag is set, the AC flag in the EFLAGS register is set, the CPL is 3, and the
pr� ocessor is operating in either protected or virtual-8086 mode.

WP
9

W
z

r ite Protect (bit 16 of CR0). Inhibits supervisor-level procedures from writing into
user{ -level read-only pages when set; allows supervisor-level procedures to write into
u{ ser-level read-only pages when clear. This flag facilitates implementation of the copy-
on� -write method of creating a new process (forking) used by operating systems such as
UNIX*.
|

NE
�

Nu
�

meric Error (bit 5 of CR0). Enables the native (internal) mechanism for reporting
FPU errors when set; enables the PC-style FPU error reporting mechanism when clear.
W
9

hen the NE flag is clear and the IGNNE# input is asserted, FPU errors are ignored.
W
9

hen the NE flag is clear and the IGNNE# input is deasserted, an unmasked FPU error
causes) the processor to assert the FERR# pin to generate an external interrupt and to
st� op instruction execution immediately before executing the next waiting floating-
po� int instruction or WAIT/FWAIT instruction. The FERR# pin is intended to drive an
input to an external interrupt controller (the FERR# pin emulates the ERROR# pin of
the In
�

tel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and
FER
?

R# pin are used with external logic to implement PC-style error reporting. (Refer
to
�

 “Software Exception Handling” in Chapter 7, and Appendix D in the Intel Architec-
tur$ e Software Developer’s Manual, Volume 1, fo� r more information about FPU error
rep> orting and for detailed information on when the FERR# pin is asserted, which is
implementation dependent.)

ET
6

E
}

xtension Type (bit 4 of CR0). Reserved in the P6 family and Pentium®
"
 processors.

(In
�

 the P6 family processors, this flag is hardcoded to 1.) In the Intel386™ and
Intel486™ processors, this flag indicates support of Intel 387 DX math coprocessor
in
'

structions when set.

TS
�

T
~

ask Switched (bit 3 of CR0). Allows the saving of FPU context on a task switch to
be d
-

elayed until the FPU is actually accessed by the new task. The processor sets this
flag
8

 on every task switch and tests it when interpreting floating-point arithmetic
in
'

structions.

• If the TS flag is set, a device-not-available exception (#NM) is raised prior to the
execu+ tion of a floating-point instruction.

• If the TS
(

 flag and the MP flag (also in the CR0 register) are both set, an #NM
ex+ ception is raised prior to the execution of floating-point instruction or a
W
9

AIT/FWAIT instruction.

T
�
able 2-1 shows the actions taken for floating-point, WAIT/FWAIT, MMX™, and

St
4

reaming SIMD Extensions based on the settings of the TS, EM, and MP flags.

2-15

SYSTEM ARCHITECTURE
�

OVERVIEW

The
�

processor does not automatically save the context of the FPU on a task switch.
Instead it sets the TS flag, which causes the processor to raise an #NM exception when-
ever it en+ counters a floating-point instruction in the instruction stream for the new task.
The fau

�
lt handler for the #NM exception can then be used to clear the TS flag (with the

C
L

LTS instruction) and save the context of the FPU. If the task never encounters a
fl

8
oating-point instruction, the FPU context is never saved.

EM
6

E
}

mulation (bit 2 of CR0). Indicates that the processor does not have an internal or
extern+ al FPU when set; indicates an FPU is present when clear. When the EM flag is
set� , execution of a floating-point instruction generates a device-not-available exception
(#NM).

�
 This flag must be set when the processor does not have an internal FPU or is

noB t connected to a math coprocessor. If the processor does have an internal FPU,
s� etting this flag would force all floating-point instructions to be handled by software
e+ mulation. Table 8-2 in Chapter 8, Pr

F
ocessor Management and Initialization shows the

recom> mended setting of this flag, depending on the Intel Architecture processor and

T
�
able 2-1. Action T aken for Com bina tions of EM, MP, TS, CR4.OSFXSR, a

�
nd CPUID.XMM

CR0 Flags CR4 CPUID Instructio n Type

EM MP TS OSFXSR XMM Float ing-Poin t WAIT/FWAIT MMX™
T

�
echnol ogy

Streamin g
SIMD

Extensi ons

0 0 0 - - Execute Execute Execute -

0 0 1 - - #NM Exception Execute #NM
Exception

-

0 1 0 - - Execute Execute Execute -

0 1 1 - - #NM Exception #NM Exception #NM
Exception

-

1 0 0 - - #NM Exception Execute #UD Exception -

1 0 1 - - #NM Exception Execute #UD Exception -

1 1 0 - - #NM Exception Execute #UD Exception -

EM MP TS OSFXSR XMM Float ing-Poin t WAIT/FWAIT MMX™
T

�
echnol ogy

Streamin g
SIMD

Extensi ons

1 1 1 - - #NM Exception #NM Exception #UD Exception -

1 - - - - - - - #UD Interrupt
6

0 - 1 1 1 - - - #NM Interrupt
7

- - - 0 - - - - #UD Interrupt
6

- - - - 0 - - - #UD Interrupt
6

2-16

SYSTEM ARCHITECTURE OVERVIEW

FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM,
6

MP, and TS flags.

Note that the EM flag
�

 also affects the execution of the MMX™ instructions (refer to
Table 2-1). When this flag is set, execution of an MMX™ instruction causes an invalid
op� code exception (#UD) to be generated. Thus, if an Intel Architecture processor
inco
'

rporates MMX ™ technology, the EM flag must be set to 0 to enable execution of
MMX ™ instructions.

Si
4

milarly for the Streaming SIMD Extensions, when this flag is set, execution of a Streaming
S
4

IMD Extensions instruction causes an invalid opcode exception (#UD) to be generated. Thus,
if an Intel Architecture processor incorporates Streaming SIMD Extensions, the EM flag must
b
-
e set to 0 to enable execution of Streaming SIMD Extensions. The exception to this is the

PR
�

EFETCH and SFENCE instructions. These instructions are not affected by the EM flag.

MP Monitor Coprocessor (bit 1 of CR0). Controls the interaction of the WAIT (or
F
?

WAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT
in
'

struction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 8-2 in
Ch
L

apter 8, Pr
F

ocessor Management and Initialization shows the recommended setting
of� this flag, depending on the Intel Architecture processor and FPU or math copro-
ces) sor present in the system. Table 2-1 shows the interaction of the MP, EM, and TS
flags
8

.

PE
�

Pr
1

otection Enable (bit 0 of CR0). Enables protected mode when set; enables real-
add� ress mode when clear. This flag does not enable paging directly. It only enables
segment-� level protection. To enable paging, both the PE and PG flags must be set.
R
n

efer to Section 8.8., “Mode Switching” in Chapter 8, Pr
F

ocessor Management and
Initialization for information using the PE flag to switch between real and protected
mod% e.

PC
�

D Pag
1

e-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc-
tory
�

. When the PCD flag is set, caching of the page-directory is prevented; when the
flag
8

is clear, the page-directory can be cached. This flag affects only the processor’s
intern
'

al caches (both L1 and L2, when present). The processor ignores this flag if
pag� ing is not used (the PG flag in register CR0 is clear) or the CD (cache disable) flag
in
'

 CR0 is set. Refer to Chapter 9, M
I

emory Cache Control, � for more information about
the u
�

se of this flag. Refer to Section 3.6.4., “Page-Directory and Page-Table Entries”
in Chapter 3, Protected-Mode Memory Management for a description of a companion
PC
�

D flag in the page-directory and page-table entries.

PW
�

T P
1

age-level Wr ites Transparent (bit 3 of CR3). Controls the write-through or write-
back
-

 caching policy of the current page directory. When the PWT flag is set, write-
thro
�

ugh caching is enabled; when the flag is clear, write-back caching is enabled. This
flag af
8

fects only the internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CR0 is clear) or the CD
(cach
�

e disable) flag in CR0 is set. Refer to Section 9.5., “Cache Control” , in Chapter
9,
�

Memory C
I

ache Control,� for more information about the use of this flag. Refer to
Secti
4

on 3.6.4., “Page-Directory and Page-Table Entries” in Chapter 3, Protected-Mode

2-17

SYSTEM ARCHITECTURE
�

OVERVIEW

Memory Management for a description of a companion PCD flag in the page-directory
and � page-table entries.

VME
p

V
V

irtual-8086 Mode Extensions (bit 0 of CR4). Enables interrupt- and exception-
handling extensions in virtual-8086 mode when set; disables the extensions when clear.
Use o

|
f the virtual mode extensions can improve the performance of virtual-8086 appli-

cat) ions by eliminating the overhead of calling the virtual-8086 monitor to handle inter-
rupts and exceptions that occur while executing an 8086 program and, instead,
redi> recting the interrupts and exceptions back to the 8086 program’s handlers. It also
p� rovides hardware support for a virtual interrupt flag (VIF) to improve reliabilit y of
running 8086 programs in multi tasking and multiple-processor environments. Refer to
S

4
ection 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode” in Chapter 16,

808
H

6 Emulation for detailed information about the use of this feature.

PVI Protected-Mode Virtual I nterrupts (bit 1 of CR4). Enables hardware support for a
vir rtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
pro� tected mode when clear. Refer to Section 16.4., “Protected-Mode Virtual Inter-
rupts” in Chapter 16, 80

H
86 Emulation for detailed information about the use of this

feature
8

.

TSD
�

T
~

ime Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to

�
 procedures running at privilege level 0 when set; allows RDTSC instruction to be

executed+ at any privilege level when clear.

DE
5

Deb
�

ugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an u) ndefined opcode (#UD) exception to be generated when set; when clear,
p� rocessor aliases references to registers DR4 and DR5 for compatibility with software
writt& en to run on earlier Intel Architecture processors. Refer to Section 15.2.2., “Debug
Registers DR4 and DR5”, in Cha

L
pter 15, Debugging and Performance Monitoring, f� or

mor% e information on the function of this flag.

PS
�

E P
1

age Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4

�
 KBytes when clear. Refer to Section 3.6.1., “Paging Options” in Chapter 3,

Pr
F

otected-Mode Memory Management for more information about the use of this flag.

PA
�

E Phy
1

sical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-

R
bit physical addresses when set; restricts physical addresses to 32 bits when clear.

Refer
n

 to Section 3.8., “Physical Address Extension” in Chapter 3, Pr
F

otected-Mode
M

I
emory Management for more information about the physical address extension.

MCE Machine-Check Enable (bit 6 of CR4). Enables the machine-check exception when
s� et; disables the machine-check exception when clear. Refer to Chapter 13, Machin

I
e-

Check Architecture,� for more information about the machine-check exception and
machine- check architecture.

PG
�

E Pag
1

e Global Enable (bit 7 of CR4). (Introduced in the P6 family processors.) Enables
the

�
global page feature when set; disables the global page feature when clear. The

globC al page feature allows frequently used or shared pages to be marked as global to
all� users (done with the global flag, bit 8, in a page-directory or page-table entry).
Glo

0
bal pages are not flushed from the translation-lookaside buffer (TLB) on a task

swi� tch or a write to register CR3. In addition, the bit must not be enabled before paging

2-18

SYSTEM ARCHITECTURE OVERVIEW

is enabled via CR0.PG. Program correctness may be affected by reversing this
seq� uence, and processor performance will be impacted. Ref+ er to Section 3.7., “Trans-
lati
*

on Lookaside Buffers (TLBs)” in Chapter 3, Pr
F

otected-Mode Memory Management
for more information on the use of this bit.

PC
�

E Perfo
1

rmance-Monitori ng Counter Enable (bit 8 of CR4). Enables execution of the
RDP
n

MC instruction for programs or procedures running at any protection level when
set� ; RDPMC instruction can be executed only at protection level 0 when clear.

OSF
�

XSR

Op
�

erating Sytsem FXSAVE/FXRSTOR Support (bit 9 of CR4). The operating
sy� stem will set this bit i f both the CPU and the OS support the use of
FX
?

SAVE/FXRSTOR for use during context switches.

OSX
�

MMEXCPT

O
�

perating System Unmasked Exception Support (bit 10 of CR4). The operating
sy� stem will set this bit if it provides support for unmasked SIMD floating-point excep-
t
�
ions.

2.5.1. CPUID Qualification of Cont rol Regist er Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMCEPT flags in
con) trol register CR4 are model specific. All of these flags (except PCE) can be qualified with
the C
�

PUID instruction to determine if they are implemented on the processor before they are
us{ ed.

2.6. SYSTEM INSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
man% aging the cache, managing interrupts, or setting up the debug registers. Many of these
instruction
'

s can be executed only by operating-system or executive procedures (that is, proce-
du
�

res running at privilege level 0). Others can be executed at any privilege level and are thus
available to ap� plication programs. Table 2-2 lists the system instructions and indicates whether
they
�

 are available and useful for application programs. These instructions are described in detail
in Chapter 3, Instruction Set Reference, of the � Intel Architecture Software Developer’s Manual,
Volume 2.

2-19

SYSTEM ARCHITECTURE
�

OVERVIEW

:

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the Intel Architecture with the Pentium® processor.

4. This instruction was introduced into the Intel Architecture with the Pentium® Pro processor and the Pen-
tium proces

�
sor with MMX™ technology.

5. This instruction was introduced into the Intel Architecture with the Pentium® III processor.

Table 2-2. Summ ary of Sys tem Instructio ns

Instructio n Descrip tion
Useful t o

Appl icat ion?
Protected from
Appli cat ion ?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No

LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn� Load and store control registers Yes Yes (load only)

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARP
s

L Adjust RPL Yes1 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DBn� Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3
�

Read Model-Specific Registers No Yes

WRMSR3
�

Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3
�

Read Time-Stamp Counter Yes Yes2

LDMXCSR5
�

Load MXCSR Register Yes No

STMXCSR5
�

Store MXCSR Resister Yes No

2-20

SYSTEM ARCHITECTURE OVERVIEW

2.6.1. Loading and Storing S ystem Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading
dat
�

a into and storing data from the register:

LGDT (Load GDTR Register) Loads the GDT base address and limit from memory into the
GDTR reg

0
ister.

SGD
4

T (Store GDTR Register)Stores the GDT base address and limit from the GDTR register
into memory.

LIDT
/

(Load IDTR Register) Loads the IDT base address and limit from memory into the
ID

(
TR register.

SIDT (Lo
4

ad IDTR Register Stores the IDT base address and limit from the IDTR register
i

'
nto memory.

LLDT (
/

Load LDT Register) Loads the LDT segment selector and segment descriptor from
memory into the LDTR. (The segment selector operand can also
b

-
e located in a general-purpose register.)

SLDT (Store
4

LDT Register) Stores the LDT segment selector from the LDTR register into
memory or a general-purpose register.

L
/
TR (Load Task Register) Loads segment selector and segment descriptor for a TSS from

m% emory into the task register. (The segment selector operand
can) also be located in a general-purpose register.)

STR
4

 (Store Task Register) Stores the segment selector for the current task TSS from the
t

�
ask register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
op� erate on bits 0 through 15 of control register CR0. These instructions are provided for compat-
ib
'

ility with the 16-bit Intel 286 processor. Program written to run on 32-bit Intel Architecture
pr� ocessors should not use these instructions. Instead, they should access the control register CR0
u{ sing the MOV instruction.

The C
�

LTS (clear TS flag in CR0) instruction is provided for use in handling a device-not-avail-
able � exception (#NM) that occurs when the processor attempts to execute a floating-point
in
'

struction when the TS flag is set. This instruction allows the TS flag to be cleared after the
FP
?

U context has been saved, preventing further #NM exceptions. Refer to Section 2.5., “Control
Registers” for more information about the TS flag.

The
�

control registers (CR0, CR1, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction
�

 can load a control register from a general-purpose register or store the contents
of� the control register in a general-purpose register.

2.6.2. Veri fy ing of Access Privileges

The
�

processor provides several instructions for examining segment selectors and segment
descripto
�

rs to determine if access to their associated segments is allowed. These instructions

2-21

SYSTEM ARCHITECTURE
�

OVERVIEW

dup
�

li cate some of the automatic access rights and type checking done by the processor, thus
all� owing operating-system or executive software to prevent exceptions from being generated.

Th
�

e ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
s� elector to match that of the program or procedure that supplied the segment selector. Refer to
S

4
ection 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)” in Chapter 4, Pr

F
otec-

ti$ on for a detailed explanation of the function and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads the

*
access rights information from the segment’s segment descriptor into a general-

pur� pose register. Software can then examine the access rights to determine if the segment type
is compatible with its intended use. Refer to Section 4.10.1., “Checking Access Rights (LAR
Ins

(
truction)” in Chapter 4, Pr

F
otection for a detailed explanation of the function and use of this

in
'

struction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
lo

*
ads the segment limit from the segment’s segment descriptor into a general-purpose register.

S
4

oftware can then compare the segment limit with an offset into the segment to determine
whether the of& fset lies within the segment. Refer to Section 4.10.3., “Checking That the Pointer
Of

�
fset Is Within Limits (LSL Instruction)” in Chapter 4, Pr

F
otection for a detailed explanation of

th
�

e function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
s� egment is readable or writable, respectively, at the CPL. Refer to Section 4.10.2., “Checking
R

n
ead/Write Rights (VERR and VERW Instructions)” in Chapter 4, Pr

F
otection for a detailed

expl+ anation of the function and use of this instruction.

2.6.3. Loading and Storing Debug Register s

The internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DR

�
0 through DR7). The MOV instruction allows setup data to be loaded into and stored from

these registers.
�

2.6.4. Invalidat ing Caches and TLB s

The pr
�

ocessor provides several instructions for use in explicitl y invalidating its caches and TLB
entries. The INVD (invalidate cach+ e with no writeback) instruction invalidates all data and
inst

'
ruction entries in the internal caches and TLBs and sends a signal to the external caches indi-

cati) ng that they should be invalidated also.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD i

(
nstruction, except that it writes back any modified lines in its internal caches to memory

befo
-

re it invalidates the caches. After invalidating the internal caches, it signals the external
caches to write b) ack modified data and invalidate their contents.

The
�

INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified

'
 page.

2-22

SYSTEM ARCHITECTURE OVERVIEW

2.6.5. Cont rol ling the P rocesso r

Th
�

e HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI
or� SMI, which are normally enabled), the BINIT# signal, the INIT# signal, or the RESET#
si� gnal is received. The processor generates a special bus cycle to indicate that the halt mode has
been
-

 entered. Hardware may respond to this signal in a number of ways. An indicator light on
the
�

front panel may be turned on. An NMI interrupt for recording diagnostic information may
be
-

generated. Reset initialization may be invoked. (Note that the BINIT# pin was introduced
with& the Pentium®

!
 Pro processor.)

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memo% ry operand. This mechanism is used to allow reliable communications between processors
in
'

 multiprocessor systems. In the Pentium®
!
 and earlier Intel Architecture processors, the LOCK

pr� efix causes the processor to assert the LOCK# signal during the instruction, which always
cau) ses an explici t bus lock to occur. In the P6 family processors, the locking operation is handled
with either a& cache lock or bus lock. If a memory access is cacheable and affects only a single
cache line, a) cache lock is invoked and the system bus and the actual memory location in system
memo% ry are not locked during the operation. Here, other P6 family processors on the bus write-
back
-

 any modified data and invalidate their caches as necessary to maintain system memory
coh) erency. If the memory access is not cacheable and/or it crosses a cache line boundary, the
pr� ocessor’s LOCK# signal is asserted and the processor does not respond to requests for bus
con) trol during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
s� tate it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Perf orm ance-Monitoring and T ime-Stamp
Count ers

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instruction
'

s allow an application program to read the processors performance-monitoring and
time-stamp co
�

unters, respectively.

The P
�

6 family processors have two 40-bit performance counters that record either the occur-
ren> ce of events or the duration of events. The events that can be monitored include the number
of� instructions decoded, number of interrupts received, of number of cache loads. Each counter
can b) e set up to monitor a different event, using the system instruction WRMSR to set up values
in
'

 the model-specific registers PerfEvtSel0 and PerfEvtSel1. The RDPMC instruction loads the
cur) rent count in counter 0 or 1 into the EDX:EAX registers.

The time-
�

stamp counter is a model-specific 64-bit counter that is reset to zero each time the
proce� ssor is reset. If not reset, the counter will increment ~6.3 x 1015 tim

�
es per year when

the
�

 processor is operating at a clock rate of 200 MHz. At this clock frequency, it would take
ov� er 2000 years for the counter to wrap around. The RDTSC instruction loads the current
coun) t of the time-stamp counter into the EDX:EAX registers.

2-23

SYSTEM ARCHITECTURE
�

OVERVIEW

Refer to Section 15.5., “Time-Stamp Counter”, and Section 15.6., “Performance-Monitoring
Co

L
unters” , in Ch

L
apter 15, Debug

T
ging and Performance Monitoring, for� more information about

the pe
�

rformance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the Intel Architecture with the Pentium®
!
 processor.

Th
�

e RDPMC instruction was introduced into the Intel Architecture with the Pentium®
!
 Pro

pro� cessor and the Pentium®
!
 processor with MMX ™ technology. Earlier Pentium®

!
 processors

have two performance-monitoring counters, but they can be read only with the RDMSR instruc-
ti
�

on, and only at privilege level 0.

2.6.7. Reading and Writing Model-Specific Regist ers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) allow
th

�
e processor’s 64-bit model-specific registers (MSRs) to be read and written to, respectively.

Th
�

e MSR to be read or written to is specified by the value in the ECX register. The RDMSR
instruction reads the value from the specified MSR into the EDX:EAX registers; the WRMSR
writes& the value in the EDX:EAX registers into the specified MSR. Refer to Section 8.4.,
“Model-Specific Registers (MSRs)” i n Chapter 8, Pr

F
ocessor Management and Initialization for

more information about the MSRs.

Th
�

e RDMSR and WRMSR instructions were introduced into the Intel Architecture with the
Pe

�
ntium®

!
 processor.

2.6.8. Loading and Storing the S treaming SIMD E xtensi ons
Control/ Status W ord

The LDMXCS
�

R (load Streaming SIMD Extensions control/status word from memory) and
S

4
TMXCSR (store Streaming SIMD Extensions control/status word to memory) allow the

Pe
�

ntium®
"
 II I processor’s 32-bit control/status word to be read and written to, respectively. The

MXC
K

SR control/status register is used to enable masked/unmasked exception handling, to set
rounding modes, to set flush-to-zero mode, and to view exception status flags. For more infor-
m% ation on the LDMX CSR and STMXCSR instructions, refer to the In

�
tel Architecture Software

Devel
T

oper’s Manual, Vol 2, for a complete description of these instructions.

2-24

SYSTEM ARCHITECTURE OVERVIEW

3
Protected-Mode
Memory
Management

3-1

PROTECTED-MODE MEMORY MANAGEMENT

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

Th
�

is chapter describes the Intel Architecture’s protected-mode memory management facilities,
including the physical memory requirements, the segmentation mechanism, and the paging
mechan% ism. Refer to Chapter 4, Pr

F
otection for a description of the processor’s protection mech-

an� ism. Refer to Chapter 16, 80
H

86 Emulation for a description of memory addressing protection
in real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memo
�

ry management facilities of the Intel Architecture are divided into two parts: segmen-
tat

�
ion and paging. Segmentation provides a mechanism of isolating individual code, data, and

s� tack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering

8
 with one another. Paging provides a mechanism for implementing a conventional

deman
�

d-paged, virtual-memory system where sections of a program’s execution environment
are mapp� ed into physical memory as needed. Paging can also be used to provide isolation
b

-
etween multiple tasks. When operating in protected mode, some form of segmentation must be

us{ ed. There is no mode bit to disable segmentation. The use of paging, however, is optional.

Thes
�

e two mechanisms (segmentation and paging) can be configured to support simple single-
p� rogram (or single-task) systems, multitasking systems, or multiple-processor systems that used
s� hared memory.

As s
�

hown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addr� essable memory space (called the li

�
near address space) in

Y
to smaller protected address

s� paces called segA ments. Segments can be used to hold the code, data, and stack for a program
or to ho� ld system data structures (such as a TSS or LDT). If more than one program (or task) is
run> ning on a processor, each program can be assigned its own set of segments. The processor
then en

�
forces the boundaries between these segments and insures that one program does not

i
'
nterfere with the execution of another program by writing into the other program’s segments.
The segmen

�
tation mechanism also allows typing of segments so that the operations that may be

perf� ormed on a particular type of segment can be restricted.

Al
�

l of the segments within a system are contained in the processor’s linear address space. To
locate a byte in

*
 a particular segment, a logica

�
l address (sometimes called a far pointer) must be

pro� vided. A logical address consists of a segment selector and an offset. The segment selector
i

'
s a unique identifier for a segment. Among other things it provides an offset into a descriptor
t

�
able (such as the global descriptor table, GDT) to a data structure called a segment descriptor.
Each segment has a segment descriptor, which specifies the size of the segment, the access rights
an� d privilege level for the segment, the segment type, and the location of the first byte of the
s� egment in the linear address space (called the base address of the segment). The offset part of
the logical ad

�
dress is added to the base address for the segment to locate a byte within the

s� egment. The base address plus the offset thus forms a li
�

near address in the processor’s linear

3-2

PROTECTED-MODE MEMORY MANAGEMENT

add� ress space.

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the
�

processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than
�

 it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging
�

 supports a “virtual memory” environment where a large linear address space is simulated
with a & small amount of physical memory (RAM and ROM) and some disk storage. When using
pag� ing, each segment is divided into pages (ordinaril y 4 KBytes each in size), which are stored
either + in physical memory or on the disk. The operating system or executive maintains a page
directo
�

ry and a set of page tables to keep track of the pages. When a program (or task) attempts
to access
�

 an address location in the linear address space, the processor uses the page directory

Figure 3-1. Segmentation and Pagin g

Global Descriptor
T

O
able (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

A
s

ddress

Page

3-3

PROTECTED-MODE MEMORY MANAGEMENT

and pa� ge tables to translate the linear address into a physical address and then performs the
requ> ested operation (read or write) on the memory location. If the page being accessed is not
curr) ently in physical memory, the processor interrupts execution of the program (by generating
a pag� e-fault exception). The operating system or executive then reads the page into physical
memo% ry from the disk and continues executing the program.

W
9

hen paging is implemented properly in the operating-system or executive, the swapping of
pages between ph� ysical memory and the disk is transparent to the correct execution of a
pro� gram. Even programs written for 16-bit Intel Architecture processors can be paged (transpar-
ently) + when they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism supported by the Intel Architecture can be used to implement a
w& ide variety of system designs. These designs range from flat models that make only minimal
us{ e of segmentation to protect programs to multisegmented models that employ segmentation
to create a

�
robust operating environment in which multiple programs and tasks can be executed

reliab> ly.

The following sections give several examples of how segmentation can be employed in a system
to

�
 improve memory management performance and reliability .

3.2.1. Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
s� ystem and application programs have access to a continuous, unsegmented address space. To
the gr

�
eatest extent possible, this basic flat model hides the segmentation mechanism of the archi-

t
�
ecture from both the system designer and the application programmer.

T
�
o implement a basic flat memory model with the Intel Architecture, at least two segment

des
�

criptors must be created, one for referencing a code segment and one for referencing a data
s� egment (refer to Figure 3-2). Both of these segments, however, are mapped to the entire linear
addr� ess space: that is, both segment descriptors have the same base address value of 0 and the
s� ame segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
phy� sical memory resides at a particular address. ROM (EPROM) is generall y located at the top
of the ph� ysical address space, because the processor begins execution at FFFF_FFF0H. RAM
(DR

�
AM) is placed at the bottom of the address space because the initial base address for the DS

d
�
ata segment after reset initialization is 0.

3-4

PROTECTED-MODE MEMORY MANAGEMENT

3.2.2. Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
includ
'

e only the range of addresses for which physical memory actually exists (refer to Figure
3
R
-3). A general-protection exception (#GP) is then generated on any attempt to access nonex-

istent memory. This model provides a minimum level of hardware protection against some kinds
of� program bugs.

More complexity can be added to this protected flat model to provide more protection. For
exam+ ple, for the paging mechanism to provide isolation between user and supervisor code and
data,
�

four segments need to be defined: code and data segments at privil ege level 3 for the user,
an� d code and data segments at privilege level 0 for the supervisor. Usually these segments all
ov� erlay each other and start at address 0 in the linear address space. This flat segmentation

Figure 3-2. Flat Model

F
�

igure 3-3. Prote cted Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAc
s

cess
Base Address

Registers

CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAc
s

cess
Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAc
s

cess
Base Address

Memory I/O

Stack

Not Present

3-5

PROTECTED-MODE MEMORY MANAGEMENT

model along with a simple paging structure can protect the operating system from applications,
and � by adding a separate paging structure for each task or process, it can also protect applica-
ti

�
ons from each other. Similar designs are used by several popular multitasking operating

sy� stems.

3.2.3. Mul tisegme nt Model

A m
�

ultisegment model (such as the one shown in Figure 3-4) uses the full capabiliti es of the
s� egmentation mechanism to provided hardware enforced protection of code, data structures, and
pro� grams and tasks. Here, each program (or task) is given its own table of segment descriptors
and � its own segments. The segments can be completely private to their assigned programs or
s� hared among programs. Access to all segments and to the execution environments of individual
pro� grams running on the system is controlled by hardware.

Figu
�

re 3-4. Mult iseg ment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAc
s

cess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAc
s

cess
Base Address

GS LimitAc
s

cess
Base Address

LimitAccess
Base Address

LimitAc
s

cess
Base Address

LimitAc
s

cess
Base Address

LimitAc
s

cess
Base Address

Stack

Code

Data

Data

Data

Data

3-6

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside the limit
of� a segment, but also against performing disallowed operations in certain segments. For
exam+ ple, since code segments are designated as read-only segments, hardware can be used to
pr� event writes into code segments. The access rights information created for segments can also
be
-

used to set up protection rings or levels. Protection levels can be used to protect operating-
syst� em procedures from unauthorized access by application programs.

3.2.4. Paging and S egment ation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4.
The
�

processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mapped
to p
�

ages in the physical address space. The paging mechanism offers several page-level protec-
tio
�

n facilities that can be used with or instead of the segment-protection facilities. For example,
it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
pr� ovides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL AD DRESS SPACE

In protected mode, the Intel Architecture provides a normal physical address space of 4 GBytes
(2
� 32

�
 by

-
tes). This is the address space that the processor can address on its address bus. This

add� ress space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
m% emory, and memory mapped I/O. The memory mapping facilities described in this chapter can
b
-
e used to divide this physical memory up into segments and/or pages.

(Intro
�

duced in the Pentium®
"
 Pro processor.) The Intel Architecture also supports an extension of

the phy
�

sical address space to 236
�

 bytes (64 GBytes), with a maximum physical address of
FF
?

FFFFFFFH. This extension is invoked with the physical address extension (PAE) flag,
located in bit 5 of control register CR4. (Refer to Section 3.8., “Physical Address Extension” for
mo% re information about extended physical addressing.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to ar
�

rive at a physical address: logical-address translation and linear address space
pag� ing.

Even with the minimum use of segments, every byte in the processor’s address space is accessed
with a l& ogical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(ref
�

er to Figure 3-5). The segment selector identifies the segment the byte is located in and the
of� fset specifies the location of the byte in the segment relative to the base address of the segment.

The p
�

rocessor translates every logical address into a linear address. A linear address is a 32-bit
add� ress in the processor’s linear address space. Like the physical address space, the linear
add� ress space is a flat (unsegmented), 232

�
-byte address space, with addresses ranging from 0 to

3-7

PROTECTED-MODE MEMORY MANAGEMENT

FFFFFFFH. The linear address space contains all the segments and system tables defined for a
sy� stem.

T
�
o translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT

�
or LDT and reads it into the processor. (This step is needed only when a new

segmen� t selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure

'
that the segment is accessible and that the offset is within the limits of the segment.

3.
R

Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

If paging is not used, the processor maps the linear address directly to a physical address (that
is

'
, the linear address goes out on the processor’s address bus). If the linear address space is

paged� , a second level of address translation is used to translate the linear address into a physical
addr� ess. Page translation is described in Section 3.6., “Paging (Virtual Memory)”

3.4.1. Segment Selectors

A
�

segment selector is a 16-bit identifier for a segment (refer to Figure 3-6). It does not point
d

�
irectly to the segment, but instead points to the segment descriptor that defines the segment. A

s� egment selector contains the following items:

I
3
ndex (B

�
its 3 through 15). Sel

4
ects one of 8192 descriptors in the GDT or LDT. The

pr� ocessor multiplies the index value by 8 (the number of bytes in a segment
descripto
�

r) and adds the result to the base address of the GDT or LDT (from
the GDTR
�

 or LDTR register, respectively).

Figure 3-5. Logic al Ad dress to L inear Addres s Transl ation

Offset
0

Base Address

Descriptor Table

 Segment
Descriptor

31
Seg. Selector

015
Logical

A
s

ddress

+�

Linear Address
031

3-8

PROTECTED-MODE MEMORY MANAGEMENT

TI (table indicator) f lag
(B

�
it 2). Specifies the descriptor table to use: clearing this flag selects the GDT;

sett� ing this flag selects the current LDT.

Requ
o

ested Privilege Level (RPL)
(B

�
its 0 and 1). Specifies the privilege level of the selector. The privilege level

can) range from 0 to 3, with 0 being the most privileged level. Refer to Section
4

�
.5., “Privilege Levels” in Chapter 4, Pr

F
otection for a description of the rela-

tio
�

nship of the RPL to the CPL of the executing program (or task) and the
d

�
escriptor privilege level (DPL) of the descriptor the segment selector points

to
�

.

The first entry of the GDT is not used by the processor. A segment selector that points to this
en+ try of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as � a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
genC erate an exception when a segment register holding a null selector is used to access memory.
A nu
�

ll selector can be used to initiali ze unused segment registers. Loading the CS or SS register
with a n& ull segment selector causes a general-protection exception (#GP) to be generated.

Segmen
4

t selectors are visible to application programs as part of a pointer variable, but the values
of� selectors are usually assigned or modified by link editors or linking loaders, not application
pr� ograms.

3.4.2. Segment Regis ters

T
�
o reduce address translation time and coding complexity, the processor provides registers for

ho
7

lding up to 6 segment selectors (refer to Figure 3-7). Each of these segment registers support
a s� pecific kind of memory reference (code, stack, or data). For virtually any kind of program
execu+ tion to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers
�

must be loaded with valid segment selectors. The processor also provides three
add� itional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments ava� ilable to the currently executing program (or task).

For
?

a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6

Figure 3-6. Segment Selector

15 3 2 1 0

T
IIndex

T
O

able Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

3-9

PROTECTED-MODE MEMORY MANAGEMENT

can be available fo) r immediate use. Other segments can be made available by loading their
s� egment selectors into these registers during program execution.

Every
6

 segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the v

'
isible part of a segment register, the processor also loads the hidden part of the segment

register with the base address, segment limit, and access control information from the segment
descriptor

�
 pointed to by the segment selector. The information cached in the segment register

(visible and hidd
�

en) allows the processor to translate addresses without taking extra bus cycles
to

�
 read the base address and limit from the segment descriptor. In systems in which multiple

p� rocessors have access to the same descriptor tables, it is the responsibility of software to reload
the segme

�
nt registers when the descriptor tables are modified. If this is not done, an old segment

descriptor
�

 cached in a segment register might be used after its memory-resident version has been
modified.

T
�
wo kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tio

�
ns. These instructions explici tly reference the segment registers.

2.
Q

Implied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions and the IRET, INTn� , INT� O and INT3 instructions. These instructions change
the co

�
ntents of the CS register (and sometimes other segment registers) as an incidental

par� t of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
pur� pose register.

3.4.3. Segment Descript ors

A
�

segment descriptor is a data structure in a GDT or LDT that provides the processor with the
s� ize and location of a segment, as well as access control and status information. Segment
descriptor

�
s are typically created by compilers, linkers, loaders, or the operating system or exec-

Figure 3-7. Segment Regis ters

CS

SS

DS

ES

FS

GS

Segment Selector Base Address, Limit, Access Information

Visible Part Hidden Part

3-10

PROTECTED-MODE MEMORY MANAGEMENT

u{ tive, but not application programs. Figure 3-8 il lustrates the general descriptor format for all
t
�
ypes of segment descriptors.

The
�

flags and fields in a segment descriptor are as follows:

Seg
U

ment limit field
Specifies the size of

4
 the segment. The processor puts together the two segment

lim
*

it fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1
MB
K

yte, in byte increments.

• If the granularity flag is set, the segment size can range from 4 KBytes to
4 GB
�

ytes, in 4-KByte increments.

Th
�

e processor uses the segment limit in two different ways, depending on
whet& her the segment is an expand-up or an expand-down segment. Refer to
S

4
ection 3.4.3.1., “Code- and Data-Segment Descriptor Types” for more infor-

mat% ion about segment types. For expand-up segments, the offset in a logical
ad� dress can range from 0 to the segment limit . Offsets greater than the segment
lim

*
it generate general-protection exceptions (#GP). For expand-down

segmen� ts, the segment limit has the reverse function; the offset can range from
th

�
e segment limit to FFFFFFFFH or FFFFH, depending on the setting of the B

flag. Of
8

fsets less than the segment limit generate general-protection excep-
tion

�
s. Decreasing the value in the segment limit field for an expand-down

segmen� t allocates new memory at the bottom of the segment's address space,
rath> er than at the top. Intel Architecture stacks always grow downwards,
mak% ing this mechanism is convenient for expandable stacks.

3-11

PROTECTED-MODE MEMORY MANAGEMENT

B
�

ase address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address
space. T� he processor puts together the three base address fields to form a single
32
R

-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programs to
maxi% mize performance by aligning code and data on 16-byte boundaries.

Ty
~

pe field In
(

dicates the segment or gate type and specifies the kinds of access that can be
made to the segment and the direction of growth. The interpretation of this field
dep
�

ends on whether the descriptor type flag specifies an application (code or
dat
�

a) descriptor or a system descriptor. The encoding of the type field is
di
�

fferent for code, data, and system descriptors (refer to Figure 4-1 in Chapter
4,
�

Pr
F

otection).
Y

 Refer to Section 3.4.3.1., “Code- and Data-Segment Descriptor
T
�
ypes” for a description of how this field is used to specify code and data-

seg� ment types.

S
U

 (descriptor type) flag
Specifies wheth
4

er the segment descriptor is for a system segment (S flag is
clear)) or a code or data segment (S flag is set).

Figu re 3-8. Segment Descript or

31
Z

24
c

23 22
c

21 20 19 16 15 1314 12 11 8 7
_

0
d

PBase 31:24 G
v D

P
L

TypeS
i

0
d

4

31
Z

16 15 0
d

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/

�
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

3-12

PROTECTED-MODE MEMORY MANAGEMENT

DPL (descriptor pr ivilege level) field
Sp

4
ecifies the privilege level of the segment. The privilege level can range from

0 to 3,
D

 with 0 being the most privileged level. The DPL is used to control access
to

�
 the segment. Refer to Section 4.5., “Privilege Levels” in Chapter 4, Protec-

tio$ n for a description of the relationship of the DPL to the CPL of the executing
co) de segment and the RPL of a segment selector.

P (segment-present) flag
In

(
dicates whether the segment is present in memory (set) or not present (clear).

If
(

 this flag is clear, the processor generates a segment-not-present exception
(#

�
NP) when a segment selector that points to the segment descriptor is loaded

into
'

 a segment register. Memory management software can use this flag to
co) ntrol which segments are actually loaded into physical memory at a given
t

�
ime. It offers a control in addition to paging for managing virtual memory.

Figur
?

e 3-9 shows the format of a segment descriptor when the segment-present
flag

8
 is clear. When this flag is clear, the operating system or executive is free

to
�

use the locations marked “Available” to store its own data, such as informa-
tio

�
n regarding the whereabouts of the missing segment.

D/B
�

 (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is
an� executable code segment, an expand-down data segment, or a stack
s� egment. (This flag should always be set to 1 for 32-bit code and data segments
an� d to 0 for 16-bit code and data segments.)

• E
}

xecutable code segment. The flag is called the D flag and it indicates the
def
�

ault length for effective addresses and operands referenced by instruc-
t
�
ions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
op� erands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
op� erands are assumed. The instruction prefix 66H can be used to select an
op� erand size other than the default, and the prefix 67H can be used select
an ad� dress size other than the default.

• Stack s
U

egment (data segment pointed to by the SS register). The flag is
called th) e B (big) flag and it specifies the size of the stack pointer used for
im
'

plicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 3� 2-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the
�

flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
S
4

P register. If the stack segment is set up to be an expand-down data
segment (� described in the next paragraph), the B flag also specifies the
up{ per bound of the stack segment.

• Ex
}

pand-down data segment. The flag is called the B flag and it specifies
t
�
he upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KB
�

ytes).

3-13

PROTECTED-MODE MEMORY MANAGEMENT

G (g
�

ranularity) flag
Determines the scaling of the segment limit f ield. When the granularity flag is
clear) , the segment limit is interpreted in byte units; when flag is set, the
seg� ment limit is interpreted in 4-KByte units. (This flag does not affect the
grC anularity of the base address; it is always byte granular.) When the granu-
larity flag
*

 is set, the twelve least significant bits of an offset are not tested when
check) ing the offset against the segment limit. For example, when the granu-
larity flag is set, a limit of 0 results in valid offsets from 0 to 4095.

A
.

vailable and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use
by
-

 system software; bit 21 is reserved and should always be set to 0.

3
�

.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

W
9

hen the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or � a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segm

�
ent descriptor) then determines whether the descriptor is for a data segment (clear) or

a cod� e segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
acces� sed (A), write-enable (W), and expansion-direction (E). Refer to Table 3-1 for a descrip-
ti

�
on of the encoding of the bits in the type field for code and data segments. Data segments can

be r
-

ead-only or read/write segments, depending on the setting of the write-enable bit.

Figure 3-9. Segment Descripto r When Segment-Prese nt Fl ag Is Clear

31
Z

16 15 1314 12 11 8
_

7 0
`

0
d

A
�

vailable
D

g
P
L

Ty
�

peS
i

4

31
Z

0
d

Available 0

A
�

vailable

3-14

PROTECTED-MODE MEMORY MANAGEMENT

St
4

ack segments are data segments which must be read/write segments. Loading the SS register
with a s& egment selector for a nonwritable data segment generates a general-protection exception
(#
�

GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an ex� pand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit caus� es stack space to be added to the bottom of the stack. If the size of a stack
s� egment is intended to remain static, the stack segment may be either an expand-up or expand-
do
�

wn type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-� system or executive cleared the bit. The processor sets this bit whenever it loads a segment
sel� ector for the segment into a segment register. The bit remains set until explicit ly cleared. This
bi
-

t can be used both for virtual memory management and for debugging.

For co
?

de segments, the three low-order bits of the type field are interpreted as accessed (A), read
enab+ le (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on� the setting of the read-enable bit. An execute/read segment might be used when constants or
oth� er static data have been placed with instruction code in a ROM. Here, data can be read from
the cod
�

e segment either by using an instruction with a CS override prefix or by loading a
segment select� or for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). I
�

n protected mode, code segments are not writable.

C
L

ode segments can be either conforming or nonconforming. A transfer of execution into a more-
p� rivileged conforming segment allows execution to continue at the current privilege level. A
tran
�

sfer into a nonconforming segment at a different privilege level results in a general-protec-
tion
�

exception (#GP), unless a call gate or task gate is used (refer to Section 4.8.1., “Direct Call s
o� r Jumps to Code Segments” in Chapter 4, Protection for more information on conforming and

T
�
able 3-1. Code- and Data-Segment Types

Type Field

Descri ptor
T

�
ype Descrip tionDecimal

11 10
E

9
W

� 8
A

0
1
2
3
4
5
6
7

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Data
Data
Data
Data
Data
Data
Data
Data

Read-Only
Read-Only, accessed
Read/Write
Read/Write, accessed
Read-Only, expand-down
Read-Only, expand-down, accessed
Read/Write, expand-down
Read/Write, expand-down, accessed

C R A

8
9

10
11
12
13
14
15

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Code
Code
Code
Code
Code
Code
Code
Code

Execute-Only
Execute-Only, accessed
Execute/Read
Execute/Read, accessed
Execute-Only, conforming
Execute-Only, conforming, accessed
Execute/Read-Only, conforming
Execute/Read-Only, conforming, accessed

3-15

PROTECTED-MODE MEMORY MANAGEMENT

nonconforming code segments). System utiliti es that do not access protected facilities and
hand

7
lers for some types of exceptions (such as, divide error or overflow) may be loaded in

co) nforming code segments. Utilit ies that need to be protected from less privileged programs and
pro� cedures should be placed in nonconforming code segments.

NOTE

Ex
6

ecution cannot be transferred by a call or a jump to a less-privileged
(n

�
umerically higher privilege level) code segment, regardless of whether the

t
�
arget segment is a conforming or nonconforming code segment. Attempting
su� ch an execution transfer will result in a general-protection exception.

Al l data segments are nonconforming, meaning that they cannot be accessed by less privileged
pro� grams or procedures (code executing at numerically high privilege levels). Unlike code
s� egments, however, data segments can be accessed by more privileged programs or procedures
(cod

�
e executing at numerically lower privilege levels) without using a special access gate.

The p
�

rocessor may update the Type field when a segment is accessed, even if the access is a read
cycle. I) f the descriptor tables have been put in ROM, it may be necessary for hardware to prevent
the R

�
OM from being enabled onto the data bus during a write cycle. It also may be necessary to

re> turn the READY# signal to the processor when a write cycle to ROM occurs, otherwise
th

�
e cycle will not terminate. These features of the hardware design are necessary for using

ROM-based descriptor tables with the Intel386™ DX processor, which always sets the
Acces

�
sed bit when a segment descriptor is loaded. The P6 family, Pentium®

"
, and In� tel486™

pro� cessors, however, only set the accessed bit if it is not already set. Writes to descriptor tables
in ROM can be avoided by setting the accessed bits in every descriptor.

3.5. SYSTEM DESCRIPTOR TYPES

W
9

hen the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
des

�
criptor. The processor recognizes the following types of system descriptors:

• Local descriptor-table (LDT) segment descriptor.

• T
�
ask-state segment (TSS) descriptor.

• C
L

all-gate descriptor.

• Interrupt-gate descriptor.

• T
�

rap-gate descriptor.

• Task-gate descriptor.

Thes
�

e descriptor types fall into two categories: system-segment descriptors and gate descriptors.
S

4
ystem-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-

tors are in th
�

emselves “gates,” which hold pointers to procedure entry points in code segments
(cal

�
l, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates). Table 3-2

sh� ows the encoding of the type field for system-segment descriptors and gate descriptors.

3-16

PROTECTED-MODE MEMORY MANAGEMENT

F
?

or more information on the system-segment descriptors, refer to Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor” in Chapter 6, Task Management. For
m% ore information on the gate descriptors, refer to Section 4.8.2., “Gate Descriptors” in Chapter
4,
�

Pr
F

otection; Section 5.9., “IDT Descriptors” in Chapter 5, In
�

terrupt and Exception Handling;
and� Section 6.2.4., “Task-Gate Descriptor” in Chapter 6, Task Management.

3.5.1. Segment Descriptor Tables

A
�

 segment descriptor table is an array of segment descriptors (refer to Figure 3-10). A descriptor
t
�
able is variable in length and can contain up to 8192 (213)

Y
8-byte descriptors. There are two

ki
W

nds of descriptor tables:

• Th
�

e global descriptor table (GDT)

• The local descriptor tables (LDT)

T
�
able 3-2. System -Segment and Gate-Descr iptor Types

Type Field

Decimal 11 10 9 8 Descri ption

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)

2 0 0 1 0 LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate

7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 32-Bit TSS (Available)

10 1 0 1 0 Reserved

11 1 0 1 1 32-Bit TSS (Busy)

12 1 1 0 0 32-Bit Call Gate

13 1 1 0 1 Reserved

14 1 1 1 0 32-Bit Interrupt Gate

15 1 1 1 1 32-Bit Trap Gate

3-17

PROTECTED-MODE MEMORY MANAGEMENT

Each s
6

ystem must have one GDT defined, which may be used for all programs and tasks in the
s� ystem. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separ+ ate task being run, or some or all tasks can share the same LDT.

The G
�

DT is not a segment itself; instead, it is a data structure in the linear address space. The
base

-
linear address and limit of the GDT must be loaded into the GDTR register (refer to Section

2.4., “Memory-Management Registers” in Chapter 2, System
�

 Architecture Overview).
Y

 The base
addr� esses of the GDT should be aligned on an eight-byte boundary to yield the best processor
p� erformance. The limit value for the GDT is expressed in bytes. As with segments, the limit
vr alue is added to the base address to get the address of the last valid byte. A limit value of 0
results> in exactly one valid byte. Because segment descriptors are always 8 bytes long, the GDT
limit should always be one less than an integral multiple of eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor

�
” does not generate an exception when loaded into a data-segment register (DS, ES,

FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is

Figure 3-10. Global and L ocal Descripto r Tables

Segment
Selector

Global
Descriptor

T

First Descriptor in
GDT is Not Used

TI
O

= 0I

56

40

48

32

24

16

8

0

TI
O

 = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local
Descriptor

Table (LDT)

Base Address
Limit

GDTR Register LDTR Register

Base Address
Seg. Sel.

Limit

3-18

PROTECTED-MODE MEMORY MANAGEMENT

made to access memory using the descriptor. By initi alizing the segment registers with this
segment selector� , accidental reference to unused segment registers can be guaranteed to generate
an exception� .

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
d
�
escriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-

rate segmen> t selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be lo) cated anywhere in the GDT. Refer to Section 3.5., “System Descriptor Types” for infor-
mat% ion on the LDT segment-descriptor type.

An LDT
�

is accessed with its segment selector. To eliminate address translations when accessing
the LDT
�

, the segment selector, base linear address, limit, and access rights of the LDT are stored
in th
'

e LDTR register (refer to Section 2.4., “Memory-Management Registers” in Chapter 2,
System Ar
�

chitecture Overview).
Y

W
9

hen the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is
'

 stored in memory (refer to Figure 3-11). To avoid alignment check faults in user mode (priv-
ilege level 3
'

), the pseudo-descriptor should be located at an odd word address (that is, address
MOD 4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
d
�
oubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility

of� generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way& . The same alignment should be used when storing the IDTR register using the SIDT instruc-
t
�
ion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo
�

-descriptor should be located at a doubleword address (that is, address MOD 4 is
eq+ ual to 0).

3.6. PAGING (VIRTUAL MEMORY)

W
9

hen operating in protected mode, the Intel Architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(u
�

sing paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear ad
�

dress space is commonly referred to as virtual memory or demand-paged virtual
memory.

W
9

hen paging is used, the processor divides the linear address space into fixed-size pages (gener-
al� ly 4 KBytes in length) that can be mapped into physical memory and/or disk storage. When a
pr� ogram (or task) references a logical address in memory, the processor translates the address
into
'

a linear address and then uses its paging mechanism to translate the linear address into a
cor) responding physical address. If the page containing the linear address is not currently in
ph� ysical memory, the processor generates a page-fault exception (#PF). The exception handler
fo
8

r the page-fault exception typically directs the operating system or executive to load the page
fro
8

m disk storage into physical memory (perhaps writing a different page from physical memory

Figure 3 -11. Pseudo -Descriptor F ormat

0

Base Address Limit

47 1516

3-19

PROTECTED-MODE MEMORY MANAGEMENT

out � to disk in the process). When the page has been loaded in physical memory, a return from
th

�
e exception handler causes the instruction that generated the exception to be restarted. The

info
'

rmation that the processor uses to map linear addresses into the physical address space and
to gener

�
ate page-fault exceptions (when necessary) is contained in page directories and page

t
�
ables stored in memory.

Pag
�

ing is different from segmentation through its use of fixed-size pages. Unlike segments,
which & usually are the same size as the code or data structures they hold, pages have a fixed size.
If segm

(
entation is the only form of address translation used, a data structure present in physical

m% emory will have all of its parts in memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

T
�
o minimize the number of bus cycles required for address translation, the most recently

acces� sed page-directory and page-table entries are cached in the processor in devices called
translati

�
on lookaside buffers (TLBs). The TLBs satisfy most requests for reading the current

page d� irectory and page tables without requiring a bus cycle. Extra bus cycles occur only when
t

�
he TLBs do not contain a page-table entry, which typically happens when a page has not been
acces� sed for a long time. Refer to Section 3.7., “Translation Lookaside Buffers (TLBs)” for
mor% e information on the TLBs.

3.6.1. Paging Options
Pag

�
ing is controlled by three flags in the processor’s control registers:

• PG (paging) flag, bit 31 of CR0 (available in all Intel Architecture processors beginning
with& the Intel386™ processor).

• PSE (page size extensions) flag, bit 4 of CR4 (introduced in the Pentium®
!
 and Pentium®

"

P
�

ro processors).

• PAE (physical address extension) flag, bit 5 of CR4 (introduced in the Pentium®
"
 Pro

pr� ocessors).

The PG flag enables the page-translation mechanism. The operating system or executive usuall y
s� ets this flag during processor initialization. The PG flag must be set if the processor’s page-
translati
�

on mechanism is to be used to implement a demand-paged virtual memory system or if
t
�
he operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enab
�

les large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag is
s� et). When the PSE flag is clear, the more common page length of 4 KBytes is used. Refer to
Ch
L

apter 3.6.2.2., Linear Address Translation (4-MByte Pages) and Section 3.8.2., “Li near
Addr
�

ess Translation With Extended Addressing Enabled (2-MByte or 4-MByte Pages)” for
m% ore information about the use of the PSE flag.

The PAE flag enables 36-bit physical addresses. This physical address extension can only be
us{ ed when paging is enabled. It relies on page directories and page tables to reference physical
addr� esses above FFFFFFFFH. Refer to Section 3.8., “Physical Address Extension” for more
information about the physical address extension.

3-20

PROTECTED-MODE MEMORY MANAGEMENT

3.6.2. Page Tables and Direct or ies

The information that the processor uses to translate linear addresses into physical addresses
(when
�

 paging is enabled) is contained in four data structures:

• Page directory—An array of 32-bit page-directory entries (PDEs) contained in a 4-KByte
p� age. Up to 1024 page-directory entries can be held in a page directory.

• P
�

age table—An array of 32-bit page-table entries (PTEs) contained in a 4-KByte page. Up
to 1

�
024 page-table entries can be held in a page table. (Page tables are not used for 2-

MB
K

yte or 4-MByte pages. These page sizes are mapped directly from one or more page-
d

�
irectory entries.)

• Page—A 4-KByte, 2-MByte, or 4-MByte flat address space.

• Page-Directory-Pointer Table—An array of four 64-bit entries, each of which points to a
p� age directory. This data structure is only used when the physical address extension is
en+ abled (refer to Section 3.8., “Physical Address Extension”).

These t
�

ables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
add� ressing is being used and to either 4-KByte, 2-MByte, or 4-MByte pages when extended (36-
bi
-

t) physical addressing is being used. Table 3-3 shows the page size and physical address size
o� btained from various settings of the paging control flags. Each page-directory entry contains a
PS
�

 (page size) flag that specifies whether the entry points to a page table whose entries in turn
p� oint to 4-KByte pages (PS set to 0) or whether the page-directory entry points directly to a 4-
MBy
K

te or 2-MByte page (PSE or PAE set to 1 and PS set to 1).

3.
�

6.2.1. LINEAR ADDRESS TRANSLATION (4-KBYTE PAGES)

F
?

igure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
t
�
o 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
tab
�

le point to pages in physical memory. This paging method can be used to address up to 220

pag� es, which spans a linear address space of 232
�

 bytes (4 GBytes).

Table 3-3. Page Sizes and Physi cal Addr ess Sizes

PG Flag, CR0
PAE Flag,

CR4 PSE Flag, CR4 PS Flag, PDE Page Size
Physical

Addr ess Size

0 X X X — Paging Disabled

1 0 0 X 4 KBytes 32 Bits

1 0 1 0 4 KBytes 32 Bits

1 0 1 1 4 MBytes 32 Bits

1 1 X 0 4 KBytes 36 Bits

1 1 X 1 2 MBytes 36 Bits

3-21

PROTECTED-MODE MEMORY MANAGEMENT

T
�
o select the various table entries, the linear address is divided into three sections:

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
dir

�
ectory. The selected entry provides the base physical address of a page table.

• Page-tab
�

le entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the sel

�
ected page table. This entry provides the base physical address of a page in physical

memo% ry.

• P
�

age offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tas

�
ks, one page directory for each task, or some combination of the two.

3
�

.6.2.2. LINEAR ADDRESS TRANSLATION (4-MBY TE PAGES)

Fi
?

gure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to 4-MByte pages in physical memory. This paging
m% ethod can be used to map up to 1024 pages into a 4-GByte linear address space.�

Figure 3 -12. Lin ear Ad dress Translation (4-KByte Pages)

0

Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE ∗ 1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

3-22

PROTECTED-MODE MEMORY MANAGEMENT

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the p
�

age size (PS) flag in a page-directory entry (refer to Figure 3-14). With these flags set, the
lin
*

ear address is divided into two sections:

• Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
d

�
irectory. The selected entry provides the base physical address of a 4-MByte page.

• P
�

age offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(
�
For the Pentium®

!
 processor only.) When enabling or disabling large page

sizes� , the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
mig% ht occur due to the processor using outdated page translation information
stored� in the TLBs. Refer to Section 9

�
.10., “Invalidating the Translation

Lookaside Buffers (TLBs)”, in Chapter 9, Memory Cache Control, for�
in

'
formation on how to invalidate the TLBs.

3.
�

6.2.3. MIXING 4-KBYTE AND 4-MBYTE PAGES

Wh
9

en the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be
-

accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
p� ages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical ex
�

ample of mixing 4-KByte and 4-MByte pages is to place the operating system or
execu+ tive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
man% ce. The processor maintains 4-MByte page entries and 4-KByte page entries in separate

Figure 3-13. Linear Addres s Translatio n (4-MByte Pages)

0

Directory Offset

Page Directory

Directory Entry

CR3 (PDBR)

4-MByte Page

Physical Address

31 2122
Linear Address

1024 PDE = 1024 Pages

10

22

32*

*32 bits aligned onto a 4-KByte boundary.

3-23

PROTECTED-MODE MEMORY MANAGEMENT

TLBs. So, placing often used code such as the kernel in a large page, frees up 4-KByte-page
TLB

�
 entries for application programs and tasks.

3.6.3. Base Addres s of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the
page d� irectory base register or PDBR). (Refer to Figure 2-5 and Section 2.5., “Control Regis-
ters

�
” in Chapter 2, S

�
ystem Architecture Overview for more information on the PDBR.) If paging

is to be used, the PDBR must be loaded as part of the processor initialization process (prior to
enablin+ g paging). The PDBR can then be changed either explicitl y by loading a new value in
CR

L
3 with a MOV instruction or implicitly as part of a task switch. (Refer to Section 6.2.1.,

“Task-State Segment (TSS)” in Chapter 6, Task Management for a description of how the
conten) ts of the CR3 register is set for a task.)

There
�

is no present flag in the PDBR for the page directory. The page directory may be not-
present � (paged out of physical memory) while its associated task is suspended, but the operating
s� ystem must ensure that the page directory indicated by the PDBR image in a task's TSS is
present � in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.6.4. Page-Directory and Page-Table Entries

Figu
?

re 3-14 shows the format for the page-directory and page-table entries when 4-KByte
p� ages and 32-bit physical addresses are being used. Figure 3-14 shows the format for the
p� age-directory entries when 4-MByte pages and 32-bit physical addresses are being used. Refer
t

�
o Section 3.8., “Physical Address Extension” for the format of page-directory and page-table
entries + when the physical address extension is being used.

3-24

PROTECTED-MODE MEMORY MANAGEMENT

Figure 3 -14. Format of Page-Direc tory a nd Page-Table Entries for 4- KByte Pages
and 32-Bit Ph ysic al Addres ses

31
�

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)

12 11 9
�

8
�

7
�

6
�

5 4 3
�

2 1 0
�

P
e
S

i P
C

^
A0

d

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
�
/

�
S

i
R
/

�
W

G
v

Avail.Page-Table Base Address

31
�

Available for system programmer’s use
Global page
Reserved (set to 0)
Dirty

12 11 9 8 7
�

6 5 4 3 2 1 0
�

P
C

^
AD

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
�
/

�
S

i
R
/

�
W

G
v

Avail.Page Base Address

Page-Directory E ntry (4- KByte Page Table)

Page-Table Entry (4- KByte Page)

0
d

3-25

PROTECTED-MODE MEMORY MANAGEMENT

The functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

P
1

age base address, bits 12 through 32
(Page-
�

table entries for 4-KByte pages.) Specifies the physical address of the
first by
8

te of a 4-KByte page. The bits in this field are interpreted as the 20 most-
s� ignificant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

(Page-
�

directory entries for 4-KByte page tables.) Specifies the physical
add� ress of the first byte of a page table. The bits in this field are interpreted as
the
�

20 most-significant bits of the physical address, which forces page tables to
be al
-

igned on 4-KByte boundaries.

(Page-
�

directory entries for 4-MByte pages.) Specifies the physical address of
t
�
he first byte of a 4-MByte page. Only bits 22 through 31 of this field are used
(an
�

d bits 12 through 21 are reserved and must be set to 0, for Intel Architecture
pr� ocessors through the Pentium®

!
 II processor). The base address bits are inter-

pr� eted as the 10 most-significant bits of the physical address, which forces 4-
MBy

K
te pages to be aligned on 4-MByte boundaries.

Pr
1

esent (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
cur) rently loaded in physical memory. When the flag is set, the page is in phys-
ical memo

'
ry and address translation is carried out. When the flag is clear, the

pag� e is not in memory and, if the processor attempts to access the page, it
genC erates a page-fault exception (#PF).

The pr
�

ocessor does not set or clear this flag; it is up to the operating system or
execu+ tive to maintain the state of the flag.

Figure 3-15. Format of Page-Directory Ent ries fo r 4-MByte Pages and 32-Bit A ddresses

31
�

A
s

vailable for system programmer’s use
Global page
Page size (1 indicates 4 MBytes)
Dirty

12 11 9 8 7
�

6 5 4 3 2
�

1 0
�

P
S

i P
e
C

^
A

]
D

g

Ac
s

cessed
Cache disabled
W

�
rite-through

User/Supervisor
Read/Write
Present

D
g P

eP
e
W

w
T

h
U

�
/

�
S

i
R

[
/

�
W

wG
v

A
�

vail.Page Base Address

Page-Directory En try (4-M Byte Pag e)
22 21

Reserved

3-26

PROTECTED-MODE MEMORY MANAGEMENT

The bit must be set to 1 whenever extended physical addressing mode is
en+ abled.

If
(

 the processor generates a page-fault exception, the operating system must
carr) y out the following operations in the order below:

1. Copy the page from disk storage into physical memory, if needed.

2.
Q

Load the page address into the page-table or page-directory entry and set
its present flag. Other bits, such as the dirty and accessed flags, may also
be s

-
et at this time.

3.
R

Invalidate the current page-table entry in the TLB (refer to Section 3.7.,
“Translation Lookaside Buffers (TLBs)” f or a discussion of TLBs and
ho

7
w to invalidate them).

4
�
. Return from the page-fault handler to restart the interrupted program or

task
�

.

Read
o

/wri te (R/W) flag, bit 1
Specifies

4
the read-write privil eges for a page or group of pages (in the case of

a p� age-directory entry that points to a page table). When this flag is clear, the
pa� ge is read only; when the flag is set, the page can be read and written into.
Th

�
is flag interacts with the U/S flag and the WP flag in register CR0. Refer to

S
4

ection 4.11., “Page-Level Protection” and Table 4-2 in Chapter 4, Protection
fo

8
r a detailed discussion of the use of these flags.

Us

er/supervisor (U/S) flag, bit 2
S

4
pecifies the user-supervisor privileges for a page or group of pages (in the

case of) a page-directory entry that points to a page table). When this flag is
clear) , the page is assigned the supervisor privilege level; when the flag is set,
th

�
e page is assigned the user privilege level. This flag interacts with the R/W

flag
8

 and the WP flag in register CR0. Refer to Section 4.11., “Page-Level
P

�
rotection” and Table 4-2 in Chapter 4, Pr

F
otection for a detail discussion of the

use o{ f these flags.

Pag
1

e-level write-through (PWT) flag, bit 3
C

L
ontrols the write-through or write-back caching poli cy of individual pages or

pa� ge tables. When the PWT flag is set, write-through caching is enabled for the
ass� ociated page or page table; when the flag is clear, write-back caching is
en+ abled for the associated page or page table. The processor ignores this flag if
the C

�
D (cache disable) flag in CR0 is set. Refer to Section 9.5., “Cache

C
L

ontrol” , in Chapter 9, Memory C
I

ache Control, fo� r more information about the
use of this{ flag. Refer to Section 2.5., “Control Registers” in Chapter 2, Sy

�
stem

Architecture Overview for a description of a companion PWT flag in control
re> gister CR3.

Pag
1

e-level cache disable (PCD) flag, bit 4
C

L
ontrols the caching of individual pages or page tables. When the PCD flag is

set, cachin� g of the associated page or page table is prevented; when the flag is
clear) , the page or page table can be cached. This flag permits caching to be

3-27

PROTECTED-MODE MEMORY MANAGEMENT

di
�

sabled for pages that contain memory-mapped I/O ports or that do not
pr� ovide a performance benefit when cached. The processor ignores this flag
(ass
�

umes it is set) if the CD (cache disable) flag in CR0 is set. Refer to Chapter
9,
�

Memory Cache Control, � for more information about the use of this flag.
R
n

efer to Section 2.5. in Chapter 2, System Ar
�

chitecture Overview for a descrip-
tion o
�

f a companion PCD flag in control register CR3.

Accessed (A) flag, bit 5
In
(

dicates whether a page or page table has been accessed (read from or written
to) when set
�

. Memory management software typically clears this flag when a
p� age or page table is initiall y loaded into physical memory. The processor then
set� s this flag the first time a page or page table is accessed. This flag is a
“sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only s
�

oftware can clear this flag. The accessed and dirty flags are provided for
us{ e by memory management software to manage the transfer of pages and page
t
�
ables into and out of physical memory.

Dir ty (D) flag, bit 6
Ind
(

icates whether a page has been written to when set. (This flag is not used in
pag� e-directory entries that point to page tables.) Memory management soft-
ware ty& pically clears this flag when a page is initially loaded into physical
memo% ry. The processor then sets this flag the first time a page is accessed for
a w� rite operation. This flag is “sticky,” meaning that once set, the processor
d
�
oes not implicitly clear it. Only software can clear this flag. The dirty and

access� ed flags are provided for use by memory management software to
mana% ge the transfer of pages and page tables into and out of physical memory.

Page size (PS) flag, bit 7
Determines the page size. This
5

flag is only used in page-directory entries.
W
9

hen this flag is clear, the page size is 4 KBytes and the page-directory entry
po� ints to a page table. When the flag is set, the page size is 4 MBytes for normal
32
R

-bit addressing (and 2 MBytes if extended physical addressing is enabled)
and� the page-directory entry points to a page. If the page-directory entry points
to
�

 a page table, all the pages associated with that page table will be 4-KByte
pag� es.

Glob
�

al (G) flag, bit 8
(Intro
�

duced in the Pentium®
"
 Pro processor.) Indicates a global page when set.

W
9

hen a page is marked global and the page global enable (PGE) flag in register
CR

L
4 is set, the page-table or page-directory entry for the page is not invalidated

in the TLB when register CR3 is loaded or a task switch occurs. This flag is
pr� ovided to prevent frequently used pages (such as pages that contain kernel or
ot� her operating system or executive code) from being flushed from the TLB.
On

�
ly software can set or clear this flag. For page-directory entries that point to

pag� e tables, this flag is ignored and the global characteristics of a page are set
in

'
 the page-table entries. Refer to Section 3.7., “Translation Lookaside Buffers

(TLBs
�

)” for more information about the use of this flag. (This bit is reserved in
Pen

�
tium®

"
 and earlier Intel Architecture processors.)

3-28

PROTECTED-MODE MEMORY MANAGEMENT

Reserved and available-to-software bits
In

(
 a page-table entry, bit 7 is reserved and should be set to 0; in a page-directory

ent+ ry that points to a page table, bit 6 is reserved and should be set to 0. For a
pa� ge-directory entry for a 4-MByte page, bits 12 through 21 are reserved and
m% ust be set to 0, for Intel Architecture processors through the Pentium®

"
 II

pr� ocessor. For both types of entries, bits 9, 10, and 11 are available for use by
software.� (When the present bit is clear, bits 1 through 31 are available to soft-
ware—ref& er to Figure 3-16.) When the PSE and PAE flags in control register
C

L
R4 are set, the processor generates a page fault if reserved bits are not set to 0.

3.6.5. Not Present Page-Directory and Page-Table Entri es

W
9

hen the present flag is clear for a page-table or page-directory entry, the operating system or
execu+ tive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (refer to).

3.7. TRANSLATION LO OKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called tr) anslation lookaside buffers or TLBs. The P6 family and Pentium®

"
 processors

hav
7

e separate TLBs for the data and instruction caches. Also, the P6 family processors maintain
s� eparate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to
d
�
etermine the sizes of the TLBs provided in the P6 family and Pentium®

"
 processors.

Mos
K

t paging is performed using the contents of the TLBs. Bus cycles to the page directory and
pag� e tables in memory are performed only when the TLBs do not contain the translation infor-
mation for a requested page.

The
�

TLBs are inaccessible to application programs and tasks (privilege level greater than 0); that
is, they cannot invalidate TLBs. Only operating system or executive procedures running at priv-
ilege level of 0 can invalidate TLBs or selected TBL entries. Whenever a page-directory or
p� age-table entry is changed (including when the present flag is set to zero), the operating-system
must immediately invalidate the corresponding entry in the TLB so that it can be updated the
nexB t time the entry is referenced. However, if the physical address extension (PAE) feature is
enab+ led to use 36-bit addressing, a new table is added to the paging hierarchy. This new table is
cal) led the page directory pointer table (as described in Section 3.8., “Physical Address Exten-
si� on”). If an entry is changed in this table (to point to another page directory), the TLBs must
t
�
hen be flushed by writing to CR3.

Figure 3 -16. Format of a Page-Table or Pag e-Direc tory En try for a Not-Pres ent Page

31
�

0
�

0Available to Operating System or Executive

3-29

PROTECTED-MODE MEMORY MANAGEMENT

Al l (nonglobal) TLBs are automatically invalidated any time the CR3 register is loaded (unless
th

�
e G flag for a page or page-table entry is set, as describe later in this section). The CR3 register

can b) e loaded in either of two ways:

• Explici tly, using the MOV instruction, for example:

MOV CR3, EAX

wher& e the EAX register contains an appropriate page-directory base address.

• Im
(

plici tly by executing a task switch, which automatically changes the contents of the CR3
register.

The I
�

NVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
No

�
rmally, this instruction invalidates only an individual TLB entry; however, in some cases, it

may invalidate more than the selected entry and may even invalidate all of the TLBs. This
in

'
struction ignores the setting of the G flag in a page-directory or page-table entry (refer to the

fol
8

lowing paragraph).

(Int
�

roduced in the Pentium®
"
 Pro processor.) The page global enable (PGE) flag in register CR4

and t� he global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequ

8
ently used pages from being automatically invalidated in the TLBs on a task switch or a

load of register CR3. (Refer to Section 3.6.4., “Page-Directory and Page-Table Entries” for more
i

'
nformation about the global flag.) When the processor loads a page-directory or page-table
en+ try for a global page into a TLB, the entry will remain in the TLB indefinitely. The only way
to

�
 deterministically invalidate global page entries is to clear the PGE flag and then invalidate the

TLBs
�

 or to use the INVLPG instruction to invalidate individual page-directory or page-table
en+ tries in the TLBs.

For additional information about invalidation of the TLBs, refer to Section 9.10., “I nvalidating
the T

�
ranslation Lookaside Buffers (TLBs)”, in Chapter 9, M

I
emory Cache Control.

3.8. PHYSICAL ADDRESS EXTENSION

The physical address extension (PAE) flag in register CR4 enables an extension of physical
ad� dresses from 32 bits to 36 bits. (This feature was introduced into the Intel Architecture in the
Pe

�
ntium®

"
 Pro processors.) Here, the processor provides 4 additional address line pins to accom-

modate the additional address bits. This option can only be used when paging is enabled (that
is

'
, when both the PG flag in register CR0 and the PAE flag in register CR4 are set).

W
9

hen the physical address extension is enabled, the processor allows several sizes of pages:
4-KByte, 2-MByte, or 4-MByte. As with 32-bit addressing, these page sizes can be addressed
wi& thin the same set of paging tables (that is, a page-directory entry can point to either a 2-MByte
or 4-MB� yte page or a page table that in turn points to 4-KByte pages). To support the 36-bit
phy� sical addresses, the following changes are made to the paging data structures:

• The paging table entries are increased to 64 bits to accommodate 36-bit base physical
add� resses. Each 4-KByte page directory and page table can thus have up to 512 entries.

3-30

PROTECTED-MODE MEMORY MANAGEMENT

• A new table, called the page-directory-pointer table, is added to the linear-address
tran

�
slation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page

d
�
irectory in the hierarchy. With the physical address extension mechanism enabled, the

pr� ocessor supports up to 4 page directories.

• The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
2

Q
7-bit page-directory-pointer-table base address field (refer to Figure 3-17). (In this case,

register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
p� hysical address of the first byte of the page-directory-pointer table, which forces the table
t

�
o be located on a 32-byte boundary.

• Linear address translation is changed to allow mapping 32-bit linear addresses into the
lar

*
ger physical address space.

3.8.1. Linear Address Translation With Extended Addressing
Enabled (4-KBy te Pages)

Figure 3-12 shows the page-directory-pointer, page-directory, and page-table hierarchy when
map% ping linear addresses to 4-KByte pages with extended physical addressing enabled. This
pag� ing method can be used to address up to 220 pages, which spans a linear address space of 232

�

by
-

tes (4 GBytes).

Figure 3-17. Register CR3 Form at When the Ph ysi cal Addres s Extens ion i s Enabled

31
�

0
�

0
�

Page-Directory-Pointer-Table Base Address
P
C

^
D

P
W

w
T

0
�

0
�

3-31

PROTECTED-MODE MEMORY MANAGEMENT

To select the various table entries, the linear address is divided into three sections:

• P
�

age-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of� a page directory.

• Page-d
�

irectory entry—Bits 21 through 29 provide an offset to an entry in the selected page
dir

�
ectory. The selected entry provides the base physical address of a page table.

• Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. T

�
his entry provides the base physical address of a page in physical memory.

• Page offset—Bits 0 through 11 provide an offset to a physical address in the page.

Fig
�

ure 3-18. Linear Address Transla tion With Extended Phys ica l Addressing Enabled
(4-KBy te Pages)

0

Directory Table Offset

Page Directory

Directory Entry

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 20 111221
Linear Address

Page-Directory-

Dir. Pointer Entry

CR3 (PDBR)

30 29

Pointer Table

Directory Pointer

4 PDPTE ∗ 512 PDE ∗ 512 PTE = 220 Pages

2

9

32*

12

9

*32 bits aligned onto a 32-byte boundary

3-32

PROTECTED-MODE MEMORY MANAGEMENT

3.8.2. Linear Address Translation With Extended Addressing
Enabled (2-MByte or 4-MByte Pages)

F
?

igure 3-12 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte or 4-MByte pages. This paging method can be used to map up to
20
Q

48 pages (4 page-directory-pointer-table entries times 512 page-directory entries) into a
4-
�

GByte linear address space.

The 2-MByte or 4-MByte page size is selected by setting the PSE flag in control register CR4
and� setting the page size (PS) flag in a page-directory entry (refer to Figure 3-14). With these
flag
8

s set, the linear address is divided into three sections:

• Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
p� age-directory-pointer table. The selected entry provides the base physical address of a
pa� ge directory.

• Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
d

�
irectory. The selected entry provides the base physical address of a 2-MByte or 4-MByte

pa� ge.

• Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

3.8.3. Accessing t he Ful l Extended P hysi cal Addres s Space
Wi

¡
th the Extended P age-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
t
�
he 64-GByte extended physical address space to be addressed at one time. Additional 4-GByte

sect� ions of physical memory can be addressed in either of two way:

• C
L

hange the pointer in register CR3 to point to another page-directory-pointer table, which
i

'
n turn points to another set of page directories and page tables.

• Ch
L

ange entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.

3-33

PROTECTED-MODE MEMORY MANAGEMENT

3.8.4. Page-Directory and P age-Table Entries W ith Ext ended
Addressing Enabled

Figu
?

re 3-20 shows the format for the page-directory-pointer-table, page-directory, and
pa� ge-table entries when 4-KByte pages and 36-bit extended physical addresses are being
u{ sed. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory
e+ ntries when 2-MByte or 4-MByte pages and 36-bit extended physical addresses are being
used. The fu{ nctions of the flags in these entries are the same as described in Section 3.6.4.,
“Page-Directory and Page-Table Entries”. The major differences in these entries are as follows:

• A pag
�

e-directory-pointer-table entry is added.

• The size of the entries are increased from 32 bits to 64 bits.

• The maximum number of entries in a page directory or page table is 512.

• Th
�

e base physical address field in each entry is extended to 24 bits.

Figure 3-19. Linear Address Transla tion With Extended Phys ica l Addressing Enabled
(2-MByte or 4-MByte Pages)

0

Directory Offset

Page Directory

Directory Entry

2 or 4-MByte Pages

Physical Address

31 2021
Linear Address

Page-Directory-

Dir. Pointer Entry

CR3 (PDBR)

30 29

Pointer Table

Directory
Pointer

4 PDPTE ∗ 512 PDE = 2048 Pages

2

32*

9

21

*32 bits aligned onto a 32-byte boundary

3-34

PROTECTED-MODE MEMORY MANAGEMENT

The base physical address in an entry specifies the following, depending on the type of entry:

• Page-directory-pointer-table entry—the physical address of the first byte of a
4

�
-KByte page directory.

• Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-

Q
MByte page.

• P
�

age-table entry—the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte or 4-MByte pages),
th
�

e bits in the page base address are interpreted as the 24 most-significant bits of a 36-bit phys-
i
'
cal address, which forces page tables and pages to be aligned on 4-KByte boundaries. When a
p� age-directory entry points to a 2-MByte or 4-MByte page, the base address is interpreted as the
15 most-significant bits of a 36-bit physical address, which forces pages to be aligned on 2-
MBy
K

te or 4-MByte boundaries.

Figu re 3-20. Forma t of Pa ge-Directory -Pointe r-Table, Page-Direc tory , and Page-Table
Entries for 4- KByte Pages and 36-Bit Exte nded Phy sical Add resses

63
�

36
�

35 32

BaseReserved (set to 0)

Page-Directory-P ointer-T able Entry

31
�

12 11 9 8
�

5 4 3
�

2
�

0
�

P
e
C

^
D

g
P

e
W

w
T

hA
�

vail.Page-Directory Base Address

Ad
�

dr.

Res.Reserved

63
�

36
�

35 32

BaseReserved (set to 0)

Page-Director y Entry (4-KByte Page Table)

31
�

12 11 9
�

8 7 6 5 4 3 2
�

1 0
�

P
C

^
0

d
D

P
P
W
T

Page-Table Base Address

Ad
�

dr.

0 0
d

A
R
/

�
W

U
�
/

�
S

i

63
�

36
�

35 32

BaseReserved (set to 0)

Page-Table Entry (4-KByt e Page)

31
�

12 11 9 8 7
�

6 5 4 3
�

2
�

1 0
P
C

^
D

g
D

P
eP

W
w
T

Page Base Address

Addr.

G 0
v

A
R
/

�
W

U
�
/

�
S

i

A
�

vail.

A
�

vail.

1

1

3-35

PROTECTED-MODE MEMORY MANAGEMENT

Th
�

e present (P) flag (bit 0) in all page-directory-pointer-table entries must be set to 1 anytime
extend+ ed physical addressing mode is enabled; that is, whenever the PAE flag (bit 5 in register
C

L
R4) and the PG flag (bit 31 in register CR0) are set. If the P flag is not set in all 4 page-direc-

tory
�

-pointer-table entries in the page-directory-pointer table when extended physical addressing
is

'
 enabled, a general-protection exception (#GP) is generated.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table

�
or a 2-MByte or 4-MByte page. When this flag is clear, the entry points to a page table;

when & the flag is set, the entry points to a 2-MByte or 4-MByte page. This flag allows 4-KByte,
2-MByte, or 4-MByte pages to be mixed within one set of paging tables.

Acces
�

s (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

B
@

its 9, 10, and 11 in all the table entries for the physical address extension are available for use
by

-
software. (When the present flag is clear, bits 1 through 63 are available to software.) All bits

in F
'

igure 3-14 that are marked reserved or 0 should be set to 0 by software and not accessed by
s� oftware. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates� a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and i� t generates a general-protection exception (#GP) if reserved bits in a page-directory-
p� ointer-table entry are not set to 0.

3.9. 36-BIT PAGE SIZE EXTENSION (PSE)

The 36-b
�

it PSE extends 36-bit physical address support to 4-MByte pages while maintaining a
4-b

�
yte page-directory entry. This approach provides a simple mechanism for operating system

Figu
�

re 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entr ies for
2- or 4-MByt e Pages and 36-Bit Extended Phys ical Addre sses

63
�

36
�

35 32

BaseReserved (set to 0)

Page-Directory E ntry (2- or 4-MByte Pages)

31
�

12 11 9
�

8
�

7 6
�

5 4 3
�

2 1 0
�

P
C

^
D

g
D

P
eP

W
T

Page Base Address

Addr.

G 1
v

AReserved (set to 0)

21 20
R
/

�
W

U
�
/

�
S

i

63
�

36
�

35 32

BaseReserved (set to 0)

Page-Director y-Pointer-Table Entry

31
�

12 11 9 8
�

5 4 3 2
�

0
�

P
C

^
D

P
W

w
T

Avail.Page Directory Base Address

Addr.

Re
[

s.Re
[

served

A
�

vail.

1

1

3-36

PROTECTED-MODE MEMORY MANAGEMENT

venr dors to address physical memory above 4-GBytes without requiring major design changes,
b
-
ut has practical limitations with respect to demand paging.

The
�

P6 family of processors’ physical address extension (PAE) feature provides generic access
to a
�

36-bit physical address space. However, it requires expansion of the page-directory and
p� age-table entries to an 8-byte format (64 bit), and the addition of a page-directory-pointer table,
resu> lting in another level of indirection to address translation.

For P6-family processors that support the 36-bit PSE feature, the virtual memory architecture is
exten+ ded to support 4-MByte page size granularity in combination with 36-bit physical
add� ressing. Note that some P6-family processors do not support this feature. For information
ab� out determining a processor’s feature support, refer to the following documents:

• AP-485, Intel Processor Identification and the CPUID Instruction

• Add
�

endum—Intel Architecture Software Developer’s Manual, Volume1: Basic Archi-
tectur

�
e

For in
?

formation about the virtual memory architecture features of P6-family processors, refer to
C
L

hapter 3 of the Intel Ar
�

chitecture Software Developer’s Manual, Volume3: System Program-
mit ng Guide.

3.9.1. Description of the 36-bit PS E Feature

The 3
�

6-bit PSE feature (PSE-36) is detected by an operating system through the CPUID instruc-
tio
�

n. Specifically, the operating system executes the CPUID instruction with the value 1 in the
EAX
6

register and then determines support for the feature by inspecting bit 17 of the EDX
reg> ister return value (see Ad

E
dendum—Intel Architecture Software Developer’s Manual,

Volume1: Basic Architecture).
Y

 If the PSE-36 feature is supported, an operating system is
per� mitted to utilize the feature, as well as use certain formerly reserved bits. To use the 36-bit
PS
�

E feature, the PSE flag must be enabled by the operating system (bit 4 of CR4). Note that a
separate con� trol bit in CR 4 does not exist to regulate the use of 36-bit MByte pages, because
this featur
�

e becomes the example for 4-MByte pages on processors that support it.

T
�
able 3-8 shows the page size and physical address size obtained from various settings of the

pag� e-control flags for the P6-family processors that support the 36-bit PSE feature. Shaded in
grC ay is the change to this table resulting from the 36-bit PSE feature.

3-37

PROTECTED-MODE MEMORY MANAGEMENT

To use the 36-bit PSE feature, the PAE feature must be cleared (as indicated in Table 3-4).
Ho

M
wever, the 36-bit PSE in no way affects the PAE feature. Existing operating systems and soft-

ww& are that use the PAE will continue to have compatible functionality and features with P6-
family processors that support 36-bit PSE. Specifically, the Page-Directory Entry (PDE) format
when P& AE is enabled for 2-MByte or 4-MByte pages is exactly as depicted in Figure 3-21 of the
Intel Ar

�
chitecture Software Developer’s Manual, Volume3: System Programming Guide.

No matter wh
�

ich 36-bit addressing feature is used (PAE or 36-bit PSE), the linear address space
o� f the processor remains at 32 bits. Applications must partiti on the address space of their work
lo

*
ads across multiple operating system process to take advantage of the additonal physical

memory provided in the system.

The 3
�

6-bit PSE feature estends the PDE format of the Intel Architecture for 4-MByte pages and
3

R
2-bit addresses by utilizing bits 16-13 (formerly reserved bits that were required to be zero) to

extend+ the physical address without requiring an 8-byte page-directory entry. Therefore, with
the 36-

�
bit PSE feature, a page directory can contain up to 1024 entries, each pointing to a 4-

MB
K

yte page that can exist anywhere in the 36-bit physical address space of the processor.

Figure 3-22 shows the difference between PDE formats for 4-MByte pages on P6-family proces-
s� ors that support the 36-bit PSE feature compared to P6-family processors that do not support
the 36

�
-bit PSE feature (i.e., 32-bit addressing).

Figure 3-22 also shows the linear address mapping to 4-MByte pages when the 36-bit PSE is
enabled+ . The base physical address of the 4-MByte page is contained in the PDE. PA-2 (bits 13-
16) is used to provide the upper four bits (bits 32-35) of the 36-bit physical address. PA-1 (bits
22-31) continues to provide the next ten bits (bits 22-31) of the physical address for the 4-MByte
p� age. The offset into the page is provided by the lower 22 bits of the linear address. This scheme
el+ iminates the second level of indirection caused by the use of 4-KByte page tables.

Table 3-4. Paging Modes and Physic al Addres s Size

PG Flag
(in CR0)

PAE Flag
(in CR4)

PSE Flag
(in CR4)

PS Flag
(in the PDE)

Page
Size

Physi cal
Address S ize

0 X X X — Paging Disabled

1 0 0 X 4 KB 32 bits

1 0 1 0 4 KB 32 bits

1 0 1 1 4 KB 36 bits

1 1 X 0 4 KB 36 bits

1 1 X 1 2 KB 36 bits

3-38

PROTECTED-MODE MEMORY MANAGEMENT

Notes:

1. PA-2 = Bits 35-32 of thebase physical address for the 4-MByte page (correspond to bits 16-13)

2. PA-2 = Bits 31-22 of thebase physical address for the 4-MByte page

3. PAT = Bit 12 used as the Most Significant Bit of the index into Page Attribute Table (PAT); see Section
10.2.

4. PS = Bit 7 is the Page Size Bit—indicates 4-MByte page (must be set to 1)

5. Reserved = Bits 21-17 are reserved for future expansion

6. No change in format or meaning of bits 11-8 and 6-0; refer to Figure 3-15 for details.

The PSE-36 feature is transparent to existing operating systems that utilize 4-MByte pages,
becau
-

se unused bits in PA-2 are currently enforced as zero by Intel processors. The feature
requires 4-MByte pages aligned on a 4-MByte boundary and 4 MBytes of physically contiguous
memo% ry. Therefore, the ten bits of PA-1 are sufficient to specify the base physical address of any
4-
�

MByte page below 4 GBytes. An operating system can easily support addresses greater than
4 GBytes simply by providing the upper 4 bits of the physical address in PA-2 when creating a
P
�

DE for a 4-MByte page.

Fi
?

gure 3-23 shows the linear address mapping to 4 MB pages when the 36-bit PSE is enabled.
The base physical address of the 4 MB page is contained in the PDE. PA-2 (bits 13-16) is used
t
�
o provide the upper four bits (bits 32-35) of the 36-bit physical address. PA-1 (bits 22-31)
con) tinues to provide the next ten bits (bits 22-31) of the physical address for the 4 MB page. The
o� ffset into the page is provided by the lower 22 bits of the linear address. This scheme eliminates
the secon
�

d level of indirection caused by the use of 4 KB page tables.

Page Direct ory E ntry format for processo rs that suppor t 36-bit addressi ng f or 4-MByte pages

31 22 21 17 16 13 12 11 8 7 6 0

PA - 1 Reserved PA - 2 PAT PS=1

Page Direct ory E ntry format for processo rs that suppor t 32-bit addressi ng f or 4-MByte pages

31 22 21 12 11 8 7 6 0

Base Page Address Reserved PS=1

Figu re 3-22. PDE Form at Diffe renc es between 36-bit a nd 32-bi t addressing

3-39

PROTECTED-MODE MEMORY MANAGEMENT

The PS
�

E-36 feature is transparent to existing operating systems that utilize 4 MB pages because
unu{ sed bits in PA-2 are currently enforced as zero by Intel processors. The feature requires 4
MB pages

K
 aligned on a 4 MB boundary and 4 MB of physically contiguous memory. Therefore,

the ten bits of P
�

A-1 are sufficient to specify the base physical address of any 4 MB page below
4GB. An operating system easily can support addresses greater than 4 GB simply by providing
t

�
he upper 4 bits of the physical address in PA-2 when creating a PDE for a 4 MB page.

3.9.2. Fault Detect ion

There are several conditions that can cause P6-family processors that support this feature to
generC ate a page fault (PF) fault. These conditions are related to the use of, or switching between,
varir ous memory management features:

• If the PSE feature is enabled, a nonzero value in any of the remaining reserved bits (17-21)
of� a 4-MByte PDE causes a page fault, with the reserved bit (bit 3) set in the error code.

• If
(

 the PAE feature is enabled and set to use 2-MByte or 4-MByte pages (that is, 8-byte
pag� e-directory table entries are being used), a nonzero value in any of the reserved bits 13-
2

Q
0 causes a page fault, with the reserved bit (bit 3) set in the error code. Note that bit 12 is

noB w being used to support the Page Attribute Table feature (refer to Section 9.13., “Page
Attribute Table (PAT)”).

Figure 3-23. Page Size Extension Line ar to Phys ical Translation

Di
¢

rectory Index

31 22

31

21
£

0
L inear Address 4 MB Page

Page Directory

CR3

Page Frame Address
PA-1

¤ Reserved PA-2 PAT PS=1

2221 131617 12 711 8 6 0

3-40

PROTECTED-MODE MEMORY MANAGEMENT

3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the Intel Architecture support a wide
varr iety of approaches to memory management. When segmentation and paging is combined,
segments can b� e mapped to pages in several ways. To implement a flat (unsegmented)
add� ressing environment, for example, all the code, data, and stack modules can be mapped to
on� e or more large segments (up to 4-GBytes) that share same range of linear addresses (refer to
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
execu+ tive. If paging is used, the paging mechanism can map a single linear address space
(co
�

ntained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
t
�
hrough its own page directory and set of page tables.

Segmen
4

ts can be smaller than the size of a page. If one of these segments is placed in a page
which & is not shared with another segment, the extra memory is wasted. For example, a small data
st� ructure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
man% y semaphores are used, it is more efficient to pack them into a single page.

The Intel Architecture does not enforce correspondence between the boundaries of pages and
s� egments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment � can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between
-

page and segment boundaries. For example, if a segment which can fit in one page is
placed� in two pages, there may be twice as much paging overhead to support access to that
seg� ment.

One
�

approach to combining paging and segmentation that simplifies memory-management soft-
ware i& s to give each segment its own page table, as shown in Figure 3-24. This convention gives
the segm
�

ent a single entry in the page directory that provides the access control information for
pag� ing the entire segment.

Figure 3-24. Memory Management Co nven tion That Assig ns a Page Table to Each
Seg
�

ment

Seg. Descript.

LDT

Seg. Descript.
PDE

Page Directory

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables

Page Frames

4
Protection

4-1

PROTECTION

CHAPTER 4
PROTECTION

In pr
(

otected mode, the Intel Architecture provides a protection mechanism that operates at both
th

�
e segment level and the page level. This protection mechanism provides the ability to limit

acces� s to certain segments or pages based on privilege levels (four privilege levels for segments
and two pr� ivilege levels for pages). For example, critical operating-system code and data can be
pro� tected by placing them in more privileged segments than those that contain applications
co) de. The processor’s protection mechanism will then prevent application code from accessing
t

�
he operating-system code and data in any but a controlled, defined manner.

S
4

egment and page protection can be used at all stages of software development to assist in local-
i

'
zing and detecting design problems and bugs. It can also be incorporated into end-products to
o� ffer added robustness to operating systems, utilit ies software, and applications software.

W
9

hen the protection mechanism is used, each memory reference is checked to verify that it
s� atisfies various protection checks. All checks are made before the memory cycle is started; any
violationr results in an exception. Because checks are performed in parallel with address transla-
ti

�
on, there is no performance penalty. The protection checks that are performed fall into the

following
8

 categories:

• Limit check
/

s.

• Type checks.

• Privilege level checks.

• R
n

estriction of addressable domain.

• Restriction of procedure entry-points.

• Restriction of instruction set.

Al
�

l protection violation results in an exception being generated. Refer to Chapter 5, Inter
�

rupt
and¥ Exception Handling for an explanation of the exception mechanism. This chapter describes
the pr

�
otection mechanism and the violations which lead to exceptions.

The
�

following sections describe the protection mechanism available in protected mode. Refer to
Ch

L
apter 16, 80

H
86 Emulation for information on protection in real-address and virtual-8086

mod% e.

4-2

PROTECTION

4.1. ENABLING AND DISABLING SEGMENT AND PAG E
PROTECTION

Sett
4

ing the PE flag in register CR0 causes the processor to switch to protected mode, which in
turn
�

 enables the segment-protection mechanism. Once in protected mode, there is no control bit
fo
8

r turning the protection mechanism on or off. The part of the segment-protection mechanism
th
�

at is based on privilege levels can essentially be disabled while still in protected mode by
a� ssigning a privilege level of 0 (most privileged) to all segment selectors and segment descrip-
to
�

rs. This action disables the privilege level protection barriers between segments, but other
pr� otection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag
i
'
n register CR0). Here again there is no mode bit for turning off page-level protection once
p� aging is enabled. However, page-level protection can be disabled by performing the following
op� erations:

• C
L

lear the WP flag in control register CR0.

• Set t
4

he read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry

�
.

This
�

action makes each page a writable, user page, which in effect disables page-level
pr� otection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data
st� ructures to control access to segments and pages:

• Descriptor type (S) flag—(B
�

it 12 in the second doubleword of a segment descriptor.)
Det

5
ermines if the segment descriptor is for a system segment or a code or data segment.

• Type field—(Bits 8 through 11 in the second doubleword of a segment descriptor.)
Det

5
ermines the type of code, data, or system segment.

• Limit field—(Bits 0 through 15 of the first doubleword and bits 16 through 19 of the
secon� d doubleword of a segment descriptor.) Determines the size of the segment, along
with th& e G flag and E flag (for data segments).

• G f
0

lag—(Bi
�

t 23 in the second doubleword of a segment descriptor.) Determines the size of
th

�
e segment, along with the limit field and E flag (for data segments).

• E flag
6

—(B
�

it 10 in the second doubleword of a data-segment descriptor.) Determines the
size of� the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field—(Bits 13 and 14 in the second doubleword of a
seg� ment descriptor.) Determines the privilege level of the segment.

• Requested privilege level (RPL) field. (Bits 0 and 1 of any segment selector.) Specifies the
r> equested privilege level of a segment selector.

4-3

PROTECTION

• C
L

urrent privilege level (CPL) field. (Bits 0 and 1 of the CS segment register.) Indicates the
pr� ivilege level of the currently executing program or procedure. The term current privilege
lev

*
el (CPL) refers to the setting of this field.

• Us
|

er/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry.) Determines the
t

�
ype of page: user or supervisor.

• R
n

ead/write (R/W) flag. (Bit 1 of a page-directory or page-table entry.) Determines the type
of� access allowed to a page: read only or read-write.

Fi
?

gure 4-1 shows the location of the various fields and flags in the data, code, and system-
seg� ment descriptors; Figure 3-6 in Chapter 3, P

F
rotected-Mode Memory Management shows the

location of the RPL (or CPL) field in a segment selector (or the CS register); and Figure 3-14 in
Ch

L
apter 3, Pr

F
otected-Mode Memory Management shows the location of the U/S and R/W flags

in the
'

page-directory and page-table entries.

4-4

PROTECTION

Many different styles of protection schemes can be implemented with these fields and flags.
W
9

hen the operating system creates a descriptor, it places values in these fields and flags in
keep
W

ing with the particular protection style chosen for an operating system or executive. Appli-
cation) program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
varr ious categories of checks described in the introduction to this chapter.

Figure 4-1. Descripto r Fields Us ed for Protec tion

Base 23:16

31
Z

24 23 22 21 20 19 16 15 1314 12 11 8 7
_

0

PBase 31:24 G
v D

P
L

Ty
�

pe

1
0

d
4

31
Z

16 15 0
d

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16B

¦
AWE0

d

Data-Segment Descri ptor

31
Z

24 23 22 21 20 19 16 15 1314 12 11 8
_

7 0

PBase 31:24 G
v D

P
e
L

Type

1
0

d
4

31
Z

16 15 0
d

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V

§
L

Limit
19:16D

g
ARC

^
1

Code-Segment Descrip tor

31
Z

24 23
c

22 21
c

20 19 16 15 1314 12 11 8 7
_

0
d

P
e

Base 31:24 G
v D

g
P
L

¨ Ty
�

pe0
d

4

31
Z

16 15 0
d

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-S egment D escri ptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0
d

AV
s

L A
s

vailable to Sys. Programmer’s

4-5

PROTECTION

4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memo% ry locations outside the segment. The effective value of the limit depends on the setting
o� f the G (granularity) flag (refer to Figure 4-1). For data segments, the limit also depends on the
E

6
(expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The

E
6

flag is one of the bits in the type field when the segment descriptor is for a data-segment type.

W
9

hen the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field
in the segmen

'
t descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag

is
'

 set (4-KByte page granularity), the processor scales the value in the limit field by a factor of
2^12 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH
(4 GB

�
ytes). Note that when scaling is used (G flag is set), the lower 12 bits of a segment offset

(ad
�

dress) are not checked against the limit; for example, note that if the segment limit is 0,
o� ffsets 0 through FFFH are still v alid.

F
?

or all types of segments except expand-down data segments, the effective limit is the last
addr� ess that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of � the segment. The processor causes a general-protection exception any time an attempt is made
to access

�
 the following addresses in a segment:

• A by
�

te at an offset greater than the effective limit

• A word at an offset greater than the (effective-limit – 1)

• A doubleword at an offset greater than the (effective-limit – 3)

• A qu
�

adword at an offset greater than the (effective-limit – 7)

For expand-down data segments, the segment limit has the same function but is interpreted
dif

�
ferently. Here, the effective limit specifies the last address that is not allowed to be accessed

wi& thin the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the
B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
s� egment has maximum size when the segment limit is 0.

Limit
/

checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause) is easier. Without limit checking, these errors could overwrite code or data in another
se� gment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GD

0
TR and IDTR registers contain 16-bit limit values that the processor uses to prevent

pro� grams from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for

8
 the current LDT and TSS, respectively). The processor uses these segment limits to prevent

acces� ses beyond the bounds of the current LDT and TSS. Refer to Section 3.5.1., “Segment
Descriptor Tables” in Chapter 3, Protected-Mode Memory Management for more information
on t� he GDT and LDT limit fields; refer to Section 5.8., “Interrupt Descriptor Table (IDT)” in
Ch

L
apter 5, Interr

�
upt and Exception Handling for more information on the IDT limit field; and

refer to Section 6.2.3., “Task Register” in Chapter 6, Task Management for more information on
th

�
e TSS segment limit field.

4-6

PROTECTION

4.4. TYPE CHECKING

Segmen
4

t descriptors contain type information in two places:

• Th
�

e S (descriptor type) flag.

• The type field.

Th
�

e processor uses this information to detect programming errors that result in an attempt to use
a s� egment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field
p� rovides 4 additional bits for use in defining various types of code, data, and system descriptors.
T
�
able 3-1 in Chapter 3, Pr

F
otected-Mode Memory Management shows the encoding of the type

field for code and data descriptors; Table 3-2 in Chapter 3, Protected-Mode Memory Manage-
mentt shows the encoding of the field for system descriptors.

The
�

processor examines type information at various times while operating on segment selectors
and� segment descriptors. The following list gives examples of typical operations where type
check) ing is performed. This list is not exhaustive.

• When
z

 a segment selector is loaded into a segment register. Certain segment registers
can) contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
canno) t be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.

• When
z

 a segment selector is loaded into the LDTR or task register.

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

• When
z

 instructions access segments whose descriptors are already loaded into
segment rA egisters. Certain segments can be used by instructions only in certain predefined
way& s, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is set.

• When
z

 an instruction operand contains a segment selector. Certain instructions can
access s� egment or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conf) orming code segment, nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

4-7

PROTECTION

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, tas) k gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
s� egment, or data segment.

— IDT entries must be interrupt, trap, or task gates.

• Duri
�

ng certain internal operations. For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
pro� cessor determines the type of control transfer to be carried out (call or jump to
an� other code segment, a call or jump through a gate, or a task switch) by checking the
typ
�

e field in the segment (or gate) descriptor pointed to by the segment (or gate)
s� elector given as an operand in the CALL or JMP instruction. If the descriptor type is
f
8
or a code segment or call gate, a call or jump to another code segment is indicated; if

the d
�

escriptor type is for a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call
th
�

rough a trap or interrupt gate), the processor automatically checks that the segment
d
�
escriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-
h
7
andler call to a new task through a task gate), the processor automatically checks that

the s
�

egment descriptor being pointed to by the task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor automati-
cally) checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks
that
�

 the previous task link field in the current TSS points to a TSS.

4.4.1. Null Segment Selector Checking

Attempting to load a null segment selector (refer to Section 3.4.1. in Chapter 3, Protected-Mode
Memo

I
ry Management) i

Y
nto the CS or SS segment register generates a general-protection excep-

ti
�

on (#GP). A null segment selector can be loaded into the DS, ES, FS, or GS register, but any
att� empt to access a segment through one of these registers when it is loaded with a null segment
s� elector results in a #GP exception being generated. Loading unused data-segment registers with
a null segmen� t selector is a useful method of detecting accesses to unused segment registers
and/o� r preventing unwanted accesses to data segments.

4-8

PROTECTION

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to
�

 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpr) eted as rings of protection. The center (reserved for the most privileged code, data,
and� stacks) is used for the segments containing the critical software, usuall y the kernel of an
op� erating system. Outer rings are used for less critical software. (Systems that use only 2 of the
4 possible privilege levels should use levels 0 and 3.)

The
�

processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
W
9

hen the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP
�

).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

• Curr
#

ent pr ivilege level (CPL). The CPL is the privil ege level of the currently executing
p� rogram or task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally,
th

�
e CPL is equal to the privi lege level of the code segment from which instructions are

b
-
eing fetched. The processor changes the CPL when program control is transferred to a

co) de segment with a different privilege level. The CPL is treated slightly differently when
accessi� ng conforming code segments. Conforming code segments can be accessed from
any� privilege level that is equal to or numerically greater (less privileged) than the DPL of
the

�
conforming code segment. Also, the CPL is not changed when the processor accesses a

co) nforming code segment that has a different privilege level than the CPL.

• Descriptor priv ilege level (DPL). The DPL is the privi lege level of a segment or gate. It is
stored� in the DPL field of the segment or gate descriptor for the segment or gate. When the
cu) rrently executing code segment attempts to access a segment or gate, the DPL of the

Figure 4-2. Protec tion Rings

Level 0

Level 1

Level 2

Level 3

Protect ion Ring s

Operating

Operating System
Services

System
Kernel

Applications

4-9

PROTECTION

segmen� t or gate is compared to the CPL and RPL of the segment or gate selector (as
des

�
cribed later in this section). The DPL is interpreted differently, depending on the type of

segmen� t or gate being accessed:

— Data segment. The DPL indicates the numerically highest privilege level that a
p� rogram or task can have to be allowed to access the segment. For example, if the DPL
o� f a data segment is 1, only programs running at a CPL of 0 or 1 can access the
seg� ment.

— No
�

nconformi ng code segment (without using a call gate). The DPL indicates the
p� rivilege level that a program or task must be at to access the segment. For example, if
t
�
he DPL of a nonconforming code segment is 0, only programs running at a CPL of 0
can) access the segment.

— Ca
#

l l gate. The DPL indicates the numerically highest privilege level that the currently
ex+ ecuting program or task can be at and still be able to access the call gate. (This is the
same access rule � as for a data segment.)

— Con
#

forming code segment and nonconforming code segment accessed through a
ca© ll gate. The DPL indicates the numerically lowest privilege level that a program or
task can hav
�

e to be allowed to access the segment. For example, if the DPL of a
co) nforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
seg� ment.

— TSS
~

. The DPL indicates the numerically highest privilege level that the currently
ex+ ecuting program or task can be at and still be able to access the TSS. (This is the
same access rule � as for a data segment.)

• Requested pr ivilege level (RPL). The RPL is an override privilege level that is assigned
to

�
segment selectors. It is stored in bits 0 and 1 of the segment selector. The processor

check) s the RPL along with the CPL to determine if access to a segment is allowed. Even if
the p

�
rogram or task requesting access to a segment has sufficient privilege to access the

segmen� t, access is denied if the RPL is not of sufficient privilege level. That is, if the RPL
of� a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and
vice r versa. The RPL can be used to insure that privileged code does not access a segment
on� behalf of an application program unless the program itself has access privileges for that
seg� ment. Refer to S

4
ection 4.10.4., “Checking Caller Access Privileges (ARPL

In
(

struction)” for a detailed description of the purpose and typical use of the RPL.

P
�

rivilege levels are checked when the segment selector of a segment descriptor is loaded into a
s� egment register. The checks used for data access differ from those used for transfers of program
contr) ol among code segments; therefore, the two kinds of accesses are considered separately in
th

�
e following sections.

4.6. PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

T
�
o access operands in a data segment, the segment selector for the data segment must be loaded

into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).

4-10

PROTECTION

(Segmen
�

t registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-
tions.)
�

Before the processor loads a segment selector into a segment register, it performs a priv-
ilege check
'

 (refer to Figure 4-3) by comparing the privilege levels of the currently running
pr� ogram or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s
segment � descriptor. The processor loads the segment selector into the segment register if the
DPL
5

is numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-
pr� otection fault is generated and the segment register is not loaded.

Figure 4-4 shows four procedures (located in codes segments A, B, C, and D), each running at
dif
�

ferent privil ege levels and each attempting to access the same data segment.

• Th
�

e procedure in code segment A is able to access data segment E using segment selector
E1, because the CPL of code segment A and the RPL of segment selector E1 are equal to
th

�
e DPL of data segment E.

• Th
�

e procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment A and the RPL of segment selector E2 are both
nB umerically lower than (more privileged) than the DPL of data segment E. A code segment
B

@
 procedure can also access data segment E using segment selector E1.

• The procedure in code segment C is not able to access data segment E using segment
selector E3 (do� tted line), because the CPL of code segment C and the RPL of segment
selector � E3 are both numerically greater than (less privileged) than the DPL of data
segmen� t E. Even if a code segment C procedure were to use segment selector E1 or E2,
su� ch that the RPL would be acceptable, it still could not access data segment E because its
C

L
PL is not privileged enough.

• The procedure in code segment D should be able to access data segment E because code
seg� ment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
o� f segment selector E3 (which the code segment D procedure is using to access data
segmen� t E) is numerically greater than the DPL of data segment E, so access is not

Fig
�

ure 4-3. Privile ge Check for Da ta Ac cess

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment

4-11

PROTECTION

allowed.� If the code segment D procedure were to use segment selector E1 or E2 to access
the d

�
ata segment, access would be allowed.

As demonstrated in the previous examples, the addressable domain of a program or task varies
as� its CPL changes. When the CPL is 0, data segments at all privilege levels are accessible; when
the C

�
PL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is

3, o
R

nly data segments at privilege level 3 are accessible.

The RPL of a segment selector can always override the addressable domain of a program or task.
W

9
hen properly used, RPLs can prevent problems caused by accidental (or intensional) use of

seg� ment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
cont) rol. For example, an application program running at a CPL of 3 can set the RPL for a data-
s� egment selector to 0. With the RPL set to 0, only the CPL checks, not the RPL checks, will
pro� vide protection against deliberate, direct attempts to violate privilege-level security for the
data segmen

�
t. To prevent these types of privilege-level-check violations, a program or procedure

can check) access privileges whenever it receives a data-segment selector from another proce-
dur

�
e (refer to S

4
ection 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”).

Figu
�

re 4-4. Examples of Ac cessing Data Segments From Vario us Priv ilege Levels

Data

Lowest Privilege

Highest Privilege

Segment E

3

2

1

0

CPL=1

CPL=3

CPL=0

DPL=2
CPL=2

Segment Sel. E3
RPL=3

Segment Sel. E1
RPL=2

Segment Sel. E2
RPL=1

Code
Segment C

Code
Segment A

Code
Segment B

Code
Segment D

4-12

PROTECTION

4.6.1. Accessing Data in Code Segment s

In some instances it may be desirable to access data structures that are contained in a code
segment.� The following methods of accessing data in code segments are possible:

• Load a data-segment register with a segment selector for a nonconforming, readable, code
seg� ment.

• Lo
/

ad a data-segment register with a segment selector for a conforming, readable, code
seg� ment.

• Use a code-
|

segment override prefix (CS) to read a readable, code segment whose selector
is already

'
 loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because
the priv
�

il ege level of a conforming code segment is effectively the same as the CPL, regardless
of� its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register is the same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for
a s� tack segment. Here all privilege levels related to the stack segment must match the CPL; that
is
'

, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#
�

GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN T RANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the
destination co
�

de segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and� performs various limit, type, and privilege checks. If these checks are successful, the CS
reg> ister is loaded, program control is transferred to the new code segment, and program execu-
t
�
ion begins at the instruction pointed to by the EIP register.

Prog
�

ram control transfers are carried out with the JMP, CALL, RET, INT n� , an� d IRET instruc-
tions, as
�

well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the
IRET instruction are special cases discussed in Chapter 5, Interrupt and Exception Handling.
This
�

 chapter discusses only the JMP, CALL, and RET instructions.

A JMP
�

 or CALL instruction can reference another code segment in any of four ways:

• The target operand contains the segment selector for the target code segment.

• The target operand points to a call-gate descriptor, which contains the segment selector for
the tar

�
get code segment.

4-13

PROTECTION

• The target operand points to a TSS, which contains the segment selector for the target code
seg� ment.

• The
�

target operand points to a task gate, which points to a TSS, which in turn contains the
segmen� t selector for the target code segment.

The fo
�

llowing sections describe first two types of references. Refer to Section 6.3., “Task
S

4
witching” in Chapter 6, T

m
ask Management for information on transferring program control

t
�
hrough a task gate and/or TSS.

4.8.1. Direct Calls or Jum ps to Code Segments

The nea
�

r forms of the JMP, CALL, and RET instructions transfer program control within the
curr) ent code segment, so privilege-level checks are not performed. The far forms of the JMP,
CALL, an

L
d RET instructions transfer control to other code segments, so the processor does

perf� orm privilege-level checks.

When
9

 transferring program control to another code segment without going through a call gate,
t

�
he processor examines four kinds of privilege level and type information (refer to Figure 4-5):

• The C
�

PL. (Here, the CPL is the privilege level of the calling code segment; that is, the code
segmen� t that contains the procedure that is making the call or jump.)

• Th
�

e DPL of the segment descriptor for the destination code segment that contains the
called p) rocedure.

• The RPL of the segment selector of the destination code segment.

• Th
�

e conforming (C) flag in the segment descriptor for the destination code segment, which
deter

�
mines whether the segment is a conforming (C flag is set) or nonconforming (C flag is

clear)) code segment. (Refer to Section 3.4.3.1., “Code- and Data-Segment Descriptor

Figure 4-5. Privilege Check for Con trol Transfer Withou t Usin g a Gate

CPL

RPL

DPL

Privilege
Check

CS Register

Segment Selector
For Code Segment

Destination Code
Segment Descriptor

C

4-14

PROTECTION

Types” in Chapter 3, Protected-Mode Memory Management for more information about
th

�
is flag.)

The r
�

ules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C
L

 flag, as described in the following sections.

4.
ª

8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

W
9

hen accessing nonconforming code segments, the CPL of the calling procedure must be equal
t
�
o the DPL of the destination code segment; otherwise, the processor generates a general-protec-
tion exception
�

 (#GP).

F
?

or example, in Figure 4-6, code segment C is a nonconforming code segment. Therefore, a
pr� ocedure in code segment A can call a procedure in code segment C (using segment selector
C
L

1), because they are at the same privilege level (the CPL of code segment A is equal to the DPL
of� code segment C). However, a procedure in code segment B cannot call a procedure in code
segment C� (using segment selector C2 or C1), because the two code segments are at different
p� rivilege levels.

Figure 4-6. Examples of Accessin g Conf orming and Nonc onform ing Code Segments
From Various Privile ge Levels

Code
Segment D

Code
Segment CCode

Segment A

Lowest Privilege

Highest Privilege

CPL=3

Code
Segment B

Nonconforming
C

	
ode Segment

C
	

onforming
C

	
ode Segment

3

2

1

0

CPL=2
DPL=2

DPL=3

Segment Sel. D1
RPL=2

Segment Sel. D2
RPL=3

Segment Sel. C2
RPL=3

Segment Sel. C1
RPL=2

4-15

PROTECTION

The RPL of the segment selector that points to a nonconforming code segment has a limited
ef+ fect on the privilege check. The RPL must be numerically less than or equal to the CPL of the
call) ing procedure for a successful control transfer to occur. So, in the example in Figure 4-6, the
RPLs of segment selectors C1 and C2 could legally be set to 0, 1, or 2, but not to 3.

W
9

hen the segment selector of a nonconforming code segment is loaded into the CS register, the
p� rivi lege level field is not changed; that is, it remains at the CPL (which is the privilege level of
the calling p

�
rocedure). This is true, even if the RPL of the segment selector is different from the

CP
L

L.

4
ª

.8.1.2. ACCESSING CONFORMING CODE SEGMENTS

W
9

hen accessing conforming code segments, the CPL of the calling procedure may be numeri-
call) y equal to or greater than (less privil eged) the DPL of the destination code segment; the
p� rocessor generates a general-protection exception (#GP) only if the CPL is less than the DPL.
(The segmen

�
t selector RPL for the destination code segment is not checked if the segment is a

conf) orming code segment.)

In th
(

e example in Figure 4-6, code segment D is a conforming code segment. Therefore, calling
pro� cedures in both code segment A and B can access code segment D (using either segment
s� elector D1 or D2, respectively), because they both have CPLs that are greater than or equal to
t

�
he DPL of the conforming code segment. For conforming code segments, the DPL repre-
sA ents the numerically lowest pr ivilege level that a call ing procedure may be at to success-
full y make a call to the code segment.

(Note th
�

at segments selectors D1 and D2 are identical except for their respective RPLs. But
s� ince RPLs are not checked when accessing conforming code segments, the two segment selec-
to

�
rs are essentially interchangeable.)

W
9

hen program control is transferred to a conforming code segment, the CPL does not change,
ev+ en if the DPL of the destination code segment is less than the CPL. This situation is the only
one wh� ere the CPL may be different from the DPL of the current code segment. Also, since the
C

L
PL does not change, no stack switch occurs.

C
L

onforming segments are used for code modules such as math libraries and exception handlers,
which supp& ort applications but do not require access to protected system facilities. These
mod% ules are part of the operating system or executive software, but they can be executed at
numB erically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
call) ing code segment when switching to a conforming code segment prevents an application
pro� gram from accessing nonconforming code segments while at the privilege level (DPL) of a
conf) orming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred
o� nly to code segments at the same level of privilege, unless the transfer is carried out through a
call) gate, as described in the following sections.

4-16

PROTECTION

4.8.2. Gate Descript ors

To provide controlled access to code segments with different privilege levels, the processor
pr� ovides special set of descriptors called gate descriptors. There are four kinds of gate
de
�

scriptors:

• Call
L

 gates

• Tr
�

ap gates

• Interrupt gates

• Task gates

T
�
ask gates are used for task switching and are discussed in Chapter 6, T

m
ask Management. Trap

and� interrupt gates are special kinds of call gates used for calling exception and interrupt
han
7

dlers. The are described in Chapter 5, In
�

terrupt and Exception Handling. This chapter is
co) ncerned only with call gates.

4.8.3. Call Gates

C
L

all gates facilitate controlled transfers of program control between different privilege levels.
They
�

 are typically used only in operating systems or executives that use the privilege-level
pr� otection mechanism. Call gates are also useful for transferring program control between 16-bit
and� 32-bit code segments, as described in Section 17.4., “Transferring Control Among Mixed-
Si
4

ze Code Segments” in Chapter 17, M
I

ixing 16-Bit and 32-Bit Code.

Figure 4-7 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the
GDT or
0

 in an LDT, but not in the interrupt descriptor table (IDT). It performs six functions:

• I
(
t specifies the code segment to be accessed.

• It defines an entry point for a procedure in the specified code segment.

• It specifies the privilege level required for a caller trying to access the procedure.

• I
(
f a stack switch occurs, it specifies the number of optional parameters to be copied

b
-
etween stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit
p� ushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid.

4-17

PROTECTION

The
�

segment selector field in a call gate specifies the code segment to be accessed. The offset
field specifies the entry point in the code segment. This entry point is generally to the first
inst

'
ruction of a specific procedure. The DPL field indicates the privilege level of the call gate,

which in turn& is the privilege level required to access the selected procedure through the gate.
The P flag indicates whether the call-gate descriptor is valid. (The presence of the code segment
t

�
o which the gate points is indicated by the P flag in the code segment’s descriptor.) The param-
eter cou+ nt field indicates the number of parameters to copy from the calling procedures stack to
the new stack if

�
a stack switch occurs (refer to Section 4.8.5., “Stack Switching”). The parameter

coun) t specifies the number of words for 16-bit call gates and doublewords for 32-bit call gates.

No
�

te that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present
(#NP) ex

�
ception is generated when a program attempts to access the descriptor. The operating

s� ystem can use the P flag for special purposes. For example, it could be used to track the number
o� f times the gate is used. Here, the P flag is initially set to 0 causing a trap to the not-present
exceptio+ n handler. The exception handler then increments a counter and sets the P flag to 1, so
th

�
at on returning from the handler, the gate descriptor will be valid.

4.8.4. Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
in

'
struction. The segment selector from this pointer identifies the call gate (refer to Figure 4-8);

the of
�

fset from the pointer is required, but not used or checked by the processor. (The offset can
b

-
e set to any value.)

W
9

hen the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment d

*
escriptor for the destination code segment. (This segment descriptor can be

in the GDT or the LDT.) It then combines the base address from the code-segment descriptor
wi& th the offset from the call gate to form the linear address of the procedure entry point in the
code seg) ment.

As shown in Figure 4-9, four different privilege levels are used to check the validity of a
p� rogram control transfer through a call gate:

Figure 4-7. Call-Gate Descripto r

31
Z

16 15 1314 12 11 8 7
_

0
d

PO
y

ffset in Segment 31:16
D
P

e
L

Type

0
d 4

31
Z

16 15 0
d

Segment Selector Of
y

fset in Segment 15:00 0

Param.

0
d

0
d

11

P
DPL

Gate Valid
Descriptor Privilege Level

C
	

ount

4
«

5
b

6
a

0
d

 0 0

4-18

PROTECTION

• The CPL (current privilege level).

• The RPL (requestor's privilege level) of the call gate’s selector.

• The DP
�

L (descriptor privilege level) of the call gate descriptor.

• The DPL of the segment descriptor of the destination code segment.

Th
�

e C flag (conforming) in the segment descriptor for the destination code segment is also
check) ed.

Fig
�

ure 4-8. Call-Gate Mechanis m

OffsetSegment Selector

Far Pointer to Call Gate

Required but not used by processor

Call-Gate
Descriptor

Code-Segment
Descriptor

Descriptor Table

Offset

Base

Base

Offset

Base

Segment Selector

+

Procedure
Entry Point

4-19

PROTECTION

The privilege checking rules are different depending on whether the control transfer was initi-
ated with a C� ALL or a JMP instruction, as shown in Table 4-1.

The DP
�

L field of the call-gate descriptor specifies the numerically highest privilege level from
which a & calling procedure can access the call gate; that is, to access a call gate, the CPL of a
call) ing procedure must be equal to or less than the DPL of the call gate. For example, in Figure
4-1

�
2, call gate A has a DPL of 3. So calling procedures at all CPLs (0 through 3) can access this

call) gate, which includes calling procedures in code segments A, B, and C. Call gate B has a
DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes
call) ing procedures in code segments B and C. The dotted line shows that a calling procedure in
code) segment A cannot access call gate B.

Fig
�

ure 4-9. Privilege Check for Con trol Transfer with Cal l Gate

T
�
able 4-1. Privi lege Check Rules for Call Gates

Inst ruct ion Privil ege Check Rul es

CALL CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL ≤ CPL

JMP
¬

CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL = CPL

CPL
­

RPL

DPL

DPL

Privilege
Ch

­
eck

Call Gate (Descriptor)

Destination Code-

CS Register

Call-Gate Selector

Segment Descriptor

4-20

PROTECTION

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling
p® rocedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in
¯

 Figure 4-12, a calling procedure in code segment C can access call gate B using gate selector
B2 or B1, but it could not use gate selector B3 to access call gate B.

If
°

the privilege checks between the calling procedure and call gate are successful, the processor
then
±

 checks the DPL of the code-segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and JMP instructions. Only CALL instruc-
tio
±

ns can use call gates to transfer program control to more privileged (numerically lower priv-
ileg
¯

e level) nonconforming code segments; that is, to nonconforming code segments with a DPL
less than the CPL. A JMP instruction can use a call gate only to transfer program control to a
no² nconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both
tran
±

sfer program control to a more privileged conforming code segment; that is, to a conforming
co³ de segment with a DPL less than or equal to the CPL.

If a cal
°

l is made to a more privileged (numerically lower privilege level) nonconforming desti-
n² ation code segment, the CPL is lowered to the DPL of the destination code segment and a stack
sw´ itch occurs (refer to Section 4.8.5., “Stack Switching”). If a call or jump is made to a more
pr® ivileged conforming destination code segment, the CPL is not changed and no stack switch
occuµ rs.

Figure 4 -10. Example of Acce ssi ng Call Gates At Various Privil ege Levels

Code
Segment A

Stack SwitchNo Stack
Switch Occurs Occurs

Lowest Privilege

Highest Privilege

3

2
¶

1

0

Call
Gate A

Code
Segment B

Call
Gate B

Code
Segment C

Code
Segment D

Code
Segment E

Nonconforming
C

­
ode Segment

C
­

onforming
C

­
ode Segment

Gate Selector A
RPL=3

Gate Selector B1
RPL=2

Gate Selector B2
RPL=1

CPL=3

CPL=2

CPL=1

DPL=3

DPL=2

DPL=0 DPL=0

Gate Selector B3
RPL=3

4-21

PROTECTION

C
·

all gates allow a single code segment to have procedures that can be accessed at different priv-
il

¯
ege levels. For example, an operating system located in a code segment may have some

s´ ervices which are intended to be used by both the operating system and application software
(such as pro

¸
cedures for handling character I/O). Call gates for these procedures can be set up

that al
±

low access at all privilege levels (0 through 3). More privileged call gates (with DPLs of
0 or 1)

¹
 can then be set up for other operating system services that are intended to be used only

b
º
y the operating system (such as procedures that initiali ze device drivers).

4.8.5. Stack Swit ching

W
»

henever a call gate is used to transfer program control to a more privileged nonconforming
code s³ egment (that is, when the DPL of the nonconforming destination code segment is less than
th

±
e CPL), the processor automatically switches to the stack for the destination code segment’s

pri® vilege level. This stack switching is carried out to prevent more privileged procedures from
crashing³ due to insufficient stack space. It also prevents less privileged procedures from inter-
fering

¼
 (by accident or intent) with more privileged procedures through a shared stack.

Each
½

task must define up to 4 stacks: one for applications code (running at privilege level 3) and
one fµ or each of the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used
[3 and 0], then only two stacks must be defined.) Each of these stacks is located in a separate
s´ egment and is identified with a segment selector and an offset into the stack segment (a stack
poi® nter).

The segm
¾

ent selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP

½
 registers, respectively, when privilege-level-3 code is being executed and is automatically

s´ tored on the called procedure’s stack when a stack switch occurs.

P
¿

ointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
t

±
ask (refer to Figure 6-2 in Chapter 6, T

À
ask Management)

Á
. Each of these pointers consists of a

s´ egment selector and a stack pointer (loaded into the ESP register). These initial pointers are
s´ trictly read-only values. The processor does not change them while the task is running. They
are uÂ sed only to create new stacks when calls are made to more privileged levels (numerically
lower privilege levels). These stacks are disposed of when a return is made from the called
pro® cedure. The next time the procedure is called, a new stack is created using the initial stack
poin® ter. (The TSS does not specify a stack for privilege level 3 because the processor does not
allÂ ow a transfer of program control from a procedure running at a CPL of 0, 1, or 2 to a procedure
runÃ ning at a CPL of 3, except on a return.)

The op
¾

erating system is responsible for creating stacks and stack-segment descriptors for all the
p® rivi lege levels to be used and for loading initial pointers for these stacks into the TSS. Each
s´ tack must be read/write accessible (as specified in the type field of its segment descriptor) and
must conÄ tain enough space (as specified in the limit field) to hold the following items:

• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.

• The parameters and temporary variables required by the called procedure.

• Th
¾

e EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.

4-22

PROTECTION

The stack will need to require enough space to contain many frames of these items, because
p® rocedures often call other procedures, and an operating system may support nesting of multiple
interr
¯

upts. Each stack should be large enough to allow for the worst case nesting scenario at its
p® rivilege level.

(If
¸

 the operating system does not use the processor’s multitasking mechanism, it still must create
at leasÂ t one TSS for this stack-related purpose.)

W
»

hen a procedure call through a call gate results in a change in privilege level, the processor
per® forms the following steps to switch stacks and begin execution of the called procedure at a
n² ew privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (´ segment selector and stack pointer) from the TSS.

2.
Å

Reads the segment selector and stack pointer for the stack to be switched to from the
cu³ rrent TSS. Any limit violations detected while reading the stack-segment selector, stack
p® ointer, or stack-segment descriptor cause an invalid TSS (#TS) exception to be generated.

3.
Æ

Checks the stack-segment descriptor for the proper privileges and type and generates an
invalid TSS (#TS) exception if violations are detected.

4.
Ç

Temporaril y saves the current values of the SS and ESP registers.

5.
È

Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6.
É

Pushes the temporarily saved values for the SS and ESP registers (for the calling
p® rocedure) onto the new stack (refer to Figure 4-11).

7.
Ê

Copies the number of parameter specified in the parameter count field of the call gate from
the

±
calling procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8.
Ë

Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new

±
stack.

9.
Ì

Loads the segment selector for the new code segment and the new instruction pointer from
the

±
call gate into the CS and EIP registers, respectively, and begins execution of the called

p® rocedure.

Refer to the description of the CALL instruction in Chapter 3, Instruction Set Reference, inÍ the
In
Î

tel Architecture Software Developer’s Manual, Volume 2,Í for a detailed description of the priv-
i
¯
lege level checks and other protection checks that the processor performs on a far call through
a call gÂ ate.

4-23

PROTECTION

The parameter count field in a call gate specifies the number of data items (up to 31) that the
p® rocessor should copy from the calling procedure’s stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a Â pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
accesÂ s parameters in the old stack space. The size of the data items passed to the called proce-
dur

Ï
e depends on the call gate size, as described in Section 4.8.3., “Call Gates”

4.8.6. Returning from a Called Procedure

Th
¾

e RET instruction can be used to perform a near return, a far return at the same privilege level,
anÂ d a far return to a different privil ege level. This instruction is intended to execute returns from
pro® cedures that were called with a CALL instruction. It does not support returns from a JMP
inst

¯
ruction, because the JMP instruction does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the
pro® cessor performs only a limit check. When the processor pops the return instruction pointer
fro

¼
m the stack into the EIP register, it checks that the pointer does not exceed the limit of the

curr³ ent code segment.

On a
Ð

far return at the same privilege level, the processor pops both a segment selector for the
code ³ segment being returned to and a return instruction pointer from the stack. Under normal
cond³ iti ons, these pointers should be valid, because they were pushed on the stack by the CALL
inst

¯
ruction. However, the processor performs privilege checks to detect situations where the

cu³ rrent procedure might have altered the pointer or failed to maintain the stack properly.

Figure 4-11. Stack Switc hing During an Interpriv ileg e-Level Call

Parameter 1

Parameter 2

Parameter 3

Calling SS

Calling ESP

Parameter 1

Parameter 2

Parameter 3

Calling CS

Calling EIP

Called Procedure’s Stack

ESP

ESP

Calling Procedure’s Stack

4-24

PROTECTION

A far return that requires a privilege-level change is only allowed when returning to a less priv-
ileg
¯

ed level (that is, the DPL of the return code segment is numerically greater than the CPL).
The
¾

processor uses the RPL field from the CS register value saved for the calling procedure
(ref
¸

er to Figure 4-11) to determine if a return to a numerically higher privilege level is required.
If
°

the RPL is numerically greater (less privileged) than the CPL, a return across privilege levels
occuµ rs.

The processor performs the following steps when performing a far return to a calling procedure
(ref
¸

er to Figures 4-2 and 4-4 in the In
Î

tel Architecture Software Developer’s Manual, Volume 1,Í
fo
¼

r an illustration of the stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level
ch³ ange is required on the return.

2.
Å

Lo
Ñ

ads the CS and EIP registers with the values on the called procedure’s stack. (Type and
p® rivilege level checks are performed on the code-segment descriptor and RPL of the code-
segmen´ t selector.)

3.
Æ

(If the RET instruction includes a parameter count operand and the return requires a
priv® ilege level change.) Adds the parameter count (in bytes obtained from the RET
instru

¯
ction) to the current ESP register value (after popping the CS and EIP values), to step

pas® t the parameters on the called procedure’s stack. The resulting value in the ESP register
po® ints to the saved SS and ESP values for the calling procedure’s stack. (Note that the byte
cou³ nt in the RET instruction must be chosen to match the parameter count in the call gate
th

±
at the calling procedure referenced when it made the original call multiplied by the size

ofµ the parameters.)

4
Ç
. (If the return requires a privilege level change.) Loads the SS and ESP registers with the

saved´ SS and ESP values and switches back to the calling procedure’s stack. The SS and
ESP values for the called procedure’s stack are discarded. Any limit violations detected
while Ò loading the stack-segment selector or stack pointer cause a general-protection
exÓ ception (#GP) to be generated. The new stack-segment descriptor is also checked for
ty

±
pe and privilege violations.

5.
È

(If the RET instruction includes a parameter count operand.) Adds the parameter count (in
by

º
tes obtained from the RET instruction) to the current ESP register value, to step past the

param® eters on the calling procedure’s stack. The resulting ESP value is not checked against
th

±
e limit of the stack segment. If the ESP value is beyond the limit, that fact is not

rÃ ecognized until the next stack operation.

6.
É

(If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS s

Ô
egment registers. If any of these registers refer to segments whose DPL is less than the

n² ew CPL (excluding conforming code segments), the segment register is loaded with a null
segmen´ t selector.

R
Õ

efer to the description of the RET instruction in Chapter 3, In
Î

struction Set Reference, ofÍ the
In
Î

tel Architecture Software Developer’s Manual, Volume 2,Í for a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on a far return.

4-25

PROTECTION

4.9. PRIVILEGED INSTRUCTIONS

S
Ö

ome of the system instructions (called “privileged instructions” are protected from use by
applicationÂ programs. The privileged instructions control system functions (such as the loading
of sµ ystem registers). They can be executed only when the CPL is 0 (most privileged). If one of
these

±
instructions is executed when the CPL is not 0, a general-protection exception (#GP) is

gener× ated. The following system instructions are privil eged instructions:

• LGDT—Load GDT register.

• LLDT—Load LDT register.

• L
Ñ
TR—Load task register.

• LIDT—Load IDT register.

• MOV (control registers)—Load and store control registers.

• LMSW
Ñ

—Load machine status word.

• C
·

LTS—Clear task-switched flag in register CR0.

• MOV (debug registers)—Load and store debug registers.

• INVD—Inv
°

alidate cache, without writeback.

• W
»

BINVD—Invalidate cache, with writeback.

• INVLPG—Invalidate TLB entry.

• HL
Ø

T—Halt processor.

• RDMSR—Read Model-Specific Registers.

• W
»

RMSR—Write Model-Specific Registers.

• R
Õ

DPMC—Read Performance-Monitoring Counter.

• RDTSC—Read Time-Stamp Counter.

S
Ö

ome of the privileged instructions are available only in the more recent families of Intel Archi-
tect

±
ure processors (refer to Section 18.7., “New Instructions In the Pentium® and Later Intel

Architecture Processors”, in Chapter 18, Intel Architecture Compatibility).
Á

The PC
¾

E and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and
R

Õ
DTSC instructions, respectively, to be executed at any CPL.

4.10. POINTER VALIDATION

W
»

hen operating in protected mode, the processor validates all pointers to enforce protection
b

º
etween segments and maintain isolation between privilege levels. Pointer validation consists

of tµ he following checks:

1. Checking access rights to determine if the segment type is compatible with its use.

2.
Å

Checking read/write rights

4-26

PROTECTION

3.
Æ

Checking if the pointer offset exceeds the segment limit.

4.
Ç

Checking if the supplier of the pointer is allowed to access the segment.

5.
È

Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu-
tio
±

n. Software must explicit ly request the fourth check by issuing an ARPL instruction. The fifth
ch³ eck (offset alignment) is performed automatically at privilege level 3 if alignment checking is
tu
±

rned on. Offset alignment does not affect isolation of privilege levels.

4.10.1. Checking A ccess Right s (LAR Instruct ion)

W
»

hen the processor accesses a segment using a far pointer, it performs an access rights check
oµ n the segment descriptor pointed to by the far pointer. This check is performed to determine if
ty
±

pe and privilege level (DPL) of the segment descriptor are compatible with the operation to be
per® formed. For example, when making a far call in protected mode, the segment-descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then
¾

, if the call is to a nonconforming code segment, the DPL of the code segment must be equal
t
±
o the CPL, and the RPL of the code segment’s segment selector must be less than or equal to
th
±

e DPL. If type or privilege level are found to be incompatible, the appropriate exception is
gen× erated.

T
¾
o prevent type incompatibility exceptions from being generated, software can check the access

rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc-
tion
±

specifies the segment selector for the segment descriptor whose access rights are to be
check³ ed and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2
Å
. Checks that the segment selector points to a segment descriptor that is within the descriptor

tab
±

le limit (GDT or LDT).

3
Æ
. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS

s´ egment-descriptor type.

4.
Ç

If the segment is not a conforming code segment, checks if the segment descriptor is
vÙ isible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equÓ al to the DPL).

5.
È

If the privilege level and type checks pass, loads the second doubleword of the segment
d

Ï
escriptor into the destination register (masked by the value 00FXFF00H, where X

ind
¯

icates that the corresponding 4 bits are undefined) and sets the ZF flag in the EFLAGS
rÃ egister. If the segment selector is not visible at the current privilege level or is an invalid
ty

±
pe for the LAR instruction, the instruction does not modify the destination register and

clears the ³ ZF flag.

Once lo
Ð

aded in the destination register, software can preform additional checks on the access
rights information.

4-27

PROTECTION

4.10.2. Checking Read/W ri te Rights (VE RR and VERW
Inst ruct ions)

W
»

hen the processor accesses any code or data segment it checks the read/write privileges
asÂ signed to the segment to verify that the intended read or write operation is allowed. Software
can ch³ eck read/write rights using the VERR (

Ú
verifyÙ for reading) and VERW (verify for writing)

inst
¯

ructions. Both these instructions specify the segment selector for the segment being checked.
The instructions then perform the following operations:

1. Check that the segment selector is not null.

2
Å
. Checks that the segment selector points to a segment descriptor that is within the descriptor

tab
±

le limit (GDT or LDT).

3.
Æ

Checks that the segment descriptor is a code or data-segment descriptor type.

4.
Ç

If the segment is not a conforming code segment, checks if the segment descriptor is
visible atÙ the CPL (that is, if the CPL and the RPL of the segment selector are less than or
eqÓ ual to the DPL).

5.
È

Checks that the segment is readable (for the VERR instruction) or writable (for the
VER

Û
W) instruction.

The VER
¾

R instruction sets the ZF flag in the EFLAGS register if the segment is visible at the
C

·
PL and readable; the VERW sets the ZF flag if the segment is visible and writable. (Code

s´ egments are never writable.) The ZF flag is cleared if any of these checks fail .

4-28

PROTECTION

4.10.3. Checking Tha t the Point er Offset Is Withi n Limit s (LSL
Inst ruct ion)

W
»

hen the processor accesses any segment it performs a limit check to insure that the offset is
withÒ in the limit of the segment. Software can perform this limit check using the LSL (load
seg´ ment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment
sel´ ector for the segment descriptor whose limit is to be checked and a destination register. The
instruction then performs the following operations:

1. Check that the segment selector is not null.

2
Å
. Checks that the segment selector points to a segment descriptor that is within the descriptor

tab
±

le limit (GDT or LDT).

3.
Æ

Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4.
Ç

If the segment is not a conforming code segment, checks if the segment descriptor is
vÙ isible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equÓ al to the DPL).

5
È
. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled

accoÂ rding to the setting of the G flag in the segment descriptor) into the destination register
anÂ d sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the
current³ privilege level or is an invalid type for the LSL instruction, the instruction does not
modify the destination register and clears the ZF flag.

Once
Ð

loaded in the destination register, software can compare the segment limit with the offset
ofµ a pointer.

4.10.4. Checking C aller Access Privileges (ARPL Inst ruc tion)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privi-
lege level o
Ü

f a calling procedure (the calling procedure’s CPL) to a called procedure. The called
pr® ocedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
“weaken” the privilege level of the called procedure to that of the RPL.

Operatin
Ð

g-system procedures typically use the RPL to prevent less privileged application
pr® ograms from accessing data located in more privileged segments. When an operating-system
pr® ocedure (the called procedure) receives a segment selector from an application program (the
callin³ g procedure), it sets the segment selector’s RPL to the privilege level of the calling proce-
du
Ï

re. Then, when the operating system uses the segment selector to access its associated
segment,´ the processor performs privilege checks using the calling procedure’s privilege level
(sto
¸

red in the RPL) rather than the numerically lower privi lege level (the CPL) of the operating-
syst´ em procedure. The RPL thus insures that the operating system does not access a segment on
beh
º

alf of an application program unless that program itself has access to the segment.

Fi
Ý

gure 4-12 shows an example of how the processor uses the RPL field. In this example, an
appÂ lication program (located in code segment A) possesses a segment selector (segment selector
D1
Þ

) that points to a privileged data structure (that is, a data structure located in a data segment
D at priv
Þ

i lege level 0). The application program cannot access data segment D, because it does

4-29

PROTECTION

not have sufficient privilege, but the operating system (located in code segment C) can. So, in
an attempt to accessÂ data segment D, the application program executes a call to the operating
s´ ystem and passes segment selector D1 to the operating system as a parameter on the stack.
Before passing the segment selector, the (well behaved) application program sets the RPL of the
s´ egment selector to its current priv ilege level (which in this example is 3). If the operating
s´ ystem attempts to access data segment D using segment selector D1, the processor compares
the C

±
PL (which is now 0 following the call), the RPL of segment selector D1, and the DPL of

d
Ï
ata segment D (wh

¸
ich is 0). Since the RPL is greater than the DPL, access to data segment D

is
¯

 denied. The processor’s protection mechanism thus protects data segment D from access by
the oper

±
ating system, because application program’s privilege level (represented by the RPL of

s´ egment selector B) is greater than the DPL of data segment D.

Now as
ß

sume that instead of setting the RPL of the segment selector to 3, the application program
s´ ets the RPL to 0 (segment selector D2). The operating system can now access data segment D,
because its

º
 CPL and the RPL of segment selector D2 are both equal to the DPL of data segment

D. B
Þ

ecause the application program is able to change the RPL of a segment selector to any value,
it can potentially use a procedure operating at a numerically lower privilege level to access a

Figure 4-12. Use of RPL to W eaken Privi lege Level of Call ed Pro cedure

Passed as a
parameter on

th
à

e stack.

Access

allowed

A
á

ccess
allowed

Application P
á

rogram

Operating
System

Lowest Privilege

Highest Privilege

3

2
¶

1

0

Data
Segment D

not

Segment Sel. D1
RPL=3

Segment Sel. D2
RPL=0

Gate Selector B
RPL=3

Code
Segment A

CPL=3

Code
Segment C

DPL=0

Call
Gate B

DPL=3

DPL=0

4-30

PROTECTION

p® rotected data structure. This ability to lower the RPL of a segment selector breaches the
pr® ocessor’s protection mechanism.

B
â

ecause a called procedure cannot rely on the calling procedure to set the RPL correctly, oper-
ating-Â system procedures (executing at numerically lower privilege-levels) that receive segment
sel´ ectors from numerically higher privilege-level procedures need to test the RPL of the segment
sel´ ector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to m
±

atch that of another segment selector.

The examp
¾

le in Figure 4-12 demonstrates how the ARPL instruction is intended to be used.
W
»

hen the operating-system receives segment selector D2 from the application program, it uses
th
±

e ARPL instruction to compare the RPL of the segment selector with the privi lege level of the
appÂ lication program (represented by the code-segment selector pushed onto the stack). If the
RPL is less than application program’s privilege level, the ARPL instruction changes the RPL
ofµ the segment selector to match the privilege level of the application program (segment
selecto´ r D1). Using this instruction thus prevents a procedure running at a numerically higher
pr® ivil ege level from accessing numerically lower privilege-level (more privileged) segments by
lowering
Ü

 the RPL of a segment selector.

No
ß

te that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program’s code segment. This segment selector
is
¯

 stored on the stack as part of the call to the operating system. The operating system can copy
t
±
he segment selector from the stack into a register for use as an operand for the ARPL

instruction.

4.10.5. Checking A lignment

W
»

hen the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the
±

CR0 register and the AC flag in the EFLAGS register. Unaligned memory references
gen× erate alignment exceptions (#AC). The processor does not generate alignment exceptions
wÒ hen operating at privilege level 0, 1, or 2. Refer to Table 5-7 in Chapter 5, In

Î
terrupt and Excep-

tã ion Handling for a description of the alignment requirements when alignment checking is
enabÓ led.

4.11. PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used ä with the flat memory model, it allows supervisor code and data (the operating system or
execuÓ tive) to be protected from user code and data (application programs). It also allows pages
con³ taining code to be write protected. When the segment- and page-level protection are
com³ bined, page-level read/write protection allows more protection granularity within segments.

W
»

ith page-level protection (as with segment-level protection) each memory reference is
check³ ed to verify that protection checks are satisfied. All checks are made before the memory
cycle ³ is started, and any violation prevents the cycle from starting and results in a page-fault

4-31

PROTECTION

exceptioÓ n being generated. Because checks are performed in parallel with address translation,
t

±
here is no performance penalty.

The p
¾

rocessor performs two page-level protection checks:

• Restriction of addressable domain (supervisor and user modes).

• Page type (read only or read/write).

V
Û

iolations of either of these checks results in a page-fault exception being generated. Refer to
Ch

·
apter 5, Interrupt and Exception Handling for an explanation of the page-fault exception

mechanÄ ism. This chapter describes the protection violations which lead to page-fault excep-
ti

±
ons.

4.11.1. Page-Prot ection Fl ags

Protection information for pages is contained in two flags in a page-directory or page-table entry
(ref

¸
er to Figure 3-14 in Chapter 3, Pr

å
otected-Mode Memory Management)

Á
: the read/write flag

(bit 1) and
¸

 the user/supervisor flag (bit 2). The protection checks are applied to both first- and
seco´ nd-level page tables (that is, page directories and page tables).

4.11.2. Restric ting A ddres sabl e Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
lev

Ü
els:

• S
Ö

upervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive,
otµ her system software (such as device drivers), and protected system data (such as page
tab

±
les).

• User m
æ

ode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
cu³ rrently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of
3, it is in u

Æ
ser mode. When the processor is in supervisor mode, it can access all pages; when in

user moä de, it can access only user-level pages. (Note that the WP flag in control register CR0
modÄ ifies the supervisor permissions, as described in Section 4.11.3., “Page Type”)

Note tha
ß

t to use the page-level protection mechanism, code and data segments must be set up
for at least two segment-based privilege levels: level 0 for supervisor code and data segments
and level 3 Â for user code and data segments. (In this model, the stacks are placed in the data
s´ egments.) To minimize the use of segments, a flat memory model can be used (refer to Section
3.2

Æ
.1., “Basic Flat Model” in Section 3, “Protected-Mode Memory Management”). Here, the

user anä d supervisor code and data segments all begin at address zero in the linear address space
and Â overlay each other. With this arrangement, operating-system code (running at the supervisor
level) and application code (running at the user level) can execute as if there are no segments.
Pr

¿
otection between operating-system and application code and data is provided by the

pro® cessor’s page-level protection mechanism.

4-32

PROTECTION

4.11.3. Page Type

The page-level protection mechanism recognizes two page types:

• R
Õ

ead-only access (R/W flag is 0).

• Read/write access (R/W flag is 1).

W
»

hen the processor is in supervisor mode and the WP flag in register CR0 is clear (its state
fol
¼

lowing reset initi alization), all pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
readÃ /write accessible. User-mode pages which are read/write or read-only are readable; super-
visorÙ -mode pages are neither readable nor writable from user mode. A page-fault exception is
g× enerated on any attempt to violate the protection rules.

Th
¾

e P6 family, Pentium®
ç

,Í and Intel486™ processors allow user-mode pages to be write-
p® rotected against supervisor-mode access. Setting the WP flag in register CR0 to 1 enables
su´ pervisor-mode sensitiv ity to user-mode, write-protected pages. This supervisor write-protect
featur
¼

e is useful for implementing a “copy-on-write” strategy used by some operating systems,
such as´ UNIX*, for task creation (also called forking or spawning). When a new task is created,
it is possible to copy the entire address space of the parent task. This gives the child task a
com³ plete, duplicate set of the parent's segments and pages. An alternative copy-on-write
st´ rategy saves memory space and time by mapping the child's segments and pages to the same
segments an´ d pages used by the parent task. A private copy of a page gets created only when
onµ e of the tasks writes to the page. By using the WP flag and marking the shared pages as read-
onµ ly, the supervisor can detect an attempt to write to a user-level page, and can copy the page at
th
±

at time.

4.11.4. Combining P rotection of Both Levels of Page Tables

F
Ý

or any one page, the protection attributes of its page-directory entry (first-level page table) may
dif
Ï

fer from those of its page-table entry (second-level page table). The processor checks the
pr® otection for a page in both its page-directory and the page-table entries. Table 4-2 shows the
pr® otection provided by the possible combinations of protection attributes when the WP flag is
clear³ .

4.11.5. Overrides to P age Protect ion

The following
¾

 types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

• Access to segment descriptors in the GDT, LDT, or IDT.

• Access
è

 to an inner-privilege-level stack during an inter-privilege-level call or a call to in
exÓ ception or interrupt handler, when a change of privilege level occurs.

4-33

PROTECTION

4.12. COMBINING PAGE AND SEGMENT PROTECTION

W
»

hen paging is enabled, the processor evaluates segment protection first, then evaluates page
pro® tection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
gener× ated by segmentation, no paging exception is generated.

P
¿

age-level protections cannot be used to override segment-level protection. For example, a code
s´ egment is by definition not writable. If a code segment is paged, setting the R/W flag for the
p® ages to read-write does not make the pages writable. Attempts to write into the pages will be
bl

º
ocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large
read-Ã write data segment is paged, the page-protection mechanism can be used to write-protect
i

¯
ndividual pages.

NOTE:

* If the WP flag of CR0 is set, the access type is determined by the R/W flags of the page-directory and
page-table entries.

Table 4-2. Combine d Page-Dire ctory and Page-Table Protec tion

Page-Direct ory Entry Page-Table Entry Combined Effect

Privi lege Access T ype Privilege Access T ype Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

4-34

PROTECTION

5
Interrupt and
Exception Handling

5-1

INTERRUPT AND EXCEPTION HANDLING

CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter d
¾

escribes the processor’s interrupt and exception-handling mechanism, when oper-
aÂ ting in protected mode. Most of the information provided here also applies to the interrupt and
exceptioÓ n mechanism used in real-address or virtual-8086 mode. Refer to Chapter 16, 8

é
086

Emul
ê

ation for a description of the differences in the interrupt and exception mechanism for real-
addrÂ ess and virtual-8086 mode.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interr
°

upts and exceptions are forced transfers of execution from the currently running program
or µ task to a special procedure or task called a handler. Interrupts typically occur at random times
dur

Ï
ing the execution of a program, in response to signals from hardware. They are used to handle

events exÓ ternal to the processor, such as requests to service peripheral devices. Software can also
g× enerate interrupts by executing the INT në instruction. Exceptions occur when the processor
d

Ï
etects an error condition while executing an instruction, such as division by zero. The processor

d
Ï
etects a variety of error conditions including protection violations, page faults, and internal

machine faults. The machine-check architecture of the P6 family and Pentium®
ì
 processors

alsÂ o permits a machine-check exception to be generated when internal hardware errors and bus
erroÓ rs are detected.

The processor’s interrupt and exception-handling mechanism allows interrupts and exceptions
to b
±

e handled transparently to application programs and the operating system or executive.
W
»

hen an interrupt is received or an exception is detected, the currently running procedure or
tas
±

k is automatically suspended while the processor executes an interrupt or exception handler.
W
»

hen execution of the handler is complete, the processor resumes execution of the interrupted
pro® cedure or task. The resumption of the interrupted procedure or task happens without loss of
pro® gram continuity, unless recovery from an exception was not possible or an interrupt caused
th
±

e currently running program to be terminated.

This chapter d
¾

escribes the processor’s interrupt and exception-handling mechanism, when oper-
atiÂ ng in protected mode. A detailed description of the exceptions and the conditions that cause
th
±

em to be generated is given at the end of this chapter. Refer to Chapter 16, 808
é

6 Emulation for
a Â description of the interrupt and exception mechanism for real-address and virtual-8086 mode.

5.1.1. Source s of Interrupt s

The processor receives interrupts from two sources:

• Ex
½

ternal (hardware generated) interrupts.

• Software-
Ö

generated interrupts.

5-2

INTERRUPT AND EXCEPTION HANDLING

5.
í

1.1.1. EXTERNAL INTERRUPTS

External interrupts are received through pins on the processor or through the local APIC serial
bu
º

s. The primary interrupt pins on a P6 family or Pentium®
ì
 processor are the LINT[1:0] pins,

which are conÒ nected to the local APIC (refer to Section 7.5., “Advanced Programmable Inter-
rupt Controller (APIC)” in Chapter 7, Multiple-Processor Management)

Á
. When the local APIC

is
¯

 disabled, these pins are configured as INTR and NMI pins, respectively. Asserting the INTR
pin® signals the processor that an external interrupt has occurred, and the processor reads from
the
±

system bus the interrupt vector number provided by an external interrupt controller, such as
an Â 8259A (refer to Section 5.2., “Exception and Interrupt Vectors”). Asserting the NMI pin
s´ ignals a nonmaskable interrupt (NMI), which is assigned to interrupt vector 2.

W
»

hen the local APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s
vectoÙ r table to be associated with any of the processor’s exception or interrupt vectors.

The p
¾

rocessor’s local APIC can be connected to a system-based I/O APIC. Here, external inter-
rupts received at the I/O APIC’s pins can be directed to the local APIC through the APIC serial
bu
º

s (pins PICD[1:0]). The I/O APIC determines the vector number of the interrupt and sends
th
±

is number to the local APIC. When a system contains multiple processors, processors can also
s´ end interrupts to one another by means of the APIC serial bus.

The LI
¾

NT[1:0] pins are not available on the Intel486™ processor and the earlier Pentium®
ì

pr® ocessors that do not contain an on-chip local APIC. Instead these processors have dedicated
NMI and
ß

 INTR pins. With these processors, external interrupts are typically generated by a
sy´ stem-based interrupt controller (8259A), with the interrupts being signaled through the INTR
pi® n.

Not
ß

e that several other pins on the processor cause a processor interrupt to occur; however, these
interr
¯

upts are not handled by the interrupt and exception mechanism described in this chapter.
Thes
¾

e pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Which of
these pins are inclu
±

ded on a particular Intel Architecture processor is implementation dependent.
The f
¾

unctions of these pins are described in the data books for the individual processors. The
S
Ö

MI# pin is also described in Chapter 12, Sys
î

tem Management Mode (SMM).

5.
í

1.1.2. MASKABLE HARDWARE INTERRUPTS

Any external interrupt that is delivered to the processor by means of the INTR pin or through
th
±

e local APIC is called a maï skable hardware interrupt . The maskable hardware interrupts
t
±
hat can be delivered through the INTR pin include all Intel Architecture defined interrupt
vectÙ ors from 0 through 255; those that can be delivered through the local APIC include interrupt
vectÙ ors 16 through 255.

All maskable
è

hardware interrupts can be masked as a group. Use the single IF flag in the
EFLAGS register (refer to Sect

Ö
ion 5.6.1., “Masking Maskable Hardware Interrupts”) to mask

th
±

ese maskable interrupts. Note that when interrupts 0 through 15 are delivered through the local
APIC
è

, the APIC indicates the receipt of an il legal vector.

5-3

INTERRUPT AND EXCEPTION HANDLING

5
í

.1.1.3. SOFTWARE-GENERATED INTERRUPTS

The INT në instruction permits interrupts to be generated from within software by supplying the
interru

¯
pt vector number as an operand. For example, the INT 35 instruction forces an implicit

call³ to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the
pro® cessor’s predefined NMI vector is used, however, the response of the processor wil l not be
the same as it wou

±
ld be from an NMI interrupt generated in the normal manner. If vector number

2 (the NMI vector) is used in this instruction, the NMI interrupt handler is called, but the
pro® cessor’s NMI-handling hardware is not activated.

No
ß

te that interrupts generated in software with the INT në instruction cannot be masked by the
IF flag in the EFLAGS register.

5.1.2. Source s of Except ions

The p
¾

rocessor receives exceptions from three sources:

• Processor-detected program-error exceptions.

• Software-
Ö

generated exceptions.

• Machin
ð

e-check exceptions.

5
í

.1.2.1. PROGRAM-ERROR EXCEPTIONS

The processor generates one or more exceptions when it detects program errors during the
executioÓ n in an application program or the operating system or executive. The Intel Architecture
defin

Ï
es a vector number for each processor-detectable exception. The exceptions are further

clas³ sified as faults, Í tr
ñ

aps, aÍ nd abò orts (refer to Section 5.3., “Exception Classifications”) .

5.
í

1.2.2. SOFTWARE-GENERATED EXCEPTIONS

The INT
¾

O, INT 3, and BOUND instructions permit exceptions to be generated in software.
Th

¾
ese instructions allow checks for specific exception conditions to be performed at specific

poin® ts in the instruction stream. For example, the INT 3 instruction causes a breakpoint excep-
ti

±
on to be generated.

The I
¾

NT në instruction can be used to emulate a specific exception in software, with one limita-
ti

±
on. If the në operand in the INT në instruction contains a vector for one of the Intel Architecture

exÓ ceptions, the processor will generate an interrupt to that vector, which will in turn invoke the
exceptioÓ n handler associated with that vector. Because this is actually an interrupt, however, the
pro® cessor does not push an error code onto the stack, even if a hardware-generated exception for
that v

±
ector normally produces one. For those exceptions that produce an error code, the excep-

ti
±

on handler will attempt to pop an error code from the stack while handling the exception. If the
INT në instruction was used to emulate the generation of an exception, the handler will pop off
and discardÂ the EIP (in place of the missing error code), sending the return to the wrong location.

5-4

INTERRUPT AND EXCEPTION HANDLING

5.
í

1.2.3. MACHINE-CHECK EXCEPTIONS

The P6 family and Pentium®
ì
 processors provide both internal and external machine-check

mechÄ anisms for checking the operation of the internal chip hardware and bus transactions.
These mechan
¾

isms constitute extended (implementation dependent) exception mechanisms.
W
»

hen a machine-check error is detected, the processor signals a machine-check exception
(v
¸

ector 18) and returns an error code. Refer to “Interrupt 18—Machine Check Exception
(#
¸

MC)” at the end of this chapter and Chapter 13, M
ó

achine-Check Architecture,Í for a detailed
description
Ï

 of the machine-check mechanism.

5.2. EXCEPTION AND INTERRUPT VECTORS

The p
¾

rocessor associates an identification number, called a vô ector, Í with each exception and
interrupt. Table 5-1 shows the assignment of exception and interrupt vectors. This table also
giv× es the exception type for each vector, indicates whether an error code is saved on the stack
fo
¼

r an exception, and gives the source of the exception or interrupt.

The vectors in the range 0 through 31 are assigned to the exceptions and the NMI interrupt. Not
all of thÂ ese vectors are currently used by the processor. Unassigned vectors in this range are
resÃ erved for possible future uses. Do

õ
 not use the reserved vectors.

The vectors in the range 32 to 255 are designated as user-defined interrupts. These interrupts are
no² t reserved by the Intel Architecture and are generally assigned to external I/O devices and to
p® ermit them to signal the processor through one of the external hardware interrupt mechanisms
des
Ï

cribed in Section 5.1.1., “Sources of Interrupts”

5.3. EXCEPTION CLASSIFICATIONS

Excep
½

tions are classified as fau
ö

lts, Í trap
ñ

s, orÍ abò orts depending on the way they are reported and
whetherÒ the instruction that caused the exception can be restarted with no loss of program or task
co³ ntinuity.

Faults
Ý

A fault is an exception that can generally be corrected and that, once corrected,
alloÂ ws the program to be restarted with no loss of continuity. When a fault is
repÃ orted, the processor restores the machine state to the state prior to the begin-
nin² g of execution of the faulting instruction. The return address (saved contents
oµ f the CS and EIP registers) for the fault handler points to the faulting instruc-
tio

±
n, rather than the instruction following the faulting instruction.

Not
÷

e: Th
¾

ere are a small subset of exceptions that are normally reported as
faults, but under architectural corner cases, they are not restartable and some
pr® ocessor context will be lost. An example of these cases is the execution of the
POP

¿
AD instruction where the stack frame crosses over the the end of the stack

seg´ ment. The exception handler will see that the CS:EIP has been restored as
if

¯
the POPAD instruction had not executed however internal processor state

(g
¸

eneral purpose registers) wil l have been modified. These corner cases are

5-5

INTERRUPT AND EXCEPTION HANDLING

con³ sidered programming errors and an application causeing this class of
excepÓ tions will likely be terminated by the operating system.

T
¾

raps A trap is an exception that is reported immediately following the execution of
the trapp
±

ing instruction. Traps allow execution of a program or task to be
co³ ntinued without loss of program continuity. The return address for the trap
h
ø
andler points to the instruction to be executed after the trapping instruction.

Aborts An abort is an exception that does not always report the precise location of the
in
¯

struction causing the exception and does not allow restart of the program or
tas
±

k that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal values in system tables.

5-6

INTERRUPT AND EXCEPTION HANDLING

NOTES:
1. The UD2 instruction was introduced in the Pentium®

ù
 Pro processor.

2. Intel Architecture processors after the Intel386™ processor do not generate this exception.
3. This exception was introduced in the Intel486™ processor.
4. This exception was introduced in the Pentium®

ù
 processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium®
ù
 III processor.

Table 5-1. Protec ted-Mode Excepti ons and Interrup ts

Vector
No.

Mne-
moni c Descri ptio n Type

Erro r
Code Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Fault/
Trap

No Any code or data reference or the
INT 1 instruction.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined
Opcode)

Fault No UD2 instruction or reserved
opcode.1

 7 #NM Device Not Available (No
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Abort Yes
(Zero)

Any
á

 instruction that can generate
an exception, an NMI, or an INTR.

 9 Coprocessor Segment
Overrun (reserved)

Fault No Floating-point instruction.2
ú

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register
loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

16 #MF Floating-Point Error (Math
Fault)

Fault No Floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any
á

 data reference in memory.3
û

18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.4

19 #XF Streaming SIMD Extensions Fault No SIMD floating-point instructions5
ü

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Nonreserved)
Interrupts

Interrupt External interrupt or INT ný
instruction.

5-7

INTERRUPT AND EXCEPTION HANDLING

5.4. PROGRAM OR TASK RESTART

To allow restarting of program or task following the handling of an exception or an interrupt, all
exceptioÓ ns except aborts are guaranteed to report the exception on a precise instruction
bou

º
ndary, and all interrupts are guaranteed to be taken on an instruction boundary.

F
Ý

or fault-class exceptions, the return instruction pointer that the processor saves when it gener-
atesÂ the exception points to the faulting instruction. So, when a program or task is restarted
following the handling of a fault, the faulting instruction is restarted (re-executed). Restarting
the faulting instruction

±
 is commonly used to handle exceptions that are generated when access

to an op
±

erand is blocked. The most common example of a fault is a page-fault exception (#PF)
that occu

±
rs when a program or task references an operand in a page that is not in memory. When

a pagÂ e-fault exception occurs, the exception handler can load the page into memory and resume
exÓ ecution of the program or task by restarting the faulting instruction. To insure that this instruc-
ti

±
on restart is handled transparently to the currently executing program or task, the processor

s´ aves the necessary registers and stack pointers to allow it to restore itself to its state prior to the
exÓ ecution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the
trapp

±
ing instruction. If a trap is detected during an instruction which transfers execution, the

returnÃ instruction pointer reflects the transfer. For example, if a trap is detected while executing
a JMPÂ instruction, the return instruction pointer points to the destination of the JMP instruction,
n² ot to the next address past the JMP instruction. All trap exceptions allow program or task restart
wiÒ th no loss of continuity. For example, the overflow exception is a trapping exception. Here,
th

±
e return instruction pointer points to the instruction following the INTO instruction that tested

th
±

e OF (overflow) flag in the EFLAGS register. The trap handler for this exception resolves the
overµ flow condition. Upon return from the trap handler, program or task execution continues at
th

±
e next instruction following the INTO instruction.

The
¾

abort-class exceptions do not support reliable restarting of the program or task. Abort
hand

ø
lers generally are designed to collect diagnostic information about the state of the processor

when the aborÒ t exception occurred and then shut down the application and system as gracefully
as posÂ sible.

Int
°

errupts rigorously support restarting of interrupted programs and tasks without loss of conti-
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executedÓ at the instruction boundary where the processor took the interrupt. If the instruction
just

þ
 executed has a repeat prefix, the interrupt is taken at the end of the current iteration with the

registers set to execute the next iteration.

The ab
¾

il ity of a P6 family processor to speculatively execute instructions does not affect the
t

±
aking of interrupts by the processor. Interrupts are taken at instruction boundaries located
dur

Ï
ing the retirement phase of instruction execution; so they are always taken in the “in-order”

in
¯

struction stream. Refer to Chapter 2, I
Î
ntroduction to the Intel Architecture, in thÍ e Intel

Î
 Archi-

tectã ure Software Developer’s Manual, Volume 1, for moÍ re information about the P6 family
pro® cessors’ microarchitecture and its support for out-of-order instruction execution.

No
ß

te that the Pentium®
ì
 processor and earlier Intel Architecture processors also perform varying

amouÂ nts of prefetching and preliminary decoding of instructions; however, here also exceptions
and interrÂ upts are not signaled until actual “in-order” execution of the instructions. For a given

5-8

INTERRUPT AND EXCEPTION HANDLING

cod³ e sample, the signaling of exceptions will occur uniformly when the code is executed on any
family
¼

of Intel Architecture processors (except where new exceptions or new opcodes have been
def
Ï

ined).

5.5. NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:

• Ex
½

ternal hardware asserts the NMI pin.

• The processor receives a message on the APIC serial bus of delivery mode NMI.

W
»

hen the processor receives a NMI from either of these sources, the processor handles it imme-
di
Ï

ately by calling the NMI handler pointed to by interrupt vector number 2. The processor also
invokes certain hardware conditions to insure that no other interrupts, including NMI i nterrupts,
are reÂ ceived until the NMI handler has completed executing (refer to Section 5.5.1., “Handling
Mu
ð

ltiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF
flag
¼

in the EFLAGS register.

It
°

 is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke
th
±

e NMI interrupt handler; however, this interrupt will not truly be an NMI interrupt. A true NMI
i
¯
nterrupt that activates the processor’s NMI-handling hardware can only be delivered through
onµ e of the mechanisms listed above.

5.5.1. Handling Multipl e NMIs

W
»

hile an NMI interrupt handler is executing, the processor disables additional calls to the NMI
h
ø
andler until the next IRET instruction is executed. This blocking of subsequent NMIs prevents

st´ acking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessÂ ed through an interrupt gate to disable maskable hardware interrupts (refer to Section
5.6
È

.1., “Masking Maskable Hardware Interrupts”).

5.6. ENABLING AND DISABLING I NTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor
andÂ of the IF and RF flags in the EFLAGS register, as described in the following sections.

5.6.1. Masking Mas kable Hardwar e Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
pr® ocessor’s INTR pin or through the local APIC (refer to Section 5.1.1.2., “Maskable Hardware
Interrupts”). When the IF flag is clear, the processor inhibits interrupts delivered to the INTR
pin® or through the local APIC from generating an internal interrupt request; when the IF flag is
set´ , interrupts delivered to the INTR or through the local APIC pin are processed as normal

5-9

INTERRUPT AND EXCEPTION HANDLING

externÓ al interrupts. The IF flag does not affect nonmaskable interrupts (NMIs) deli vered to the
NMI p

ß
in or delivery mode NMI messages delivered through the APIC serial bus, nor does it

afÂ fect processor generated exceptions. As with the other flags in the EFLAGS register, the
pro® cessor clears the IF flag in response to a hardware reset.

The fa
¾

ct that the group of maskable hardware interrupts includes the reserved interrupt and
exceptioÓ n vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF
flag is set, an interrupt for any of the vectors from 0 through 32 can be delivered to the processor
t

±
hrough the INTR pin and any of the vectors from 16 through 32 can be delivered through the
lo

Ü
cal APIC. The processor will t hen generate an interrupt and call the interrupt or exception

handler pointed to by the vector number. So for example, it is possible to invoke the page-fault
hand

ø
ler through the INTR pin (by means of vector 14); however, this is not a true page-fault

exÓ ception. It is an interrupt. As with the INT në instruction (refer to Section 5.1.2.2., “Software-
Gen

Ô
erated Exceptions”), when an interrupt is generated through the INTR pin to an exception

vectorÙ , the processor does not push an error code on the stack, so the exception handler may not
operµ ate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-
enable flag)Ó instructions, respectively. These instructions may be executed only if the CPL is
equalÓ to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executedÓ when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions
is

¯
 modified slightly when the virtual mode extension is enabled by setting the VME flag in

cont³ rol register CR4, refer to Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode” in Chapter 16, 808

é
6 Emulation.)

The I
¾

F flag is also affected by the following operations:

• Th
¾

e PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified flags back into the
EFLAGS

½
 register.

• T
¾
ask switches and the POPF and IRET instructions load the EFLAGS register; therefore,

th
±

ey can be used to modify the setting of the IF flag.

• W
»

hen an interrupt is handled through an interrupt gate, the IF flag is automatically cleared,
whiÒ ch disables maskable hardware interrupts. (If an interrupt is handled through a trap
gate, × the IF flag is not cleared.)

R
Õ

efer to the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3,
Ins

Î
truction Set Reference, Í of the I

Î
ntel Architecture Software Developer’s Manual, Volume 2, foÍ r

a dÂ etailed description of the operations these instructions are allowed to perform on the IF flag.

5.6.2. Masking Inst ruction Breakpoints

The R
¾

F (resume) flag in the EFLAGS register controls the response of the processor to instruc-
ti

±
on-breakpoint conditions (refer to the description of the RF flag in Section 2.3., “System Flags

and Fields iÂ n the EFLAGS Register” in Chapter 2, System Ar
î

chitecture Overview).
Á

 When set, it
prev® ents an instruction breakpoint from generating a debug exception (#DB); when clear,
instruction breakpoints will generate debug exceptions. The primary function of the RF flag is

5-10

INTERRUPT AND EXCEPTION HANDLING

to
±

 prevent the processor from going into a debug exception loop on an instruction-breakpoint.
R
Õ

efer to Section 15.3.1.1., “I nstruction-Breakpoint Exception Condition”, in Chapter 15,
Debu
ÿ

gging and Performance Monitoring, fÍ or more information on the use of this flag.

5.6.3. Masking E xceptions and Interrupts When Switching
Stacks

T
¾
o switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX

MOV ESP, StackTop

If an
°

 interrupt or exception occurs after the segment selector has been loaded into the SS register
bu
º

t before the ESP register has been loaded, these two parts of the logical address into the stack
space are ´ inconsistent for the duration of the interrupt or exception handler.

T
¾
o prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap

excepÓ tions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
bo
º

undary following the next instruction is reached. All other faults may still be generated. If the
LSS
Ñ

 instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.7. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services the´ m in a predictable order. Table 5-3 shows the priority among classes of exception
andÂ interrupt sources. While priority among these classes is consistent throughout the architec-
ture,
±

 exceptions within each class are implementation-dependent and may vary from processor
to p
±

rocessor. The processor first services a pending exception or interrupt from the class which
h
ø
as the highest priority, transferring execution to the first instruction of the handler. Lower

pr® iority exceptions are discarded; lower priority interrupts are held pending. Discarded excep-
tio
±

ns are re-generated when the interrupt handler returns execution to the point in the program
orµ task where the exceptions and/or interrupts occurred.

The Pentium®
ì
 III processor added the SIMD floating-point execution unit. The SIMD floating-

po® int execution unit can generate exceptions as well. Since the SIMD floating-point execution
unä it utilizes a 4-wide register set an exception may result from more than one operand within a
S
Ö

IMD fl oating-point register. Hence the Pentium®
ì
 III processor handles these exceptions

accorÂ ding to a predetermined precedence. When a sub-operand of a packed instruction generates
two
±

 or more exception conditions, the exception precedence sometimes results in the higher
pr® iority exception being handled and the lower priority exceptions being ignored. Prioritization
ofµ exceptions is performed only on a sub-operand basis, and not between suboperands. For
exÓ ample, an invalid exception generated by one sub-operand will not prevent the reporting of a
div
Ï

ide-by-zero exception generated by another sub-operand. Table 5-2 shows the precedence for
St
Ö

reaming SIMD Extensions numeric exceptions. The table reflects the order in which interrupts
are hanÂ dled upon simultaneous recognition by the processor (for example, when multiple inter-
rupts are pending at an instruction boundary). However, the table does not necessarily reflect the

5-11

INTERRUPT AND EXCEPTION HANDLING

oµ rder in which interrupts will be recognized by the processor if received simultaneously at the
pro® cessor pins.

1. Though this is not an exception, the handling of a QNaN operand has precedence over lower priority
exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

5.8. INTERRUPT DESCRIPTOR TABLE (IDT)

The interru
¾

pt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor

Ï
 for the procedure or task used to service the associated exception or interrupt. Like

the GDT and
±

 LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GD

Ô
T, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the

pro® cessor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor

Ï
). Because there are only 256 interrupt or exception vectors, the IDT need not contain

morÄ e than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
in the

¯
IDT should have the present flag for the descriptor set to 0.

Table 5-2. SIMD Floati ng-Poi nt Exc ept ions Priority

Priori ty Descri ptio n

1(Highest) Invalid operation exception due to SNaN
operand (or any NaN operand for max, min, or
certain compare and convert operations)

2 QNaN operand1

3 Any other invalid operation exception not
mentioned above or a divide-by-zero
exception2

ú

4 Denormal operand exception2
ú

5 Numeric overflow and underflow exceptions
possibly in conjunction with the inexact result
exception2

ú

6(Lowest) Inexact result exception

5-12

INTERRUPT AND EXCEPTION HANDLING

NOTE:

1. For the Pentium®
ù
 and Intel486™ processors, the Code Segment Limit Violation and the Code Page Fault

exceptions are assigned to the priority 7.

The b
¾

ase addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cache line fills. The limit value is expressed in bytes and is added to the base address
to get the ad
±

dress of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because
IDT
°

entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N – 1).

Table 5-3. Priority Amo ng Sim ulta neous Ex ceptions and Interrupts

Priori ty Descripti ons

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
- FLUSH
- STOPCLK
- SMI
- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Faults from Fetching Next Instruction
- Code Breakpoint Fault
- Code-Segment Limit Violation1

- Code Page Fault1

7 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Illegal Opcode
- Coprocessor Not Available

8 (Lowest) Faults on Executing an Instruction
- Floating-point exception
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- SIMD floating-point exception

5-13

INTERRUPT AND EXCEPTION HANDLING

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
l

Ü
ocates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
li

Ü
mit for the IDT.

The LIDT (load
¾

 IDT register) and SIDT (store IDT register) instructions load and store the
conten³ ts of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the

±
base address and limit held in a memory operand. This instruction can be executed only

whÒ en the CPL is 0. It normally is used by the initiali zation code of an operating system when
creating an³ IDT. An operating system also may use it to change from one IDT to another. The
S

Ö
IDT instruction copies the base and limit value stored in IDTR to memory. This instruction can

b
º
e executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP

¸
) is generated.

5.9. IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:

• Task-gate descriptor

• In
°

terrupt-gate descriptor

• Trap-gate descriptor

Figure 5-1. Relation ship of th e IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)

G
�

ate for

0
�

IDTR Register

Interrupt #n

Gat
�

e for
Interrupt #3

Ga
�

te for
Interrupt #2

Gat
�

e for
Interrupt #1

151647

0
�

31
� 0

�

8
�

16

(n−1)∗8
�

5-14

INTERRUPT AND EXCEPTION HANDLING

Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The
fo
¼

rmat of a task gate used in an IDT is the same as that of a task gate used in the GDT or an LDT
(ref
¸

er to Section 6.2.4., “Task-Gate Descriptor” i n Chapter 6, T
À
ask Management). The tas

Á
k gate

con³ tains the segment selector for a TSS for an exception and/or interrupt handler task.

Int
°

errupt and trap gates are very similar to call gates (refer to Section 4.8.3., “Call Gates” in
Ch
·

apter 4, Pr
å

otection). They
Á

 contain a far pointer (segment selector and offset) that the
pr® ocessor uses to transfer execution to a handler procedure in an exception- or interrupt-handler

Figure 5-2. IDT Gate Descripto rs

31
�

16 15 1314 12 8 7
�

0

P
�

O
�

ffset 31..16
D
P
L

� 0
	

4

31
�

16 15 0
	

Segment Selector Of
�

fset 15..0 0

0
	

11D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31
�

16 15 1314 12 8 7
�

0

P
� D

P
�
L

� 0
	

4

31
�

16 15 0
	

TSS Segment Selector 0

10
	

10
	

T
�

ask Gate

45
�

0
�

 0 0

31
�

16 15 1314 12 8 7
�

0
	

P
�

O
�

ffset 31..16
D

P
�

L
0

	
4

31
�

16 15 0
	

Segment Selector Of
�

fset 15..0 0

111D

T
�

rap Gate
45

�

0
�

 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

5-15

INTERRUPT AND EXCEPTION HANDLING

code ³ segment. These gates differ in the way the processor handles the IF flag in the EFLAGS
register (Ã refer to Section 5.10.1.2., “Flag Usage By Exception- or Interrupt-Handler Proce-
dur

Ï
e”).

5.10. EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
call³ s with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If th

°
e index points to an interrupt gate or trap gate, the processor calls the exception or interrupt

hand
ø

ler in a manner similar to a CALL to a call gate (refer to Section 4.8.2., “Gate Descriptors”
t

±
hrough Section 4.8.6., “Returning from a Called Procedure” in Chapter 4, Protection). If index

Á

poin® ts to a task gate, the processor executes a task switch to the exception- or interrupt-handler
tas

±
k in a manner similar to a CALL to a task gate (refer to Section 6.3., “Task Switching” i n

Ch
·

apter 6, Task Management).
Á

5.10.1. Exception- or Interrupt -Handler P rocedures

An interru
è

pt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (refer to Figure 5-3). The segment selector for the
g× ate points to a segment descriptor for an executable code segment in either the GDT or the
curr³ ent LDT. The offset field of the gate descriptor points to the beginning of the exception- or
interrupt-handling procedure.

W
»

hen the processor performs a call to the exception- or interrupt-handler procedure, it saves the
curr³ ent states of the EFLAGS register, CS register, and EIP register on the stack (refer to Figure
5-4

È
). (The CS and EIP registers provide a return instruction pointer for the handler.) If an excep-

ti
±

on causes an error code to be saved, it is pushed on the stack after the EIP value.

If th
°

e handler procedure is going to be executed at the same privilege level as the interrupted
pro® cedure, the handler uses the current stack.

If
°

the handler procedure is going to be executed at a numerically lower privilege level, a stack
s´ witch occurs. When a stack switch occurs, a stack pointer for the stack to be returned to is also
sav´ ed on the stack. (The SS and ESP registers provide a return stack pointer for the handler.)
The segmen

¾
t selector and stack pointer for the stack to be used by the handler is obtained from

the TSS fo
±

r the currently executing task. The processor copies the EFLAGS, SS, ESP, CS, EIP,
and Â error code information from the interrupted procedure’s stack to the handler’s stack.

T
¾
o return from an exception- or interrupt-handler procedure, the handler must use the IRET (or

IR
°

ETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved

±
 flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored

oµ nly if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
Refer

Õ
 to “IRET/IRETD—Interrupt Return” in Chapter 3 of the Intel Ar

Î
chitecture Software

Developer’s Manual, Volume 2, fÍ or the complete operation performed by the IRET instruction.

If a
°

stack switch occurred when calling the handler procedure, the IRET instruction switches
back

º
to the interrupted procedure’s stack on the return.

5-16

INTERRUPT AND EXCEPTION HANDLING

Figure 5-3. Interrupt Proc edure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

T

rap Gate

Offset

5-17

INTERRUPT AND EXCEPTION HANDLING

5
í

.10.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The p
¾

rivilege-level protection for exception- and interrupt-handler procedures is similar to that
usä ed for ordinary procedure calls when called through a call gate (refer to Section 4.8.4.,
“Accessing a Code Segment Through a Call Gate” in Chapter 4, Protection). The pr

Á
ocessor does

n² ot permit transfer of execution to an exception- or interrupt-handler procedure in a less privi-
leged code segment (numerically greater privilege level) than the CPL. An attempt to violate this
rule results in a general-protection exception (#GP). The protection mechanism for exception-
and Â interrupt-handler procedures is different in the following ways:

• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
calls³ to exception and interrupt handlers.

• Th
¾

e processor checks the DPL of the interrupt or trap gate only if an exception or interrupt
is generated with an INT në ,Í INT 3, or INTO instruction. Here, the CPL must be less than or
equÓ al to the DPL of the gate. This restriction prevents application programs or procedures
ruÃ nning at privilege level 3 from using a software interrupt to access critical exception

Figu re 5-4. Stack Usage on Transfers to In terrupt a nd Ex ception- Handli ng Rou tines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
T

ransfer to Handler

Error Code

ESP Before
T

ransfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usag e wi th No
Privilege-Level Change

Stack Usage wi th
Privileg e-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

5-18

INTERRUPT AND EXCEPTION HANDLING

handlers, such as the page-fault handler, providing that those handlers are placed in more
priv® ileged code segments (numerically lower privilege level). For hardware-generated
inter

¯
rupts and processor-detected exceptions, the processor ignores the DPL of interrupt

anÂ d trap gates.

B
â

ecause exceptions and interrupts generally do not occur at predictable times, these privilege
rulÃ es effectively impose restrictions on the privilege levels at which exception and interrupt-
handling procedures can run. Either of the following techniques can be used to avoid privilege-
lev
Ü

el violations.

• Th
¾

e exception or interrupt handler can be placed in a conforming code segment. This
tech

±
nique can be used for handlers that only need to access data available on the stack (for

exÓ ample, divide error exceptions). If the handler needs data from a data segment, the data
segmen´ t needs to be accessible from privilege level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This
h

ø
andler would always run, regardless of the CPL that the interrupted program or task is

rÃ unning at.

5.
í

10.1.2. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

W
»

hen accessing an exception or interrupt handler through either an interrupt gate or a trap gate,
the p
±

rocessor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS
½

 register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, R³ F, and NT flags in the EFLAGS register, after they are saved on the stack.)
C
·

learing the TF flag prevents instruction tracing from affecting interrupt response. A subsequent
IRET in
°

struction restores the TF (and VM, RF, and NT) flags to the values in the saved contents
ofµ the EFLAGS register on the stack.

The o
¾

nly difference between an interrupt gate and a trap gate is the way the processor handles
the I
±

F flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce-
du
Ï

re through an interrupt gate, the processor clears the IF flag to prevent other interrupts from
in
¯

terfering with the current interrupt handler. A subsequent IRET instruction restores the IF flag
to its value
±

in the saved contents of the EFLAGS register on the stack. Accessing a handler
pr® ocedure through a trap gate does not affect the IF flag.

5.10.2. Interrupt Tasks

W
»

hen an exception or interrupt handler is accessed through a task gate in the IDT, a task switch
results. Handling an exception or interrupt with a separate task offers several advantages:

• The entire context of the interrupted program or task is saved automatically.

• A new
è

 TSS permits the handler to use a new privilege level 0 stack when handling the
exÓ ception or interrupt. If an exception or interrupt occurs when the current privilege level 0
stack is´ corrupted, accessing the handler through a task gate can prevent a system crash by
p® roviding the handler with a new privilege level 0 stack.

5-19

INTERRUPT AND EXCEPTION HANDLING

• The handler can be further isolated from other tasks by giving it a separate address space.
Th

¾
is is done by giving it a separate LDT.

The di
¾

sadvantage of handling an interrupt with a separate task is that the amount of machine
s´ tate that must be saved on a task switch makes it slower than using an interrupt gate, resulting
in

¯
 increased interrupt latency.

A tas
è

k gate in the IDT references a TSS descriptor in the GDT (refer to Figure 5-5). A switch to
th

±
e handler task is handled in the same manner as an ordinary task switch (refer to Section 6.3.,

“Task Switching” in Chapter 6, T
À
ask Management).

Á
 The link back to the interrupted task is

s´ tored in the previous task link field of the handler task’s TSS. If an exception caused an error
code ³ to be generated, this error code is copied to the stack of the new task.

Figure 5-5. Interrupt T ask Sw itc h

IDT

T

ask Gate

T

SS for Interrupt-

TSS Selector

GDT

TSS

 Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task

5-20

INTERRUPT AND EXCEPTION HANDLING

W
»

hen exception- or interrupt-handler tasks are used in an operating system, there are actually
two mech
±

anisms that can be used to dispatch tasks: the software scheduler (part of the operating
syst´ em) and the hardware scheduler (part of the processor’s interrupt mechanism). The software
schedu´ ler needs to accommodate interrupt tasks that may be dispatched when interrupts are
enabÓ led.

5.11. ERROR CODE

W
»

hen an exception condition is related to a specific segment, the processor pushes an error code
onµ to the stack of the exception handler (whether it is a procedure or task). The error code has
the
±

format shown in Figure 5-6. The error code resembles a segment selector; however, instead
ofµ a TI flag and RPL field, the error code contains 3 flags:

E
�

XT External event (bit 0). When set, indicates that an event external to the
pr® ogram caused the exception, such as a hardware interrupt.

IDT Descriptor location (bit 1). When set, indicates that the index portion of the
errÓ or code refers to a gate descriptor in the IDT; when clear, indicates that the
ind

¯
ex refers to a descriptor in the GDT or the current LDT.

TI GDT/LDT (bit 2). Only used when the IDT flag is clear. When set, the TI flag
ind

¯
icates that the index portion of the error code refers to a segment or gate

descrip
Ï

tor in the LDT; when clear, it indicates that the index refers to a
descrip

Ï
tor in the current GDT.

The segm
¾

ent selector index field provides an index into the IDT, GDT, or current LDT to the
segment or´ gate selector being referenced by the error code. In some cases the error code is null
(that is, all
¸

 bits in the lower word are clear). A null error code indicates that the error was not
caused ³ by a reference to a specific segment or that a null segment descriptor was referenced in
an oÂ peration.

The fo
¾

rmat of the error code is different for page-fault exceptions (#PF), refer to “I nterrupt
14—Page-Fault Exception (#PF)” in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
ruÃ pt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the er
±

ror code is reserved. Note that the error code is not popped when the IRET instruction is
execuÓ ted to return from an exception handler, so the handler must remove the error code before
execuÓ ting a return.

Figure 5-6. Error Code

31
�

0
�

Reserved
I

�
D

T

T
�
I

123
�

Segment Selector Index
E

�
X

�
T

5-21

INTERRUPT AND EXCEPTION HANDLING

Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR

°
 or LINT[1:0] pins) or the INT në instruction, even if an error code is normally produced

for
¼

 those exceptions.

5.12. EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are
arranÂ ged in the order of vector numbers. The information contained in these sections are as
follows:

Excep
½

tion Class Indicates whether the exception class is a fault, trap, or abort type.
Some ex

Ö
ceptions can be either a fault or trap type, depending on

whÒ en the error condition is detected. (This section is not applicable
to

±
 interrupts.)

Des
Þ

cription Gives a general description of the purpose of the exception or inter-
rupt type. It also describes how the processor handles the exception
or inµ terrupt.

Excep
½

tion Error Code Indicates whether an error code is saved for the exception. If one is
saved´ , the contents of the error code are described. (This section is
no² t applicable to interrupts.)

S
Ö

aved Instruction Pointer Describes which instruction the saved (or return) instruction pointer
p® oints to. It also indicates whether the pointer can be used to restart
a fÂ aulting instruction.

P
¿

rogram State Change Describes the effects of the exception or interrupt on the state of the
curren³ tly running program or task and the possibilities of restarting
th

±
e program or task without loss of continuity.

5-22

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Err or Exception (#D E)

Exception Cl ass Fault.

Descript ion

In
°

dicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be repre-
sented in´ the number of bits specified for the destination operand.

Exception Er ror Code

Non
ß

e.

S
�

aved Inst ruct ion P oint er

Saved
Ö

contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A p
è

rogram-state change does not accompany the divide error, because the exception occurs
b
º
efore the faulting instruction is executed.

5-23

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1— Debug Exception (#D B)

Except ion Class Trap or Fault. The exception handler can distinguish between traps or
fau
¼

lts by examining the contents of DR6 and the other debug registers.

Descr ipt ion

Ind
°

icates that one or more of several debug-exception conditions has been detected. Whether the
exceptioÓ n is a fault or a trap depends on the condition, as shown below:

Refer to Chapter 15, Debugging and Performance Monitoring, fÍ or detailed information about
the de

±
bug exceptions.

Except ion Error Code

None.
ß

 An exception handler can examine the debug registers to determine which condition
caused the ³ exception.

S
�

aved Inst ruct ion P oint er

Fau
Ý

lt—Saved contents of CS and EIP registers point to the instruction that generated the
exceptioÓ n.

Trap—Saved contents of CS and EIP registers point to the instruction following the instruction
that gen

±
erated the exception.

Program State Change

F
Ý

ault—A program-state change does not accompany the debug exception, because the excep-
ti

±
on occurs before the faulting instruction is executed. The program can resume normal execu-

ti
±

on upon returning from the debug exception handler

T
¾

rap—A program-state change does accompany the debug exception, because the instruction or
tas

±
k switch being executed is allowed to complete before the exception is generated. However,

the new
±

state of the program is not corrupted and execution of the program can continue reliably.

Except ion Condi tion Except ion Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

T

ask-switch Trap

Execution of INT 1 instruction Trap

5-24

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NM I Interrupt

Exception Cl ass No
ß

t applicable.

Descript ion

The
¾

nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin
orµ through an NMI request set by the I/O APIC to the local APIC on the APIC serial bus. This
interrupt causes the NMI interrupt handler to be called.

Exception Er ror Code

No
ß

t applicable.

S
�

aved Inst ruct ion P oint er

The p
¾

rocessor always takes an NMI interrupt on an instruction boundary. The saved contents of
CS
·

 and EIP registers point to the next instruction to be executed at the point the interrupt is
tak
±

en. Refer to Section 5.4., “Program or Task Restart” for more information about when the
pr® ocessor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
gen× erated. A program or task can thus be restarted upon returning from an interrupt handler
wiÒ thout loss of continuity, provided the interrupt handler saves the state of the processor before
handling the interrupt and restores the processor’s state prior to a return.

5-25

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3— Breakpoint Exception (#BP)

Except ion Class Trap.

Descr ipt ion

Ind
°

icates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be
gener× ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT 3 instruction. (The INT 3 instruction is one byte long,
which makÒ es it easy to replace an opcode in a code segment in RAM with the breakpoint
opcoµ de.) The operating system or a debugging tool can use a data segment mapped to the same
phy® sical address space as the code segment to place an INT 3 instruction in places where it is
des

Ï
ired to call the debugger.

W
»

ith the P6 family, Pentium®
ì
, InÍ tel486™, and Intel386™ processors, it is more convenient to

s´ et breakpoints with the debug registers. (Refer to Section 15.3.2., “Breakpoint Exception
(#B

¸
P)—Interrupt Vector 3”, in Chapter 15, Debug

ÿ
ging and Performance Monitoring, for inÍ for-

mation abÄ out the breakpoint exception.) If more breakpoints are needed beyond what the debug
registers allow, the INT 3 instruction can be used.

The b
¾

reakpoint (#BP) exception can also be generated by executing the INT në instruction with
anÂ operand of 3. The action of this instruction (INT 3) is slightly different than that of the INT
3

Æ
 instruction (refer to “INTn/INTO/INT3—Call to Interrupt Procedure” in Chapter 3 of the Intel

Ar
�

chitecture Software Developer’s Manual, Volume 2).
Á

Except ion Error Code

None.
ß

S
�

aved Inst ruct ion P oint er

S
Ö

aved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even
½

 though the EIP points to the instruction following the breakpoint instruction, the state of
the p

±
rogram is essentially unchanged because the INT 3 instruction does not affect any register

or memoµ ry locations. The debugger can thus resume the suspended program by replacing the
INT 3

°
instruction that caused the breakpoint with the original opcode and decrementing the

s´ aved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.

5-26

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—Overflow E xception (#OF)

Exception Cl ass Trap.

Descript ion

In
°

dicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction
¯

 checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over-
flow trap is generated.

Some arithmetic
Ö

instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. Â These instructions set the OF and CF flags in the EFLAGS register to indicate signed
ovµ erflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag
±

 can be tested directly or the INTO instruction can be used. The benefit of using the
INT
°

O instruction is that if the overflow exception is detected, an exception handler can be called
auÂ tomatically to handle the overflow condition.

Exception Er ror Code

Non
ß

e.

S
�

aved Inst ruct ion P oint er

The saved
¾

 contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Ev
½

en though the EIP points to the instruction following the INTO instruction, the state of the
pr® ogram is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The program can thus resume normal execution upon returning from the
ovµ erflow exception handler.

5-27

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5— BOUND Range Exceeded Exception (#BR)

Except ion Class Fault.

Descr ipt ion

Ind
°

icates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executedÓ . The BOUND instruction checks that a signed array index is within the upper and
lower bounds of an array located in memory. If the array index is not within the bounds of the
arrayÂ , a BOUND-range-exceeded fault is generated.

Except ion Error Code

None.
ß

S
�

aved Inst ruct ion P oint er

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exceptioÓ n.

Program State Change

A pro
è

gram-state change does not accompany the bounds-check fault, because the operands for
the B

±
OUND instruction are not modified. Returning from the BOUND-range-exceeded excep-

ti
±

on handler causes the BOUND instruction to be restarted.

5-28

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6 —Invalid O pcode Exception (#UD)

Exception Cl ass Fault.

Descript ion

In
°

dicates that the processor did one of the following things:

• Attem
è

pted to execute a Streaming SIMD Extensions instruction in an Intel Architecture
p® rocessor that does not support the Streaming SIMD Extensions.

• Attempted to execute a Streaming SIMD Extensions instruction when the OSFXSR bit is
no² t set (0) in CR4. Note this does not include the following Streaming SIMD Extensions:
PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB,
PMOVMS

¿
KB, PMULHUW, PSADBW, PSHUFW, MASKMOVQ, MOVNTQ,

PRE
¿

FETCH and SFENCE.

• Attempted to execute a Streaming SIMD Extensions instruction in an Intel Architecture
p® rocessor which causes a numeric exception when the OSXMMEXCPT bit is not set (0) in
CR

·
4.

• Attempted to execute an invalid or reserved opcode, including any MMX™ instruction in
anÂ Intel Architecture processor that does not support the MMX™ architecture.

• Attem
è

pted to execute an MMX ™ instruction or SIMD floating-point instruction when the
EM flag in register CR0 is set. Note this does not include the following Streaming SIMD
Ex

½
tensions: SFENCE and PREFETCH.

• Attempted
è

 to execute an instruction with an operand type that is invalid for its accompa-
nying opcode; for example, the source operand for a LES instruction is not a memory
lo

Ü
cation.

• Execu
½

ted a UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that
mayÄ be locked but the destination operand is not a memory location.

• Attempted
è

 to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In th
°

e P6 family processors, this exception is not generated until an attempt is made to retire the
result of executing an invalid instruction; that is, decoding and speculatively attempting to
execuÓ te an invalid opcode does not generate this exception. Likewise, in the Pentium®

ì
 processor

anÂ d earlier Intel Architecture processors, this exception is not generated as the result of
pr® efetching and preliminary decoding of an invalid instruction. (Refer to Section 5.4., “Program
orµ Task Restart” for general rules for taking of interrupts and exceptions.)

The
¾

opcodes D6 and F1 are undefined opcodes that are reserved by Intel. These opcodes, even
t
±
hough undefined, do not generate an invalid opcode exception.

5-29

INTERRUPT AND EXCEPTION HANDLING

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Except ion Error Code

None.
ß

S
�

aved Inst ruct ion P oint er

The s
¾

aved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
in

¯
struction is not executed.

5-30

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Devi ce Not Available E xception (#NM)

Exception Cl ass Fault.

Descript ion

In
°

dicates one of the following things:

Th
¾

e device-not-available fault is generated by either of three conditions:

• The processor executed a floating-point instruction while the EM flag of register CR0 was
set.´

• Th
¾

e processor executed a floating-point, MMX™
ð

or SIMD fl oating-point (excluding
p® refetch, sfence or streaming store instructions) instruction while the TS flag of register
CR

·
0 was set.

• Th
¾

e processor executed a WAIT or FWAIT instruction while the MP and TS flags of
register CR0 were set.

The
¾

EM flag is set when the processor does not have an internal floating-point unit. An excep-
tion is
±

 then generated each time a floating-point instruction is encountered, allowing an excep-
tio
±

n handler to call floating-point instruction emulation routines.

The TS flag ind
¾

icates that a context switch (task switch) has occurred since the last time a
flo
¼

ating-point, MMX ™ or SIMD floating-point (excluding prefetch, sfence or streaming store
instructions) instruction was executed, but that the context of the FPU was not saved. When the
TS flag is s
¾

et, the processor generates a device-not-available exception each time a floating-
po® int, MMX™ or SIMD fl oating-point (excluding prefetch, sfence or streaming store instruc-
tions) instru
±

ction is encountered. The exception handler can then save the context of the FPU
b
º
efore it executes the instruction. Refer to Section 2.5., “Control Registers” , in Chapter 2,

System Ar
î

chitecture Overview, fÍ or more information about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT or
F
Ý

WAIT instructions should generate a device-not-available exception. It extends the function of
the
±

TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save th
±

e context of the FPU before the WAIT or FWAIT instruction is executed. The MP flag
is
¯

 provided primarily for use with the Intel286 and Intel386™ DX processors. For programs
ruÃ nning on the P6 family, Pentium®

ì
, or InÍ tel486™ DX processors, or the Intel 487SX coproces-

so´ rs, the MP flag should always be set; for programs running on the Intel486™ SX processor,
the MP flag
±

 should be clear.

Exception Er ror Code

Non
ß

e.

S
�

aved Inst ruct ion P oint er

The saved contents of CS and EIP registers point to the floating-point instruction or the
W
»

AIT/FWAIT instruction that generated the exception.

5-31

INTERRUPT AND EXCEPTION HANDLING

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc-
ti

±
on that generated the exception is not executed.

If the EM
°

flag is set, the exception handler can then read the floating-point instruction pointed
to by

±
 the EIP and call the appropriate emulation routine.

If the MP and
°

 TS flags are set or the TS flag alone is set, the exception handler can save the
contex³ t of the FPU, clear the TS flag, and continue execution at the interrupted floating-point or
W

»
AIT/FWAIT instruction.

5-32

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Dou ble Fault Exception (#DF)

Exception Cl ass Abort.

Descript ion

In
°

dicates that the processor detected a second exception while calling an exception handler for
a pÂ rior exception. Normally, when the processor detects another exception while trying to call
an Â exception handler, the two exceptions can be handled serially. If, however, the processor
can³ not handle them serially, it signals the double-fault exception. To determine when two faults
need² to be signaled as a double fault, the processor divides the exceptions into three classes:
ben
º

ign exceptions, contributory exceptions, and page faults (refer to Table 5-4).

Table 5-5 shows the various combinations of exception classes that cause a double fault to be
gen× erated. A double-fault exception falls in the abort class of exceptions. The program or task
cann³ ot be restarted or resumed. The double-fault handler can be used to collect diagnostic infor-
mation about the state of the machine and/or, when possible, to shut the application and/or
syst´ em down gracefully or restart the system.

A
è

segment or page fault may be encountered while prefetching instructions; however, this
beh
º

avior is outside the domain of Table 5-5. Any further faults generated while the processor is
attemÂ pting to transfer control to the appropriate fault handler could still lead to a double-fault
s´ equence.

Table 5-4. Interrup t and Exceptio n Clas ses

Class Vector Number Descri ptio n

Benign Exceptions and Interrupts 1
 2
 3
 4
 5
 6
 7
9

16
17
18
19
All

á

All
á

Debug Exception
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
A

á
lignment Check

Machine Check
SIMD floating-point extensions
INT ný
INTR

Contributory Exceptions 0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault

5-33

INTERRUPT AND EXCEPTION HANDLING

If ano
°

ther exception occurs while attempting to call the double-fault handler, the processor
enÓ ters shutdown mode. This mode is similar to the state following execution of an HLT instruc-
ti

±
on. In this mode, the processor stops executing instructions until an NMI interrupt, SMI inter-

rupÃ t, hardware reset, or INIT# is received. The processor generates a special bus cycle to
indicate that it has entered shutdown mode. Software designers may need to be aware of the
responÃ se of hardware to receiving this signal. For example, hardware may turn on an indicator
li

Ü
ght on the front panel, generate an NMI interrupt to record diagnostic information, invoke reset

initi alization, generate an INIT initialization, or generate an SMI.

If
°

the shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hard

ø
ware reset can restart the processor.

Except ion Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

S
�

aved Inst ruct ion P oint er

The s
¾

aved contents of CS and EIP registers are undefined.

Program State Change

A pro
è

gram-state following a double-fault exception is undefined. The program or task cannot
be res

º
umed or restarted. The only available action of the double-fault exception handler is to

collect all possi³ ble context information for use in diagnostics and then close the application
and/Â or shut down or reset the processor.

Table 5-5. Condi tions for G eneratin g a Double Fault

Second Excep tion

First E xcepti on Beni gn Contri butory Page Faul t

Benign Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Contrib utory Handle Exceptions
Serially

Generate a Double Fault Handle Exceptions
Serially

Page Faul t Handle Exceptions
Serially

Generate a Double Fault Generate a Double Fault

5-34

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9 —Coproces sor S egment Overrun

Exception Cl ass Abort. (
Ú
Intel reserved; do not use. Recent Intel Ar chitecture proces-

sors do not � generate this exception.)

Descript ion

In
°

dicates that an Intel386™ CPU-based systems with an Intel 387 math coprocessor detected a
pag® e or segment violation while transferring the middle portion of an Intel 387 math copro-
cess³ or operand. The P6 family, Pentium®

ì
, anÍ d Intel486™ processors do not generate this excep-

tio
±

n; instead, this condition is detected with a general protection exception (#GP), interrupt 13.

Exception Er ror Code

Non
ß

e.

S
�

aved Inst ruct ion P oint er

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A pr
è

ogram-state following a coprocessor segment-overrun exception is undefined. The program
orµ task cannot be resumed or restarted. The only available action of the exception handler is to
sav´ e the instruction pointer and reinitialize the FPU using the FNINIT instruction.

5-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Except ion Class Fault.

Descr ipt ion

Ind
°

icates that a task switch was attempted and that invalid information was detected in the TSS
fo

¼
r the target task. Table 5-6 shows the conditions that will cause an invalid-TSS exception to

b
º
e generated. In general, these invalid conditions result from protection violations for the TSS

des
Ï

criptor; the LDT pointed to by the TSS; or the stack, code, or data segments referenced by
th

±
e TSS.

Th
¾

is exception can generated either in the context of the original task or in the context of the
new task (refer to Section 6.3., “Task Switching” in Chapter 6, Task Management).

Á
 Until the

pro® cessor has completely verified the presence of the new TSS, the exception is generated in the
co³ ntext of the original task. Once the existence of the new TSS is verified, the task switch is
consider³ ed complete. Any invalid-TSS conditions detected after this point are handled in the
co³ ntext of the new task. (A task switch is considered complete when the task register is loaded
wiÒ th the segment selector for the new TSS and, if the switch is due to a procedure call or inter-
rupt, the previous task link field of the new TSS references the old TSS.)

T
¾
o insure that a valid TSS is available to process the exception, the invalid-TSS exception

h
ø
andler must be a task called using a task gate.

Table 5-6. Invalid TSS Conditio ns

Error Code Index Invali d Condi tion

T

SS segment selector index TSS segment limit less than 67H for 32-bit TSS or less than 2CH for 16-
bit TSS.

LDT segment selector index Invalid LDT or LDT not present

Stack-segment selector index Stack-segment selector exceeds descriptor table limit

Stack-segment selector index Stack segment is not writable

Stack-segment selector index Stack segment DPL ≠� CPL

Stack-segment selector index Stack-segment selector RPL ≠� CPL

Code-segment selector index Code-segment selector exceeds descriptor table limit

Code-segment selector index Code segment is not executable

Code-segment selector index Nonconforming code segment DPL ≠� CPL

Code-segment selector index Conforming code segment DPL greater than CPL

Data-segment selector index Data-segment selector exceeds descriptor table limit

Data-segment selector index Data segment not readable

5-36

INTERRUPT AND EXCEPTION HANDLING

Exception Er ror Code

An error code containing the segment selector index for the segment descriptor that caused the
vÙ iolation is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the e
±

xception was caused by an event external to the currently running program (for example, if
anÂ external interrupt handler using a task gate attempted a task switch to an invalid TSS).

S
�

aved Inst ruct ion P oint er

If th
°

e exception condition was detected before the task switch was carried out, the saved
co³ ntents of CS and EIP registers point to the instruction that invoked the task switch. If the
excepÓ tion condition was detected after the task switch was carried out, the saved contents of CS
anÂ d EIP registers point to the first instruction of the new task.

Program State Change

Th
¾

e abili ty of the invalid-TSS handler to recover from the fault depends on the error condition
than
±

 causes the fault. Refer to Section 6.3., “Task Switching” in Chapter 6, Task Management
for m
¼

ore information on the task switch process and the possible recovery actions that can be
tak
±

en.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-
to-n
±

ew-task point. If it occurs before the commit point, no program state change occurs. If it
oµ ccurs after the commit point (when the segment descriptor information for the new segment
sel´ ectors have been loaded in the segment registers), the processor will load all the state infor-
mÄ ation from the new TSS before it generates the exception. During a task switch, the processor
first l
¼

oads all the segment registers with segment selectors from the TSS, then checks their
con³ tents for validity. If an invalid TSS exception is discovered, the remaining segment registers
are loÂ aded but not checked for validity and therefore may not be usable for referencing memory.
Th
¾

e invalid TSS handler should not rely on being able to use the segment selectors found in the
C
·

S, SS, DS, ES, FS, and GS registers without causing another exception. The exception handler
sh´ ould load all segment registers before trying to resume the new task; otherwise, general-
pr® otection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. Th³ e Intel recommended way of dealing situation is to use a task for the invalid TSS excep-
tio
±

n handler. The task switch back to the interrupted task from the invalid-TSS exception-
h
ø
andler task will then cause the processor to check the registers as it loads them from the TSS.

5-37

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1 1—Segment Not Present (#NP)

Except ion Class Fault.

Descr ipt ion

Ind
°

icates that the present flag of a segment or gate descriptor is clear. The processor can generate
t

±
his exception during any of the following operations:

• W
»

hile attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present
segmen´ t while loading the SS register causes a stack fault exception (#SS) to be
gen× erated.] This situation can occur while performing a task switch.

• W
»

hile attempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT wh

Ñ
ile loading the LDTR during a task switch operation causes an invalid-TSS

excepÓ tion (#TS) to be generated.

• W
»

hen executing the LTR instruction and the TSS is marked not present.

• Wh
»

ile attempting to use a gate descriptor or TSS that is marked segment-not-present, but is
oµ therwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
mÄ emory at the segment level. If the exception handler loads the segment and returns, the inter-
rupÃ ted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (b® ecause gates do not correspond to segments). The operating system may use the
present f® lag for gate descriptors to trigger exceptions of special significance to the operating
sy´ stem.

Except ion Error Code

An er
è

ror code containing the segment selector index for the segment descriptor that caused the
violationÙ is pushed onto the stack of the exception handler. If the EXT flag is set, it indicates that
the

±
exception resulted from an external event (NMI or INTR) that caused an interrupt, which

s´ ubsequently referenced a not-present segment. The IDT flag is set if the error code refers to an
IDT en

°
try (e.g., an INT instruction referencing a not-present gate).

S
�

aved Inst ruct ion P oint er

The saved contents of CS and EIP registers normally point to the instruction that generated the
exceptioÓ n. If the exception occurred while loading segment descriptors for the segment selectors
in a n

¯
ew TSS, the CS and EIP registers point to the first instruction in the new task. If the excep-

ti
±

on occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that inv

±
oked the access (for example a CALL instruction that references a call gate).

5-38

INTERRUPT AND EXCEPTION HANDLING

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES,
FS
Ý

, GS, or LDTR), a program-state change does accompany the exception, because the register
is
¯

 not loaded. Recovery from this exception is possible by simply loading the missing segment
into memory and setting the present flag in the segment descriptor.

If
°

the segment-not-present exception occurs while accessing a gate descriptor, a program-state
chan³ ge does not accompany the exception. Recovery from this exception is possible merely by
set´ ting the present flag in the gate descriptor.

If a s
°

egment-not-present exception occurs during a task switch, it can occur before or after the
com³ mit-to-new-task point (refer to Section 6.3., “Task Switching” i n Chapter 6, T

À
ask Manage-

ment�).
Á

If it occurs before the commit point, no program state change occurs. If it occurs after the
co³ mmit point, the processor will load all the state information from the new TSS (without
p® erforming any additional limit, present, or type checks) before it generates the exception. The
s´ egment-not-present exception handler should thus not rely on being able to use the segment
s´ electors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(R
¸

efer to the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS
¸

)” in this chapter for additional information on how to handle this situation.)

5-39

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Except ion (#SS)

Except ion Class Fault.

Descr ipt ion

In
°

dicates that one of the following stack related conditions was detected:

• A l
è

imit violation is detected during an operation that refers to the SS register. Operations
that can cause

±
a limit violation include stack-oriented instructions such as POP, PUSH,

C
·

ALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
im

¯
plicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,

SS
Ö

:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space f´ or allocating local variables.

• A
è

not-present stack segment is detected when attempting to load the SS register. This
vioÙ lation can occur during the execution of a task switch, a CALL instruction to a different
p® rivilege level, a return to a different privilege level, an LSS instruction, or a MOV or POP
in

¯
struction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
cas³ e of a limit violation) or loading the missing stack segment into memory (in the case of a not-
present v® iolation.

Except ion Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during
an interÂ -privilege-level call, the error code contains a segment selector for the segment that
caused the exception³ . Here, the exception handler can test the present flag in the segment
d

Ï
escriptor pointed to by the segment selector to determine the cause of the exception. For a

n² ormal limit violation (on a stack segment already in use) the error code is set to 0.

S
�

aved Inst ruct ion P oint er

The
¾

saved contents of CS and EIP registers generally point to the instruction that generated the
exceptioÓ n. However, when the exception results from attempting to load a not-present stack
s´ egment during a task switch, the CS and EIP registers point to the first instruction of the new
tas

±
k.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
in

¯
struction that generated the fault is not executed. Here, the instruction can be restarted after

th
±

e exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (refer
to Section 6

±
.3., “Task Switching” Chapter 6, T

À
ask Management).

Á
 Here, the processor loads all

th
±

e state information from the new TSS (without performing any additional limit, present, or

5-40

INTERRUPT AND EXCEPTION HANDLING

ty
±

pe checks) before it generates the exception. The stack fault handler should thus not rely on
b
º
eing able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers

wÒ ithout causing another exception. The exception handler should check all segment registers
bef
º

ore trying to resume the new task; otherwise, general protection faults may result later under
con³ ditions that are more difficult to diagnose. (Refer to the Program State Change description
for “I
¼

nterrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on
how to handle this situation.)

5-41

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Excep tion (#GP)

Except ion Class Fault.

Descr ipt ion

Ind
°

icates that the processor detected one of a class of protection violations called “general-
p® rotection violations.” The conditions that cause this exception to be generated comprise all the
pro® tection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
s´ egment-not-present, stack-fault, or page-fault exceptions). The following conditions cause
gener× al-protection exceptions to be generated:

• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

• Exceeding the segment limit when referencing a descriptor table (except during a task
swi´ tch or a stack switch).

• Transferring execution to a segment that is not executable.

• W
»

riting to a code segment or a read-only data segment.

• R
Õ

eading from an execute-only code segment.

• Loading the SS register with a segment selector for a read-only segment (unless the
select´ or comes from a TSS during a task switch, in which case an invalid-TSS exception
occuµ rs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code
seg´ ment.

• Loading the SS register with the segment selector of an executable segment or a null
segmen´ t selector.

• Lo
Ñ

ading the CS register with a segment selector for a data segment or a null segment
select´ or.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
select´ or.

• S
Ö

witching to a busy task during a call or jump to a TSS.

• Swi
Ö

tching to an available (nonbusy) task during the execution of an IRET instruction.

• Usi
æ

ng a segment selector on task switch that points to a TSS descriptor in the current LDT.
TSS descriptors can only reside in the GDT.

• V
Û

iolating any of the privilege rules described in Chapter 4, Protection.

• Ex
½

ceeding the instruction length limit of 15 bytes (this only can occur when redundant
pr® efixes are placed before an instruction).

5-42

INTERRUPT AND EXCEPTION HANDLING

• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag
(

¸
protection disabled).

• Lo
Ñ

ading the CR0 register with a set NW flag and a clear CD flag.

• Referencing an entry in the IDT (following an interrupt or exception) that is not an
in

¯
terrupt, trap, or task gate.

• Attempting
è

 to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler’s code segment DPL is greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.

• Attem
è

pting to execute a privileged instruction when the CPL is not equal to 0 (refer to
S

Ö
ection 4.9., “Privileged Instructions” in Chapter 4, Protection for a list of privileged

in
¯

structions).

• W
»

riting to a reserved bit in an MSR.

• Accessing a gate that contains a null segment selector.

• Executing the INT në instruction when the CPL is greater than the DPL of the referenced
in

¯
terrupt, trap, or task gate.

• The segment selector in a call, interrupt, or trap gate does not point to a code segment.

• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or
d

Ï
oes not point to a segment descriptor of the LDT type.

• The segment selector operand in the LTR instruction is local or points to a TSS that is not
avÂ ailable.

• Th
¾

e target code-segment selector for a call, jump, or return is null.

• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any
rÃ eserved bits in a page-directory-pointer-table entry set to 1. These bits are checked during
a Â write to control registers CR0, CR3, or CR4 that causes a reloading of the page-
d

Ï
irectory-pointer-table entry.

A
è

program or task can be restarted following any general-protection exception. If the exception
occuµ rs while attempting to call an interrupt handler, the interrupted program can be restartable,
b
º
ut the interrupt may be lost.

Exception Er ror Code

Th
¾

e processor pushes an error code onto the exception handler’s stack. If the fault condition was
detected
Ï

while loading a segment descriptor, the error code contains a segment selector to or IDT
vectoÙ r number for the descriptor; otherwise, the error code is 0. The source of the selector in an
erroÓ r code may be any of the following:

• An oper
è

and of the instruction.

• A selector from a gate which is the operand of the instruction.

• A selector from a TSS involved in a task switch.

5-43

INTERRUPT AND EXCEPTION HANDLING

• IDT vector number.

S
�

aved Inst ruct ion P oint er

The s
¾

aved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In
°

general, a program-state change does not accompany a general-protection exception, because
the inv

±
alid instruction or operation is not executed. An exception handler can be designed to

co³ rrect all of the conditions that cause general-protection exceptions and restart the program or
t

±
ask without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
comm³ it-to-new-task point (refer to Section 6.3., “Task Switching” in Chapter 6, T

À
ask Manage-

ment�). I
Á

f it occurs before the commit point, no program state change occurs. If it occurs after the
co³ mmit point, the processor will load all the state information from the new TSS (without
p® erforming any additional limit, present, or type checks) before it generates the exception. The
gener× al-protection exception handler should thus not rely on being able to use the segment selec-
tors fo

±
und in the CS, SS, DS, ES, FS, and GS registers without causing another exception. (Refer

to the
±

Program State Change description for “I nterrupt 10—Invalid TSS Exception (#TS)” in
th

±
is chapter for additional information on how to handle this situation.)

5-44

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—P age-Faul t Exception (#PF)

Exception Cl ass Fault.

Descript ion

In
°

dicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected
oµ ne of the following conditions while using the page-translation mechanism to translate a li near
addÂ ress to a physical address:

• The P (present) flag in a page-directory or page-table entry needed for the address
tran

±
slation is clear, indicating that a page table or the page containing the operand is not

p® resent in physical memory.

• The procedure does not have sufficient privilege to access the indicated page (that is, a
p® rocedure running in user mode attempts to access a supervisor-mode page).

• C
·

ode running in user mode attempts to write to a read-only page. In the Intel486™ and
later

Ü
processors, if the WP flag is set in CR0, the page fault will also be triggered by code

rÃ unning in supervisor mode that tries to write to a read-only user-mode page.

The exception handler can recover from page-not-present conditions and restart the program or
tas
±

k without any loss of program continuity. It can also restart the program or task after a privi-
l
Ü
ege violation, but the problem that caused the privilege violation may be uncorrectable.

Exception Er ror Code

Yes (special format). The processor provides the page-fault handler with two items of informa-
tion
±

to aid in diagnosing the exception and recovering from it:

• An err
è

or code on the stack. The error code for a page fault has a format different from that
for other exceptions (refer to Figure 5-7). The error code tells the exception handler four
th

±
ings:

— The P flag indicates whether the exception was due to a not-present page (0) or to
eiÓ ther an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception was a
read (Ã 0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
s´ upervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the page
director
Ï

y, when the PSE or PAE flags in control register CR4 are set to 1. (The PSE
flag
¼

 is only available in the P6 family and Pentium®
ì
 processors, and the PAE flag is

onlyµ available on the P6 family processors. In earlier Intel Architecture processor
families, the bit position of the RSVD flag is reserved.)

5-45

INTERRUPT AND EXCEPTION HANDLING

• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear add

Ü
ress that generated the exception. The page-fault handler can use this address to

locate the corresponding page directory and page-table entries. If another page fault can
p® otentially occur during execution of the page-fault handler, the handler must push the
con³ tents of the CR2 register onto the stack before the second page fault occurs.

If a page fault is caused by a page-level protection violation, the access flag in the page-directory
entryÓ is set when the fault occurs. The behavior of Intel Architecture processors regarding the
accesÂ s flag in the corresponding page-table entry is model specific and not architecturally
defi

Ï
ned.

S
�

aved Inst ruct ion P oint er

The
¾

saved contents of CS and EIP registers generally point to the instruction that generated the
exceptioÓ n. If the page-fault exception occurred during a task switch, the CS and EIP registers
may point to the first instruction of the new task (as described in the following “Program State
C

·
hange” section).

Program State Change

A p
è

rogram-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep-
ti

±
on handler has corrected the violation (for example, loaded the missing page into memory),

executioÓ n of the program or task can be resumed.

Fig
�

ure 5-7. Page-Faul t Error Code

P 0 The fault was caused by a nonpresent page.
1 The fault was caused by a page-level protection violation.

W
�

/R 0 The access causing the fault was a read.
 1 The access causing the fault was a write.

U/S 0 The access causing the fault originated when the processor
 was executing in supervisor mode.

 1 The access causing the fault originated when the processor
 was executing in user mode.

31
�

0
�

PReserved
R
/

�
W

�
U

�
/

�
S

�

123
�

4
R
S
V
D

RSVD 0 The fault was not caused by a reserved bit violation.
 1 The page fault occured because a 1 was detected in one of the
 reserved bit positions of a page table entry or directory entry

that
à

 was marked present.

5-46

INTERRUPT AND EXCEPTION HANDLING

W
»

hen a page-fault exception is generated during a task switch, the program-state may change,
as follows. DuÂ ring a task switch, a page-fault exception can occur during any of following
opµ erations:

• Wh
»

ile writing the state of the original task into the TSS of that task.

• Wh
»

ile reading the GDT to locate the TSS descriptor of the new task.

• Wh
»

ile reading the TSS of the new task.

• W
»

hile reading segment descriptors associated with segment selectors from the new task.

• Wh
»

ile reading the LDT of the new task to verify the segment registers stored in the new
TSS.

¾

In the last two cases the exception occurs in the context of the new task. The instruction pointer
refeÃ rs to the first instruction of the new task, not to the instruction which caused the task switch
(or th
¸

e last instruction to be executed, in the case of an interrupt). If the design of the operating
sy´ stem permits page faults to occur during task-switches, the page-fault handler should be called
th
±

rough a task gate.

If a p
°

age fault occurs during a task switch, the processor will load all the state information from
th
±

e new TSS (without performing any additional limit, present, or type checks) before it gener-
atÂ es the exception. The page-fault handler should thus not rely on being able to use the segment
s´ electors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(R
¸

efer to the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS
¸

)” in this chapter for additional information on how to handle this situation.)

Additional Exc
�

eption -Handling Inf ormation

Special
Ö

care should be taken to ensure that an exception that occurs during an explicit stack
sw´ itch does not cause the processor to use an invalid stack pointer (SS:ESP). Software written
for 1
¼

6-bit Intel Architecture processors often use a pair of instructions to change to a new stack,
fo
¼

r example:

MOV SS, AX

MOV SP, StackTop

W
»

hen executing this code on one of the 32-bit Intel Architecture processors, it is possible to get
a pagÂ e fault, general-protection fault (#GP), or alignment check fault (#AC) after the segment
sel´ ector has been loaded into the SS register but before the ESP register has been loaded. At this
po® int, the two parts of the stack pointer (SS and ESP) are inconsistent. The new stack segment
is being used with the old stack pointer.

The pr
¾

ocessor does not use the inconsistent stack pointer if the exception handler switches to a
welÒ l defined stack (that is, the handler is a task or a more privileged procedure). However, if the
exÓ ception handler is called at the same privilege level and from the same task, the processor will
attemÂ pt to use the inconsistent stack pointer.

In
°

 systems that handle page-fault, general-protection, or alignment check exceptions within the
faulting task (with trap or interrupt gates), software executing at the same privi lege level as the
exÓ ception handler should initiali ze a new stack by using the LSS instruction rather than a pair

5-47

INTERRUPT AND EXCEPTION HANDLING

of MOV iµ nstructions, as described earlier in this note. When the exception handler is running at
priv® i lege level 0 (the normal case), the problem is limited to procedures or tasks that run at priv-
il

¯
ege level 0, typically the kernel of the operating system.

5-48

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16—Float ing-Point Error E xception (#MF)

Exception Cl ass Fault.

Descript ion

In
°

dicates that the FPU has detected a floating-point-error exception. The NE flag in the register
C
·

R0 must be set and the appropriate exception must be unmasked (clear mask bit in the control
register) for an interrupt 16, floating-point-error exception to be generated. (Refer to Section
2
Å
.5., “Control Registers” in Chapter 2, Syst

î
em Architecture Overview for a detailed description

ofµ the NE flag.)

W
»

hile executing floating-point instructions, the FPU detects and reports six types of floating-
po® int errors:

• I
°
nvalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)

• D
Þ

ivide-by-zero (#Z)

• Denormalized operand (#D)

• Num
ß

eric overflow (#O)

• Num
ß

eric underflow (#U)

• Inexact result (precision) (#P)

For each of
Ý

 these error types, the FPU provides a flag in the FPU status register and a mask bit
in the F
¯

PU control register. If the FPU detects a floating-point error and the mask bit for the error
is set, the FPU handles the error automatically by generating a predefined (default) response and
con³ tinuing program execution. The default responses have been designed to provide a reason-
abÂ le result for most floating-point applications.

If the mask for the error is clear and the NE flag in register CR0 is set, the FPU does the
fo
¼

llowing:

1. Sets the necessary flag in the FPU status register.

2. W
»

aits until the next “waiting” floating-point instruction or WAIT/FWAIT instruction is
enÓ countered in the program’s instruction stream. (The FPU checks for pending floating-
po® int exceptions on “waiting” instructions prior to executing them. All the floating-point
instructions except the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV

Ý
, and FNSAVE instructions are “waiting” instructions.)

3
Æ
. Generates an internal error signal that causes the processor to generate a floating-point-

erÓ ror exception.

5-49

INTERRUPT AND EXCEPTION HANDLING

Al l of the floating-point-error conditions can be recovered from. The floating-point-error excep-
ti

±
on handler can determine the error condition that caused the exception from the settings of the

flag
¼

s in the FPU status word. Refer to “Software Exception Handling” in Chapter 7 of the In
Î

tel
Architecture Software Developer’s Manual, Volume 1, Í for more information on handling
floating

¼
-point-error exceptions.

Except ion Error Code

None.
ß

 The FPU provides its own error information.

S
�

aved Inst ruct ion P oint er

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruc-
ti

±
on that was about to be executed when the floating-point-error exception was generated. This

is
¯

 not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the FPU instruction pointer register. Refer to “The FPU
Instruction

°
 and Operand (Data) Pointers” in Chapter 7 of the I

Î
ntel Architecture Software Devel-

oper� ’s Manual, Volume 1, foÍ r more information about information the FPU saves for use in
handling floating-point-error exceptions.

Program State Change

A pro
è

gram-state change generally accompanies a floating-point-error exception because the
h

ø
andling of the exception is delayed until the next waiting floating-point or WAIT/FWAIT

instruction following the faulting instruction. The FPU, however, saves sufficient information
abouÂ t the error condition to allow recovery from the error and re-execution of the faulting
inst

¯
ruction if needed.

In situations where nonfloating-point instructions depend on the results of a floating-point
in

¯
struction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to

for
¼

ce a pending floating-point-error exception to be handled before the dependent instruction is
exÓ ecuted. Refer to “Floating-Point Exception Synchronization” in Chapter 7 of the Intel Archi-
tectã ure Software Developer’s Manual, Volume 1, fÍ or more information about synchronization of
floating

¼
-point-error exceptions.

5-50

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17—Alignment Check Except ion (#AC)

Exception Cl ass Fault.

Descript ion

In
°

dicates that the processor detected an unaligned memory operand when alignment checking
wasÒ enabled. Alignment checks are only carried out in data (or stack) segments (not in code or
syst´ em segments). An example of an alignment-check violation is a word stored at an odd byte
addÂ ress, or a doubleword stored at an address that is not an integer multiple of 4. Table 5-7 lists
th
±

e alignment requirements various data types recognized by the processor.

1. 128-bit datatype introduced with the Pentium®

 III processor. This type of alignment check is done for
operands less than 128-bits in size: 32-bit scalar single and 16-bit/32-bit/64-bit integer MMX™ technol-
ogy; 2, 4, or 8 byte alignments checks are possible when #AC is enabled. Some exceptional cases are:

• The MOVUPS instruction, which performs a 128-bit unaligned load or store. In this case, 2/4/8-byte
misalignments will be detected, but detection of 16-byte misalignment is not guaranteed and may
vary! with implementation.

• T

he FXSAVE/FXRSTOR instructions - refer to instruction descriptions

To enable alignment checking, the following conditions must be true:

• AM f
è

lag in CR0 register is set.

• AC flag in the EFLAGS register is set.

• The CPL is 3 (protected mode or virtual-8086 mode).

Table 5-7. Alig nment Requirem ents by Data Type

Data Type Add ress M ust Be Di visi ble By

Word 2

Doubleword 4

Single Real 4

Double Real 8

Extended Real 8

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

128-bit1 16

5-51

INTERRUPT AND EXCEPTION HANDLING

Al ignment-check faults are generated only when operating at privilege level 3 (user mode).
Mem

ð
ory references that default to privilege level 0, such as segment descriptor loads, do not

gener× ate alignment-check faults, even when caused by a memory reference made from privilege
level 3.

S
Ö

toring the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
l

Ü
evel 3 can generate an alignment-check fault. Although application programs do not normally
s´ tore these registers, the fault can be avoided by aligning the information stored on an even
wordÒ -address.

F
Ý

SAVE and FRSTOR instructions generate unaligned references which can cause alignment-
check ³ faults. These instructions are rarely needed by application programs.

Except ion Error Code

Y
"

es (always zero).

S
�

aved Inst ruct ion P oint er

The s
¾

aved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is

¯
 not executed.

5-52

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check E xception (#MC)

Exception Cl ass Abort.

Descript ion

In
°

dicates that the processor detected an internal machine error or a bus error, or that an external
agenÂ t detected a bus error. The machine-check exception is model-specific, available only on
the P6 f
±

amily and Pentium®
ì
 processors. The implementation of the machine-check exception is

d
Ï
ifferent between the P6 family and Pentium®

ì
 processors, and these implementations may not

b
º
e compatible with future Intel Architecture processors. (Use the CPUID instruction to deter-

mine whether this feature is present.)

B
â

us errors detected by external agents are signaled to the processor on dedicated pins: the
BI
â

NIT# pin on the P6 family processors and the BUSCHK# pin on the Pentium®
ì
 processor.

W
»

hen one of these pins is enabled, asserting the pin causes error information to be loaded into
machÄ ine-check registers and a machine-check exception is generated.

The
¾

machine-check exception and machine-check architecture are discussed in detail in Chapter
13, Machine-Check Architecture. Also, refer to the data books for the individual processors for
pr® ocessor-specific hardware information.

Exception Er ror Code

Non
ß

e. Error information is provide by machine-check MSRs.

S
�

aved Inst ruct ion P oint er

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved
con³ tents of CS and EIP registers are directly associated with the error that caused the machine-
check³ exception to be generated; if the flag is clear, the saved instruction pointer may not be
assÂ ociated with the error (refer to Section 13.3.1.2., “MCG_STATUS MSR” , in Chapter 13,
Machine

ó
-Check Architecture).

Á

Fo
Ý

r the Pentium®
ì
 processor, contents of the CS and EIP registers may not be associated with the

erroÓ r.

Program State Change

A pro
è

gram-state change always accompanies a machine-check exception. If the machine-check
mechÄ anism is enabled (the MCE flag in control register CR4 is set), a machine-check exception
results in an abort; that is, information about the exception can be collected from the machine-
check³ MSRs, but the program cannot be restarted. If the machine-check mechanism is not
enabÓ led, a machine-check exception causes the processor to enter the shutdown state.

5-53

INTERRUPT AND EXCEPTION HANDLING

Interrupt 19—SI MD Floating- Point Exception (#X F)

Except ion Class Fault.

Descr ipt ion

Ind
°

icates the processor has detected a SIMD floating-point execution unit exception. The appro-
priate status flag ® in the MXCSR register must be set and the particular exception unmasked for
th

±
is interrupt to be generated.

There
¾

are six classes of numeric exception conditions that can occur while executing Streaming
S

Ö
IMD Extensions:

1. Invalid operation (#I)

2.
Å

Divide-by-zero (#Z)

3.
Æ

Denormalized operand (#D)

4.
Ç

Numeric overflow (#O)

5.
È

Numeric underflow (#U)

6.
É

Inexact result (Precision) (#P)

Inv
°

alid, Divide-by-zero, and Denormal exceptions are pre-computation exceptions, i.e., they are
detected bef

Ï
ore any arithmetic operation occurs. Underflow, Overflow, and Precision exceptions

are pÂ ost-computational exceptions.

W
»

hen numeric exceptions occur, a processor supporting Streaming SIMD Extensions takes one
oµ f two possible courses of action:

• The processor can handle the exception by itself, producing the most reasonable result and
alÂ lowing numeric program execution to continue undisturbed (i.e., masked exception
resÃ ponse).

• A software exception handler can be invoked to handle the exception (i.e., unmasked
exceptioÓ n response).

Each
½

 of the six exception conditions described above has corresponding flag and mask bits in
the MXC

±
SR. If an exception is masked (the corresponding mask bit in MXCSR = 1), the

pro® cessor takes an appropriate default action and continues with the computation. If the excep-
ti

±
on is unmasked (mask bit = 0) and the OS supports SIMD floating-point exceptions (i.e.

CR
·

4.OSXMM EXCPT = 1), a software exception handler is invoked immediately through
S

Ö
IMD floating-point exception interrupt vector 19. If the exception is unmasked (mask bit = 0)

and Â the OS does not support SIMD fl oating-point exceptions (i.e. CR4.OSXMM EXCPT = 0),
an invÂ alid opcode exception is signaled instead of a SIMD floating-point exception.

Note that b
ß

ecause SIMD floating-point exceptions are precise and occur immediately, the situ-
atiÂ on does not arise where an x87-FP instruction, an FWAIT instruction, or another Streaming
S

Ö
IMD Extensions instruction will catch a pending unmasked SIMD floating-point exception.

5-54

INTERRUPT AND EXCEPTION HANDLING

Exception Er ror Code

Non
ß

e. The Streaming SIMD Extensions provide their own error information.

S
�

aved Inst ruct ion P oint er

Th
¾

e saved contents of CS and EIP registers point to the Streaming SIMD Extensions instruction
th
±

at was executed when the SIMD floating-point exception was generated. This is the faulting
instruction in which the error condition was detected.

Program State Change

A pr
è

ogram-state change generall y accompanies a SIMD floating-point exception because the
han
ø

dling of the exception is immediate unless the particular exception is masked. The Pentium®
ì

III pro® cessor contains sufficient information about the error condition to allow recovery from
th
±

e error and re-execution of the faulting instruction if needed.

In s
°

ituations where a SIMD floating-point exception occurred while the SIMD floating-point
excepÓ tions were masked, SIMD floating-point exceptions were then unmasked, and a Streaming
SIMD Exten
Ö

sions instruction was executed, then no exception is raised.

5-55

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined I nterrupts

Except ion Class No
ß

t applicable.

Descr ipt ion

Ind
°

icates that the processor did one of the following things:

• Ex
½

ecuted an INT në instruction where the instruction operand is one of the vector numbers
from 32 through 255.

• Responded to an interrupt request at the INTR pin or from the local APIC when the
i

¯
nterrupt vector number associated with the request is from 32 through 255.

Except ion Error Code

Not app
ß

licable.

S
�

aved Inst ruct ion P oint er

The saved co
¾

ntents of CS and EIP registers point to the instruction that follows the INT në

in
¯

struction or instruction following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT në instruction or
th

±
e INTR signal. The INT në instruction generates the interrupt within the instruction stream.

W
»

hen the processor receives an INTR signal, it commits all state changes for all previous
instructions before it responds to the interrupt; so, program execution can resume upon returning
from

¼
 the interrupt handler.

5-56

INTERRUPT AND EXCEPTION HANDLING

6
Task Management

6-1

T
#
ASK MANAGEMENT

CHAPTER 6
TASK MANAGEMENT

Th
¾

is chapter describes the Intel Architecture’s task management facilities. These facilities are
onlyµ available when the processor is running in protected mode.

6.1. TASK MANAGEMENT OVERVIEW

A
è

task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
exÓ ecute a program, a task or process, an operating-system service utility, an interrupt or excep-
ti

±
on handler, or a kernel or executive utility .

The
¾

Intel Architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
allÂ processor execution takes place from within a task. Even simple systems must define at least
oµ ne task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1. Task Struct ure

A tas
è

k is made up of two parts: a task execution space and a task-state segment (TSS). The task
executioÓ n space consists of a code segment, a stack segment, and one or more data segments
(ref

¸
er to Figure 6-1). If an operating system or executive uses the processor’s privilege-level

pro® tection mechanism, the task execution space also provides a separate stack for each privilege
level.

The TSS
¾

 specifies the segments that make up the task execution space and provides a storage
p® lace for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

NOTE

Th
¾

is chapter describes primarily 32-bit tasks and the 32-bit TSS structure.
For information on 16-bit tasks and the 16-bit TSS structure, refer to Section
6.

É
6., “16-Bit Task-State Segment (TSS)”.

A
è

task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS

¾
 are loaded into the task register (refer to Section 2.4.4., “Task Register (TR)” in Chapter 2,

System
î

 Architecture Overview).
Á

If paging is implemented for the task, the base address of the page directory used by the task is
loaded

Ü
 into control register CR3.

6-2

TASK MANAGEMENT

6.1.2. Task State

The following items define the state of the currently executing task:

• The task’s current execution space, defined by the segment selectors in the segment
rÃ egisters (CS, DS, SS, ES, FS, and GS).

• The state of the general-purpose registers.

• The state of the EFLAGS register.

• Th
¾

e state of the EIP register.

• The state of control register CR3.

• The state of the task register.

• Th
¾

e state of the LDTR register.

• The I/O map base address and I/O map (contained in the TSS).

• Stack p
Ö

ointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

• Link
Ñ

 to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the tas
±

k register. Also, the complete contents of the LDTR register are not contained in the TSS,
oµ nly the segment selector for the LDT.

Figure 6-1. Struc ture o f a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)

6-3

T
#
ASK MANAGEMENT

6.1.3. Executi ng a Task

S
Ö

oftware or the processor can dispatch a task for execution in one of the following ways:

• A ex
è

plicit call to a task with the CALL instruction.

• A explicit jump to a task with the JMP instruction.

• An implici t call (by the processor) to an interrupt-handler task.

• An
è

 implici t call to an exception-handler task.

• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
set.´

Al
è

l of these methods of dispatching a task identify the task to be dispatched with a segment
s´ elector that points either to a task gate or the TSS for the task. When dispatching a task with a
C

·
ALL or JMP instruction, the selector in the instruction may select either the TSS directly or a

tas
±

k gate that holds the selector for the TSS. When dispatching a task to handle an interrupt or
exÓ ception, the IDT entry for the interrupt or exception must contain a task gate that holds the
sel´ ector for the interrupt- or exception-handler TSS.

W
»

hen a task is dispatched for execution, a task switch automatically occurs between the
curr³ ently running task and the dispatched task. During a task switch, the execution environment
of the curµ rently executing task (called the task’s state or co$ ntext)

Á
 is saved in its TSS and execu-

ti
±

on of the task is suspended. The context for the dispatched task is then loaded into the processor
anÂ d execution of that task begins with the instruction pointed to by the newly loaded EIP
regÃ ister. If the task has not been run since the system was last initiali zed, the EIP will point to
th

±
e first instruction of the task’s code; otherwise, it will point to the next instruction after the last

instruction that the task executed when it was last active.

If th
°

e currently executing task (the calling task) called the task being dispatched (the called task),
th

±
e TSS segment selector for the calling task is stored in the TSS of the called task to provide a

link back to the calling task.

F
Ý

or all Intel Architecture processors, tasks are not recursive. A task cannot call or jump to itself.

Interr
°

upts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
swi´ tch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechan

¾
ism can handle interrupts that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a Â different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CÃ R3) also is reloaded on a task switch, allowing each task to have its own set of page
tab

±
les. These protection facilities help isolate tasks and prevent them from interfering with one

anothÂ er. If one or both of these protection mechanisms are not used, the processor provides no
p® rotection between tasks. This is true even with operating systems that use multiple privilege
levels for protection. Here, a task running at privilege level 3 that uses the same LDT and page
tables

±
 as other privilege-level-3 tasks can access code and corrupt data and the stack of other

t
±
asks.

6-4

TASK MANAGEMENT

Us
æ

e of task management facilities for handling multitasking applications is optional. Multi-
tas
±

king can be handled in software, with each software defined task executed in the context of
a single IÂ ntel Architecture task.

6.2. TASK MANAGEMENT DATA STRUCTUR ES

The processor defines five data structures for handling task-related activities:

• T
¾
ask-state segment (TSS).

• Task-gate descriptor.

• TSS descriptor.

• Ta
¾

sk register.

• NT f
ß

lag in the EFLAGS register.

W
»

hen operating in protected mode, a TSS and TSS descriptor must be created for at least one
tas
±

k, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task-State Segment (TSS)

The
¾

processor state information needed to restore a task is saved in a system segment called the
task
±

-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
C
·

PUs. (Compatibilit y with 16-bit Intel 286 processor tasks is provided by a different kind of
TS
¾

S, refer to Figure 6-9.) The fields of a TSS are divided into two main categories: dynamic
fields and static fields.

The
¾

processor updates the dynamic fields when a task is suspended during a task switch. The
fo
¼

llowing are dynamic fields:

General-purp
%

ose register fields
State

Ö
of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to

th
±

e task switch.

Segmen
&

t selector fields
Segmen

Ö
t selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to

th
±

e task switch.

EFLA GS register field
State o

Ö
f the EFAGS register prior to the task switch.

E
�

IP (instruction pointer) field
State of

Ö
the EIP register prior to the task switch.

Pr
'

evious task link f ield
C

·
ontains the segment selector for the TSS of the previous task (updated on a

task
±

 switch that was initiated by a call, interrupt, or exception). This field

6-5

T
#
ASK MANAGEMENT

(which
¸

 is sometimes called the back link field) permits a task switch back to
th
±

e previous task to be initiated with an IRET instruction.

The p
¾

rocessor reads the static fields, but does not normally change them. These fields are set up
when Ò a task is created. The following are static fields:

L
(

DT segment selector field
C
·

ontains the segment selector for the task’s LDT.

Figu re 6-2. 32-Bit Task-Sta te Segment (TSS)

031

100

96

92

88

84

80

76

I/O Map Base Address

15

LDT Segment Selector

GS

FS

DS

SS

CS

72

68

64

60

56

52

48

44

40

36

32

28

24

20

SS2

16

12

8

4

0

SS1

SS0

ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

Reserved bits. Set to 0.

6-6

TASK MANAGEMENT

CR3 co
)

ntrol register field
C

·
ontains the base physical address of the page directory to be used by the task.

C
·

ontrol register CR3 is also known as the page-directory base register (PDBR).

Priv ilege level-0, -1, and -2 stack pointer f ields
Th

¾
ese stack pointers consist of a logical address made up of the segment

select´ or for the stack segment (SS0, SS1, and SS2) and an offset into the stack
(ESP0, ESP1, and ESP2). Note t

¸
hat the values in these fields are static for a

par® ticular task; whereas, the SS and ESP values will change if stack switching
oµ ccurs within the task.

T (debug trap) flag (byte 100, bit 0)
W

»
hen set, the T flag causes the processor to raise a debug exception when a

task
±

 switch to this task occurs (refer to Section 1
Ö

5.3.1.5., “Task-Switch Excep-
tio

±
n Condition” , in Chapter 15, Debugging and Performance Monitoring).

Á

I
*
/O map base address field

C
·

ontains a 16-bit offset from the base of the TSS to the I/O permission bit map
andÂ interrupt redirection bitmap. When present, these maps are stored in the
TS

¾
S at higher addresses. The I/O map base address points to the beginning of

the I
±

/O permission bit map and the end of the interrupt redirection bit map.
Refer to Chapter 9, Input/Output, in thÍ e Intel Architecture Software Devel-
o� per’s Manual, Volume 1,Í for more information about the I/O permission bit
mÄ ap. Refer to Section 16.3., “Interrupt and Exception Handling in Virtual-
80

Ë
86 Mode” in Chapter 16, 8

é
086 Emulation for a detailed description of the

in
¯

terrupt redirection bit map.

If
°

paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed® within this part of the TSS, the pages on either side of the boundary must be present at
the
±

same time and contiguous in physical memory. The reason for this restriction is that when
accessÂ ing a TSS during a task switch, the processor reads and writes into the first 104 bytes of
each TÓ SS from contiguous physical addresses beginning with the physical address of the first
by
º

te of the TSS. It may not perform address translations at a page boundary if one occurs within
this area. So,
±

 after the TSS access begins, if a part of the 104 bytes is not both present and phys-
ically con
¯

tiguous, the processor will access incorrect TSS information, without generating a
p® age-fault exception. The reading of this incorrect information will generally lead to an unre-
co³ verable exception later in the task switch process.

Als
è

o, if paging is used, the pages corresponding to the previous task’s TSS, the current task’s
TSS
¾

, and the descriptor table entries for each should be marked as read/write. The task switch
willÒ be carried out faster if the pages containing these structures are also present in memory
b
º
efore the task switch is initiated.

6.2.2. TSS Descript or

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
fo
¼

rmat of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed® in an LDT or the IDT. An attempt to access a TSS using a segment selector with its TI

6-7

T
#
ASK MANAGEMENT

flag set (which indicates the current LDT) causes a general-protection exception (#GP) to be
g× enerated. A general-protection exception is also generated if an attempt is made to load a
s´ egment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
ruÃ nning or is suspended. A type field with a value of 1001B indicates an inactive task; a value
of µ 1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
d

Ï
etect an attempt to call a task whose execution has been interrupted. To insure that there is only

one buµ sy flag is associated with a task, each TSS should have only one TSS descriptor that points
to

±
 it.

The base, limit, and DPL fi elds and the granularity and present flags have functions similar to
their u

±
se in data-segment descriptors (refer to S

Ö
ection 3.4.3., “Segment Descriptors” in Chapter

3,
Æ

Pr
å

otected-Mode Memory Management). Th
Á

e limit field must have a value equal to or greater
than

±
67H (for a 32-bit TSS), one byte less than the minimum size of a TSS. Attempting to switch

to
±

 a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS exception
(#

¸
TS). A larger limit is required if an I/O permission bit map is included in the TSS. An even

larger limit would be required if the operating system stores additional data in the TSS. The
pro® cessor does not check for a limit greater than 67H on a task switch; however, it does when
accesÂ sing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or lesÓ s than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.
In

°
 most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only

p® rivi leged software can perform task switching. However, in multitasking applications, DPLs
fo

¼
r some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-

il
¯

ege level.

Figure 6-3. TSS Descri ptor

31
�

24 23 22 21 20 19 16 15 1314 12 11 8
�

7 0

PBase 31:24 G
+ D

P
�

L

Type

0
	0

	

31
�

16 15 0
	

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V

,

L

Limit
19:160

	

1B0
	

1

TSS Descri ptor

AV
á

L
B
BASE
DPL
G

Avail
á

able for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TY

PE

Segment Limit
Segment Present
Segment Type

0

4

6-8

TASK MANAGEMENT

6.2.3. Task Regis ter

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
addÂ ress, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (refer to
Figure 2-4 in Chapter 2, S

î
ystem Architecture Overview).

Á
 This information is copied from the

TSS
¾

 descriptor in the GDT for the current task. Figure 6-4 shows the path the processor uses to
accessÂ es the TSS, using the information in the task register.

The task register has both a visible part (that can be read and changed by software) and an invis-
ible par
¯

t (that is maintained by the processor and is inaccessible by software). The segment
sel´ ector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the task register to cache the segment descriptor for the TSS. Caching these
valuÙ es in a register makes execution of the task more efficient, because the processor does not
need² to fetch these values from memory to reference the TSS of the current task.

The LTR (load task register) and STR (store task register) instructions load and read the visible
po® rtion of the task register. The LTR instruction loads a segment selector (source operand) into
th
±

e task register that points to a TSS descriptor in the GDT, and then loads the invisible portion
oµ f the task register with information from the TSS descriptor. This instruction is a privi leged
in
¯

struction that may be executed only when the CPL is 0. The LTR instruction generally is used
d
Ï
uring system initialization to put an initial value in the task register. Afterwards, the contents

ofµ the task register are changed implicitly when a task switch occurs.

Th
¾

e STR (store task register) instruction stores the visible portion of the task register in a
gen× eral-purpose register or memory. This instruction can be executed by code running at any
p® rivilege level, to identify the currently running task; however, it is normally used only by oper-
atinÂ g system software.

On p
Ð

ower up or reset of the processor, the segment selector and base address are set to the default
vÙ alue of 0 and the limit is set to FFFFH.

6.2.4. Task-Gate Descr iptor

A t
è

ask-gate descriptor provides an indirect, protected reference to a task. Figure 6-5 shows the
format of a task-gate descriptor. A task-gate descriptor can be placed in the GDT, an LDT, or the
IDT
°

.

The
¾

TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the GDT.
The RPL in this segment selector is not used.

The
¾

DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch.
W
»

hen a program or procedure makes a call or jump to a task through a task gate, the CPL and
th
±

e RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
ofµ the task-gate descriptor. (Note that when a task gate is used, the DPL of the destination TSS
des
Ï

criptor is not used.)

6-9

T
#
ASK MANAGEMENT

Figu
�

re 6-4. Task Registe r

Figure 6-5. Task-Gate Descripto r

Segment LimitSelector

+

GDT

TSS

 Descriptor

0

Base Address
Task

Invisible PartVisible Part

TSS

Register

31
�

16 15 1314 12 11 8
�

7 0

P
� D

P
L

�
Type

0
	

31
�

16 15 0
	

TSS Segment Selector

10
	

10
	

DPL
P
TY

PE

Descriptor Privilege Level
Segment Present
Segment Type

Reserved

4

0
�

6-10

TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
st´ ructures are provided to satisfy the following needs:

• Th
¾

e need for a task to have only one busy flag. Because the busy flag for a task is stored in
t

±
he TSS descriptor, each task should have only one TSS descriptor. There may, however,
be s

º
everal task gates that reference the same TSS descriptor.

• Th
¾

e need to provide selective access to tasks. Task gates fill t his need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor’s DPL. A
p® rogram or procedure that does not have sufficient privilege to access the TSS descriptor
f

¼
or a task in the GDT (which usually has a DPL of 0) may be allowed access to the task

t
±
hrough a task gate with a higher DPL. Task gates give the operating system greater
latitude

Ü
for limiting access to specific tasks.

• Th
¾

e need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which allows interrupts and exceptions to be handled by
h

ø
andler tasks. When an interrupt or exception vector points to a task gate, the processor

swit´ ches to the specified task.

Figure 6-6 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the
IDT can all p
°

oint to the same task.

6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

• The current program, task, or procedure executes a JMP or CALL instruction to a TSS
de

Ï
scriptor in the GDT.

• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
de

Ï
scriptor in the GDT or the current LDT.

• An
è

 interrupt or exception vector points to a task-gate descriptor in the IDT.

• The current task executes an IRET when the NT flag in the EFLAGS register is set.

The JM
¾

P, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized
mechÄ anisms for redirecting a program. The referencing of a TSS descriptor or a task gate (when
calling o³ r jumping to a task) or the state of the NT flag (when executing an IRET instruction)
determ
Ï

ines whether a task switch occurs.

The
¾

processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL
in

¯
struction, from a task gate, or from the previous task link field (for a task switch initiated

withÒ an IRET instruction).

6-11

T
#
ASK MANAGEMENT

2. Checks that the current (old) task is allowed to switch to the new task. Data-access
pr® ivilege rules apply to JMP and CALL i nstructions. The CPL of the current (old) task and
th

±
e RPL of the segment selector for the new task must be less than or equal to the DPL of

th
±

e TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
in

¯
terrupts generated by the INT në instruction), and the IRET instruction are permitted to

swi´ tch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT n instruction, the DPL is checked.

3.
Æ

Checks that the TSS descriptor of the new task is marked present and has a valid limit
(g

¸
reater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
retuÃ rn).

Figu
�

re 6-6. Task Gates Referenc ing the Same Task

LDT

Task Gate

TS

SGDT

TSS Descriptor

IDT

T

ask Gate

T

ask Gate

6-12

TASK MANAGEMENT

5.
È

Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
swit´ ch are paged into system memory.

6
É
. If the task switch was initi ated with a JMP or IRET instruction, the processor clears the

bu
º

sy (B) flag in the current (old) task’s TSS descriptor; if initi ated with a CALL
instru

¯
ction, an exception, or an interrupt, the busy (B) flag is left set. (Refer to Table 6-2.)

7.
Ê

If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instru

¯
ction, an exception, or an interrupt, the NT flag is left unchanged in the saved

EFLAGS image.
½

8.
Ë

Saves the state of the current (old) task in the current task’s TSS. The processor finds the
b

º
ase address of the current TSS in the task register and then copies the states of the

f
¼
ollowing registers into the current TSS: all the general-purpose registers, segment

selectors ´ from the segment registers, the temporarily saved image of the EFLAGS register,
andÂ the instruction pointer register (EIP).

NOTE

At this point, if all checks and saves have been carried out successfully, the
p® rocessor commits to the task switch. If an unrecoverable error occurs in
steps ´ 1 through 8, the processor does not complete the task switch and insures
th

±
at the processor is returned to its state prior to the execution of the

in
¯

struction that initiated the task switch. If an unrecoverable error occurs after
the co

±
mmit point (in steps 9 through 14), the processor completes the task

swit´ ch (without performing additional access and segment availabili ty
ch³ ecks) and generates the appropriate exception prior to beginning execution
oµ f the new task. If exceptions occur after the commit point, the exception
handler must finish the task switch itself before allowing the processor to
b

º
egin executing the task. Refer to Chapter 5, Interr

Î
upt and Exception

Ha
-

ndling for more information about the affect of exceptions on a task when
th

±
ey occur after the commit point of a task switch.

9
Ì
. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the

pro® cessor sets the NT flag in the EFLAGS image stored in the new task’s TSS; if initiated
with aÒ n IRET instruction, the processor restores the NT flag from the EFLAGS image
sto´ red on the stack. If initiated with a JMP instruction, the NT flag is left unchanged.
(

¸
Refer to Table 6-2.)

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an iÂ nterrupt, the processor sets the busy (B) flag in the new task’s TSS descriptor; if
in

¯
itiated with an IRET instruction, the busy (B) flag is left set.

11. Sets the TS flag in the control register CR0 image stored in the new task’s TSS.

12. Loads the task register with the segment selector and descriptor for the new task's TSS.

6-13

T
#
ASK MANAGEMENT

13. Loads the new task’s state from its TSS into processor. Any errors associated with the
load

Ü
ing and qualification of segment descriptors in this step occur in the context of the new

task. The task s
±

tate information that is loaded here includes the LDTR register, the PDBR
(co

¸
ntrol register CR3), the EFLAGS register, the EIP register, the general-purpose

rÃ egisters, and the segment descriptor parts of the segment registers.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task app

±
ears not to have been executed.)

The s
¾

tate of the currently executing task is always saved when a successful task switch occurs.
If th

°
e task is resumed, execution starts with the instruction pointed to by the saved EIP value,

and Â the registers are restored to the values they held when the task was suspended.

W
»

hen switching tasks, the privilege level of the new task does not inherit its privilege level from
the suspend

±
ed task. The new task begins executing at the privilege level specified in the CPL

field of the CS register, which is loaded from the TSS. Because tasks are isolated by their sepa-
rate addrÃ ess spaces and TSSs and because privilege rules control access to a TSS, software does
not² need to perform explicit privilege checks on a task switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
alsÂ o shows the exception that is generated for each check if an error is detected and the segment
that the e

±
rror code references. (The order of the checks in the table is the order used in the P6

family processors. The exact order is model specific and may be different for other Intel Archi-
tect

±
ure processors.) Exception handlers designed to handle these exceptions may be subject to

recurÃ sive calls if they attempt to reload the segment selector that generated the exception. The
cause of the excep³ tion (or the first of multiple causes) should be fixed before reloading the
s´ elector.

Table 6-1. Exceptio n Cond ition s Checked Durin g a Task Switch

Condi tion Checked Exceptio n1
Error Code
Reference 2

Segment selector for a TSS descriptor references
t

à
he GDT and is within the limits of the table.

#GP New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a
call, interrupt, or exception).

#GP (for JMP, CALL,
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by
an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-
bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SF New Stack Segment

6-14

TASK MANAGEMENT

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
ti

à
on, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
t

à
he table’s segment limit, and refers to a compatible type of descriptor (for example, a segment selector in

the
à

CS register only is valid when it points to a code-segment descriptor).

The
¾

TS (task switched) flag in the control register CR0 is set every time a task switch occurs.
S
Ö

ystem software uses the TS flag to coordinate the actions of floating-point unit when gener-
ating floÂ ating-point exceptions with the rest of the processor. The TS flag indicates that the
co³ ntext of the floating-point unit may be different from that of the current task. Refer to Section
2.5., “Control Registers” in Chapter 2, Syst

î
em Architecture Overview for a detailed description

ofµ the function and use of the TS flag.

6.4. TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the
EFLAGS
½

 register are used to return execution to the previous task. The NT flag indicates
whetherÒ the currently executing task is nested within the execution of another task, and the
pr® evious task link field of the current task's TSS holds the TSS selector for the higher-level task
in th
¯

e nesting hierarchy, if there is one (refer to Figure 6-7).

W
»

hen a CALL instruction, an interrupt, or an exception causes a task switch, the processor
cop³ ies the segment selector for the current TSS into the previous task link field of the TSS for
the n
±

ew task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
pr® evious task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware usÒ es an IRET instruction to suspend the new task, the processor uses the value in the
p® revious task link field and the NT flag to return to the previous task; that is, if the NT flag is
set´ , the processor performs a task switch to the task specified in the previous task link field.

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or
equal to CPL (unless these are conforming segments).

#TS New Data Segment

Table 6-1. Excepti on Con dition s Checked Durin g a Task Switch (Co ntd.)

6-15

T
#
ASK MANAGEMENT

NO
.

TE

W
»

hen a JMP instruction causes a task switch, the new task is not nested; that
is, th

¯
e NT flag is set to 0 and the previous task link field is not used. A JMP

instruction is used to dispatch a new task when nesting is not desired.

T
¾
able 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the

prev® ious task link field, and TS flag (in control register CR0) during a task switch. Note that the
NT flag may

ß
 be modified by software executing at any privilege level. It is possible for a

pro® gram to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task’s TSS. To keep spurious
tas

±
k switches from succeeding, the operating system should initialize the previous task link field

for
¼

 every TSS it creates to 0.

Figure 6-7. Nested Tasks

Table 6-2. Effec t of a Task Switch on Bu sy Flag, NT Flag, Previous Task Link Field ,
a/ nd TS Flag

Flag or Field
Effect of JMP

inst ruct ion

Effect of CAL L
Inst ruct ion or

Interrupt
Effect of I RET

Instruct ion

Busy (B) flag of new
task

à
.

Flag is set. Must have
been clear before.

Flag is set. Must have
been clear before.

No change. Must have
been set.

Busy flag of old task. Flag is cleared. No change. Flag is
currently set.

Flag is cleared.

NT flag of new task. No change. Flag is set. Restored to value from
T

SS of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of
new task.

No change. Loaded with selector
f

0
or old task’s TSS.

No change.

Previous task link field of
old task.

No change. No change. No change.

T

S flag in control
register CR0.

Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Prev. Task Link

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1

EFLAGS

Task RegisterPrev. Task Link Prev. Task Link

6-16

TASK MANAGEMENT

6.4.1. Use of Busy Flag To Prevent Recurs ive Task Swit ching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(d
¸

ispatched), a recursive (or re-entrant) call to the task would cause the current state of the task
t
±
o be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
sw´ itching and subsequent loss of task state information. The processor manages the busy flag as
fo
¼

l lows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2.
Å

If during a task switch, the current task is placed in a nested chain (the task switch is being
g× enerated by a CALL i nstruction, an interrupt, or an exception), the busy flag for the
cur³ rent task remains set.

3
Æ
. When switching to the new task (initiated by a CALL instruction, interrupt, or exception),

the
±

processor generates a general-protection exception (#GP) if the busy flag of the new
task

±
 is already set. (If the task switch is initiated with an IRET instruction, the exception is

n² ot raised because the processor expects the busy flag to be set.)

4
Ç
. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the

task
±

code) or by an IRET instruction in the task code, the processor clears the busy flag,
rÃ eturning the task to the “not busy” state.

In
°

 this manner the processor prevents recursive task switching by preventing a task from
sw´ itching to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
mÄ ay grow to any length, due to multiple calls, interrupts, or exceptions. The busy flag prevents
a taskÂ from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a
LOC
Ñ

K protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two pr
±

ocessors from invoking the same task at the same time. (Refer to Section 7.1.2.1., “Auto-
matic Locking” in Chapter 7, Multiple-Processor Management for more information about
set´ ting the busy flag in a multiprocessor applications.)

6.4.2. Modify ing Task Link ages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
lin
Ü

ked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that
suspen´ ded the task to be removed). It is assumed that the pre-empting task is the next task
(

¸
newer task) in the chain from the task to be removed. Change the previous task link field

sh´ ould to point to the TSS of the next oldest or to an even older task in the chain.

3.
Æ

Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
ch³ ain. If more than one task is being removed from the chain, the busy flag for each task
b

º
eing remove must be cleared.

4
Ç
. Enable interrupts.

6-17

T
#
ASK MANAGEMENT

In a multiprocessing system, additional synchronization and serialization operations must be
addedÂ to this procedure to insure that the TSS and its segment descriptor are both locked when
the pr

±
evious task link field is changed and the busy flag is cleared.

6.5. TASK ADDRESS SPA CE

The address space for a task consists of the segments that the task can access. These segments
includ

¯
e the code, data, stack, and system segments referenced in the TSS and any other segments

accesÂ sed by the task code. These segments are mapped into the processor’s linear address space,
which Ò is in turn mapped into the processor’s physical address space (either directly or through
pagi® ng).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its
own LDT allowsµ the task address space to be isolated from other tasks by placing the segment
descriptor

Ï
s for all the segments associated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a simple and memory-efficient
way to allow sÒ ome tasks to communicate with or control each other, without dropping the
pro® tection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
th

±
rough segment descriptors in this table.

If p
°

aging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can shar³ e the same set of page tables.

6.5.1. Mapping T asks to the Linear and Physical Addres s
Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:Ò

• One linear
Ð

-to-physical address space mapping is shared among all tasks. When paging is
n² ot enabled, this is the only choice. Without paging, all linear addresses map to the same
ph® ysical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
mayÄ exceed the available physical space if demand-paged virtual memory is supported.

• Each
½

 task has its own linear address space that is mapped to the physical address space.
This form of mapping is accomplished by using a different page directory for each task.
B

â
ecause the PDBR (control register CR3) is loaded on each task switch, each task may

h
ø
ave a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If

°
the entries of different page directories point to different page tables and the page tables point

to dif
±

ferent pages of physical memory, then the tasks do not share any physical addresses.

6-18

TASK MANAGEMENT

W
»

ith either method of mapping task linear address spaces, the TSSs for all tasks must lie in a
shared´ area of the physical space, which is accessible to all tasks. This mapping is required so
that t
±

he mapping of TSS addresses does not change while the processor is reading and updating
the TSSs
±

 during a task switch. The linear address space mapped by the GDT also should be
mapÄ ped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Fi
Ý

gure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by
º

 sharing page tables.

6.5.2. Task Logical Address S pace

To allow the sharing of data among tasks, use any of the following techniques to create shared
log
Ü

ical-to-physical address-space mappings for data segments:

• Through the segment descriptors in the GDT. All tasks must have access to the segment
des

Ï
criptors in the GDT. If some segment descriptors in the GDT point to segments in the

linear
Ü

-address space that are mapped into an area of the physical-address space common to
all tasks, thenÂ all tasks can share the data and code in those segments.

• Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TS

¾
Ss point to the same LDT. If some segment descriptors in a shared LDT point to

segmen´ ts that are mapped to a common area of the physical address space, the data and
co³ de in those segments can be shared among the tasks that share the LDT. This method of
shar´ ing is more selective than sharing through the GDT, because the sharing can be limited

Figu
�

re 6-8. Overlap ping Line ar-to-Ph ysic al Mapping s

Task A
Page

TSS

PDE

Page Directories

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables Page Frames

Ta

sk A
Page

Task A
Page

Shared
Page

Shared
Page

Task B
Page

Task B
Page

Shared PT

PTE
PTE

PDE
PDE

PDBR

PDBR

Task A TSS

Task B TSS

6-19

T
#
ASK MANAGEMENT

to
±

 specific tasks. Other tasks in the system may have different LDTs that do not give them
accessÂ to the shared segments.

• Th
¾

rough segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area Â of the physical address space for each task, these segment descriptors permit the tasks
to s

±
hare segments. Such segment descriptors are commonly called aliases. This method of

sharing´ is even more selective than those listed above, because, other segment descriptors
in th

¯
e LDTs may point to independent linear addresses which are not shared.

6.6. 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit Intel Architecture processors also recognize a 16-bit TSS format like the one used in
In

°
tel 286 processors (refer to Figure 6-9). It is supported for compatibili ty with software written

to ru
±

n on these earlier Intel Architecture processors.

The following additional information is important to know about the 16-bit TSS.

• Do not use a 16-bit TSS to implement a virtual-8086 task.

• The v
¾

alid segment limit for a 16-bit TSS is 2CH.

• The 16-bit TSS does not contain a field for the base address of the page directory, which is
load

Ü
ed into control register CR3. Therefore, a separate set of page tables for each task is

n² ot supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
p® revious task is used.

• The I/O base address is not included in the 16-bit TSS, so none of the functions of the I/O
mÄ ap are supported.

• Wh
»

en task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP r

½
egister are lost.

• W
»

hen the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of

º
 the registers are modified and not maintained.

6-20

TASK MANAGEMENT

Figu re 6-9. 16-Bit TSS Form at

Task LDT Selector

DS Selector

SS Selector

CS Selector

ES Selector

DI

SI

BP

SP

BX

DX

CX

AX
á

FLAG Word

IP (Entry Point)

SS2

SP2

SS1

SP1

SS0

SP0

Previous Task Link

15 0

42

40

36

34

32

30

38

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

7
Multiple-Pr ocessor
Management

7-1

CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The Intel Architectur
¾

e provides several mechanisms for managing and improving the perfor-
mance of multiple processors connected to the same system bus. These mechanisms include:

• Bus locking and/or cache coherency management for performing atomic operations on
sy´ stem memory.

• Serializi
Ö

ng instructions. (These instructions apply only to the Pentium®
ì
 and P6 family

pr® ocessors.)

• Adv
è

ance programmable interrupt controller (APIC) located on the processor chip. (The
APIC architecture was introduced into the Intel Architecture with the Pentium®

1
 processor.)

• A secondary (level 2, L2) cache. For the P6 family processors, the L2 cache is included in
the

±
processor package and is tightly coupled to the processor. For the Pentium®

1
 and

Intel486™ processors, pins are provided to support an external L2 cache.

These mec
¾

hanisms are particularly useful in symmetric-multiprocessing systems; however, they
can also be u³ sed in applications where a Intel Architecture processor and a special-purpose
pro® cessor (such as a communications, graphics, or video processor) share the system bus.

The m
¾

ain goals of these multiprocessing mechanisms are as follows:

• T
¾
o maintain system memory coherency—When two or more processors are attempting

simultaneou´ sly to access the same address in system memory, some communication
mechÄ anism or memory access protocol must be available to promote data coherency and,
in som

¯
e instances, to allow one processor to temporarily lock a memory location.

• To maintain cache consistency—W
»

hen one processor accesses data cached in another
pr® ocessor, it must not receive incorrect data. If it modifies data, all other processors that
accessÂ that data must receive the modified data.

• To allow predictable ordering of writes to memory—In some circumstances, it is important
that m

±
emory writes be observed externally in precisely the same order as programmed.

• T
¾
o distribute interrupt handling among a group of processors—When several processors

are oÂ perating in a system in parallel, it is useful to have a centralized mechanism for
receivÃ ing interrupts and distributing them to available processors for servicing.

The
¾

Intel Architecture’s caching mechanism and cache consistency are discussed in Chapter 9,
Memory Cache Control. Bus and memory locking, serializing instructions, memory ordering,
and Â the processor’s internal APIC are discussed in the following sections.

7-2

MULTIPLE-PROCESSOR MANAGEMENT

7.1. LOCKED ATOMIC OPERATIONS

The 32-bit Intel Architecture processors support locked atomic operations on locations in
syst´ em memory. These operations are typically used to manage shared data structures (such as
s´ emaphores, segment descriptors, system segments, or page tables) in which two or more
pr® ocessors may try simultaneously to modify the same field or flag. The processor uses three
interd
¯

ependent mechanisms for carrying out locked atomic operations:

• Gua
Ô

ranteed atomic operations.

• Bus locking, using the LOCK# signal and the LOCK instruction prefix.

• C
·

ache coherency protocols that insure that atomic operations can be carried out on cached
d

Ï
ata structures (cache lock). This mechanism is present in the P6 family processors.

These mechan
¾

isms are interdependent in the following ways. Certain basic memory transactions
(such
¸

 as reading or writing a byte in system memory) are always guaranteed to be handled atom-
ically. That is, once started, the processor guarantees that the operation will be completed before
anoÂ ther processor or bus agent is allowed access to the memory location. The processor also
s´ upports bus locking for performing selected memory operations (such as a read-modify-write
opµ eration in a shared area of memory) that typically need to be handled atomically, but are not
autoÂ matically handled this way. Because frequently used memory locations are often cached in
a prÂ ocessor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s
caches witho³ ut asserting the bus lock. Here the processor’s cache coherency protocols insure
that other pro
±

cessors that are caching the same memory locations are managed properly while
atomic oÂ perations are performed on cached memory locations.

Note that the mec
ß

hanisms for handling locked atomic operations have evolved as the complexity
ofµ Intel Architecture processors has evolved. As such, more recent Intel Architecture processors
(such
¸

 as the P6 family processors) provide a more refined locking mechanism than earlier Intel
Architecture processors, as is described in the following sections.

7.1.1. Guaranteed At omic Operations

Th
¾

e Intel386™, Intel486™, Pentium®
1
, andÍ P6 family processors guarantee that the following

basic memo
º

ry operations will always be carried out atomically:

• Reading or writing a byte.

• R
Õ

eading or writing a word aligned on a 16-bit boundary.

• Reading or writing a doubleword aligned on a 32-bit boundary.

Th
¾

e P6 family processors guarantee that the following additional memory operations will
always be carÂ ried out atomically:

• Reading or writing a quadword aligned on a 64-bit boundary. (This operation is also
g× uaranteed on the Pentium®

ì
 processor.)

• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus.

• 16-, 32-, and 64-bit accesses to cached memory that fit within a 32-Byte cache line.

7-3

M
2

ULTIPLE-PROCESSOR MANAGEMENT

Accesses to cacheable memory that are spli t across bus widths, cache lines, and page boundaries
are Â not guaranteed to be atomic by the Intel486™, Pentium®

1
, orÍ P6 family processors. The P6

fam
¼

ily processors provide bus control signals that permit external memory subsystems to make
s´ pli t accesses atomic; however, nonaligned data accesses will seriously impact the performance
of µ the processor and should be avoided where possible.

7.1.2. Bus Loc king

Intel Architecture processors provide a LOCK# signal that is asserted automatically during
certain³ critical memory operations to lock the system bus. While this output signal is asserted,
requÃ ests from other processors or bus agents for control of the bus are blocked. Software can
s´ pecify other occasions when the LOCK semantics are to be followed by prepending the LOCK
p® refix to an instruction.

In the cas
°

e of the Intel386™, Intel486™, and Pentium®
1
 processors, explicitly locked instruc-

ti
±

ons will result in the assertion of the LOCK# signal. It is the responsibility of the hardware
designer
Ï

 to make the LOCK# signal available in system hardware to control memory accesses
amonÂ g processors.

For the P6 family processors, if the memory area being accessed is cached internally in the
p® rocessor, the LOCK# signal is generall y not asserted; instead, locking is only applied to the
pro® cessor’s caches (refer to Section 7.1.4., “Effects of a LOCK Operation on Internal Processor
C
·

aches”).

7
3

.1.2.1. AUTOMATIC LOCKING

Th
¾

e operations on which the processor automatically follows the LOCK semantics are as
fo
¼

llows:

• Wh
4

en executing an XCHG instruction that references memory.

• Wh
4

en settin g the B (busy) flag of a TSS descriptor. The processor tests and sets the busy
flag

¼
 in the type field of the TSS descriptor when switching to a task. To insure that two

p® rocessors do not switch to the same task simultaneously, the processor follows the LOCK
sem´ antics while testing and setting this flag.

• Wh
4

en updating segment descript ors. When loading a segment descriptor, the processor
willÒ set the accessed flag in the segment descriptor if the flag is clear. During this
oµ peration, the processor fol lows the LOCK semantics so that the descriptor will not be
moÄ dified by another processor while it is being updated. For this action to be effective,
opµ erating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment
d
Ï
escriptor is not-present, and specify a value for the type field that indicates that the

d
Ï
escriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several
mÄ emory accesses; therefore, locked operations cannot be used.)

7-4

MULTIPLE-PROCESSOR MANAGEMENT

— Use a locked operation to modify the access-rights byte to indicate that the segment
des
Ï

criptor is valid and present.

Note
ß

that the Intel386™ processor always updates the accessed flag in the segment
des

Ï
criptor, whether it is clear or not. The P6 family, Pentium®

ì
,Í and Intel486™ processors

onµ ly update this flag if it is not already set.

• When
4

 updating page-directory and page-table entr ies. When updating page-directory
anÂ d page-table entries, the processor uses locked cycles to set the accessed and dirty flag in
t

±
he page-directory and page-table entries.

• Acknowled
5

ging interrupts. After an interrupt request, an interrupt controller may use the
d

Ï
ata bus to send the interrupt vector for the interrupt to the processor. The processor

f
¼
ollows the LOCK semantics during this time to ensure that no other data appears on the

dat
Ï

a bus when the interrupt vector is being transmitted.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instruction
¯

s when they are used to modify a memory location. An invalid-opcode exception
(#U
¸

D) is generated when the LOCK prefix is used with any other instruction or when no write
oµ peration is made to memory (that is, when the destination operand is in a register).

• The bit test and modify instructions (BTS, BTR, and BTC).

• Th
¾

e exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).

• The LOCK prefix is automatically assumed for XCHG instruction.

• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

ß

• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and

è
 XOR.

A lock
è

ed instruction is guaranteed to lock only the area of memory defined by the destination
opµ erand, but may be interpreted by the system as a lock for a larger memory area.

So
Ö

ftware should access semaphores (shared memory used for signaling between multiple
pr® ocessors) using identical addresses and operand lengths. For example, if one processor
accessÂ es a semaphore using a word access, other processors should not access the semaphore
using a ä byte access.

The
¾

integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics´ are followed for as many bus cycles as necessary to update the entire operand.
However
Ø

, it is recommend that locked accesses be aligned on their natural boundaries for better
syst´ em performance:

• Any boundary for an 8-bit access (locked or otherwise).

• 16-bit boundary for locked word accesses.

• 3
Æ
2-bit boundary for locked doubleword access.

7-5

M
2

ULTIPLE-PROCESSOR MANAGEMENT

• 64
É

-bit boundary for locked quadword access.

Lock
Ñ

ed operations are atomic with respect to all other memory operations and all externally
visiÙ ble events. Only instruction fetch and page table accesses can pass locked instructions.
Locked instructions can be used to synchronize data written by one processor and read by
anotÂ her processor.

F
Ý

or the P6 family processors, locked operations serialize all outstanding load and store opera-
ti

±
ons (that is, wait for them to complete).

Lo
Ñ

cked instructions should not be used to insure that data written can be fetched as instructions.

NO
.

TE

The locked instructions for the current versions of the Intel486™, Pentium®
1
,Í

anÂ d P6 family processors will allow data written to be fetched as instructions.
Howev

Ø
er, Intel recommends that developers who require the use of self-

modifying code use a different synchronizing mechanism, described in the
fo

¼
llowing sections.

7.1.3. Handling S elf- and Cross-Modif ying Code

The act of a processor writing data into a currently executing code segment with the intent of
executinÓ g that data as code is called s� elf-modifyin g code. Intel Architecture processors exhibit
modÄ el-specific behavior when executing self-modif ied code, depending upon how far ahead of
the

±
current execution pointer the code has been modified. As processor architectures become

morÄ e complex and start to speculatively execute code ahead of the retirement point (as in the P6
fam

¼
ily processors), the rules regarding which code should execute, pre- or post-modification,

becom
º

e blurred. To write self-modifying code and ensure that it is compliant with current and
fut

¼
ure Intel Architectures one of the following two coding options should be chosen.

(* OPTION 1 *)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The us
¸

e of one of these options is not required for programs intended to run on the Pentium®
1
 or

In
°

tel486™ processors, but are recommended to insure compatibility with the P6 family proces-
so´ rs.)

It s
°

hould be noted that self-modifying code will execute at a lower level of performance than
non² self-modifying or normal code. The degree of the performance deterioration wil l depend
upoä n the frequency of modification and specific characteristics of the code.

7-6

MULTIPLE-PROCESSOR MANAGEMENT

The act of one processor writing data into the currently executing code segment of a second
pr® ocessor with the intent of having the second processor execute that data as code is called
cr$ oss-modifying code. As with self-modifying code, Intel Architecture processors exhibit
model-specific behavior when executing cross-modifying code, depending upon how far ahead
ofµ the executing processors current execution pointer the code has been modified. To write
cros³ s-modifying code and insure that it is compliant with current and future Intel Architectures,
t
±
he following processor synchronization algorithm should be implemented.

; Action of Modifying Processor
Store modified code (as data) into code segment;
Memory_Flag ←6 1;

; Action of Executing Processor
WHILE (Memory_Flag ≠� 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The us
¸

e of this option is not required for programs intended to run on the Intel486™ processor,
b
º
ut is recommended to insure compatibility with the Pentium®

1
, anÍ d P6 family processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance
t
±
han noncross-modifying (normal) code, depending upon the frequency of modification and
specific char´ acteristics of the code.

7.1.4. Effects of a LOCK Operation on Internal Proc essor
Caches

F
Ý

or the Intel486™ and Pentium®
1
 processors, the LOCK# signal is always asserted on the bus

du
Ï

ring a LOCK operation, even if the area of memory being locked is cached in the processor.

For the P6
Ý

 family processors, if the area of memory being locked during a LOCK operation is
cached³ in the processor that is performing the LOCK operation as write-back memory and is
com³ pletely contained in a cache line, the processor may not assert the LOCK# signal on the bus.
In
°

stead, it will modify the memory location internally and allow it’s cache coherency mecha-
nism to² insure that the operation is carried out atomically. This operation is called “cache
locking.” The cache coherency mechanism automatically prevents two or more processors that
hav
ø

e cached the same area of memory from simultaneously modifying data in that area.

7.2. MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and
writesÒ (stores) out onto the bus to system memory. The Intel Architecture supports several
memoÄ ry ordering models depending on the implementation of the architecture. For example, the
Intel386™ processor enforces pr7 ogram ordering (generally referred to as s� trong ordering),

Á

7-7

M
2

ULTIPLE-PROCESSOR MANAGEMENT

where rÒ eads and writes are issued on the system bus in the order they occur in the instruction
s´ tream under all circumstances.

T
¾
o allow optimizing of instruction execution, the Intel Architecture allows departures from

s´ trong-ordering model called pr7 ocessor ordering in P6-family processors. These pr7 ocessor-
orderin8 g variations allow performance enhancing operations such as allowing reads to go ahead
oµ f writes by buffering writes. The goal of any of these variations is to increase instruction execu-
ti

±
on speeds, while maintaining memory coherency, even in multiple-processor systems.

The fo
¾

llowing sections describe the memory ordering models used by the Intel486™, Pentium®
1
,Í

and P6Â family processors.

7.2.1. Memory Order ing in the Pentium ®
9
 and Intel 486™

Processors

Th
¾

e Pentium®
1
 and Intel486™ processors follow the processor-ordered memory model;

however, they operate as strongly-ordered processors under most circumstances. Reads and
writesÒ always appear in programmed order at the system bus—except for the following situation
where Ò processor ordering is exhibited. Read misses are permitted to go ahead of buffered writes
on the systµ em bus when all the buffered writes are cache hits and, therefore, are not directed to
the same ad

±
dress being accessed by the read miss.

In
°

the case of I/O operations, both reads and writes always appear in programmed order.

S
Ö

oftware intended to operate correctly in processor-ordered processors (such as the P6 family
pro® cessors) should not depend on the relatively strong ordering of the Pentium®

1
 or Intel486™

pro® cessors. Instead, it should insure that accesses to shared variables that are intended to control
concu³ rrent execution among processors are explicitl y required to obey program ordering
t
±
hrough the use of appropriate locking or serializing operations (refer to Section 7.2.4.,
“Strengthening or Weakening the Memory Ordering Model”).

7.2.2. Memory Order ing in the P6 Family Processors

The P6 family processors also use a processor-ordered memory ordering model that can be
fur

¼
ther refined defined as “wr ite ordered with store-buffer forwarding.” This model can be char-

acterized as foÂ ll ows.

In a si
°

ngle-processor system for memory regions defined as write-back cacheable, the following
ordµ ering rules apply:

1. Reads can be carried out speculatively and in any order.

2.
Å

Reads can pass buffered writes, but the processor is self-consistent.

3.
Æ

Writes to memory are always carried out in program order.

4. Writes can be buffered.

5.
È

Writes are not performed speculatively; they are only performed for instructions that have
actually been Â retired.

7-8

MULTIPLE-PROCESSOR MANAGEMENT

6
É
. Data from buffered writes can be forwarded to waiting reads within the processor.

7.
Ê

Reads or writes cannot pass (be carried out ahead of) I/O instructions, locked instructions,
or serializiµ ng instructions.

The second rule allows a read to pass a write. However, if the write is to the same memory loca-
tio
±

n as the read, the processor’s internal “snooping” mechanism will detect the conflict and
upä date the already cached read before the processor executes the instruction that uses the value.

The sixth rule constitutes an exception to an otherwise write ordered model.

In a m
°

ultiple-processor system, the following ordering rules apply:

• I
°
ndividual processors use the same ordering rules as in a single-processor system.

• W
»

rites by a single processor are observed in the same order by all processors.

• W
»

rites from the individual processors on the system bus are globally observed and are
NOT o

ß
rdered with respect to each other.

The latter rule can be clarified by the example in Figure 7-1. Consider three processors in a
syst´ em and each processor performs three writes, one to each of three defined locations (A, B,
andÂ C). Individually, the processors perform the writes in the same program order, but because
ofµ bus arbitration and other memory access mechanisms, the order that the three processors write
the ind
±

ividual memory locations can differ each time the respective code sequences are executed
onµ the processors. The final values in location A, B, and C would possibly vary on each execu-
tio
±

n of the write sequence.

F
�

igure 7-1. Example of Write Ordering in Multi ple-Processor Sy stems

Processor #1 Processor #2 Processor #3

W
�

rite A.3
W

�
rite B.3

W
�

rite C.3

Write A.1
W

�
rite B.1

W
�

rite A.2
W

�
rite A.3

W
�

rite C.1
Write B.2
W

�
rite C.2

Write B.3
W

�
rite C.3

Order of Writes From Ind ivi dual Processors

Example of Order of Actual Writes

Write A.2
W

�
rite B.2

Write C.2

Write A.1
W

�
rite B.1

Write C.1

From All Processors to Memory

Writes are in order
with respect to

individual processors. W
�

rites from all
processors are
not guaranteed
t

à
o occur in a
particular order.

Each processor
is guaranteed to

perform writes
in program order.

7-9

M
2

ULTIPLE-PROCESSOR MANAGEMENT

The processor-ordering model described in this section is virtually identical to that used by the
Pe

¿
ntium®

1
 and Intel486™ processors. The only enhancements in the P6 family processors are:

• Add
è

ed support for speculative reads.

• Store-b
Ö

uffer forwarding, when a read passes a write to the same memory location.

• Out
Ð

 of order store from long string store and string move operations (refer to Section
7.

Ê
2.3., “Out of Order Stores From String Operations in P6 Family Processors” below).

7.2.3. Out of Order Stores From S tring Operations i n P6 Famil y
Processors

The P
¾

6 family processors modify the processors operation during the string store operations
(in

¸
itiated with the MOVS and STOS instructions) to maximize performance. Once the “fast

s´ tring” operations initial conditions are met (as described below), the processor will essentially
operµ ate on, from an external perspective, the string in a cache line by cache line mode. This
results in the processor looping on issuing a cache-line read for the source address and an inval-
id

¯
ation on the external bus for the destination address, knowing that all bytes in the destination

cach³ e line will be modified, for the length of the string. In this mode interrupts will only be
accepted byÂ the processor on cache line boundaries. It is possible in this mode that the destina-
ti

±
on line invalidations, and therefore stores, will be issued on the external bus out of order.

Co
·

de dependent upon sequential store ordering should not use the string operations for the entire
dat

Ï
a structure to be stored. Data and semaphores should be separated. Order dependent code

sh´ ould use a discrete semaphore uniquely stored to after any string operations to allow correctly
ordµ ered data to be seen by all processors.

Initial conditions for “fast string” operations:

• S
Ö

ource and destination addresses must be 8-byte aligned.

• S
Ö

tring operation must be performed in ascending address order.

• The initial operation counter (ECX) must be equal to or greater than 64.

• Sour
Ö

ce and destination must not overlap by less than a cache line (32 bytes).

• Th
¾

e memory type for both source and destination addresses must be either WB or WC.

7.2.4. Strengthening or Weakening the Memory O rdering Model

The Intel Architecture provides several mechanisms for strengthening or weakening the
memoÄ ry ordering model to handle special programming situations. These mechanisms include:

• The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions
fo

¼
rce stronger ordering on the processor.

• Th
¾

e memory type range registers (MTRRs) can be used to strengthen or weaken memory
orµ dering for specific area of physical memory (refer to S

Ö
ection 9.12., “Memory Type

7-10

MULTIPLE-PROCESSOR MANAGEMENT

Range Registers (MTRRs)” , in Chapter 9, Memory Cache Control)
Á
. MTRRs are available

onµ ly in the P6 family processors.

These mech
¾

anisms can be used as follows.

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of
writesÒ to their I/O buffers. I/O instructions can be used to (the IN and OUT instructions) impose
st´ rong write ordering on such accesses as follows. Prior to executing an I/O instruction, the
p® rocessor waits for all previous instructions in the program to complete and for all buffered
writesÒ to drain to memory. Only instruction fetch and page tables walks can pass I/O instruc-
t
±
ions. Execution of subsequent instructions do not begin until the processor determines that the
I/O instruction has been completed.

S
Ö

ynchronization mechanisms in multiple-processor systems may depend upon a strong
memoÄ ry-ordering model. Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carr³ ied out atomically. Locking operations typically operate like I/O operations in that they wait
for all
¼

 previous instructions to complete and for all buffered writes to drain to memory (refer to
S
Ö

ection 7.1.2., “Bus Locking”).

Prog
¿

ram synchronization can also be carried out with serializing instructions (refer to Section
7.4
Ê

., “Serializing Instructions”). These instructions are typically used at critical procedure or
tas
±

k boundaries to force completion of all previous instructions before a jump to a new section
ofµ code or a context switch occurs. Like the I/O and locking instructions, the processor waits
uä ntil all previous instructions have been completed and all buffered writes have been drained to
memory before executing the serializing instruction.

The MTR
¾

Rs were introduced in the P6 family processors to define the cache characteristics for
specified are´ as of physical memory. The following are two examples of how memory types set
upä with MTRRs can be used strengthen or weaken memory ordering for the P6 family proces-
so´ rs:

• Th
¾

e uncached (UC) memory type forces a strong-ordering model on memory accesses.
Here, all reads and writes to the UC memory region appear on the bus and out-of-order or
specu´ lative accesses are not performed. This memory type can be applied to an address
rÃ ange dedicated to memory mapped I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) memory
t

±
ype can be chosen. Here, reads can be performed speculatively and writes can be buffered
anÂ d combined. For this type of memory, cache locking is performed on atomic (locked)
oµ perations that do not split across cache lines, which helps to reduce the performance
p® enalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock

±
 the bus during the entire read-modify-write operation. With the WB memory

typ
±

e, the XCHG instruction locks the cache instead of the bus if the memory access is
co³ ntained within a cache line.

It is
°

 recommended that software written to run on P6 family processors assume the processor-
orµ dering model or a weaker memory-ordering model. The P6 family processors do not imple-
mÄ ent a strong memory-ordering model, except when using the UC memory type. Despite the
fact th
¼

at P6 family processors support processor ordering, Intel does not guarantee that future
p® rocessors will support this model. To make software portable to future processors, it is recom-

7-11

M
2

ULTIPLE-PROCESSOR MANAGEMENT

mended that operating systems provide critical region and resource control constructs and API’s
(app

¸
li cation program interfaces) based on I/O, locking, and/or serializing instructions be used to

s´ ynchronize access to shared areas of memory in multiple-processor systems. Also, software
sh´ ould not depend on processor ordering in situations where the system hardware does not vsup-
p® ort this memory-ordering model.

7.3. PROPAGATION OF PAGE TABLE ENTRY CHANGES TO
MULTIPLE PROCESSORS

In a multiprocessor system, when one processor changes a page table entry or mapping, the
chang³ es must also be propagated to all the other processors. This process is also known as “TLB
Sh

Ö
ootdown.” Propagation may be done by memory-based semaphores and/or interprocessor

i
¯
nterrupts between processors. One naive but algorithmically correct TLB Shootdown sequence
for

¼
 the Intel Architecture is:

1. Begin barrier: Stop all processors. Cause all but one to HALT or stop in a spinloop.

2.
Å

Let the active processor change the PTE(s).

3
Æ
. Let all processors invalidate the PTE(s) modified in their TLBs.

4. End barrier: Resume all processors.

Alt
è

ernate, performance-optimized, TBL Shootdown algorithms may be developed; however,
care mu³ st be taken by the developers to ensure that either:

• The differing TLB mappings are not actually used on different processors during the
upä date process.

OR
Ð

• The operating system is prepared to deal with the case where processor(s) is/are using the
s´ tale mapping during the update process.

7.4. SERIALIZING INSTRUCTIONS

The Intel Architecture defines several seria� lizing instructions. These instructions force the
pro® cessor to complete all modifications to flags, registers, and memory by previous instructions
anÂ d to drain all buffered writes to memory before the next instruction is fetched and executed.
For example, when a MOV to control register instruction is used to load a new value into control
register CÃ R0 to enable protected mode, the processor must perform a serializing operation
befo

º
re it enters protected mode. This serializing operation insures that all operations that were

s´ tarted while the processor was in real-address mode are completed before the switch to
pro® tected mode is made.

Th
¾

e concept of serializing instructions was introduced into the Intel Architecture with the
Pentium®

1
 processor to support parallel instruction execution. Serializing instructions have no

mÄ eaning for the Intel486™ and earlier processors that do not implement parallel instruction
executioÓ n.

7-12

MULTIPLE-PROCESSOR MANAGEMENT

It is important to note that executing of serializing instructions on P6 family processors constrain
speculative execu´ tion, because the results of speculatively executed instructions are discarded.

Th
¾

e following instructions are serializing instructions:

• Privileged serializing instructions—MOV (to control register), MOV (to debug register),
WR

»
MSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

• Non
ß

privileged serializing instructions—CPUID, IRET, and RSM.

The CPUID instruction can be executed at any privilege level to serialize instruction execu-
tion w
±

ith no effect on program flow, except that the EAX, EBX, ECX, and EDX registers
arÂ e modified.

Nothin
ß

g can pass a serializing instruction, and serializing instructions cannot pass any other
in
¯

struction (read, write, instruction fetch, or I/O).

W
»

hen the processor serializes instruction execution, it ensures that all pending memory transac-
tio
±

ns are completed, including writes stored in its store buffer, before it executes the next
in
¯

struction.

Th
¾

e following additional information is worth noting regarding serializing instructions:

• The processor does not writeback the contents of modified data in its data cache to external
memÄ ory when it serializes instruction execution. Software can force modified data to be
writtenÒ back by executing the WBINVD instruction, which is a serializing instruction. It
sh´ ould be noted that frequent use of the WBINVD instruction will seriously reduce system
p® erformance.

• W
»

hen an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CR0), the instruction should be followed by a jump instruction. The
tar

±
get instruction of the jump instruction is fetched with the new setting of the PG flag (that

is,
¯

paging is enabled or disabled), but the jump instruction itself is fetched with the
prev® ious setting. The P6 family processors do not require the jump operation following the
moÄ ve to register CR0 (because any use of the MOV instruction in a P6 family processor to
write toÒ CR0 is completely serializing). However, to maintain backwards and forward
com³ patibility with code written to run on other Intel Architecture processors, it is
rÃ ecommended that the jump operation be performed.

• W
»

henever an instruction is executed to change the contents of CR3 while paging is
enabÓ led, the next instruction is fetched using the translation tables that correspond to the
n² ew value of CR3. Therefore the next instruction and the sequentially following instruc-
t

±
ions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, refer to Sect

Ö
ion 9.10., “Invalidating the Translation Lookaside

B
â

uffers (TLBs)”, Chapter 9, M
ó

emory Cache Control.)

• The Pen
¾

tium®
ì
 and P6 family processors use branch-prediction techniques to improve

p® erformance by prefetching the destination of a branch instruction before the branch
in

¯
struction is executed. Consequently, instruction execution is not deterministically

serialized wh´ en a branch instruction is executed.

7-13

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER
(APIC)

Th
¾

e Advanced Programmable Interrupt Controller (APIC), referred to in the following sections
asÂ the local API C, was inÍ troduced into the Intel Architecture with the Pentium®

1
 processor

(beg
¸

inning with the 735/90 and 815/100 models) and is included in all P6 family processors. The
local AP
Ü

IC performs two main functions for the processor:

• It processes local external interrupts that the processor receives at its interrupt pins and
lo

Ü
cal internal interrupts that software generates.

• In
°

 multiple-processor systems, it communicates with an external I/O APIC chip. The
exterÓ nal I/O APIC receives external interrupt events from the system and interprocessor
i

¯
nterrupts from the processors on the system bus and distributes them to the processors on
th

±
e system bus. The I/O APIC is part of Intel’s system chip set.

Figure 7-2 shows the relationship of the local APICs on the processors in a multiple-processor
(MP) system an

¸
d the I/O APIC. The local APIC controls the dispatching of interrupts (to its

asÂ sociated processor) that it receives either locally or from the I/O APIC. It provides facilities
for queuing, nesting and masking of interrupts. It handles the interrupt delivery protocol with its
local pr

Ü
ocessor and accesses to APIC registers, and also manages interprocessor interrupts and

remÃ ote APIC register reads. A timer on the local APIC allows local generation of interrupts, and
local interrupt pins permit local reception of processor-specific interrupts. The local APIC can
be d

º
isabled and used in conjunction with a standard 8259A-style interrupt controller. (Disabling

th
±

e local APIC can be done in hardware for the Pentium®
1
 processors or in software for the P6

family processors.)

The I
¾

/O APIC is responsible for receiving interrupts generated by I/O devices and distributing
them am
±

ong the local APICs by means of the APIC Bus. The I/O APIC manages interrupts using
eiÓ ther static or dynamic distribution schemes. Dynamic distribution of interrupts allows routing
oµ f interrupts to the lowest priority processors. It also handles the distribution of interprocessor
interru
¯

pts and system-wide control functions such as NMI, INIT, SMI and start-up-interpro-
cess³ or interrupts. Individual pins on the I/O APIC can be programmed to generate a specific,
prio® riti zed interrupt vector when asserted. The I/O APIC also has a “virtual wire mode” that
allÂ ows it to cooperate with an external 8259A in the system.

The APIC in the Pentium®
1
 and P6 family processors is an architectural subset of the Intel

824
Ë

89DX external APIC. The differences are described in S
Ö

ection 7.5.19., “Software Visible
Di

Þ
fferences Between the Local APIC and the 82489DX”

The following sections focus on the local APIC, and its implementation in the P6 family proces-
so´ rs. Contact Intel for the information on I/O APIC.

7-14

MULTIPLE-PROCESSOR MANAGEMENT

7.5.1. Presence of AP IC

Beginning with the P6 family processors, the presence or absence of an on-chip APIC can be
d
Ï
etected using the CPUID instruction. When the CPUID instruction is executed, bit 9 of the

featur
¼

e flags returned in the EDX register indicates the presence (set) or absence (clear) of an
onµ -chip local APIC.

7.5.2. Enabling or Disabli ng the Local APIC

F
Ý

or the P6 family processors, a flag (the E flag, bit 11) in the APIC_BASE_MSR register
p® ermits the local APIC to be explicit ly enabled or disabled. Refer to Secti

Ö
on 7.5.8., “Relocation

oµ f the APIC Registers Base Address” for a description of this flag. For the Pentium®
1
 processor,

the AP
±

ICEN pin (which is shared with the PICD1 pin) is used during reset to enable or disable
the
±

local APIC.

7.5.3. APIC Bus

All
è

I/O APIC and local APICs communicate through the APIC bus (a 3-line inter-APIC bus).
Two of the lines are open-drain (wired-OR) and are used for data transmission; the third line is
a clockÂ . T

:
he bus and its messages are invisible to software and are not classed as architec-

tu
ñ

ral (that is, the APIC bus and message format may change in future implementations
wi; thout having any effect on software compatibil ity).

Figure 7-2. I/O APIC and Loca l APICs in Multi ple-Processor Sy stem s

CPU

Local APIC

Processor #2

Local
Interrupts

CPU

Local APIC

Processor #3

Local
Interrupts

CPU

Local APIC

Processor #1

Local
Interrupts

I/O APIC

External
Interrupts I/O Chip Set

APIC Bus

7-15

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.4. Valid Inte rrupts

The local and I/O APICs support 240 distinct vectors in the range of 16 to 255. Interrupt priority
is

¯
 implied by its vector, according to the following relationship:

pri® ority = vectoÙ r / 16

One is the lowest prio
Ð

rity and 15 is the highest. Vectors 16 through 31 are reserved for exclusive
use bä y the processor. The remaining vectors are for general use. The processor’s local APIC
includes an in-service entry and a holding entry for each priority level. To avoid losing inter-
rupÃ ts, software should allocate no more than 2 interrupt vectors per priority.

7.5.5. Interrupt Sources

The local APIC can receive interrupts from the following sources:

• Interrupt pins on the processor chip, driven by locally connected I/O devices.

• A bu
è

s message from the I/O APIC, originated by an I/O device connected to the I/O APIC.

• A bus message from another processor’s local APIC, originated as an interprocessor
in

¯
terrupt.

• Th
¾

e local APIC’s programmable timer or the error register, through the self- interrupt
gen× erating mechanism.

• S
Ö

oftware, through the self-interrupt generating mechanism.

• (P
¸

6 family processors.) The performance-monitoring counters.

The local APIC services the I/O APIC and interprocessor interrupts according to the information
in

¯
cluded in the bus message (such as vector, trigger type, interrupt destination, etc.). Interpreta-

t
±
ion of the processor’s interrupt pins and the timer-generated interrupts is programmable, by
means of the local vector table (LVT). To generate an interprocessor interrupt, the source
pro® cessor programs its interrupt command register (ICR). The programming of the ICR causes
gener× ation of a corresponding interrupt bus message. Refer to Section 7.5.11., “Local Vector
Table” and Section 7.5.12., “Interprocessor and Self-Interrupts” for detailed information on
pro® gramming the LVT and ICR, respectively.

7.5.6. Bus Arbit ration Overview

Being connected on a common bus (the APIC bus), the local and I/O APICs have to arbitrate for
perm® ission to send a message on the APIC bus. Logically, the APIC bus is a wired-OR connec-
ti

±
on, enabling more than one local APIC to send messages simultaneously. Each APIC issues its

arbitrationÂ priority at the beginning of each message, and one winner is collectively selected
fo

¼
llowing an arbitration round. At any given time, a local APIC’s the arbitration priority is a

uniqä ue value from 0 to 15. The arbitration priority of each local APIC is dynamically modified
after Â each successfully transmitted message to preserve fairness. Refer to Section 7.5.16., “A PIC
Bu

â
s Arbitration Mechanism and Protocol” for a detailed discussion of bus arbitration.

7-16

MULTIPLE-PROCESSOR MANAGEMENT

S
Ö

ection 7.5.3., “A PIC Bus” describes the existing arbitration protocols and bus message
fo
¼

rmats, while Section 7.5.12., “Interprocessor and Self-Interrupts” describes the INIT level de-
assÂ ert message, used to resynchronize all local APICs’ arbitration IDs. Note that except for start-
upä (refer to Section 7.5.11., “Local Vector Table”), all bus messages failing during delivery are
auÂ tomatically retried. The software should avoid situations in which interrupt messages may be
“ignored” by disabled or nonexistent “target” local APICs, and messages are being resent
repeatedly.

7.5.7. The Local APIC Block Diag ram

Fi
Ý

gure 7-3 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. The registers are memory-mapped to the processor’s
ph® ysical address space, and for each processor they have an identical address space of 4 KBytes
st´ arting at address FEE00000H. (Refer to Section 7.5.8., “Relocation of the APIC Registers
Base Address” for information on relocating the APIC registers base address for the P6 family
pr® ocessors.)

NOTE

For P6 family processors, the APIC handles all memory accesses to addresses
within the 4Ò -KByte APIC register space and no external bus cycles are
p® roduced. For the Pentium®

1
 processors with an on-chip APIC, bus cycles are

p® roduced for accesses to the 4-KByte APIC register space. Thus, for software
in

¯
tended to run on Pentium®

1
 processors, system software should explicitly

n² ot map the APIC register space to regular system memory. Doing so can
result in an invalid opcode exception (#UD) being generated or unpredictable
exÓ ecution.

The
¾

4-KByte APIC register address space should be mapped as uncacheable (UC), refer to
Secti
Ö

on 9, “Memory Cache Control” , in Chapter 9, Memory Cache Control.

7-17

M
2

ULTIPLE-PROCESSOR MANAGEMENT

W
»

ithin the 4-KByte APIC register area, the register address allocation scheme is shown in Table
7-1

Ê
. Register offsets are aligned on 128-bit boundaries. All registers must be accessed using 32-

bit l
º

oads and stores. Wider registers (64-bit or 256-bit) are defined and accessed as independent
multiple 32-bit registers. If a LOCK prefix is used with a MOV instruction that accesses the
AP

è
IC address space, the prefix is ignored; that is, a locking operation does not take place.

Figure 7-3. Local APIC Struc ture

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Interrupt Command
Register

T

T
<

MR, ISR, IRR Registers

S R V
15

T S R V
1

T

Software Transparent Registers

R V T R V

A
=

rb. ID
Register

Ve
>

ctor
Decode

Processor
Priority

Acceptance
Logic

Vec[3:0]
& TM

?
R Bit

Register
Se

�
lect

INIT
�

,
NMI,
SM

�
I

A
=

PIC Bus
Send/Receive Logic

Dest. Mode
& V

?
ector

AP
=

IC Serial Bus

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters*

Error

Timer

Local Vec Table

DATA/ADDR

Prioritizer

T

ask Priority
Register

EOI Register

INTREXTINTINTA

LINT0/1

* Available only in P6 family processors

7-18

MULTIPLE-PROCESSOR MANAGEMENT

Table 7-1. Loc al APIC Regis ter Addre ss Map

Address Register N ame Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/write

FEE0 0030H Local APIC Version Register Read only

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register Read/Write

FEE0 0090H Arbitration Priority Register Read only

FEE0 00A0H Processor Priority Register Read only

FEE0 00B0H EOI Register Write only

FEE0 00C0H Reserved

FEE0 00D0H Logical Destination Register Read/Write

FEE0 00E0H Destination Format Register Bits 0-27 Read only. Bits
28-31 Read/Write

FEE0 00F0H Spurious-Interrupt Vector Register Bits 0-3 Read only. Bits
4-9 Read/Write

FEE0 0100H through
FEE0 0170H

ISR 0-255 Read only

FEE0 0180H through
FEE0 01F0H

TM

R 0-255 Read only

FEE0 0200H through
FEE0 0270H

IRR 0-255 Read only

FEE0 0280H Error Status Register Read only

FEE0 0290H through
FEE0 02F0H

Reserved

FEE0 0300H Interrupt Command Reg. 0-31 Read/Write

FEE0 0310H Interrupt Command Reg. 32-63 Read/Write

FEE0 0320H Local Vector Table (Timer) Read/Write

FEE0 0330H Reserved

FEE0 0340H Performance Counter LVT1 Read/Write

FEE0 0350H Local Vector Table (LINT0) Read/Write

FEE0 0360H Local Vector Table (LINT1) Read/Write

FEE0 0370H Local Vector Table (Error)2 Read/Write

FEE0 0380H Initial Count Register for Timer Read/Write

7-19

M
2

ULTIPLE-PROCESSOR MANAGEMENT

NOTES:

1. Introduced into the APIC Architecture in the Pentium® Pro processor.

2. Introduced into the APIC Architecture in the Pentium® processor.

7.5.8. Reloc ation of the APIC Regist ers Base Addre ss

The P6 family processors permit the starting address of the APIC registers to be relocated from
F

Ý
EE00000H to another physical address. This extension of the APIC architecture is provided to

h
ø
elp resolve conflicts with memory maps of existing systems. The P6 family processors also

p® rovide the ability to enable or disable the local APIC.

An alternate APIC
è

 base address is specified through the APIC_BASE_MSR register. This MSR
is

¯
 located at MSR address 27 (1BH). Figure 7-4 shows the encoding of the bits in this register.

This register also provides the flag for enabling or disabling the local APIC.

The f
¾

unctions of the bits in the APIC_BASE_MSR register are as follows:

BSP fla
@

g, bit 8 In
°

dicates if the processor is the bootstrap processor (BSP), determined during
th
±

e MP initialization (refer to Sect
Ö

ion 7.7., “Multiple-Processor (MP) Initial-
i
¯
zation Protocol”). Following a power-up or reset, this flag is clear for all the
pr® ocessors in the system except the single BSP.

E
�

 (APIC Enabled) flag, bit 11
Permits the local APIC to be enabled (set) or disabled (clear). Following a
p® ower-up or reset, this flag is set, enabling the local APIC. When this flag is

FEE0 0390H Current Count Register for Timer Read only

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Timer Divide Configuration Register Read/Write

FEE0 03F0H Reserved

Figure 7-4. APIC_BASE_ MSR

T
#
able 7-1. Loc al APIC Regis ter Addre ss Map (Con td.)

Address Register Name Software Read/ Write

BSP—Processor is BSP

E—APIC enable/disable
APIC Base—Base physical address

63
A

0
�

Reserved

7
B

1011 8
�

9
C

12

Reserved

36
�

35
�

APIC Base

7-20

MULTIPLE-PROCESSOR MANAGEMENT

clear³ , the processor is functionally equivalent to an Intel Architecture processor
withouÒ t an on-chip APIC (for example, an Intel486™ processor). This flag is
imp

¯
lementation dependent and in not guaranteed to be available or available at

the
±

same location in future Intel Architecture processors.

API
5

C Base field, bits 12 through 35
Specifies

Ö
the base address of the APIC registers. This 24-bit value is extended

b
º
y 12 bits at the low end to form the base address, which automatically aligns

t
±
he address on a 4-KByte boundary. Following a power-up or reset, this field is
set to´ FEE00000H.

Bits 0 through 7, bits 9 and 10, and bits 36 through 63 in the APIC_BASE_MSR register are
resÃ erved.

7.5.9. Interrupt De stination a nd APIC ID

The destination of an interrupt can be one, all, or a subset of the processors in the system. The
sen´ der specifies the destination of an interrupt in one of two destination modes: physical or
log
Ü

ical.

7.5.9.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID. This
ID is match
°

ed against the local APIC’s actual physical ID, which is stored in the local APIC ID
regÃ ister (refer to Figure 7-5). Either a single destination (the ID is 0 through 14) or a broadcast
to
±

 all (the ID is 15) can be specified in physical destination mode. Note that in this mode, up to
15 the local APICs can be individually addressed. An ID of all 1s denotes a broadcast to all local
APIC
è

s. The APIC ID register is loaded at power up by sampling configuration data that is driven
onµ to pins of the processor. For the P6 family processors, pins A11# and A12# and pins BR0#
th
±

rough BR3# are sampled; for the Pentium®
1
 processor, pins BE0# through BE3# are sampled.

The
¾

ID portion can be read and modified by software.

7.5.9.2. LOGICAL DESTINATION MODE

In logical destination mode, message destinations are specified using an 8-bit message destina-
tion ad
±

dress (MDA). The MDA is compared against the 8-bit logical APIC ID field of the APIC
lo
Ü

gical destination register (LDR), refer to Figure 7-6.

Figure 7-5. Local APIC ID Regis ter

31
�

0
�

Reserved

232427

ReservedAPIC ID

A
á

ddress: 0FEE0 0020H
Value after reset: 0000 0000H

28

7-21

M
2

ULTIPLE-PROCESSOR MANAGEMENT

Destination format register (DFR) defines the interpretation of the logical destination informa-
ti

±
on (refer to Figure 7-7). The DFR register can be programmed for f

ö
lat model or clus$ ter model

i
¯
nterrupt delivery modes.

7
3

.5.9.3. FLAT MODEL

F
Ý

or the flat model, bits 28 through 31 of the DFR must be programmed to 1111. The MDA is
interpr

¯
eted as a decoded address. This scheme allows the specification of arbitrary groups of

local APICs simply by setting each APIC’s bit to 1 in the corresponding LDR. In the flat model,
up ä to 8 local APICs can coexist in the system. Broadcast to all APICs is achieved by setting all
8 b

Ë
its of the MDA to ones.

7.5.9.4. CLUSTER MODEL

For the cluster model, the DFR bits 28 through 31 should be programmed to 0000. In this model,
there ar

±
e two basic connection schemes: flat cluster and hierarchical cluster.

In the
°

flat cluster connection model, all clusters are assumed to be connected on a single APIC
bus

º
. Bits 28 through 31 of the MDA contains the encoded address of the destination cluster.

These
¾

bits are compared with bits 28 through 31 of the LDR to determine if the local APIC is
part® of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 through 27 of the
LDR to identify individual local APIC unit within the cluster. Arbitrary sets of processors within
a clÂ uster can be specified by writing the target cluster address in bits 28 through 31 of the MDA
anÂ d setting selected bits in bits 24 through 27 of the MDA, corresponding to the chosen members
of the clustµ er. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
pr® ocessors can be specified in the message. The APIC arbitration ID, however, supports only
15 agents, and hence the total number of processors supported in this mode is limited to 15.

F
�

igure 7-6. Logica l Destination Re gist er (LDR)

Figu
�

re 7-7. Destina tion Forma t Regi ster (DFR)

31
�

0
�

2324

ReservedLogical APIC ID

A
á

ddress: 0FEE0 00D0H
Value after reset: 0000 0000H

31
�

0
�

Model

28

Reserved (All 1s)

A
á

ddress: 0FEE0 00E0H
Value after reset: FFFF FFFFH

7-22

MULTIPLE-PROCESSOR MANAGEMENT

Broadcast to all local APICs is achieved by setting all destination bits to one. This guarantees a
match Ä on all clusters, and selects all APICs in each cluster.

In
°

 the hierarchical cluster connection model, an arbitrary hierarchical network can be created by
con³ necting different flat clusters via independent APIC buses. This scheme requires a cluster
manÄ ager within each cluster, responsible for handling message passing between APIC buses.
One cluster contains up to 4 age
Ð

nts. Thus 15 cluster managers, each with 4 agents, can form a
network of up to 60 APIC agents. Note that hierarchical APIC networks requires a special
cl³ uster manager device, which is not part of the local or the I/O APIC units.

7.
3

5.9.5. ARBITRATI ON PRIORITY

Each
½

 local APIC is given an arbitration priority of from 0 to 15 upon reset. The I/O APIC uses
th
±

is priority during arbitration rounds to determine which local APIC should be allowed to
tran
±

smit a message on the APIC bus when multiple local APICs are issuing messages. The local
APIC
è

 with the highest arbitration priority wins access to the APIC bus. Upon completion of an
arbiÂ tration round, the winning local APIC lowers its arbitration priority to 0 and the losing local
APIC
è

s each raise theirs by 1. In this manner, the I/O APIC distributes message bus-cycles
amoÂ ng the contesting local APICs.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbi-
tratio
±

n ID (Arb ID) register. During reset, this register is initialized to the APIC ID number
(stored
¸

 in the local APIC ID register). The INIT-deassert command resynchronizes the arbitra-
tio
±

n prioriti es of the local APICs by resetting Arb ID register of each agent to its current APIC
ID v
°

alue.

7.5.10. Interrupt Dist ribut ion Mechanisms

The APIC supports two mechanisms for selecting the destination processor for an interrupt:
st´ atic and dynamic. Static distribution is used to access a specific processor in the network.
Us
æ

ing this mechanism, the interrupt is unconditionally delivered to all local APICs that match
th
±

e destination information supplied with the interrupt. The following delivery modes fall into
t
±
he static distribution category: fixed, SMI, NMI, EXTINT, and start-up.

Dy
Þ

namic distribution assigns incoming interrupts to the lowest priority processor, which is
gen× erally the least busy processor. It can be programmed in the LVT for local interrupt delivery
orµ the ICR for bus messages. Using dynamic distribution, only the “l owest priority” delivery
moÄ de is allowed. From all processors listed in the destination, the processor selected is the one
whÒ ose current arbitration priority is the lowest. The latter is specified in the arbitration priority
regÃ ister (APR), refer to Section 7.5.13.4., “Arbitration Priority Register (APR)” I f more than one
pr® ocessor shares the lowest priority, the processor with the highest arbitration priority (the
unä ique value in the Arb ID register) is selected.

In lo
°

west priority mode, if a focus pr
ö

ocessor exists,D it may accept the interrupt, regardless of its
p® riority. A processor is said to be the focus of an interrupt if i t is currently servicing that interrupt
oµ r if it has a pending request for that interrupt.

7-23

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.11. Local Vector Table

The local APIC contains a local vector table (LVT), specifying interrupt delivery and status
in

¯
formation for the local interrupts. The information contained in this table includes the inter-

rupt’s associated vector, delivery mode, status bits and other data as shown in Figure 7-8. The
L

Ñ
VT incorporates five 32-bit entries: one for the timer, one each for the two local interrupt

(LINT0
¸

 and LINT1) pins, one for the error interrupt, and (in the P6 family processors) one for
t

±
he performance-monitoring counter interrupt.

The f
¾

ields in the LVT are as follows:

V
E

ector In
°

terrupt vector number.

Delivery Mode Defined only for local interrupt entries 1 and 2 and the performance-
moÄ nitoring counter. The timer and the error status register (ESR)
g× enerate only edge triggered maskable hardware interrupts to the
local processor. The delivery mode field does not exist for the timer
anÂ d error interrupts. The performance-monitoring counter LVT may
be p

º
rogrammed with a Deliver Mode equal to Fixed or NMI only.

Note that
ß

certain delivery modes will only operate as intended when
uä sed in conjunction with a specific Trigger Mode. The allowable
d

Ï
elivery modes are as follows:

000
F

 (Fixed) Delivers the interrupt, received on the local
in

¯
terrupt pin, to this processor as specified in the

corr³ esponding LVT entry. The trigger mode can be
edge Ó or level. Note, if the processor is not used in
conj³ unction with an I/O APIC, the fixed delivery
mÄ ode may be software programmed for an edge-
trig

±
gered interrupt, but the P6 family processors

implemen
¯

tation wil l always operate in a level-
t

±
riggered mode.

100 (NMI) Delivers the interrupt, received on the local inter-
rÃ upt pin, to this processor as an NMI interrupt. The
vÙ ector information is ignored. The NMI interrupt
is treated as edge-triggered, even if programmed
otherµ wise. Note that the NMI may be masked. It is
the s

±
oftware's responsibility to program the LVT

mask bit according to the desired behavior of
NM

ß
I.

111
G

 (ExtINT) Del
Þ

ivers the interrupt, received on the local inter-
rupt pin, to this processor and responds as if the
interru

¯
pt originated in an externally connected

(82
¸

59A-compatible) interrupt controller. A spe-
cial³ INTA bus cycle corresponding to ExtINT, is
roÃ uted to the external controller. The latter is ex-
pected ® to supply the vector information. When the
d

Ï
elivery mode is ExtINT, the trigger-mode is

7-24

MULTIPLE-PROCESSOR MANAGEMENT

level-triggered, regardless of how the APIC trig-
ger× ing mode is programmed. The APIC architec-
t
±
ure supports only one ExtINT source in a system,
uä sually contained in the compatibility bridge.

Figure 7 -8. Loc al Vecto r Table (LVT)

31
�

0
�

7
B

Vector

T
�

imer Mode
0: One-shot
1: Periodic

1215161718

Delivery Mod e
000: Fixed
100: NMI

Mask
0: Not Masked
1: Masked

A
á

ddress: FEE0 0350H

Value After Reset: 0001 0000H

Reserved

12131516

Vector

31
�

0
�

7
B

8
�

10

Address: FEE0 0360H
A

á
ddress: FEE0 0370H

Vector

Vector

ERROR

LINT1

LINT0

Value after Reset: 0001 0000H
A

á
ddress: FEE0 0320H

111: ExtlNT
All other combinations
are Reserved

Interrupt Input
Pin Polarity

T
�

rigger M ode
0: Edge
1: Level

Remote
IRR

Delivery St atus
0: Idle
1: Send Pending

Ti

mer

13 11 8

11

14

17

A
á

ddress: FEE0 0340H

PCINT Vector

7-25

M
2

ULTIPLE-PROCESSOR MANAGEMENT

Delivery Status (read only)
Hold

Ø
s the current status of interrupt delivery. Two states are defined:

0 (I
F

dle) Th
¾

ere is currently no activity for this interrupt, or
th

±
e previous interrupt from this source has com-

pleted.®

1
G
 (Send Pending)

Indicates that the interrupt transmission has start-
ed, bÓ ut has not yet been completely accepted.

I
*
nterrupt Input Pin Polarit y

Specifies the p
Ö

olarity of the corresponding interrupt pin: (0) active
hi

ø
gh or (1) active low.

Rem
H

ote Interrupt Request Register (IRR) Bit
Used

æ
 for level triggered interrupts only; its meaning is undefined for

edgÓ e triggered interrupts. For level triggered interrupts, the bit is set
whenÒ the logic of the local APIC accepts the interrupt. The remote
IRR bit is reset when an EOI command is received from the
p® rocessor.

T
:

r igger Mode Selects
Ö

 the trigger mode for the local interrupt pins when the delivery
mode is Fixed: (0) edge sensitive and (1) level sensitive. When the
del

Ï
ivery mode is NMI, the trigger mode is always level sensitive;

whÒ en the delivery mode is ExtINT, the trigger mode is always level
sensit´ ive. The timer and error interrupts are always treated as edge
sen´ sitive.

Mas
I

k In
°

terrupt mask: (0) enables reception of the interrupt and (1) inhibits
reception of the interrupt.

T
:

imer Mode S
Ö

elects the timer mode: (0) one-shot and (1) periodic (refer to Section
7

Ê
.5.18., “Timer”).

7.5.12. Interprocessor and Sel f-Interr upts

A processor generates interprocessor interrupts by writing into the interrupt command register
(IC

¸
R) of its local APIC (refer to Figure 7-9). The processor may use the ICR for self interrupts

or fµ or interrupting other processors (for example, to forward device interrupts originally
accepÂ ted by it to other processors for service). In addition, special inter-processor interrupts
(IPI) such

¸
 as the start-up IPI message, can only be delivered using the ICR mechanism. ICR-

based
º

interrupts are treated as edge triggered even if programmed otherwise. Note that not all
comb³ inations of options for ICR generated interrupts are valid (refer to Table 7-2).

7-26

MULTIPLE-PROCESSOR MANAGEMENT

All fields of the ICR are read-write by software with the exception of the delivery status field,
whÒ ich is read-only. Writing to the 32-bit word that contains the interrupt vector causes the inter-
ruÃ pt message to be sent. The ICR consists of the following fields.

Ve
E

ctor The vector identifying the interrupt being sent. The localAPIC
rÃ egister addresses are summarized in Table 7-1.

Deliv
õ

ery Mode Specifies how the APICs listed in the destination field should act
uä pon reception of the interrupt. Note that all interprocessor interrupts
b

º
ehave as edge triggered interrupts (except for INIT level de-assert

mÄ essage) even if they are programmed as level triggered interrupts.

00
F

0 (Fixed) Deliver the interrupt to all processors listed in the
d
Ï
estination field according to the information pro-

videdÙ in the ICR. The fixed interrupt is treated as

Figu re 7-9. Interrupt Comm and Regis ter (ICR)

31
�

0
�

Reserved

7

Vector

Dest ination Short hand

8
�

10

Delivery M ode
000: Fixed
001: Lowest Priority

00: Dest. Field
01: Self

111213141516171819

10: All Incl. Self
11: All Excl. Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destin ation Mode
0: Physical
1: Logical

Delivery S tatus
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

T
�

rigger M ode
0: Edge
1: Level

63
A

32
�

ReservedDestination Field

56
J

Address: FEE0 0310H
Value after Reset: 0H

Reserved

20

55
J

7-27

M
2

ULTIPLE-PROCESSOR MANAGEMENT

an edgÂ e-triggered interrupt even if programmed
otµ herwise.

001
F

 (Lowest Priori ty)
S

Ö
ame as fixed mode, except that the interrupt is

delivered
Ï

 to the processor executing at the lowest
p® riority among the set of processors listed in the
des

Ï
tination.

010
F

 (SMI) On
Ð

ly the edge trigger mode is allowed. The vector
fi

¼
eld must be programmed to 00B.

01
F

1 (Reserved)

100
G

 (NMI) Del
Þ

ivers the interrupt as an NMI interrupt to all
pro® cessors listed in the destination field. The vec-
to

±
r information is ignored. NMI is treated as an

edge tÓ riggered interrupt even if programmed oth-
erwisÓ e.

101 (INIT) Delivers the interrupt as an INIT signal to all pro-
ces³ sors listed in the destination field. As a result,
allÂ addressed APICs wil l assume their INIT state.
As in the case of NMI, the vector information is
igno

¯
red, and INIT is treated as an edge triggered

i
¯
nterrupt even if programmed otherwise.

101 (INI T L evel De-assert)
(The t

¸
rigger mode must also be set to 1 and level

mÄ ode to 0.) Sends a synchronization message to
allÂ APIC agents to set their arbitration IDs to the
vÙ alues of their APIC IDs. Note that the INIT inter-
ruÃ pt is sent to all agents, regardless of the destina-
ti

±
on field value. However, at least one valid

dest
Ï

ination processor should be specified. For fu-
tu

±
re compatibility , the software is requested to use

a broÂ adcast-to-all (“all-incl-self” shorthand, as de-
s´ cribed below).

1
G
10 (Star t-Up) S

Ö
ends a special message between processors in a

multiple-processor system. For details refer to the
Pentium® Pr

å
o Family Developer’s Manual, Vol-

ume 1K . The Vector information contains the start-
uä p address for the multiple-processor boot-up pro-
tocol. Start-u

±
p is treated as an edge triggered inter-

rupÃ t even if programmed otherwise. Note that
interrupts are not automatically retried by the
so´ urce APIC upon failure in delivery of the mes-
s´ age. It is up to the software to decide whether a

7-28

MULTIPLE-PROCESSOR MANAGEMENT

retry is needed in the case of failure, and issue a
retryÃ message accordingly.

Des
õ

tination Mode Selects
Ö

 either (0) physical or (1) logical destination mode.

Delivery Status Indicates the deli very status:

0 (
F

Idle) Th
¾

ere is currently no activity for this interrupt, or
th
±

e previous interrupt from this source has com-
pleted.®

1
G
 (Send Pending)

In
°

dicates that the interrupt transmission has start-
ed, but Ó has not yet been completely accepted.

Le
(

vel Fo
Ý

r INIT level de-assert delivery mode the level is 0. For all other
mÄ odes the level is 1. L

Tr igger Mode Us
æ

ed for the INIT level de-assert delivery mode only.

Des
õ

tination Shorthand
I

°
ndicates whether a shorthand notation is used to specify the destina-

tio
±

n of the interrupt and, if so, which shorthand is used. Destination
sh´ orthands do not use the 8-bit destination field, and can be sent by
s´ oftware using a single write to the lower 32-bit part of the APIC
interrupt command register. Shorthands are defined for the following
cases: ³ software self interrupt, interrupt to all processors in the system
incl

¯
uding the sender, interrupts to all processors in the system

exÓ cluding the sender.

00
F

: (destination field, no shorthand)
The
¾

destination is specified in bits 56 through 63
ofµ the ICR.

01
F

: (self) The cur
¾

rent APIC is the single destination of the
interru
¯

pt. This is useful for software self inter-
rupts. The destination field is ignored. Refer to Ta-
bl
º

e 7-2 for description of supported modes. Note
t
±
hat self interrupts do not generate bus messages.

10: (all including self)
Th
¾

e interrupt is sent to all processors in the system
i
¯
ncluding the processor sending the interrupt. The
APIC will broadcast a message with the destina-
t
±
ion field set to FH. Refer to Table 7-2 for descrip-
tio
±

n of supported modes.

11: (all excluding self)
Th
¾

e interrupt is sent to all processors in the system
witÒ h the exception of the processor sending the in-
terru
±

pt. The APIC will broadcast a message using

7-29

M
2

ULTIPLE-PROCESSOR MANAGEMENT

t
±
he physical destination mode and destination
field

¼
 set to FH.

Des
õ

tination Th
¾

is field is only used when the destination shorthand field is set to
“dest field”. If the destination mode is physical, then bits 56 through
59

È
 contain the APIC ID. In logical destination mode, the interpreta-

tio
±

n of the 8-bit destination field depends on the DFR and LDR of the
local APIC Units.

T
¾
able 7-2 shows the valid combinations for the fields in the interrupt control register.

NOTES:

1. Valid. Treated as edge triggered if Level = 1 (assert), otherwise ignored.

2. Valid. Treated as edge triggered when Level = 1 (assert); when Level = 0 (deassert), treated as “INIT
Level Deassert” message. Only INIT level deassert messages are allowed to have level = deassert. For
all other messages the level must be “assert.”

3. Invalid. The behavior of the APIC is undefined.

4. X—Don’t care.

Table 7-2. Valid Com bin ation s for t he APIC Interrup t Comm and Register

Trigg er
Mode Destin ation Mode Delivery Mode

Valid/
Inval id

Dest inatio n
Shorthand

Edge Physical or Logical Fixed, Lowest Priority, NMI,
SMI, INIT, Start-Up

Valid Dest. Field

Level Physical or Logical Fixed, Lowest Priority, NMI 1 Dest. field

Level Physical or Logical INIT 2 Dest. Field

Level x4
M

SMI, Start-Up Invalid3 x

Edge x Fixed Valid Self

Level x Fixed 1 Self

x x Lowest Priority, NMI, INIT,
SMI, Start-Up

Invalid3 Self

Edge x Fixed Valid All inc Self

Level x Fixed 1 All inc Self

x x Lowest Priority, NMI, INIT,
SMI, Start-Up

Invalid3 All inc Self

Edge x Fixed, Lowest Priority, NMI,
INIT, SMI, Start-Up

Valid All excl Self

Level x Fixed, Lowest Priority, NMI 1 All excl Self

Level x SMI, Start-Up Invalid3 All excl Self

Level x INIT 2 All excl Self

7-30

MULTIPLE-PROCESSOR MANAGEMENT

7.5.13. Interrupt Accept ance

Three 256-bit read-only registers (the IRR, ISR, and TMR registers) are involved in the interrupt
acceptanÂ ce logic (refer to Figure 7-10). The 256 bits represents the 256 possible vectors.
Because vectors 0 through 15 are reserved, so are bits 0 through 15 in these registers. The func-
tions of
±

 the three registers are as follows:

T
:

MR (trigger mode register)
Up

æ
on acceptance of an interrupt, the corresponding TMR bit is

clear³ ed for edge triggered interrupts and set for level interrupts. If the
T

¾
MR bit is set, the local APIC sends an EOI message to all I/O

APICs as a result of software issuing an EOI command (refer to
S

Ö
ection 7.5.13.6., “End-Of-Interrupt (EOI)” for a description of the

E
½

OI register).

IRR (interrupt request register)
C

·
ontains the active interrupt requests that have been accepted, but

no² t yet dispensed by the current local APIC. A bit in IRR is set when
th

±
e APIC accepts the interrupt. The IRR bit is cleared, and a corre-

sp´ onding ISR bit is set when the INTA cycle is issued.

IS
*

R (in-service register)
Marks the interrupts that have been delivered to the processor, but
have not been fully serviced yet, as an EOI has not yet been received
f

¼
rom the processor. The ISR reflects the current state of the processor

interrupt queue. The ISR bit for the highest priority IRR is set during
th

±
e INTA cycle. During the EOI cycle, the highest priority ISR bit is

clear³ ed, and if the corresponding TMR bit was set, an EOI message
is sent to all I/O APICs.

7.
3

5.13.1. INTERRUPT ACCEPTANCE DECISION FLOW CHART

The
¾

process that the APIC uses to accept an interrupt is shown in the flow chart in Figure 7-11.
The r
¾

esponse of the local APIC to the start-up IPI is explained in the Pentium® Pr
å

o Family
Developer’s Manual, Volume 1.

Fig
�

ure 7-10. IRR, ISR and TMR Regis ters

255 0
�

Reserved

Addr
á

esses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR

 FEE0 0180H - FEE0 01F0H

7-31

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.13.2. TASK PRIORITY REGISTER

T
¾
ask priority register (TPR) provides a prio7 rit y threshold mÄ echanism for interrupting the

pro® cessor (refer to Figure 7-12). Only interrupts whose priority is higher than that specified in
the TPR

±
 wil l be serviced. Other interrupts are recorded and are serviced as soon as the TPR value

is
¯

 decreased enough to allow that. This enables the operating system to block temporaril y
s´ pecific interrupts (generally low priority) from disturbing high-priority tasks execution. The
p® riority threshold mechanism is not applicable for delivery modes excluding the vector infor-
mation Ä (that is, for ExtINT, NMI, SMI, INIT, INIT-Deassert, and Start-Up delivery modes).

Figure 7 -11. Interrupt Ac ceptanc e Flow Chart fo r the Loca l APIC

Wait to Receive
Bus Message

B
N

elong
to

O
De

stination?

Is it
�

NMI/S
P

MI/INIT
/

�
E

�
xtINT?

Delivery
Mode?

Am
I

Focus?

Other
Q

F
R

ocus?

Is In
�

terrupt
S

�
lot Available?

Is S
�

tatus
a RS etry?

Di

scard
Message

A
T

ccept
Message

Yes

Ye
U

s

Accept
Message

Is
Interrupt Slot

Available?
Arbitrate

Ye
U

s

Am I
Winner?

A
T

ccept
Me

V
ssage

YesNo

Se
�

t Status
to Retr

O
y

No

No
P

Yes

Se
�

t Status
to Retr

O
y

No
P

Discard
Message

No

Accept
M

V
essage

Ye
U

s

Lowest
PriorityFixed

Yes No

No

Yes

No

7-32

MULTIPLE-PROCESSOR MANAGEMENT

The Task Priority is specified in the TPR. The 4 most-significant bits of the task priority corre-
sp´ ond to the 16 interrupt priorities, while the 4 least-significant bits correspond to the sub-class
p® riority. The TPR value is generally denoted as x:yW , where Í xW is the main priority and yX provides
more precision within a given priority class. When the x-value of the TPR is 15, the APIC will
no² t accept any interrupts.

7.
3

5.13.3. PROCESSOR PRIORITY REGISTER (PPR)

The pro
¾

cessor priority register (PPR) is used to determine whether a pending interrupt can be
dispensed
Ï

to the processor. Its value is computed as follows:

IF TPR[7:4] ≥ ISRV[7:4]
THEN

PPR[7:0] = TPR[7:0]
ELSE

PPR[7:4] = ISRV[7:4] AND PPR[3:0] = 0

W
»

here ISRV is the vector of the highest priority ISR bit set, or zero if no ISR bit is set. The PPR
fo
¼

rmat is identical to that of the TPR. The PPR address is FEE000A0H, and its value after reset
is
¯

 zero.

7.5.13.4. ARBITRATI ON PRIORITY REGISTER (APR)

Arbitration priority register (APR) holds the current, lowest-priority of the processor, a value
uä sed during lowest priority arbitration (refer to S

Ö
ection 7.5.16., “APIC Bus Arbitration Mecha-

nism and² Protocol”) . The APR format is identical to that of the TPR. The APR value is
com³ puted as the following.

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] = TPR[7:0]
ELSE

APR[7:4] = max(TPR[7:4] AND ISRV[7:4], IRRV[7:4]), APR[3:0]=0.

Here, I
Ø

RRV is the interrupt vector with the highest priority IRR bit set or cleared (if no IRR bit
is set). The APR address is FEE0 0090H, and its value after reset is 0.

Figure 7-12. Task Priority Re gist er (TPR)

31
�

0
�

78
�

Reserved

A
á

ddress: FEE0 0080H
Value after reset: 0H

Task
Priority

7-33

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.13.5. SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal
to

±
 the level of the interrupt for which the processor INTR signal is currently being asserted. If

at the time the INTÂ A cycle is issued, the interrupt that was to be dispensed has become masked
(p

¸
rogrammed by software), the local APIC will return a spurious-interrupt vector to the

pro® cessor. Di
Þ

spensing the spurious-interrupt vector does not affect the ISR, so the handler for
t

±
his vector should return without an EOI.

7.5.13.6. END-OF-INTERRUPT (EOI)

During the interrupt serving routine, software should indicate acceptance of lowest-priority,
fix

¼
ed, timer, and error interrupts by writing an arbitrary value into its local APIC end-of-inter-

rupÃ t (EOI) register (refer to Figure 7-13). This is an indication for the local APIC it can issue the
next interrupt, regardless of whether the current interrupt service has been terminated or not.
No

ß
te that interrupts whose priority is higher than that currently in service, do not wait for the

EOI co
½

mmand corresponding to the interrupt in service.

Upon
æ

 receiving end-of-interrupt, the APIC clears the highest priority bit in the ISR and selects
th

±
e next highest priority interrupt for posting to the CPU. If the terminated interrupt was a level-

trig
±

gered interrupt, the local APIC sends an end-of-interrupt message to all I/O APICs. Note that
EOI command is supplied for the above two interrupt delivery modes regardless of the interrupt
s´ ource (that is, as a result of either the I/O APIC interrupts or those issued on local pins or using
th

±
e ICR). For future compatibili ty, the software is requested to issue the end-of-interrupt

co³ mmand by writing a value of 0H into the EOI register.

7.5.14. Local APIC State

In
°

 P6 family processors, all local APICs are initialized in a software-disabled state after power-
up.ä A software-disabled local APIC unit responds only to self-in terrupts and to INIT, NMI, SMI,
and start-upÂ messages arriving on the APIC Bus. The operation of local APICs during the
disabled state is

Ï
 as follows:

• For the INIT, NMI, SMI, and start-up messages, the APIC behaves normally, as if full y
enabÓ led.

Figure 7-13. EOI Regis ter

31
�

0
�

A
á

ddress: 0FEE0 00B0H
Value after reset: 0H

7-34

MULTIPLE-PROCESSOR MANAGEMENT

• Pending interrupts in the IRR and ISR registers are held and require masking or handling
by

º
 the CPU.

• A disabled lo
è

cal APIC does not affect the sending of APIC messages. It is software’s
responsibilit y to avoid issuing ICR commands if no sending of interrupts is desired.

• Disabling a local APIC does not affect the message in progress. The local APIC will
co³ mplete the reception/transmission of the current message and then enter the disabled
state.´

• A disabled local APIC automatically sets all mask bits in the LVT entries. Trying to reset
th

±
ese bits in the local vector table will be ignored.

• A software-disabled local APIC listens to all bus messages in order to keep its arbitration
I

°
D synchronized with the rest of the system, in the event that it is re-enabled.

Fo
Ý

r the Pentium®
1
 processor, the local APIC is enabled and disabled through a hardware mecha-

nism. (Refer to the Pentium®
1
 Processor Data Book for a description of this mechanism.)

7.
3

5.14.1. SPURIOUS-INTERRUPT VECTOR REGISTER

S
Ö

oftware can enable or disable a local APIC at any time by programming bit 8 of the spurious-
interr
¯

upt vector register (SVR), refer to Figure 7-14. The functions of the fields in the SVR are
as foÂ llows:

Spur
Ö

ious Vector Released during an INTA cycle when all pending interrupts are
mÄ asked or when no interrupt is pending. Bits 4 through 7 of the this
field are programmable by software, and bits 0 through 3 are hard-
wired Ò to logical ones. Software writes to bits 0 through 3 have no
efÓ fect.

APIC Enable Allows software to enable (1) or disable (0) the local APIC. To
b

º
ypass APIC completely, use the APIC_BASE_MSR in Figure 7-4.

Focus Processor
Ý

Determines if focus processor checking is enabled during the lowest

C
·

hecking Priority delivery: (0) enabled and (1) disabled.

Fi
�

gure 7 -14. Spurious- Interrup t Vector Reg ister (SVR)

31
�

0
�

Reserved

7

1 1 1 1

Focus P rocesso r Checki ng

APIC Enabl ed

8
�

9
C

10

0: APIC SW Disabled
1: APIC SW Enabled

Spurio us Vector

Addr
á

ess: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

3
�

4

7-35

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.14.2. LOCAL AP IC INITIALIZATION

On a hard
Ð

ware reset, the processor and its local APIC are initi alized simultaneously. For the P6
fam

¼
ily processors, the local APIC obtains its initial physical ID from system hardware at the

fal
¼

ling edge of the RESET# signal by sampling 6 lines on the system bus (the BR[3:0]) and
clu³ ster ID[1:0] lines) and storing this value into the APIC ID register; for the Pentium®

1

pro® cessor, four lines are sampled (BE0# through BE3#). Refer to the Pentium®
1
 Pro & Pentium

I
Î
I Processors Data Book and the Pen

å
tium®

1
 Processor Data Book for d

¼
escriptions of this mech-

anism.Â

7
3

.5.14.3. LOCAL AP IC STATE AFTER POWER-UP RESET

The state of
¾

 local APIC registers and state machines after a power-up reset are as follows:

• Th
¾

e following registers are all reset to 0: the IRR, ISR, TMR, ICR, LDR, and TPR
registers; the holding registers; the timer initial count and timer current count registers; the
remÃ ote register; and the divide configuration register.

• The DF
¾

R register is reset to all 1s.

• The LVT register entries are reset to 0 except for the mask bits, which are set to 1s.

• The local APIC version register is not affected.

• Th
¾

e local APIC ID and Arb ID registers are loaded from processor input pins (the Arb ID
register is set to the APIC ID value for the local APIC).

• All internal state machines are reset.

• AP
è

IC is software disabled (that is, bit 8 of the SVR register is set to 0).

• The spurious-interrupt vector register is initialized to FFH.

7
3

.5.14.4. LOCAL AP IC STATE AFTER AN INIT RESET

An
è

 INIT reset of the processor can be initiated in either of two ways:

• B
â

y asserting the processor’s INIT# pin.

• By sending the processor an INIT IPI (sending an APIC bus-based interrupt with the
d

Ï
elivery mode set to INIT).

Upon
æ

 receiving an INIT via either of these two mechanisms, the processor responds by begin-
ning the initialization process of the processor core and the local APIC. The state of the local
AP

è
IC following an INIT reset is the same as it is after a power-up reset, except that the APIC

ID and
°

 Arb ID registers are not affected.

7.5.14.5. LOCAL AP IC STATE AFTER INIT-DEASSERT MESSAGE

An INIT-disassert message has no affect on the state of the APIC, other than to reload the arbi-
tratio

±
n ID register with the value in the APIC ID register.

7-36

MULTIPLE-PROCESSOR MANAGEMENT

7.5.15. Local APIC Versi on Register

The local APIC contains a hardwired version register, which software can use to identify the
APIC
è

 version (refer to Figure 7-16). In addition, the version register specifies the size of LVT
used ä in the specific implementation. The fields in the local APIC version register are as follows:

V
Û

ersion The version numbers of the local APIC or an external 82489DX
AP

è
IC controller:

1XH Local APIC.

0XH
¹

82489DX.

2
Å
0H through FFHReserved.

M
ð

ax LVT Entry Shows the number of the highest order LVT entry. For the P6 family
p® rocessors, having 5 LVT entries, the Max LVT number is 4; for the
Pen

¿
tium®

ì
 processor, having 4 LVT entries, the Max LVT number is 3.

7.5.16. APIC Bus Arbitration Mechanism and Protocol

B
â

ecause only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs
empÓ loy a “rotating priority” arbitration protocol to gain permission to send a message on the
APIC
è

 bus. One or more APICs may start sending their messages simultaneously. At the begin-
nin² g of every message, each APIC presents the type of the message it is sending and its current
arbÂ itration priority on the APIC bus. This information is used for arbitration. After each arbitra-
tio
±

n cycle (within an arbitration round, only the potential winners keep driving the bus. By the
time all
±

 arbitration cycles are completed, there will be only one APIC left driving the bus. Once
a wÂ inner is selected, it is granted exclusive use of the bus, and will continue driving the bus to
s´ end its actual message.

After eac
è

h successfully transmitted message, all APICs increase their arbitration priority by 1.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a pÂ riority of 0 (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,
bu
º

t did not send a message, adopts the previous winner’s arbitration priority, incremented by 1.

N
ß

ote that the arbitration protocol described above is slightly different if one of the APICs issues
a sÂ pecial End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its
sen´ der’s arbitration priority, unless more than one APIC issues an EOI message simultaneously.
In the latter case, the APICs sending the EOI messages arbitrate using their arbitration priorities.

Figu re 7-15. Loca l APIC Versio n Regi ster

31
�

0
�

Reserved

2324 15

VersionMax. LVT

Value after reset: 000N 00VVH
V = Version, N = # of LVT entries

Entry

7

Ad
á

dress: FEE0 0030H

16 8

Reserved

7-37

M
2

ULTIPLE-PROCESSOR MANAGEMENT

If the APICs are set up to use “lowest priority” arbitration (refer to Section 7.5.10., “Interrupt
Di

Þ
stribution Mechanisms”) and multiple APICs are currently executing at the lowest priority

(th
¸

e value in the APR register), the arbitration priorities (unique values in the Arb ID register)
are usÂ ed to break ties. All 8 bits of the APR are used for the lowest priority arbitration.

7
3

.5.16.1. BUS MESSAGE FORMATS

The APIC
¾

s use three types of messages: EOI message, short message, and non-focused lowest
prio® rity message. The purpose of each type of message and its format are described below.

EOI Message. Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level
trigger

±
ed interrupt has been accepted by the processor. This interrupt, in turn, is a result of soft-

ware wÒ riting into the EOI register of the local APIC. Table 7-3 shows the cycles in an EOI
message.

The checksum
¾

 is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0)
logical data valu

Ü
es. The carry out of all but the last addition is added to the sum. If any APIC

comp³ utes a different checksum than the one appearing on the bus in cycle 10, it signals an error,
driv

Ï
ing 11 on the APIC bus during cycle 12. In this case, the APICs disregard the message. The

s´ ending APIC wil l receive an appropriate error indication (refer to Section 7.5.17., “Error
Handling”) and resend the message. The status cycles are defined in Table 7-6.

Sh
&

ort Message. S
Ö

hort messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-
up,ä ExtINT and lowest-priority-with-focus interrupts. Table 7-4 shows the cycles in a short
message.

T
#
able 7-3. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

7-38

MULTIPLE-PROCESSOR MANAGEMENT

If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and
cycles ³ 13 and 14 are considered don’t care by the receiver. If the logical delivery mode is being
used, ä then cycles 13 through 16 are the 8-bit logical destination field. For shorthands of “all-
incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15
(D0:D3 = 1
¸

111) are used. The agent sending the message is the only one required to distinguish
between
º

the two cases. It does so using internal information.

W
»

hen using lowest priority delivery with an existing focus processor, the focus processor iden-
tifies
±

 itself by driving 10 during cycle 19 and accepts the interrupt. This is an indication to other
APIC
è

s to terminate arbitration. If the focus processor has not been found, the short message is
extenÓ ded on-the-fly to the non-focused lowest-priority message. Note that except for the EOI
messÄ age, messages generating a checksum or an acceptance error (refer to Section 7.5.17.,
“Error Handling”) terminate after cycle 21.

Nonfocused
÷

 Lowest Priority Message. Th
¾

ese 34-cycle messages (refer to Table 7-5) are used
in the lowest priority delivery mode when a focus processor is not present. Cycles 1 through 20

Table 7-4. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

Cycle Bit1 Bit0

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

7-39

M
2

ULTIPLE-PROCESSOR MANAGEMENT

are sÂ ame as for the short message. If during the status cycle (cycle 19) the state of the (A:A) flags
is

¯
 10B, a focus processor has been identified, and the short message format is used (refer to

T
¾
able 7-4). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-

cycles of ³ the nonfocused lowest priority message are competed. For other combinations of status
flags

¼
, refer to S

Ö
ection 7.5.16.2., “APIC Bus Status Cycles”

Table 7-5. Nonfo cused Lowest Priority Message (34 Cycles)
Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

Cycle Bit0 Bit1

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

7-40

MULTIPLE-PROCESSOR MANAGEMENT

C
·

ycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors
p® articipating in the arbitration drive their inverted processor priority on the bus. Only the local
APIC
è

s having free interrupt slots participate in the lowest priority arbitration. If no such APIC
exÓ ists, the message will be rejected, requiring it to be tried at a later time.

C
·

ycles 29 through 32 are also used for arbitration in case two or more processors have the same
lo
Ü

west priority. In the lowest priority delivery mode, all combinations of errors in cycle 33 (A2
A2) will set the “accept error” bit in the error status register (refer to Figure 7-16). Arbitration
pr® iority update is performed in cycle 20, and is not affected by errors detected in cycle 33. Only
the lo
±

cal APIC that wins in the lowest priority arbitration, drives cycle 33. An error in cycle 33
willÒ force the sender to resend the message.

7.
3

5.16.2. APIC BUS STATUS CYCLES

C
·

ertain cycles within an APIC bus message are status cycles. During these cycles the status flags
(A:A) and (A1
¸

:A1) are examined. Table 7-6 shows how these status flags are interpreted,
dep
Ï

ending on the current delivery mode and existence of a focus processor.

T
#
able 7-6. APIC Bus Status Cycl es Interpretation

Delivery
Mode A Status A1 Status A2 Status

Updat e
ArbI D and

Cycle#
Message
Leng th Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI,
INIT, ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

7-41

M
2

ULTIPLE-PROCESSOR MANAGEMENT

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table 7-6. APIC Bu s Status Cy cles Interpreta tion (Contd.)

7-42

MULTIPLE-PROCESSOR MANAGEMENT

7.5.17. Error Handling

The local APIC sets flags in the error status register (ESR) to record all the errors that is detects
(ref
¸

er to Figure 7-16). The ESR is a read/write register and is reset after being written to by the
p® rocessor. A write to the ESR must be done just prior to reading the ESR to allow the register to
be up
º

dated. An
è

 error interrupt is generated when one of the error bits is set. Error bits are cumu-
lativ
Ü

e. The ESR must be cleared by software after unmasking of the error interrupt entry in the
LVT is performed (by executing back-to-back a writes). If the software, however, wishes to
h
ø
andle errors set in the register prior to unmasking, it should write and then read the ESR prior

orµ immediately after the unmasking.

Figure 7-16. Error Statu s Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31
�

0
�

Reserved

78 1
�

23
�

45
J

6
A

Illegal Register Address
Received Illegal Vector
Send Illegal Vector
Reserved
Receive Accept Error
Send Accept Error
Receive CS Error
Send CS Error

7-43

M
2

ULTIPLE-PROCESSOR MANAGEMENT

The functions of the ESR flags are as follows:

7.5.18. Timer

The local APIC unit contains a 32-bit programmable timer for use by the local processor. This
t

±
imer is configured through the timer register in the local vector table (refer to Figure 7-8). The
ti

±
me base is derived from the processor’s bus clock, divided by a value specified in the divide

co³ nfiguration register (refer to Figure 7-17). After reset, the timer is initialized to zero. The timer
s´ upports one-shot and periodic modes. The timer can be configured to interrupt the local
pro® cessor with an arbitrary vector.

S
&

end CS Error Set w
Ö

hen the local APIC detects a check sum error for a message
that was

±
 sent by it.

Receive CS Error Set w
Ö

hen the local APIC detects a check sum error for a message
th

±
at was received by it.

S
&

end Accept Error Set when
Ö

 the local APIC detects that a message it sent was not
acÂ cepted by any APIC on the bus.

Receive Accept Er ror Set when
Ö

 the local APIC detects that the message it received was not
acÂ cepted by any APIC on the bus, including itself.

S
&

end Il legal Vector Set
Ö

when the local APIC detects an illegal vector in the message that
it is sending on the bus.

Receive Il legal Vector Set wh
Ö

en the local APIC detects an illegal vector in the message it
rÃ eceived, including an il legal vector code in the local vector table
interrupts and self-interrupts from ICR.

I llegal Reg. Address
(P6

Ú
Family Processors

On
Y

ly)

Set when the pro
Ö

cessor is trying to access a register that is not
im

¯
plemented in the P6 family processors’ local APIC register

adÂ dress space; that is, within FEE00000H (the APICBase MSR)
t

±
hrough FEE003FFH (the APICBase MSR plus 4K Bytes).

Fi
�

gure 7-17. Div ide Configu ration Regis ter

Address: FEE0 03E0H
Value after reset: 0H

0

Divi de Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31
�

0
�

Reserved

12
Z

3
�

4
[

7-44

MULTIPLE-PROCESSOR MANAGEMENT

The timer is started by programming its initial-count register, refer to Figure 7-18. The initial
cou³ nt value is copied into the current-count register and count-down is begun. After the timer
reachÃ es zero in one-shot mode, an interrupt is generated and the timer remains at its 0 value until
reprogrammed. In periodic mode, the current-count register is automatically reloaded from the
in
¯

itial-count register when the count reaches 0 and the count-down is repeated. If during the
co³ unt-down process the initial-count register is set, the counting will restart and the new value
willÒ be used. The initial-count register is read-write by software, while the current-count register
is
¯

 read only.

7.5.19. Sof tware Visible Differences Between the Loc al APIC and
t

\
he 82489DX

The
¾

following local APIC features differ in their definitions from the 82489DX features:

• W
»

hen the local APIC is disabled, its internal registers are not cleared. Instead, setting the
mask bÄ its in the local vector table to disable the local APIC merely causes it to cease
accepÂ ting the bus messages except for INIT, SMI, NMI, and start-up. In the 82489DX,
wheÒ n the local unit is disabled by resetting the bit 8 of the spurious vector register, all the
inter

¯
nal registers including the IRR, ISR and TMR are cleared and the mask bits in the

loca
Ü

l vector tables are set to logical ones. In the disabled mode, 82489DX local unit will
accepÂ t only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge
trigg

±
ered interrupts, even if programmed otherwise. In the 82489DX these interrupts are

alwayÂ s level triggered.

• In the local APIC, interrupts generated through ICR messages are always treated as edge
trig

±
gered (except INIT Deassert). In the 82489DX, the ICR can be used to generate either

edgÓ e or level triggered interrupts.

• Logical Destination register the local APIC supports 8 bits, where it supports 32 bits for
t

±
he 82489DX.

• APIC ID register is 4 bits wide for the local APIC and 8 bits wide for the 82489DX.

• The remote read delivery mode provided in the 82489DX is not supported in the Intel
Arch

è
itecture local APIC.

Figure 7-18. Initia l Coun t and Current Count Regis ters

31
�

0
�

Initial Count

A
á

ddress: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

7-45

M
2

ULTIPLE-PROCESSOR MANAGEMENT

7.5.20. Perform ance Related Differences between the Loca l APIC
and t he 82489DX

F
Ý

or the 82489DX, in the lowest priority mode, all the target local APICs specified by the desti-
nation field participate in the lowest priority arbitration. Only those local APICs which have free
in

¯
terrupt slots will participate in the lowest priority arbitration.

7.5.21. New Features Incorpora ted in the Pent ium ®
9
 and P6 Family

Processors Local A PIC

The local APIC in the Pentium®
1
 and P6 family processors have the following new features not

fou
¼

nd in the 82489DX.

• The local APIC supports cluster addressing in logical destination mode.

• Focus processor checking can be enabled/disabled in the local APIC.

• In
°

terrupt input signal polarity can be programmed in the local APIC.

• The local APIC supports SMI through the ICR and I/O redirection table.

• The local APIC incorporates an error status register to log and report errors to the
pr® ocessor.

In the P6 family processors, the local APIC incorporates an additional local vector table entry
t

±
o handle performance monitoring counter interrupts.

7.6. DUAL-PROCESSOR (DP) INITIALIZATION PROTOCOL

The Pentium®
1
 processor contains an internal dual-processing (DP) mechanism that permits two

p® rocessors to be initialized and configured for tightly coupled symmetric multiprocessing
(S

¸
MP). The DP initialization protocol supports the controlled booting and configuration of the

tw
±

o Pentium®
1
 processors. When configuration has been completed, the two Pentium®

1
 processors

can share th³ e processing load for the system and share the handling of interrupts received from
th
±

e system’s I/O APIC.

The Pentium®
1
 DP initialization protocol defines two processors:

• Primary processor (also called the bootstrap processor, BSP)—This processor boots itself,
con³ figures the APIC environment, and starts the second processor.

• Second
Ö

ary processor (also called the dual processor, DP)—This processor boots itself then
waitsÒ for a startup signal from the primary processor. Upon receiving the startup signal, it
co³ mpletes its configuration.

Appendix C, Dual-Processor (DP) Bootup Sequence Example (Specific to Pentium®
]

 Proces-
so^ rs) gives an example (with code) of the bootup sequence for two Pentium®

1
 processors oper-

atÂ ing in a DP configuration.

7-46

MULTIPLE-PROCESSOR MANAGEMENT

Appendix E, Programming the LINT0 and LINT1 Inputs describes (with code) how to program
the LINT[0
±

:1] pins of the processor’s local APICs after a dual-processor configuration has been
co³ mpleted.

7.7. MULTIPLE-PROCESSOR (MP) INITIALIZATION PROTOCOL

The Intel Architecture (beginning with the Pentium®
1
 Pro processors) defines a multiple-

p® rocessor (MP) initialization protocol, for use with both single- and multiple-processor systems.
(Here,
¸

 multiple processors is defined as two or more processors.) The primary goals of this
pr® otocol are as follows:

• T
¾
o permit sequential or controlled booting of multiple processors (from 2 to 4) with no

ded
Ï

icated system hardware. The initialization algorithm is not limited to 4 processors; it
can³ support supports from 1 to 15 processors in a multiclustered system when the APIC
b

º
usses are tied together. Larger systems are not supported.

• To be able to initiate the MP protocol without the need for a dedicated signal or BSP.

• To provide fault tolerance. No single processor is geographically designated the BSP. The
BS

â
P is determined dynamically during initialization.

The following sections describe an MP initialization protocol.

App
è

endix D, M
ó

ultiple-Processor (MP) Bootup Sequence Example (Specific to P6 Family
P
å

rocessors) gives an example (with code) of the bootup sequence for two P6 family processors
opµ erating in an MP configuration.

App
è

endix E, Pr
å

ogramming the LINT0 and LINT1 Inputs describes (with code) how to program
the
±

LINT[0:1] pins of the processor’s local APICs after an MP configuration has been
co³ mpleted.

7.7.1. MP Ini tialization Protocol Requirements and Rest rictions

The
¾

MP protocol imposes the following requirements and restrictions on the system:

• An APIC clock (APICLK) must be provided on all systems based on the P6 family
proces® sors (excluding mobile processors and modules).

• Al
è

l interrupt mechanisms must be disabled for the duration of the MP protocol algorithm,
including the window of time between the assertion of INIT# or receipt of an INIT IPI by
the ap

±
plication processors and the receipt of a STARTUP IPI by the application processors.

Th
¾

at is, requests generated by interrupting devices must not be seen by the local APIC unit
(

¸
on board the processor) until the completion of the algorithm. Failure to disable the

in
¯

terrupt mechanisms may result in processor shutdown.

• The
¾

MP protocol should be initiated only after a hardware reset. After completion of the
pro® tocol algorithm, a flag is set in the APIC base MSR of the BSP (APIC_BASE.BSP) to
ind

¯
icate that it is the BSP. This flag is cleared for all other processors. If a processor or the

co³ mplete system is subject to an INIT sequence (either through the INIT# pin or an INIT

7-47

M
2

ULTIPLE-PROCESSOR MANAGEMENT

IPI), then the MP protocol is not re-executed. Instead, each processor examines its BSP
flag

¼
 to determine whether the processor should boot or wait for a STARTUP IPI.

7.7.2. MP Protocol Nomenclature

The MP initialization protocol defines two classes of processors:

• The bootstrap processor (BSP)—This primary processor is dynamically selected by the
MP

ð
initialization algorithm. After the BSP has been selected, it configures the APIC

envÓ ironment, and starts the secondary processors, under software control.

• Application processors (APs)—These secondary processors are the remainder of the
pr® ocessors in a MP system that were not selected as the BSP. The APs complete a minimal
self-con´ figuration, then wait for a startup signal from the BSP processor. Upon receiving a
startup ´ signal, an AP completes its configuration.

T
¾
able 7-7 describes the interrupt-style abbreviations that will be used through out the remaining

d
Ï
escription of the MP initialization protocol. These IPIs do not define new interrupt messages.

They
¾

 are messages that are special only by virtue of the time that they exist (that is, before the
R

Õ
ESET sequence is complete).

T
¾
able 7-8 describes the various fields of each boot phase IPI.

NOTE:

* For all P6 family processors.

Table 7-7. Types of Bo ot Pha se IPIs

Message Type Abbreviati on Descri ptio n

Boot Inter-
Processor Interrupt

BIPI An APIC serial bus message that Symmetric Multiprocessing
(SMP) agents use to dynamically determine a BSP after reset.

Final Boot Inter-
Processor Interrupt

FIPI An APIC serial bus message that the BSP issues before it fetches
f

0
rom the reset vector. This message has the lowest priority of all
boot phase IPIs. When a BSP sees an FIPI that it issued, it
f

0
etches the reset vector because no other boot phase IPIs can
f

0
ollow an FIPI.

Startup Inter-
Processor Interrupt

SIPI Used to send a new reset vector to a Application Processor (non-
BSP) processor in an MP system.

T
#
able 7-8. Boot Phase IPI Message Format

Ty
�

pe
Destinati on

Field
Destin ation
Shorthand

T
�

rigg er
Mode Level

Dest inatio n
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

10 to 1E

SIPI Used All allowed Edge Assert Physical or
Logical

StartUp
(110)

00 to FF

7-48

MULTIPLE-PROCESSOR MANAGEMENT

For BIPI and FIPI messages, the lower 4 bits of the vector field are equal to the APIC ID of the
pr® ocessor issuing the message. The upper 4 bits of the vector field of a BIPI or FIPI can be
tho
±

ught of as the “generation ID” of the message. All processors that run symmetric to a P6
family processor will have a generation ID of 0100B or 4H. BIPIs in a system based on the P6
fami
¼

ly processors will therefore use vector values ranging from 40H to 4EH (4FH can not be
used bä ecause FH is not a valid APIC ID).

7.7.3. Error Detect ion During th e MP Init ialization Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors may be tran-
si´ ent or permanent and can be caused by a variety of failure mechanisms (for example, broken
traces, soft er
±

rors during bus usage, etc.). All serial bus related errors will result in an APIC
check³ sum or acceptance error.

The
¾

occurrence of an APIC error causes a processor shutdown.

7.7.4. Error Handling Duri ng the MP Ini tializat ion Protocol

The MP initialization protocol makes the following assumptions:

• I
°
f any errors are detected on the APIC bus during execution of the MP initialization

pro® tocol, all processors will shutdown.

• In a system that conforms to Intel Architecture guidelines, a likely error (broken trace,
ch³ eck sum error during transmission) will result in no more than one processor booting.

• The MP initialization protocol will be executed by processors even if they fail their BIST
sequ´ ences.

7.7.5. MP Ini tialization Protocol Algorithm

The MP initialization protocol uses the message passing capabilities of the processor’s local
APIC
è

 to dynamically determine a boot strap processor (BSP). The algorithm used essentially
implemen
¯

ts a “race for the flag” mechanism using the APIC bus for atomicity.

The MP initialization algorithm is based on the fact that one and only one message is allowed
to
±

 exist on the APIC bus at a given time and that once the message is issued, it will complete
(APIC
¸

 messages are atomic). Another feature of the APIC architecture that is used in the initial-
ization algorithm is the existence of a round-robin priority mechanism between all agents that
use the APICä bus.

Th
¾

e MP initialization protocol algorithm performs the following operations in a SMP system
(ref
¸

er to Figure 7-19):

1. After completing their internal BISTs, all processors start their MP initialization protocol
seq´ uence by issuing BIPIs to “all including self” (at time t=0). The four least significant
b

º
its of the vector field of the IPI contain each processor's APIC ID. The APIC hardware

7-49

M
2

ULTIPLE-PROCESSOR MANAGEMENT

oµ bserves the BNR# (block next request) pin to guarantee that the initial BIPI is not issued
oµ n the APIC bus until the BIST sequence is completed for all processors in the system.

2.
Å

When the first BIPI completes (at time t=1), the APIC hardware (in each processor)
p® ropagates an interrupt to the processor core to indicate the arrival of the BIPI.

3.
Æ

Th
¾

e processor compares the four least significant bits of the BIPI’s vector field to the
pr® ocessor's APIC ID. A match indicates that the processor should be the BSP and continue
th

±
e initialization sequence. If the APIC ID fail s to match the BIPIs vector field, the

pr® ocessor is essentially the “loser” or not the BSP. The processor then becomes an
appÂ lication processor and should enter a “wait for SIPI” loop.

4. The winner (the BSP) issues an FIPI. The FIPI is issued to “all including self” and is
g× uaranteed to be the last IPI on the APIC bus during the initialization sequence. This is due
to

±
the fact that the round-robin priority mechanism forces the winning APIC agent's (the

BSPs) arbitration priority to 0. The FIPI is therefore issued by a priority 0 agent and has to
wait uÒ ntil all other agents have issued their BIPI's. When the BSP receives the FIPI that it
iss

¯
ued (t=5), it will start fetching code at the reset vector (Intel Architecture address).

5.
È

All application processors (non-BSP processors) remain in a “halted” state and can only be
wokÒ en up by SIPIs issued by another processor (note an AP in the startup IPI loop wil l also
respond to BINIT and snoops).

Figure 7-19. SMP System

P6 Family
Processor A

P6 Family
Processor B

P6 Family
Processor C

P6 Family
Processor D

BIPI.A BIPI.B BIPI.C BIPI.D FIPI

t=0
à

t=1 t=2 t=3 t=4 t=5

System (CPU) Bus

APIC Bus

Serial Bus Activity

8
Processor
Management and
Initialization

8-1

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

CHAPTER 8
PROCESSOR MANAGEMENT AND

INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
in

¯
iti alizing the processor. The subjects covered include: processor initialization, FPU initiali za-

t
±
ion, processor configuration, feature determination, mode switching, the MSRs (in the
Pentium®

ì
 and P6 family processors), and the MTRRs (in the P6 family processors).

8.1. INITIALIZATION O VERVIEW

F
Ý

ollowing power-up or an assertion of the RESET# pin, each processor on the system bus
perf® orms a hardware initi alization of the processor (known as a hardware reset) and an optional
b

º
uilt-in self-test (BIST). A hardware reset sets each processor’s registers to a known state and

places ® the processor in real-address mode. It also invalidates the internal caches, translation
lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, the action taken
depen

Ï
ds on the processor family:

• P6
¿

 family processors—All the processors on the system bus (including a single processor
in a uniprocessor system) execute the multiple processor (MP) initiali zation protocol
acroÂ ss the APIC bus. The processor that is selected through this protocol as the bootstrap
p® rocessor (BSP) then immediately starts executing software-initialization code in the
cur³ rent code segment beginning at the offset in the EIP register. The application (non-BSP)
p® rocessors (AP) go into a halt state while the BSP is executing initialization code. Refer to
Secti

Ö
on 7.7., “Multiple-Processor (MP) Initiali zation Protocol” in Chapter 7, M

ó
ultiple-

Processor Management for more details. Note that in a uniprocessor system, the single P6
fam

¼
i ly processor automatically becomes the BSP.

• Pen
¿

tium®
ì
 processors—In either a single- or dual- processor system, a single Pentium®

ì

pr® ocessor is always pre-designated as the primary processor. Following a reset, the primary
pr® ocessor behaves as follows in both single- and dual-processor systems. Using the dual-
pr® ocessor (DP) ready initialization protocol, the primary processor immediately starts
exÓ ecuting software-initialization code in the current code segment beginning at the offset
in the EIP

¯
register. The secondary processor (if there is one) goes into a halt state. (Refer to

Secti
Ö

on 7.6., “Dual-Processor (DP) Initialization Protocol” in Chapter 7, M
ó

ultiple-
Processor Management for more details.)

• Intel486™ processor—The primary processor (or single processor in a uniprocessor
sy´ stem) immediately starts executing software-initialization code in the current code
s´ egment beginning at the offset in the EIP register. (The Intel486™ does not automatically
exÓ ecute a DP or MP initialization protocol to determine which processor is the primary
pr® ocessor.)

The software-initialization code performs all system-specific initialization of the BSP or
primar® y processor and the system logic.

8-2

PROCESSOR MANAGEMENT AND INITIALIZATION

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or
second´ ary) processor to enable those processors to execute self-configuration code.

W
»

hen all processors are initialized, configured, and synchronized, the BSP or primary processor
beg
º

ins executing an initial operating-system or executive task.

Th
¾

e floating-point unit (FPU) is also initialized to a known state during hardware reset. FPU
so´ ftware initiali zation code can then be executed to perform operations such as setting the preci-
si´ on of the FPU and the exception masks. No special initialization of the FPU is required to
s´ witch operating modes.

Ass
è

erting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference is that during an INIT, the internal caches, MSRs, MTRRs, and FPU state are
left u
Ü

nchanged (although, the TLBs and BTB are invalidated as with a hardware reset). An INIT
pr® ovides a method for switching from protected to real-address mode while maintaining the
con³ tents of the internal caches.

8.1.1. Proc essor S tate After Reset

T
¾
able 8-1 shows the state of the flags and other registers following power-up for the Pentium®

ì

Pro, Pentium®
ì
, and IntÍ el486™ processors. The state of control register CR0 is 60000010H (refer

to Figu
±

re 8-1), which places the processor is in real-address mode with paging disabled.

8.1.2. Proc essor B uilt -In Self -Test (BIST)

Hardware may request that the BIST be performed at power-up. The EAX register is cleared
(0
¸

H) if the processor passes the BIST. A nonzero value in the EAX register after the BIST indi-
cates³ that a processor fault was detected. If the BIST is not requested, the contents of the EAX
register after a hardware reset is 0H.

The o
¾

verhead for performing a BIST varies between processor families. For example, the BIST
tak
±

es approximately 5.5 millio n processor clock periods to execute on the Pentium®
ì
 Pro

pr® ocessor. (This clock count is model-specific, and Intel reserves the right to change the exact
nu² mber of periods, for any of the Intel Architecture processors, without notification.)

8-3

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

Table 8-1. 32-Bi t Inte l Archi tectu re Proce ssor State s
Foll owing Po wer-up, Re set, or INIT

Register P6 Family Processors Penti um®

 Processor Intel486™ Processo r

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

MXCSR Pentium®

 III processor only-
Pwr up or Reset: 1F80H
FINIT/FNINIT: Unchanged

NA NA

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

SS, DS, ES, FS,
GS

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

EDX 000006xxH 000005xxH 000004xxH

EAX 03 03 03

EBX, ECX, ESI,
EDI, EBP, ESP

00000000H 00000000H 00000000H

MM0 through
MM74

Pentium®

 Pro processor -
NA
Pentium®

 II and Pentium®

 III

processor -
Pwr up or Reset:
 0000000000000000H
FINIT/FNINIT: Unchanged

Pwr up or Reset:
 0000000000000000H
FINIT/FNINIT: Unchanged

NA

XMM0 through
XMM75

ü Pentium®

 III processor only-
Pwr up or Reset:
 0000000000000000H
FINIT/FNINIT: Unchanged

NA NA

ST0 through
ST74

M Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

FPU Control
Word4

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

FPU Status
Wo

�
rd4

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

FPU Tag Word4 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

FPU Data
Operand and CS
Seg. Selectors4

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

8-4

PROCESSOR MANAGEMENT AND INITIALIZATION

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot
be invoked during an INIT.)

4. The state of the FPU state and MMX™ registers is not changed by the execution of an INIT.

5. Available in the Pentium®

 III processor and Pentium®

 III Xeon™ processor only. The state of the SIMD
floating-point registers is not changed by the execution of an INIT.

FPU Data
Operand and
Inst. Pointers4

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

GDTR,IDTR Base = 00000000H
Limit = FFFFH
AR

á
= Present, R/W

Base = 00000000H
Limit = FFFFH
A

á
R = Present, R/W

Base = 00000000H
Limit = FFFFH
A

á
R = Present, R/W

LDTR, Task
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR

á
= Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
A

á
R = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
A

á
R = Present, R/W

DR0, DR1, DR2,
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF1FF0H

DR7 00000400H 00000400H 00000000H

T

ime-Stamp
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Not Implemented

Perf. Counters
and Event
Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Not Implemented

A
á

ll Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

Data and Code
Cache, TLBs

Invalid Invalid Invalid

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented Not Implemented

Machine-Check
A

á
rchitecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented Not Implemented

A
á

PIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Not Implemented

T
#
able 8-1. 32-Bit Inte l Arch itecture Proc essor Sta tes

Foll owing Po wer-up, Reset, or INI T (Contd .)

Register P6 Family P rocessors Pentium®

 Processor Intel486™ Process or

8-5

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

8.1.3. Model and Stepping I nformation

Following a hardware reset, the EDX register contains component identification and revision
i

¯
nformation (refer to Figure 8-2). The device ID field is set to the value 6H, 5H, 4H, or 3H to
indicate a Pentium

¯
®

ì
 Pro, Pentium®

ì
, InÍ tel486™, or Intel386™ processor, respectively. Different

vÙ alues may be returned for the various members of these Intel Architecture families. For
exampÓ le the Intel386™ SX processor returns 23H in the device ID field. Binary object code can
b

º
e made compatible with other Intel processors by using this number to select the correct initial-

ization software.

Figure 8-1. Conte nts of CR0 Regis ter afte r Reset

Figure 8 -2. Proce ssor Type and Si gnature in the EDX Register a fter Res et

External FPU error reporting: 0
(Not used): 1
No task switch: 0
FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

Reserved

31
�

19 16 15 0

P
E

12
`

3
�

4
a

5
�

6
b

171828
`

29
`

30
�

M
P

E
M1N

E
T

<

S
P
G

� C
c

D
N
W

W
d

P
A

=

M

Paging disabled: 0

Alignment c
á

heck disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

31
�

12 11 8 7 4 3 0

EDX

Family (0110B for the Pentium®
e
 Pro Processor Family)

Model (Beginning with 0001B)

1314

Processor Type

ModelFamily
Stepping

ID

Reserved

8-6

PROCESSOR MANAGEMENT AND INITIALIZATION

The stepping ID field contains a unique identifier for the processor’s stepping ID or revision
level. Th
Ü

e upper word of EDX is reserved following reset.

8.1.4. Firs t Inst ruct ion E xecuted

The first instruction that is fetched and executed following a hardware reset is located at physical
addÂ ress FFFFFFF0H. This address is 16 bytes below the processor’s uppermost physical
adÂ dress. The EPROM containing the software-initialization code must be located at this address.

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor while in
real-addÃ ress mode. The processor is initialized to this starting address as follows. The CS
regÃ ister has two parts: the visible segment selector part and the hidden base address part. In real-
addÂ ress mode, the base address is normally formed by shifting the 16-bit segment selector value
4 b
Ç

its to the left to produce a 20-bit base address. However, during a hardware reset, the segment
sel´ ector in the CS register is loaded with F000H and the base address is loaded with
FFFF0000H. The starting address is thus formed by adding the base address to the value in the
EI
½

P register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first
¾

time the CS register is loaded with a new value after a hardware reset, the processor
willÒ follow the normal rule for address translation in real-address mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the CS register remains
uä nchanged until the EPROM based software-initialization code is completed, the code must not
con³ tain a far jump or far call or allow an interrupt to occur (which would cause the CS selector
valuÙ e to be changed).

8.2. FPU INITIALIZATION

Software-
Ö

initialization code can determine the whether the processor contains or is attached to
anÂ FPU by using the CPUID instruction. The code must then initiali ze the FPU and set flags in
con³ trol register CR0 to reflect the state of the FPU environment.

A hardware reset places the Pentium®
ì
 processor FPU in the state shown in Table 8-1. This state

is
¯

 different from the state the processor is placed in when executing an FINIT or FNINIT instruc-
t
±
ion (also shown in Table 8-1). If the FPU is to be used, the software-initialization code should
execuÓ te an FINIT/FNINIT instruction following a hardware reset. These instructions, tag all
data
Ï

registers as empty, clear all the exception masks, set the TOP-of-stack value to 0, and select
t
±
he default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the FPU state is not changed.

8.2.1. Conf igur ing th e FPU Environment

In
°

itialization code must load the appropriate values into the MP, EM, and NE flags of control
register CR0. These bits are cleared on hardware reset of the processor. Figure 8-2 shows the
su´ ggested settings for these flags, depending on the Intel Architecture processor being initial-

8-7

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

ized. Initialization code can test for the type of processor present before setting or clearing these
flags

¼
.

NOTE:

* The setting of the NE flag depends on the operating system being used.

The EM flag determines whether floating-point instructions are executed by the FPU (EM is
cleared)³ or generate a device-not-available exception (#NM) so that an exception handler can
emulate the floating-Ó point operation (EM = 1). Ordinarily, the EM flag is cleared when an FPU
or µ math coprocessor is present and set if they are not present. If the EM flag is set and no FPU,
mÄ ath coprocessor, or floating-point emulator is present, the system will hang when a floating-
poi® nt instruction is executed.

The
¾

MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag.
If th

°
e MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP

flag is set, they will generate a device-not-available exception (#NM) if the TS flag is set. Gener-
allÂ y, the MP flag should be set for processors with an integrated FPU and clear for processors
wiÒ thout an integrated FPU and without a math coprocessor present. However, an operating
s´ ystem can choose to save the floating-point context at every context switch, in which case there
woÒ uld be no need to set the MP bit.

T
¾
able 2-1 in Chapter 2, System

î
 Architecture Overview shows the actions taken for floating-point

and Â WAIT/FWAIT instructions based on the settings of the EM, MP, and TS flags.

The
¾

NE flag determines whether unmasked floating-point exceptions are handled by generating
a floÂ ating-point error exception internally (NE is set, native mode) or through an external inter-
rupt (NE is cleared). In systems where an external interrupt controller is used to invoke numeric
exceptioÓ n handlers (such as MS-DOS-based systems), the NE bit should be cleared.

Table 8-2. Recom mended Settin gs of EM and MP Flags on Intel Archi tectu re Proc essors

EM MP NE Intel Archi tectur e Processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium® Pro, Pentium®
f
, Intel486™ DX, and Intel 487 SX

processors, and also Intel386™ DX and Intel386™ SX
processors when a companion math coprocessor is present.

8-8

PROCESSOR MANAGEMENT AND INITIALIZATION

8.2.2. Setting the Processor for FPU S oftware Emulat ion

Sett
Ö

ing the EM flag causes the processor to generate a device-not-available exception (#NM)
andÂ trap to a software exception handler whenever it encounters a floating-point instruction.
(T
¸

able 8-2 shows when it is appropriate to use this flag.) Setting this flag has two functions:

• It allows floating-point code to run on an Intel processor that neither has an integrated FPU
n² or is connected to an external math coprocessor, by using a floating-point emulator.

• It allows floating-point code to be executed using a special or nonstandard floating-point
emuÓ lator, selected for a particular application, regardless of whether an FPU or math
co³ processor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 should
be s
º

et as shown in Table 8-3.

R
Õ

egardless of the value of the EM bit, the Intel486™ SX processor generates a device-not-avail-
ablÂ e exception (#NM) upon encountering any floating-point instruction.

8.3. CACHE ENABLING

The Intel Architecture processors (beginning with the Intel486™ processor) contain internal
instruction
¯

 and data caches. These caches are enabled by clearing the CD and NW flags in
con³ trol register CR0. (They are set during a hardware reset.) Because all internal cache lines are
inv
¯

alid following reset initialization, it is not necessary to invalidate the cache before enabling
cachin³ g. Any external caches may require initialization and invalidation using a system-specific
initiali zation and invalidation code sequence.

Depen
Þ

ding on the hardware and operating system or executive requirements, additional config-
uä ration of the processor’s caching facilities will probably be required. Beginning with the
Intel486™ processor, page-level caching can be controlled with the PCD and PWT flags in
pag® e-directory and page-table entries. For P6 family processors, the memory type range regis-
ters
±

(MTRRs) control the caching characteristics of the regions of physical memory. (For the
Intel486™ and Pentium®

ì
 processors, external hardware can be used to control the caching char-

actÂ eristics of regions of physical memory.) Refer to Chapter 9, M
ó

emory Cache Control, foÍ r
d
Ï
etailed information on configuration of the caching facilities in the P6 family processors and

sy´ stem memory.

8.4. MODEL-SPECIFIC REGISTERS (MSRS)

The P6 fam
¾

ily processors and Pentium®
ì
 processors contain model-specific registers (MSRs).

These registers are by definition implementation specific; that is, they are not guaranteed to be

Table 8-3. Softw are Emul ation Setti ngs of EM, MP, and NE Flags

CR0 Bi t Value

EM 1

MP 0

NE 1

8-9

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

su´ pported on future Intel Architecture processors and/or to have the same functions. The MSRs
are pÂ rovided to control a variety of hardware- and software-related features, including:

• The performance-mon
¾

itoring counters (refer to Section 15.6., “Performance-Monitoring
Co

·
unters”, in Chapter 15, Debugging and Performance Monitoring).

Á

• (P
¸

6 family processors only.) Debug extensions (refer to Section 15.4., “Last Branch,
In

°
terrupt, and Exception Recording” , in Chapter 15, D

ÿ
ebugging and Performance

Monitoring).
Á

• (P6 family
¸

 processors only.) The machine-check exception capabili ty and its accompa-
ny² ing machine-check architecture (refer to Chapter 13, M

ó
achine-Check Architecture).

Á

• (P
¸

6 family processors only.) The MTRRs (refer to Section 9.12., “Memory Type Range
R

Õ
egisters (MTRRs)”, in Chapter 9, Memory C

ó
ache Control).

Á

The MS
¾

Rs can be read and written to using the RDMSR and WRMSR instructions, respectively.

W
»

hen performing software initialization of a Pentium®
ì
 Pro or Pentium®

ì
 processor, many of the

MS
ð

Rs wil l need to be initialized to set up things like performance-monitoring events, run-time
machinÄ e checks, and memory types for physical memory.

S
Ö

ystems configured to implement FRC mode must write all of the processors’ internal MSRs to
d
Ï
eterministic values before performing either a read or read-modify-write operation using these

registers. Ã The following is a list of MSRs that are not initialized by the processors’ reset
s´ equences.

• All f ixed and variable MTRRs.

• All Machine
è

Check Architecture (MCA) status registers.

• Microcode update signature register.

• All L2 cache initiali zation MSRs.

The lis
¾

t of available performance-monitoring counters for the Pentium®
ì
 Pro and Pentium®

ì

pro® cessors is given in Appendix A, Performance-Monitoring Events, anÍ d the list of available
MS

ð
Rs for the Pentium®

ì
 Pro processor is given in Appendix B, Model-Specific Registers. The

referÃ ences earlier in this section show where the functions of the various groups of MSRs are
d

Ï
escribed in this manual.

8.5. MEMORY TYPE RANGE REGISTERS (MTRRS)

Mem
ð

ory type range registers (MTRRs) were introduced into the Intel Architecture with the
Pentium®

ì
 Pro processor. They allow the type of caching (or no caching) to be specified in system

memoÄ ry for selected physical address ranges. They allow memory accesses to be optimized for
varioÙ us types of memory such as RAM, ROM, frame buffer memory, and memory-mapped I/O
devi

Ï
ces.

In
°

 general, initiali zing the MTRRs is normally handled by the software initiali zation code or
B

â
IOS and is not an operating system or executive function. At the very least, all the MTRRs

must be cleared to 0, which selects the uncached (UC) memory type. Refer to Section 9.12.,

8-10

PROCESSOR MANAGEMENT AND INITIALIZATION

“Memory Type Range Registers (MTRRs)” , in Chapter 9, Memory Cache Control, fÍ or detailed
in
¯

formation on the MTRRs.

8.6. SOFTWARE INITIALIZATION FOR REAL-AD DRESS MODE
OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the
p® rocessor is placed in real-address mode and begins executing software initialization code from
p® hysical address FFFFFFF0H. Software initiali zation code must first set up the necessary data
st´ ructures for handling basic system functions, such as a real-mode IDT for handling interrupts
andÂ exceptions. If the processor is to remain in real-address mode, software must then load addi-
tional o
±

perating-system or executive code modules and data structures to allow reliable execu-
t
±
ion of application programs in real-address mode.

If th
°

e processor is going to operate in protected mode, software must load the necessary data
st´ ructures to operate in protected mode and then switch to protected mode. The protected-mode
data s
Ï

tructures that must be loaded are described in Section 8.7., “Software Initialization for
Protected-
¿

Mode Operation”.

8.6.1. Real-Addr ess Mod e IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT
(also
¸

called the “interrupt vector table”). By default, the address of the base of the IDT is phys-
ical address 0H. This address can be changed by using the LIDT instruction to change the base
adÂ dress value in the IDTR. Software initiali zation code needs to load interrupt- and exception-
h
ø
andler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM;
ho
ø

wever, the code must be located within the 1-MByte addressable range of the processor in
real-adÃ dress mode. If the handler code is to be stored in RAM, it must be loaded along with the
IDT.

8.6.2. NMI Interrupt Ha ndling

Th
¾

e NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and
th
±

e NMI interrupt handler need to be loaded into RAM, there will be a period of time following
har
ø

dware reset when an NMI interrupt cannot be handled. During this time, hardware must
p® rovide a mechanism to prevent an NMI interrupt from halting code execution until the IDT and
the n
±

ecessary NMI handler software is loaded.

8-11

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

Here are two examples of how NMIs can be handled during the initial states of processor initial-
izat

¯
ion:

• A s
è

imple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI
interrupt to be handled immediately after reset initiali zation.

• The system hardware can provide a mechanism to enable and disable NMIs by passing the
NMI# s

ß
ignal through an AND gate controlled by a flag in an I/O port. Hardware can clear

the flag when the
±

processor is reset, and software can set the flag when it is ready to handle
N

ß
MI interrupts.

8.7. SOFTWARE INITIALIZATIO N FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this point in the
initi

¯
alization process, some basic data structures and code modules must be loaded into physical

memory to support further initialization of the processor, as described in Section 8.6., “Software
In

°
itialization for Real-Address Mode Operation”. Before the processor can be switched to

pro® tected mode, the software initialization code must load a minimum number of protected
mode data structures and code modules into memory to support reliable operation of the
pro® cessor in protected mode. These data structures include the following:

• A
è

protected-mode IDT.

• A GDT.

• A TSS.

• (Opt
¸

ional.) An LDT.

• If paging is to be used, at least one page directory and one page table.

• A code segment that contains the code to be executed when the processor switches to
pr® otected mode.

• One o
Ð

r more code modules that contain the necessary interrupt and exception handlers.

S
Ö

oftware initialization code must also initialize the following system registers before the
pro® cessor can be switched to protected mode:

• The GDTR.

• (Opt
¸

ional.) The IDTR. This register can also be initiali zed immediately after switching to
pr® otected mode, prior to enabling interrupts.

• C
·

ontrol registers CR1 through CR4.

• (Pen
¸

tium®
ì
 Pro processor only.) The memory type range registers (MTRRs).

W
»

ith these data structures, code modules, and system registers initialized, the processor can be
s´ witched to protected mode by loading control register CR0 with a value that sets the PE flag
(b

¸
it 0).

8-12

PROCESSOR MANAGEMENT AND INITIALIZATION

8.7.1. Prot ected-Mode System Data Struc tures

The contents of the protected-mode system data structures loaded into memory during software
in
¯

itiali zation, depend largely on the type of memory management the protected-mode operating-
sy´ stem or executive is going to support: flat, flat with paging, segmented, or segmented with
pag® ing.

T
¾
o implement a flat memory model without paging, software initiali zation code must at a

minimum load a GDT with one code and one data-segment descriptor. A null descriptor in the
first G
¼

DT entry is also required. The stack can be placed in a normal read/write data segment,
so n´ o dedicated descriptor for the stack is required. A flat memory model with paging also
requires a page directory and at least one page table (unless all pages are 4 MBytes in which case
onµ ly a page directory is required). Refer to Section 8.7.3., “Initializing Paging”

B
â

efore the GDT can be used, the base address and limit for the GDT must be loaded into the
GDTR r
Ô

egister using an LGDT instruction.

A m
è

ultisegmented model may require additional segments for the operating system, as well as
segments and´ LDTs for each application program. LDTs require segment descriptors in the
GDT
Ô

. Some operating systems allocate new segments and LDTs as they are needed. This
p® rovides maximum flexibility for handling a dynamic programming environment. However,
manÄ y operating systems use a single LDT for all tasks, allocating GDT entries in advance. An
embÓ edded system, such as a process controller, might pre-allocate a fixed number of segments
andÂ LDTs for a fixed number of application programs. This would be a simple and efficient way
to structu
±

re the software environment of a real-time system.

8.7.2. Initializing P rotected-Mode E xceptions and Interrupts

So
Ö

ftware initialization code must at a minimum load a protected-mode IDT with gate descriptor
fo
¼

r each exception vector that the processor can generate. If interrupt or trap gates are used, the
gate × descriptors can all point to the same code segment, which contains the necessary exception
han
ø

dlers. If task gates are used, one TSS and accompanying code, data, and task segments are
reqÃ uired for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for
onµ e or more interrupt handlers.

B
â

efore the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR
register using an LIDT instruction. This operation is typically carried out immediately after
sw´ itching to protected mode.

8.7.3. Initia lizing P aging

Paging is controlled by the PG flag in control register CR0. When this flag is clear (its state
fol
¼

lowing a hardware reset), the paging mechanism is turned off; when it is set, paging is
enÓ abled. Before setting the PG flag, the following data structures and registers must be initial-
ized:

8-13

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

• Software
Ö

must load at least one page directory and one page table into physical memory.
Th

¾
e page table can be eliminated if the page directory contains a directory entry pointing to

its
¯

elf (here, the page directory and page table reside in the same page), or if only 4-MByte
pag® es are used.

• C
·

ontrol register CR3 (also called the PDBR register) is loaded with the physical base
addÂ ress of the page directory.

• (
¸
Optional) Software may provide one set of code and data descriptors in the GDT or in an

LDT f
Ñ

or supervisor mode and another set for user mode.

W
»

ith this paging ini tialization complete, paging is enabled and the processor is switched to
pro® tected mode at the same time by loading control register CR0 with an image in which the PG
and Â PE flags are set. (Paging cannot be enabled before the processor is switched to protected
modÄ e.)

8.7.4. Initial izing Multitas king

If the multi tasking mechanism is not going to be used and changes between privilege levels are
not allo² wed, it is not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privil ege levels are
allÂ owed, software initialization code must load at least one TSS and an accompanying TSS
descriptor

Ï
. (A TSS is required to change privilege levels because pointers to the privileged-level

0, 1, and
¹

 2 stack segments and the stack pointers for these stacks are obtained from the TSS.)
TSS

¾
 descriptors must not be marked as busy when they are created; they should be marked busy

by
º

the processor only as a side-effect of performing a task switch. As with descriptors for LDTs,
TSS descriptors reside in the GDT.

After
è

the processor has switched to protected mode, the LTR instruction can be used to load a
s´ egment selector for a TSS descriptor into the task register. This instruction marks the TSS
des

Ï
criptor as busy, but does not perform a task switch. The processor can, however, use the TSS

to loc
±

ate pointers to privilege-level 0, 1, and 2 stacks. The segment selector for the TSS must be
loaded

Ü
 before software performs its first task switch in protected mode, because a task switch

copies the c³ urrent task state into the TSS.

After the L
è

TR instruction has been executed, further operations on the task register are
perf® ormed by task switching. As with other segments and LDTs, TSSs and TSS descriptors can
be either

º
 pre-allocated or allocated as needed.

8.8. MODE SWITCHING

T
¾
o use the processor in protected mode, a mode switch must be performed from real-address

mode. Once in protected mode, software generally does not need to return to real-address mode.
T

¾
o run software written to run in real-address mode (8086 mode), it is generall y more convenient

to
±

 run the software in virtual-8086 mode, than to switch back to real-address mode.

8-14

PROCESSOR MANAGEMENT AND INITIALIZATION

8.8.1. Switching to Protected Mode

Before switching to protected mode, a minimum set of system data structures and code modules
mÄ ust be loaded into memory, as described in Section 8.7., “Software Initialization for Protected-
Mode Operation”. Once these tables are created, software initialization code can switch into
pr® otected mode.

Protected
¿

mode is entered by executing a MOV CR0 instruction that sets the PE flag in the CR0
register. (In the same instruction, the PG flag in register CR0 can be set to enable paging.)
Execu
½

tion in protected mode begins with a CPL of 0.

Th
¾

e 32-bit Intel Architecture processors have slightly different requirements for switching to
p® rotected mode. To insure upwards and downwards code compatibili ty with all 32-bit Intel
Architectur
è

e processors, it is recommended that the following steps be performed:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that no
exÓ ceptions or interrupts are generated during the mode switching operation.)

2.
Å

Execute the LGDT instruction to load the GDTR register with the base address of the
GDT

Ô
.

3
Æ
. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in

co³ ntrol register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL
in

¯
struction. (This operation is typically a far jump or call to the next instruction in the

instru
¯

ction stream.)

The JMP or CALL instruction immediately after the MOV CR0 instruction changes the
f

¼
low of execution and serializes the processor.

I
°
f paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL

instruction must come from a page that is identity mapped (that is, the linear address before
the ju

±
mp is the same as the physical address after paging and protected mode is enabled).

The t
¾

arget instruction for the JMP or CALL instruction does not need to be identity
mapped.

5.
È

If a local descriptor table is going to be used, execute the LLDT instruction to load the
segmen´ t selector for the LDT in the LDTR register.

6.
É

Execute the LTR instruction to load the task register with a segment selector to the initial
p® rotected-mode task or to a writable area of memory that can be used to store TSS
in

¯
formation on a task switch.

7.
Ê

After entering protected mode, the segment registers continue to hold the contents they had
in r

¯
eal-address mode. The JMP or CALL instruction in step 4 resets the CS register.

P
¿

erform one of the following operations to update the contents of the remaining segment
registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers
are noÂ t going to be used, load them with a null selector.

8-15

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

— Perform a JMP or CALL instruction to a new task, which automatically resets the
vÙ alues of the segment registers and branches to a new code segment.

8
Ë
. Execute the LIDT instruction to load the IDTR register with the address and limit of the

pr® otected-mode IDT.

9
Ì
. Execute the STI instruction to enable maskable hardware interrupts and perform the

necessary h² ardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will
be read

º
il y seen in some situations, such as when instructions that reference memory are inserted

bet
º

ween steps 3 and 4 while in System Management mode.

8.8.2. Switchi ng Ba ck to Real-Address Mode

The processor switches back to real-address mode if software clears the PE bit in the CR0
register with a MOV CÃ R0 instruction. A procedure that re-enters real-address mode should
pe® rform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interr

¯
upts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical
adÂ dresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3.
Æ

Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH).
Thi

¾
s operation loads the CS register with the segment limit required in real-address mode.

4.
Ç

Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing
the f

±
ollowing values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value

Th
¾

e segment registers must be loaded with nonnull segment selectors or the segment
regÃ isters will be unusable in real-address mode. Note that if the segment registers are not

8-16

PROCESSOR MANAGEMENT AND INITIALIZATION

reloaded, execution continues using the descriptor attributes loaded during protected
moÄ de.

5
È
. Execute an LIDT instruction to point to a real-address mode interrupt table that is within

the
±

1-MByte real-address mode address range.

6.
É

Clear the PE flag in the CR0 register to switch to real-address mode.

7.
Ê

Execute a far JMP instruction to jump to a real-address mode program. This operation
flushes the instruction queue and loads the appropriate base and access rights values in the
CS

·
 register.

8.
Ë

Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any
oµ f the registers are not going to be used in real-address mode, write 0s to them.

9
Ì
. Execute the STI instruction to enable maskable hardware interrupts and perform the

n² ecessary hardware operation to enable NMI interrupts.

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and
th

±
e linear addresses in that page must be identity mapped to physical

adÂ dresses.

8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE

This s
¾

ection provides an initialization and mode switching example that can be incorporated into
anÂ application. This code was originally written to initi alize the Intel386™ processor, but it will
execuÓ te successfully on the Pentium®

ì
 Pro, Pentium®

ì
, anÍ d Intel486™ processors. The code in this

exÓ ample is intended to reside in EPROM and to run following a hardware reset of the processor.
The function of the code is to do the following:

• Establish a basic real-address mode operating environment.

• Lo
Ñ

ad the necessary protected-mode system data structures into RAM.

• Load the system registers with the necessary pointers to the data structures and the
appÂ ropriate flag settings for protected-mode operation.

• Switch the p
Ö

rocessor to protected mode.

Figure 8-3 shows the physical memory layout for the processor following a hardware reset and
th
±

e starting point of this example. The EPROM that contains the initialization code resides at the
upä per end of the processor’s physical memory address range, starting at address FFFFFFFFH
anÂ d going down from there. The address of the first instruction to be executed is at FFFFFFF0H,
the d
±

efault starting address for the processor following a hardware reset.

The
¾

main steps carried out in this example are summarized in Table 8-4. The source listing for
the exam
±

ple (with the filename STARTUP.ASM) is given in Example 8-1. The line numbers
gi× ven in Table 8-4 refer to the source listing.

8-17

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

The following are some additional notes concerning this example:

• W
»

hen the processor is switched into protected mode, the original code segment base-
addÂ ress value of FFFF0000H (located in the hidden part of the CS register) is retained and
execuÓ tion continues from the current offset in the EIP register. The processor will thus
con³ tinue to execute code in the EPROM until a far jump or call is made to a new code
seg´ ment, at which time, the base address in the CS register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should remain
disabled

Ï
until the necessary interrupt handlers have been installed. The NMI interrupt is

no² t disabled following a reset. The NMI# pin must thus be inhibited from being asserted
unä til an NMI handler has been loaded and made available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to
anÂ ywhere in the RAM area. A GDT entry is constructed with its base pointing to address 0
andÂ a limit of 4 GBytes. When the DS and ES registers are loaded with this descriptor, the
tempo

±
rary GDT is no longer needed and can be replaced by the application GDT.

• Thi
¾

s code loads one TSS and no LDTs. If more TSSs exist in the application, they must be
loaded into RAM. If there are LDTs they may be loaded as well.

Figure 8 -3. Proce sso r State After Res et

0
�

FFFF FFFFH
Aft

á
er Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K
A

EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H

8-18

PROCESSOR MANAGEMENT AND INITIALIZATION

T
#
able 8-4. Main Initi alizatio n Steps i n STARTUP.ASM Source List ing

STARTUP.ASM
Line Numbers

Descri ptio nFrom To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire
physical memory space

188 195 Perform specific board initialization that is imposed by the new protected
mode

196 218 Copy the application’s GDT from ROM into RAM

220 238 Copy the application’s IDT from ROM into RAM

241 243 Load application’s GDTR

244 245 Load application’s IDTR

247 261 Copy the application’s TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application’s TSS

287 287 Push EFLAGS value found in the application’s TSS

288 288 Push CS value found in the application’s TSS

289 289 Push EIP value found in the application’s TSS

290 293 Load DS, ES with the value found in the application’s TSS

296 296 Perform IRET; pop the above values and enter the application code

8-19

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

8.9.1. Assemble r Usage

In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and
b

º
uild the initialization code module. The following assumptions are used when using the Intel

ASM386 and BLD386 tools.

• The ASM386 will generate the right operand size opcodes according to the code-segment
attribÂ ute. The attribute is assigned either by the ASM386 invocation controls or in the
co³ de-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be set to a
USE 1

æ
6 attribute. If a 32-bit operand is used in an instruction in this code segment (for

examÓ ple, MOV EAX, EBX), the assembler automatically generates an operand prefix for
the in

±
struction that forces the processor to execute a 32-bit operation, even though its

d
Ï
efault code-segment attribute is 16-bit.

• Intel’s ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
examÓ ple, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the default-
seg´ ment attribute will be used to generate the right opcode.

8.9.2. STARTUP.ASM List ing

The source code listing to move the processor into protected mode is provided in Example 8-1.
Th

¾
is listing does not include any opcode and offset information.

Example 8-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92 PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP
OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132)

LINE SOURCE

 1 NAME STARTUP
 2
 3 ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 4 ;
 5 ; ASSUMPTIONS:
 6 ;
 7 ; 1. The bottom 64K of memory is ram, and can be used for
 8 ; scratch space by this module.
 9 ;
 10 ; 2. The system has sufficient free usable ram to copy the
 11 ; initial GDT, IDT, and TSS

8-20

PROCESSOR MANAGEMENT AND INITIALIZATION

 12 ;
 13 ;;
 14
 15 ; configuration data - must match with build definition
 16
 17 CS_BASE EQU 0FFFF0000H
 18
 19 ; CS_BASE is the linear address of the segment STARTUP_CODE
 20 ; - this is specified in the build language file
 21
 22 RAM_START EQU 400H
 23
 24 ; RAM_START is the start of free, usable ram in the linear
 25 ; memory space. The GDT, IDT, and initial TSS will be
 26 ; copied above this space, and a small data segment will be
 27 ; discarded at this linear address. The 32-bit word at
 28 ; RAM_START will contain the linear address of the first
 29 ; free byte above the copied tables - this may be useful if
 30 ; a memory manager is used.
 31
 32 TSS_INDEX EQU 10
 33
 34 ; TSS_INDEX is the index of the TSS of the first task to
 35 ; run after startup
 36
 37
 38 ;;
 39
 40 ; ------------------------- STRUCTURES and EQU ---------------
 41 ; structures for system data
 42
 43 ; TSS structure
 44 TASK_STATE STRUC
 45 link DW ?
 46 link_h DW ?
 47 ESP0 DD ?
 48 SS0 DW ?
 49 SS0_h DW ?
 50 ESP1 DD ?
 51 SS1 DW ?
 52 SS1_h DW ?
 53 ESP2 DD ?
 54 SS2 DW ?
 55 SS2_h DW ?
 56 CR3_reg DD ?
 57 EIP_reg DD ?
 58 EFLAGS_reg DD ?

8-21

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

 59 EAX_reg DD ?
 60 ECX_reg DD ?
 61 EDX_reg DD ?
 62 EBX_reg DD ?
 63 ESP_reg DD ?
 64 EBP_reg DD ?
 65 ESI_reg DD ?
 66 EDI_reg DD ?
 67 ES_reg DW ?
 68 ES_h DW ?
 69 CS_reg DW ?
 70 CS_h DW ?
 71 SS_reg DW ?
 72 SS_h DW ?
 73 DS_reg DW ?
 74 DS_h DW ?
 75 FS_reg DW ?
 76 FS_h DW ?
 77 GS_reg DW ?
 78 GS_h DW ?
 79 LDT_reg DW ?
 80 LDT_h DW ?
 81 TRAP_reg DW ?
 82 IO_map_base DW ?
 83 TASK_STATE ENDS
 84
 85 ; basic structure of a descriptor
 86 DESC STRUC
 87 lim_0_15 DW ?
 88 bas_0_15 DW ?
 89 bas_16_23 DB ?
 90 access DB ?
 91 gran DB ?
 92 bas_24_31 DB ?
 93 DESC ENDS
 94
 95 ; structure for use with LGDT and LIDT instructions
 96 TABLE_REG STRUC
 97 table_lim DW ?
 98 table_linear DD ?
 99 TABLE_REG ENDS
 100
 101 ; offset of GDT and IDT descriptors in builder generated GDT
 102 GDT_DESC_OFF EQU 1*SIZE(DESC)
 103 IDT_DESC_OFF EQU 2*SIZE(DESC)
 104
 105 ; equates for building temporary GDT in RAM

8-22

PROCESSOR MANAGEMENT AND INITIALIZATION

 106 LINEAR_SEL EQU 1*SIZE (DESC)
 107 LINEAR_PROTO_LO EQU 00000FFFFH ; LINEAR_ALIAS
 108 LINEAR_PROTO_HI EQU 000CF9200H
 109
 110 ; Protection Enable Bit in CR0
 111 PE_BIT EQU 1B
 112
 113 ; --
 114
 115 ; ------------------------- DATA SEGMENT----------------------
 116
 117 ; Initially, this data segment starts at linear 0, according
 118 ; to the processor’s power-up state.
 119
 120 STARTUP_DATA SEGMENT RW
 121
 122 free_mem_linear_base LABEL DWORD
 123 TEMP_GDT LABEL BYTE ; must be first in segment
 124 TEMP_GDT_NULL_DESC DESC <>
 125 TEMP_GDT_LINEAR_DESC DESC <>
 126
 127 ; scratch areas for LGDT and LIDT instructions
 128 TEMP_GDT_SCRATCH TABLE_REG <>
 129 APP_GDT_RAM TABLE_REG <>
 130 APP_IDT_RAM TABLE_REG <>
 131 ; align end_data
 132 fill DW ?
 133
 134 ; last thing in this segment - should be on a dword boundary
 135 end_data LABEL BYTE
 136
 137 STARTUP_DATA ENDS
 138 ; --
 139
 140
 141 ; ------------------------- CODE SEGMENT----------------------
 142 STARTUP_CODE SEGMENT ER PUBLIC USE16
 143
 144 ; filled in by builder
 145 PUBLIC GDT_EPROM
 146 GDT_EPROM TABLE_REG <>
 147
 148 ; filled in by builder
 149 PUBLIC IDT_EPROM
 150 IDT_EPROM TABLE_REG <>
 151
 152 ; entry point into startup code - the bootstrap will vector

8-23

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

 153 ; here with a near JMP generated by the builder. This
 154 ; label must be in the top 64K of linear memory.
 155
 156 PUBLIC STARTUP
 157 STARTUP:
 158
 159 ; DS,ES address the bottom 64K of flat linear memory
 160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA
 161 ; See Figure 8-4
 162 ; load GDTR with temporary GDT
 163 LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,
 164 MOV DWORD PTR [EBX],0 ; where we can address
 165 MOV DWORD PTR [EBX]+4,0
 166 MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO
 167 MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI
 168 MOV TEMP_GDT_scratch.table_linear,EBX
 169 MOV TEMP_GDT_scratch.table_lim,15
 170
 171 DB 66H ; execute a 32 bit LGDT
 172 LGDT TEMP_GDT_scratch
 173
 174 ; enter protected mode
 175 MOV EBX,CR0
 176 OR EBX,PE_BIT
 177 MOV CR0,EBX
 178

 179 ; clear prefetch queue
 180 JMP CLEAR_LABEL
 181 CLEAR_LABEL:
 182
 183 ; make DS and ES address 4G of linear memory
 184 MOV CX,LINEAR_SEL
 185 MOV DS,CX
 186 MOV ES,CX
 187
 188 ; do board specific initialization
 189 ;
 190 ;
 191 ;
 192 ;
 193
 194
 195 ; See Figure 8-5
 196 ; copy EPROM GDT to ram at:
 197 ; RAM_START + size (STARTUP_DATA)
 198 MOV EAX,RAM_START

8-24

PROCESSOR MANAGEMENT AND INITIALIZATION

 199 ADD EAX,OFFSET (end_data)
 200 MOV EBX,RAM_START
 201 MOV ECX, CS_BASE
 202 ADD ECX, OFFSET (GDT_EPROM)
 203 MOV ESI, [ECX].table_linear
 204 MOV EDI,EAX
 205 MOVZX ECX, [ECX].table_lim
 206 MOV APP_GDT_ram[EBX].table_lim,CX
 207 INC ECX
 208 MOV EDX,EAX
 209 MOV APP_GDT_ram[EBX].table_linear,EAX
 210 ADD EAX,ECX
 211 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 212
 213 ; fixup GDT base in descriptor
 214 MOV ECX,EDX
 215 MOV [EDX].bas_0_15+GDT_DESC_OFF,CX
 216 ROR ECX,16
 217 MOV [EDX].bas_16_23+GDT_DESC_OFF,CL
 218 MOV [EDX].bas_24_31+GDT_DESC_OFF,CH
 219
 220 ; copy EPROM IDT to ram at:
 221 ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
 222 MOV ECX, CS_BASE
 223 ADD ECX, OFFSET (IDT_EPROM)
 224 MOV ESI, [ECX].table_linear
 225 MOV EDI,EAX
 226 MOVZX ECX, [ECX].table_lim
 227 MOV APP_IDT_ram[EBX].table_lim,CX
 228 INC ECX
 229 MOV APP_IDT_ram[EBX].table_linear,EAX
 230 MOV EBX,EAX
 231 ADD EAX,ECX
 232 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 233
 234 ; fixup IDT pointer in GDT
 235 MOV [EDX].bas_0_15+IDT_DESC_OFF,BX
 236 ROR EBX,16
 237 MOV [EDX].bas_16_23+IDT_DESC_OFF,BL
 238 MOV [EDX].bas_24_31+IDT_DESC_OFF,BH
 239
 240 ; load GDTR and IDTR
 241 MOV EBX,RAM_START
 242 DB 66H ; execute a 32 bit LGDT
 243 LGDT APP_GDT_ram[EBX]
 244 DB 66H ; execute a 32 bit LIDT
 245 LIDT APP_IDT_ram[EBX]
 246
 247 ; move the TSS

8-25

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

 248 MOV EDI,EAX
 249 MOV EBX,TSS_INDEX*SIZE(DESC)
 250 MOV ECX,GDT_DESC_OFF ;build linear address for TSS
 251 MOV GS,CX
 252 MOV DH,GS:[EBX].bas_24_31
 253 MOV DL,GS:[EBX].bas_16_23
 254 ROL EDX,16
 255 MOV DX,GS:[EBX].bas_0_15
 256 MOV ESI,EDX
 257 LSL ECX,EBX
 258 INC ECX
 259 MOV EDX,EAX
 260 ADD EAX,ECX
 261 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 262
 263 ; fixup TSS pointer
 264 MOV GS:[EBX].bas_0_15,DX
 265 ROL EDX,16
 266 MOV GS:[EBX].bas_24_31,DH
 267 MOV GS:[EBX].bas_16_23,DL
 268 ROL EDX,16
 269 ;save start of free ram at linear location RAMSTART
 270 MOV free_mem_linear_base+RAM_START,EAX
 271
 272 ;assume no LDT used in the initial task - if necessary,
 273 ;code to move the LDT could be added, and should resemble
 274 ;that used to move the TSS
 275
 276 ; load task register
 277 LTR BX ; No task switch, only descriptor loading
 278 ; See Figure 8-6
 279 ; load minimal set of registers necessary to simulate task
 280 ; switch
 281
 282
 283 MOV AX,[EDX].SS_reg ; start loading registers
 284 MOV EDI,[EDX].ESP_reg
 285 MOV SS,AX
 286 MOV ESP,EDI ; stack now valid
 287 PUSH DWORD PTR [EDX].EFLAGS_reg
 288 PUSH DWORD PTR [EDX].CS_reg
 289 PUSH DWORD PTR [EDX].EIP_reg
 290 MOV AX,[EDX].DS_reg
 291 MOV BX,[EDX].ES_reg
 292 MOV DS,AX ; DS and ES no longer linear memory
 293 MOV ES,BX
294

8-26

PROCESSOR MANAGEMENT AND INITIALIZATION

 295 ; simulate far jump to initial task
 296 IRETD
 297
 298 STARTUP_CODE ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)
 299
 300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA
 301
 302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.

Fig ure 8-4. Construct ing Tempor ary GDT and Switch ing to Protected Mode (Lines
162-172 of List Fi le)

FFFF FFFFH

Base=0, Limit=4G

START: [CS.BASE+EIP]

TEMP_GDT

• Jump near start

FFFF 0000H

• Construct TEMP_GDT
• LGDT
• Move to protected mode

DS, ES = GDT[1] 4GB

0
GDT [1]
GDT [0]

GD
�

T_SCRATCH
Base
Limit

8-27

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

Figu re 8-5. Moving th e GDT, IDT and TSS from ROM to RAM (Lines 196-261 of List File)

FFFF FFFFH

GDT RAM

• Move the GDT, IDT, TSS

• Fix Aliases

• LTR

0

RAM_START

TSS
IDT
GDT

TS

S RAM
IDT RAM

from ROM to RAM

8-28

PROCESSOR MANAGEMENT AND INITIALIZATION

Figu re 8-6. Task Switc hing (Line s 282-296 of Li st Fi le)

GDT RAM
RAM_START

TSS RAM
IDT RAM

GDT Alias
IDT Alias

DS

EIP
EFLAGS

CS
SS

0

ES

ESP

•

•
•

•
•
•

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

GDT

8-29

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

8.9.3. MAIN.ASM Source Code

The file MAIN.ASM shown in Example 8-2 defines the data and stack segments for this appli-
cati³ on and can be substituted with the main module task written in a high-level language that is
invoked by the IRET instruction executed by STARTUP.ASM.

Exa
g

mple 8-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS
stack stackseg 800
CODE SEGMENT ER use32 PUBLIC
main_start:

nop
nop
nop

CODE ENDS
END main_start, ds:data, ss:stack

8.9.4. Supporting Files

The
¾

batch file shown in Example 8-3 can be used to assemble the source code files
S

Ö
TARTUP.ASM and MAIN.ASM and build the final application.

Exam
g

ple 8-3. Batc h Fil e to Asse mbl e and Buil d the Appli cati on

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) Bootload

B
â

LD386 performs several operations in this example:

• It allocates physical memory location to segments and tables.

• It generates tables using the build file and the input files.

• It link
°

s object files and resolves references.

• It generates a boot-loadable file to be programmed into the EPROM.

Ex
½

ample 8-4 shows the build file used as an input to BLD386 to perform the above functions.

8-30

PROCESSOR MANAGEMENT AND INITIALIZATION

Ex
g

ample 8-4. Build File

INIT_BLD_EXAMPLE;

SEGMENT
 *SEGMENTS(DPL = 0)
 , startup.startup_code(BASE = 0FFFF0000H)
 ;

TASK
 BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,

NOT INTENABLED)
, PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0,

NOT INTENABLED)
 ;

TABLE
 GDT (
 LOCATION = GDT_EPROM
 , ENTRY = (
 10: PROTECTED_MODE_TASK
 , startup.startup_code
 , startup.startup_data
 , main_module.data
 , main_module.code
 , main_module.stack

)
),

 IDT (
 LOCATION = IDT_EPROM
);

MEMORY
 (
 RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from ROM
 , 60000H..0FFFEFFFFH)
 , RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH))

-- Eprom size 64K
 , RANGE = (RAM_AREA = RAM (4000H..05FFFFH))
);

END

Table 8-5 shows the relationship of each build item with an ASM source file.

8-31

PROC
_

ESSOR MANAGEMENT AND INITIALIZATION

8.10. P6 FAMILY MICROCODE UPDATE FEATURE

P6 family processors have the capability to correct specific errata through the loading of an
In

°
tel-supplied data block. This data block is referred to as a mi� crocode update. This chapter

d
Ï
escribes the underlying mechanisms the BIOS needs to provide in order to utilize this feature

d
Ï
uring system initiali zation. It also describes a specification that provides for incorporating

futu
¼

re releases of the microcode update into a system BIOS.

Intel co
°

nsiders the combination of a particular silicon revision and the microcode update as the
equiÓ valent stepping of the processor. Intel does not validate processors without the microcode
uä pdate loaded. Intel completes a full-stepping level validation and testing for new releases of
miÄ crocode updates.

A microcode update is used to correct specific errata in the processor. The BIOS, which incor-
por® ates an update loader, is responsible for loading the appropriate update on all processors
d

Ï
uring system initialization (refer to Figure 8-7). There are effectively two steps to this process.

The first is to incorporate the necessary microcode updates into the BIOS, the second is to actu-
allÂ y load the appropriate microcode update into the processor.

Table 8-5. Relations hip Betw een BLD Ite m and ASM Source File

Item ASM386 and St artup .A58
BLD386 Con trols and

BLD fi le Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at
0FFFFFFF0H to start

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG
<>

TA

BLE
GDT(location =
GDT_EPROM)

T

he location of the GDT
wih ll be programmed into
t

à
he GDT_EPROM
location

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG
<>

TA

BLE
IDT(location =
IDT_EPROM

T

he location of the IDT
wih ll be programmed into
t

à
he IDT_EPROM
location

RAM start RAM_START equ 400H memory (reserve =
(0..3FFFH))

RAM_START is used as
t

à
he ram destination for
moving the tables. It
must be excluded from
t

à
he application’s
segment area.

Location of the
application TSS
in the GDT

TSS

_INDEX EQU 10 TABLE GDT(
ENTRY=(10:
PROTECTED_MODE_TA
SK))

Put the descriptor of the
application TSS in GDT
entry 10

EPROM size
and location

size and location of the
initialization code

SEGMENT startup.code
(base= 0FFFF0000H)
...memory (RANGE(
ROM_AREA =
ROM(x..y))

Initialization code size
must be less than 64K
and resides at upper
most 64K of the 4GB
memory space.

8-32

PROCESSOR MANAGEMENT AND INITIALIZATION

8.10.1. Microc ode Updat e

A
è

microcode update consists of an Intel-supplied binary that contains a descriptive header and
dat
Ï

a. No executable code resides within the update. This section describes the update and the
s´ tructure of its data format.

Each
½

 microcode update is tailored for a particular stepping of a P6 family processor. It is
designed
Ï

 such that a mismatch between a stepping of the processor and the update wil l result in
a fÂ ailure to load. Thus, a given microcode update is associated with a particular type, family,
moÄ del, and stepping of the processor as returned by the CPUID instruction. In addition, the
intended processor platform type must be determined to properly target the microcode update.
The
¾

intended processor platform type is determined by reading a model-specific register MSR
(17
¸

h) (refer to Table 8-6) within the P6 family processor. This is a 64-bit register that may be
read using the RDMSR instruction (refer to Section 3.2., “I nstruction Reference” Chapter 3,
Ins
Î

truction Set Reference, VÍ olume 1 of the Pr
å

ogrammer’s Reference Manual). The three
Ü

plai t-
fo

j
rm ID bits, Í when read as a binary coded decimal (BCD) number indicate the bit position in the

microcode update header’s, Processor Flags field, that is associated with the installed processor.

Figure 8-7. Integratin g Proc essor Spe cific Updates

P6 Family CPU

BIOS

Update
Blocks

New
Update

UPDATE
LOADER

8-33

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

Register Name:BBL_CR_OVRD
MSR Address:017h
Access:Read Only
BBL_CR_OVRD is a 64-bit register accessed only when referenced as a Qword through a
RDMSR instruction.

Th
l

e microcode update is a data block that is exactly 2048 bytes in length. The initial 48 bytes
of the updm ate contain a header with information used to identify the update. The update header
ann d its reserved fields are interpreted by software based upon the header version. The initial
verso ion of the header is 00000001h. An encoding scheme also guards against tampering of the
updp ate data and provides a means for determining the authenticity of any given update. Table
8-7

q
 defines each of the fields and Figure 8-8 shows the format of the microcode update data

bl
r

ock.

Table 8-6. P6 Family Proce ssor MSR Regis ter Com pone nts

Bit Descri ptio ns

63:53 Reserved

52:50 Platform ID bits (RO). The field gives information concerning the intended platform for the
processor.
52 51 50
0 0 0 Processor Flag 0 (See Processor Flags in Microcode Update Header)
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

8-34

PROCESSOR MANAGEMENT AND INITIALIZATION

T
s
able 8-7. Microc ode Update Enc odin g Format

Field Name
Offset

(in byt es)
Length

(in bytes) Descrip tion

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the
update signature provided by the processor to indicate
t

t
he current update functioning within the processor.
Used by the BIOS to authenticate the update and verify
t

t
hat it is loaded successfully by the processor. The value
in this field cannot be used for processor stepping
identification alone.

Date 8 4 Date of the update creation in binary format: mmddyyyy
(e.g. 07/18/98 is 07181998h).

Processor 12 4 Processor type, family, model, and su tepping of processor
t

t
hat requires this particular update revision (e.g.,
00000650h). Each microcode update is designed
specifically for a given procesv sor type, family, model, and
steppiu ng of processor. The BIOS uses the Processor
f

w
ield in conjunction with the CPUID instruction to
determine whether or not an update is appropriate to load
on a processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum 16 4 Checksum of update data and header. Used to verify the
integrity of the update header and data. Checksum is
correct when the summation of the 512 double words of
t

t
he update result in the value zero.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is
00000001h.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits of
t

t
his 4-byte field. Each bit represents a particular platform
t

t
ype for a given CPUID. The BIOS uses the Processor
Flags field in conjunction with the platform ID bits in MSR
(17h) to determine whether or not an update is
appropriate to load on a processor.

Reserved 28 20 Reserved Fields for future expansion.

Update Data 48 2000 Update data.

8-35

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

8.10.2. Microcod e Update Loader

This section describes the update loader used to load a microcode update into a P6 family
prox cessor. It also discusses the requirements placed upon the BIOS to ensure proper loading of
an un pdate.

The update loader contains the minimal instructions needed to load an update. The specific
inst

y
ruction sequence that is required to load an update is dependent upon the loader revision field

containz ed within the update header. The revision of the update loader is expected to change very
infrequently, potentially only when new processor models are introduced.

Fi
{

gure 8 -8. Forma t of the Micro code Update Data Blo ck

32 01624 8

Update Data (2000 Bytes)

Reserved (20 Bytes)

Month: 8

Processor Flags

Loader Revision

Check
|

sum

Processor

Date

Update Revision

Header Revision

Reserved: 24

Reserved: 18

Day: 8

P7: I

ProcType: 2

Year: 16

P6: I P5: I P4: I P3: I P2: I P1: I

Family: 4 Model: 4 Stepping: 4

32 01624 8

8-36

PROCESSOR MANAGEMENT AND INITIALIZATION

The code below represents the update loader with a loader revision of 00000001h:

mov ecx,79h ; MSR to read in ECX
xoreax,eax ; clear EAX
xorebx,ebx ; clear EBX
movax,cs ; Segment of microcode update
shl eax,4
movbx,offset Update ; Offset of microcode update
addeax,ebx ; Linear Address of Update in EAX
addeax,48d ; Offset of the Update Data within the Update
xoredx,edx ; Zero in EDX
WRMSR ; microcode update trigger

8.
}

10.2.1. UPDATE LOADING PROCEDURE

The simple load
l

er previously described assumes that Update is the address of a microcode
upp date (header and data) embedded within the code segment of the BIOS. It also assumes that
the pr
~

ocessor is operating in real mode. The data may reside anywhere in memory that is acces-
si� ble by the processor within its current operating mode (real, protected).

B
�

efore the BIOS executes the microcode update trigger (WRMSR) instruction the following
must be true:

• EAX contains the linear address of the start of the update data

• EDX co
�

ntains zero

• ECX contains 79h

Ot
�

her requirements to keep in mind are:

• Th
l

e microcode update must be loaded to the processor early on in the POST, and always
px rior to the initialization of the P6 family processors L2 cache controller.

• If the update is loaded while the processor is in real mode, then the update data may not
crz oss a segment boundary.

• If the update is loaded while the processor is in real mode, then the update data may not
ex� ceed a segment limit.

• I
�
f paging is enabled, pages that are currently present must map the update data.

• The microcode update data does not require any particular byte or word boundary
align nment.

8.
}

10.2.2. HARD RESETS IN UPDATE LOADING

The
l

effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each
time a har
~

d reset is asserted during the BIOS POST, the update must be reloaded on all proces-
sors that � observed the reset. The effects of a loaded update are, however, maintained across a
px rocessor INIT. There are no side effects caused by loading an update into a processor multiple
tim
~

es.

8-37

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

8
}

.10.2.3. UPDATE IN A MULTIPROCESSOR SYSTEM

A multiprocessor (MP) system requires loading each processor with update data appropriate for
it

y
s CPUID and platform ID bits. The BIOS is responsible for ensuring that this requirement is

met, and� that the loader is located in a module that is executed by all processors in the system.
If a system design permits multiple steppings of P6 family processors to exist concurrently, then
the B

~
IOS must verify each individual processor against the update header information to ensure

apn propriate loading. Given these considerations, it is most practical to load the update during
MP initialization.

8
}

.10.2.4. UPDATE LOADER ENHANCEMENTS

The upd
l

ate loader presented in S
�

ection 8.10.2.1., “Update Loading Procedure” is a minimal
implemen

y
tation that can be enhanced to provide additional functionality and features. Some

potenx tial enhancements are described below:

• The BIOS can incorporate multiple updates to support multiple steppings of the P6 family
prx ocessor. This feature provides for operating in a mixed stepping environment on an MP
syst� em and enables a user to upgrade to a later version of the processor. In this case,
mo� dify the loader to check the CPUID and platform ID bits of the processor that it is
ru� nning on against the available headers before loading a particular update. The number of
upp dates is only limited by the available space in the BIOS.

• A loader can load the update and test the processor to determine if the update was loaded
corz rectly. This can be done as described in the S

�
ection 8.10.3., “Update Signature and

V
�

erif ication”.

• A loader can verify the integrity of the update data by performing a checksum on the
do

�
uble words of the update summing to zero, and can reject the update.

• A loader can provide power-on messages indicating successful loading of an update.

8.10.3. Update Signature and V eri fication

Th
l

e P6 family processor provides capabilities to verify the authenticity of a particular update
and to idenn tify the current update revision. This section describes the model-specific extensions
of m the processor that support this feature. The update verification method below assumes that
the B

~
IOS will only verify an update that is more recent than the revision currently loaded into

the pr
~

ocessor.

The C
l

PUID instruction returns a value in a model specific register in addition to its usual
reg� ister return values. The semantics of the CPUID instruction cause it to deposit an update ID
value ino the 64-bit model-specific register (MSR) at address 08Bh. If no update is present in the
prox cessor, the value in the MSR remains unmodified. Normally a zero value is preloaded into
th

~
e MSR by software before executing the CPUID instruction. If the MSR still contains zero

after exn ecuting CPUID, this indicates that no update is present.

The u
l

pdate ID value returned in the EDX register after a RDMSR instruction indicates the revi-
s� ion of the update loaded in the processor. This value, in combination with the normal CPUID

8-38

PROCESSOR MANAGEMENT AND INITIALIZATION

valuo e returned in the EAX register, uniquely identifies a particular update. The signature ID can
be d
r

irectly compared with the update revision field in the microcode update header for verifica-
tion o
~

f a correct update load. No consecutive updates released for a given stepping of the P6
family processor may share the same signature. Updates for different steppings are differenti-
ated bn y the CPUID value.

8.
}

10.3.1. DETERMINING THE SIGNATURE

An u
�

pdate that is successfully loaded into the processor provides a signature that matches the
up pdate revision of the currently functioning revision. This signature is available any time after
th
~

e actual update has been loaded, and requesting this signature does not have any negative
impact u
y

pon any currently loaded update. The procedure for determining this signature is:

mov ecx, 08Bh;Model Specific Register to Read in ECX
xor eax,eax ;clear EAX
xor edx,edx ;clear EDX
WRMSR ;Load 0 to MSR at 8Bh
mov eax,1
CPUID
mov ecx, 08BH;Model Specific Register to Read
RDMSR ;Read Model Specific Register

If there is an update currently active in the processor, its update revision is returned in the EDX
regi� ster after the RDMSR instruction has completed.

8.
}

10.3.2. AUTHENTICATING THE UPDATE

An update may be authenticated by the BIOS using the signature primitive, described above,
with� the following algorithm:

Z = Update revision from the update header to be authenticated;
X = Current Update Signature from MSR 8Bh;
If (Z > X) Then

Load Update that is to be authenticated;
Y = New Signature from MSR 8Bh;
If (Z == Y) then Success
Else Fail

Else Fail

The algorithm requires that the BIOS only authenticate updates that contain a numerically larger
rev� ision than the currently loaded revision, where Current Signature (X) < New Update Revi-
s� ion (Z). A processor with no update loaded should be considered to have a revision equal to
zero. This authentication procedure relies upon the decoding provided by the processor to verify
an n update from a potentially hostile source. As an example, this mechanism in conjunction with
otm her safeguards provides security for dynamically incorporating field updates into the BIOS.

8-39

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

8.10.4. P6 Famil y Processor Microcode Update S pecificat ions

This section describes the interface that an application can use to dynamically integrate
px rocessor-specific updates into the system BIOS. In this discussion, the application is referred
to

~
 as the ca� ll ing program or ca� ller.

Th
l

e real mode INT15 call specification described here is an Intel extension to an OEM BIOS.
This extension

l
 allows an application to read and modify the contents of the microcode update

d
�
ata in NVRAM. The update loader, which is part of the system BIOS, cannot be updated by

the interface.
~

 All of the functions defined in the specification must be implemented for a system
to be co

~
nsidered compliant with the specification. The INT15 functions are accessible only

from real mode.

8
}

.10.4.1. RESPONSIBILITIES OF THE BIOS

If a B
�

IOS passes the presence test (INT 15h, AX=0D042h, BL=0h) it must implement all of the
su� b-functions defined in the INT 15h, AX= 0D042h specification. There are no optional func-
ti

~
ons. The BIOS must load the appropriate update for each processor during system initiali za-

ti
~

on.

A h
�

eader version of an update block containing the value 0FFFFFFFFh indicates that the update
bl

r
ock is unused and available for storing a new update.

The B
l

IOS is responsible for providing a 2048 byte region of non-volatile storage (NVRAM) for
each p� otential processor stepping within a system. This storage unit is referred to as an upd� ate
bl

�
ock. The BIOS for a single processor system need only provide one update block to store the

m� icrocode update data. The BIOS for a multiple processor capable system needs to provide one
updp ate block for each unique processor stepping supported by the OEM’s system. The BIOS is
responsible for managing the NVRAM update blocks. This includes garbage collection, such
as remn oving update blocks that exist in NVRAM for which a corresponding processor does not
exist� in the system. This specification only provides the mechanism for ensuring security, the
uniqp ueness of an entry, and that stale entries are not loaded. The actual update block manage-
ment is imp� lementation specific on a per-BIOS basis. As an example, the BIOS may use update
bl

r
ocks sequentially in ascending order with CPU signatures sorted versus the fi rst available

block
r

. In addition, garbage collection may be implemented as a setup option to clear all
NV

�
RAM slots or as BIOS code that searches and eliminates unused entries during boot.

Th
l

e following algorithm describes the steps performed during BIOS initialization used to load
the upd

~
ates into the processor(s). It assumes that the BIOS ensures that no update contained

wit� hin NVRAM has a header version or loader version that does not match one currently
s� upported by the BIOS and that the update block contains a correct checksum. It also assumes
that

~
the BIOS ensures that at most one update exists for each processor stepping and that older

updp ate revisions are not allowed to overwrite more recent ones. These requirements are checked
by

r
the BIOS during the execution of the write update function of this interface. The BIOS

seq� uentially scans through all of the update blocks in NVRAM starting with index 0. The BIOS
s� cans until it fin ds an update where the processor fields in the header match the family, model,
and n stepping as well as the platform ID bits of the current processor.

8-40

PROCESSOR MANAGEMENT AND INITIALIZATION

For each processor in the system {
Determine the ProcType, Family, Model and Stepping via CPUID;
Determine the Platform ID Bits by reading the BBL_CR_OVRD[52:50] MSR;
for (I = UpdateBlock 0, I < NumOfUpdates; I++) {

If ((UpdateHeader.Processor ==
ProcType, Family, Model and Stepping) &&

 (UpdateHeader.ProcessorFlags == Platform ID Bits)) {
Load UpdateHeader.UpdateData into the Processor;
Verify that update was correctly loaded into the processor
Go on to next processor

Break;
}

}
Programmer’s Note: The platform ID bits in the BBL_CR_OVRD MSR are
en� coded as a three-bit binary coded decimal field. The platform ID bits in the
micr� ocode update header are individually bit encoded. The algorithm must
d

�
o a translation from one format to the other prior to doing the comparison.

W
�

hen performing the INT 15h, 0D042h functions, the BIOS must assume that the caller has no
k
�
nowledge about platform specific requirements. It is the responsibilit y of the BIOS calls to

manage all chipset and platform specific prerequisites for managing the NVRAM device. When
writin� g the update data via the write update sub-function, the BIOS must maintain implementa-
tion
~

specific data requirements, such as the update of NVRAM checksum. The BIOS should
alsn o attempt to verify the success of write operations on the storage device used to record the
upp date.

8.
}

10.4.2. RESPONSIBILITIES OF THE CALLING PROGRAM

Th
l

is section of the document lists the responsibili ties of the calling program using the interface
sp� ecifications to load microcode update(s) into BIOS NVRAM.

The cal
l

ling program should call the INT 15h, 0D042h functions from a pure real mode program
andn should be executing on a system that is running in pure real mode. The caller should issue
t
~
he presence test function (sub function 0) and verify the signature and return codes of that func-
tio
~

n. It is important that the calling program provides the required scratch RAM buffers for the
B
�

IOS and the proper stack size as specified in the interface definition.

The calling program should read any update data that already exists in the BIOS in order to make
decisions ab
�

out the appropriateness of loading the update. The BIOS refuses to overwrite a
newer � update with an older version. The update header contains information about version and
px rocessor specifics for the calling program to make an intelligent decision about loading.

Ther
l

e can be no ambiguous updates. The BIOS refuses to allow multiple updates for the same
C
�

PUID to exist at the same time. The BIOS also refuses to load an update for a processor that
d
�
oes not exist in the system.

The
l

calling application should implement a verify function that is run after the update write
fu
�

nction successfully completes. This function reads back the update and verifies that the BIOS

8-41

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

returned an image identical to the one that was written. The following pseudo-code represents
a caln ling program.

INT 1
�

5 D042 Calling Program Pseudo- code
//

�

//
�

 We must be in real mode
//

�

If the system is not in Real mode
then Exit
//

�

//
�

 Detect the presence of Genuine Intel processor(s) that can be updated (CPUID)
//

�

If no Intel processors exist that can be updated
 then Exit
//

�

//
�

 Detect the presence of the Intel microcode update extensions
//

�

If the BIOS fails the PresenceTest
then Exit
//

�

/
�
/ If the APIC is enabled, see if any other processors are out there

//
�

Read APICBaseMSR
If APIC enabled {
 Send Broadcast Message to all processors except self via APIC;
 Have all processors execute CPUID and record Type, Family, Model, Stepping
 Have all processors read BBL_CR_OVRD[52:50] and record platform ID bits
 If current processor is not updatable
 then Exit
 }
//

�

// D
�

etermine the number of unique update slots needed for this system
//

�

NumSlots = 0;
For each processor {
 If ((this is a unique processor stepping) and
 (we have an update in the database for this processor)) {
 Checksum the update from the database;
 If Checksum fails
 then Exit;
 Increment NumSlots;
 }
 }
//

�

// Do
�

 we have enough update slots for all CPUs?
//

�

If there are more unique processor steppings than update slots provided by the BIOS
 then Exit

8-42

PROCESSOR MANAGEMENT AND INITIALIZATION

//
�

// D
�

o we need any update slots at all? If not, then we’re all done
//

�

If (NumSlots == 0)
 then Exit

//
�

//
�

 Record updates for processors in NVRAM.
//

�

For (I=0; I<NumSlots; I++) {
 //
 // Load each Update
 //
 Issue the WriteUpdate function

 If (STORAGE_FULL) returned {
 Display Error -- BIOS is not managing NVRAM appropriately
 exit
 }
 If (INVALID_REVISION) returned {
 Display Message: More recent update already loaded in NVRAM for this stepping
 continue;
 }

 If any other error returned {
 Display Diagnostic
 exit
 }
 //
 // Verify the update was loaded correctly
 //
 Issue the ReadUpdate function

 If an error occurred {
 Display Diagnostic
 exit
 }
 //
 // Compare the Update read to that written
 //
 if (Update read != Update written) {
 Display Diagnostic
 exit
 }
 }
//

�

8-43

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

//
�

 Enable Update Loading, and inform user
//

�

Issue the ControlUpdate function with Task=Enable.

8
}

.10.4.3. MICROCODE UPDATE FUNCTIONS

T
l
able 8-8 defines the current P6 family Processor microcode update functions.

8
}

.10.4.4. INT 15H-BASED INTERFACE

Intel
�

recommends that a BIOS interface be provided that allows additional microcode updates
to b

~
e added to the system flash. The INT15 interface is an Intel-defined method for doing this.

The pro
l

gram that calls this interface is responsible for providing three 64-kilobyte RAM areas
for

�
 BIOS use during calls to the read and write functions. These RAM scratch pads can be used

by t
r

he BIOS for any purpose, but only for the duration of the function call. The calling routine
places real mox de segments pointing to the RAM blocks in the CX, DX and SI registers. Calls
to f

~
unctions in this interface must be made with a minimum of 32 kilobytes of stack available to

th
~

e BIOS.

In g
�

eneral, each function returns with CF cleared and AH contains the returned status. The
gener� al return codes and other constant definitions are listed in S

�
ection 8.10.4.5., “Return

Co
�

des” .

Th
l

e OEM Error (AL) is provided for the OEM to return additional error information specific to
th

~
e platform. If the BIOS provides no additional information about the error, the OEM Error

must be set to SUCCESS. The OEM Error field is undefined if AH contains either SUCCESS
(00

�
) or NOT_IMPLEMENTED (86h). In all other cases it must be set with either SUCCESS or

a valun e meaningful to the OEM.

The following text details the functions provided by the INT15h-based interface.

T
s
able 8-8. Microc ode Update Function s

Microcode Updat e
Funct ion

Funct ion
Number Descrip tion Required/Opti onal

Presence test 00h Returns information about the supported
functi

w
ons.

Required

W
�

rite update data 01h Writes one of the update data areas (slots). Required

Update control 02h Globally controls the loading of updates. Required

Read update data 03h Reads one of the update data areas (slots). Required

8-44

PROCESSOR MANAGEMENT AND INITIALIZATION

Function 00h - Presence Test

Thi
l

s function verifies that the BIOS has implemented the required microcode update functions.
T
l
able 8-3 lists the parameters and return codes for the function.

In
�

 order to assure that the BIOS function is present, the caller must verify the Carry Flag, the
Return Code, and the 64-bit signature. Each update block is exactly 2048 bytes in length. The
up pdate count reflects the number of update blocks available for storage within non-volatile
R
�

AM. The update count must return with a value greater than or equal to the number of unique
prx ocessor steppings currently installed within the system.

The l
l

oader version number refers to the revision of the update loader program that is included
in th
y

e system BIOS image.

T
s
able 8-9. Parameters for th e Presence Test

Input :

AX
�

Function Code 0D042h

BL Sub-function 00h - Presence Test

Output :

CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.

AH
�

Return Code

AL
�

OEM Error Additional OEM Information.

EBX Signature Part 1 ’INTE’ - Part one of the signature.

ECX Signature Part 2 ’LPEP’- Part two of the signature.

EDX Loader Version Version number of the microcode update loader.

SI Update Count Number of update blocks the system can record in NVRAM.

Return Codes: (See T able 8-8 for co de defini tion s)

SUCCESS Function completed successfully.

NOT_IMPLEMENTED Function not implemented.

8-45

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

Function 01h - Wr ite Microcode Update Data

Thi
l

s function integrates a new microcode update into the BIOS storage device. Table 8-4 lists
the pa

~
rameters and return codes for the function.

Th
l

e BIOS is responsible for selecting an appropriate update block in the non-volatile storage for
s� toring the new update. This BIOS is also responsible for ensuring the integrity of the informa-
t

~
ion provided by the caller, including authenticating the proposed update before incorporating it
in

y
to storage.

T
s
able 8-10. Parameters for th e Write Up date Data Func tion

Input :

A
�

X Function Code 0D042h

BL Sub-function 01h - Write Update

ED:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is
2048 bytes in length

CX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block.

DX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block.

SI Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.

SS:SP Stack pointer 32 kilobytes of Stack Minimum.

Output:

CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.

A
�

H Return Code Status of the Call

A
�

L OEM Error Additional OEM Information.

Return Codes: (See T able 8-8 for cod e defi niti ons)

SUCCESS Function completed successfully.

W
�

RITE_FAILURE A failure because of the inability to write the storage device.

ERASE_FAILURE A failure because of the inability to erase the storage device.

READ_FAILURE A failure because of the inability to read the storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to accommodate
t

t
he update because all available update blocks are filled with
updates that are needed for processors in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the system.

INVALID_HEADER The update header contains a header or loader version that is
not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in the
storage device.

8-46

PROCESSOR MANAGEMENT AND INITIALIZATION

Before writing the update block into NVRAM, the BIOS should ensure that the update structure
m� eets the following criteria in the following order:

1. The update header version should be equal to an update header version recognized by the
BIOS.

2.
�

The update loader version in the update header should be equal to the update loader
vo ersion contained within the BIOS image.

3.
�

The update block should checksum to zero. This checksum is computed as a 32-bit
summ� ation of all 512 double words in the structure, including the header.

The B
l

IOS selects an update block in non-volatile storage for storing the candidate update. The
BIOS can select any available update block as long as it guarantees that only a single update
exi� sts for any given processor stepping in non-volatile storage. If the update block selected
alreadyn contains an update, the following additional criteria apply to overwrite it:

• The processor signature in the proposed update should be equal to the processor signature
in

y
the header of the current update in NVRAM (CPUID + platform ID bits).

• Th
l

e update revision in the proposed update should be greater than the update revision in
the

~
header of the current update in NVRAM.

If no
�

 unused update blocks are available and the above criteria are not met, the BIOS can over-
write � an update block for a processor stepping that is no longer present in the system. This can
be d
r

one by scanning the update blocks and comparing the processor steppings, identified in the
MP S
�

pecification table, to the processor steppings that currently exist in the system.

Fi
�

nally, before storing the proposed update into NVRAM, the BIOS should verify the authen-
ticit
~

y of the update via the mechanism described in Sect
�

ion 8.10.2., “Mi crocode Update
Load

er”. This includes loading the update into the current processor, executing the CPUID
instruction
y

, reading MSR 08Bh, and comparing a calculated value with the update revision in
th
~

e proposed update header for equality.

W
�

hen performing the write update function, the BIOS should record the entire update, including
the head
~

er and the update data. When writing an update, the original contents may be over-
written� , assuming the above criteria have been met. It is the responsibility of the BIOS to ensure
that mo
~

re recent updates are not overwritten through the use of this BIOS call, and that only a
s� ingle update exists within the NVRAM for any processor stepping.

Figure 8-9 shows the process the BIOS follows to choose an update block and ensure the integ-
ri� ty of the data when it stores the new microcode update.

8-47

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

Figure 8-9. Write Operati on Flow Chart

Does Update Match a
CPU in the System?

No
Return

CPU_NOT_PRESENT

Yes

Valid
Update Header

Version?
No

Return
INVALID_HEADER

Yes

Does Loader
Revision Match BIOS’s

Loader?

No

Return
INVALID_HEADER

Yes

Does Update
Checksum Correctly?

No

Yes

Return
INVALID_HEADER_CS

Write Microcode Update

Yes

Update Pass
Authenticity Test?

Yes

Update
Revision Newer Than

NVRAM Update?

Yes

Update
Matching CPU Already

In NVRAM?

Update NMRAM Record

Return
SUCCESS

No

No

Yes
Space Available

in NVRAM?

No

Return
STORAGE_FULL

Return
INVALID_REVISION

No
Return

SECURITY_FAILURE

8-48

PROCESSOR MANAGEMENT AND INITIALIZATION

Function 02h - Mi crocode Update Control

Th
l

is function enables loading of binary updates into the processor. Table 8-5 li sts the parameters
ann d return codes for the function.

This contr
l

ol is provided on a global basis for all updates and processors. The caller can deter-
mine the current status of update loading (enabled or disabled) without changing the state. The
fu
�

nction does not allow the caller to disable loading of binary updates, as this poses a security
ris� k.

The caller specifies the requested operation by placing one of the values from Table 8-6 in the
B
�

H register. After successfully completing this function the BL register contains either the
en� able or the disable designator. Note that if the function fails, the update status return value is
unp defined.

The READ_FAILURE error code returned by this function has meaning only if the control func-
tion is implemen
~

ted in the BIOS NVRAM. The state of this feature (enabled/disabled) can also
be i
r

mplemented using CMOS RAM bits where READ failure errors cannot occur.

T
s
able 8-11. Parameters for the Control Update Sub -func tion

Input :

AX
�

Function Code 0D042h

BL Sub-function 02h - Control Update

BH Task See Description.

CX Scratch Pad1 Real Mode Segment of 64 kilobytes of RAM Block.

DX Scratch Pad2 Real Mode Segment of 64 kilobytes of RAM Block.

SI Scratch Pad3 Real Mode Segment of 64 kilobytes of RAM Block.

SS:SP Stack pointer 32 kilobytes of Stack Minimum.

Output :

CF Carry Flag Carry Set - Failure - AH contains Status.
Carry Clear - All return values are valid.

AH Return Code Status of the Call.

AL
�

OEM Error Additional OEM Information.

BL Update Status Either Enable or Disable indicator.

Return Codes: (See T able 8-8 for co de defini tion s)

SUCCESS Function completed successfully.

READ_FAILURE A failure because of the inability to read the storage device.

Table 8-12. Mnemonic Values

Mnemoni c Value Meaning

Enable 1 Enable the Update loading at initialization time

Query 2 Determine the current state of the update control without changing
its status.

8-49

PROC
k

ESSOR MANAGEMENT AND INITIALIZATION

Function 03h - Read Microcode Update Data

This fun
l

ction reads a currently installed microcode update from the BIOS storage into a caller-
px rovided RAM buffer. S

�
ection 8-13, “Parameters for the Read Microcode Update Data Func-

ti
~

on” lists the parameters and return codes for the function.

The read function enables the caller to read any update data that already exists in a BIOS and
make decisions abou� t the addition of new updates. As a result of a successful call, the BIOS
coz pies exactly 2048 bytes into the location pointed to by ES:DI, with the contents of the update
bl

r
ock represented by update number.

An up
�

date block is considered unused and available for storing a new update if its header version
coz ntains the value 0FFFFFFFFh after return from this function call. The actual implementation
of NVRm AM storage management is not specified here and is BIOS dependent. As an example,
the actual

~
data value used to represent an empty block by the BIOS may be zero, rather than

Table 8-13. Parameters fo r the Read Microcod e Update Data Funct ion

Input :

AX Function Code 0D042h

BL Sub-function 03h - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that will be
written with the binary data.

ECX Scratch Pad1 Real Mode Segment address of 64 kilobytes of RAM Block
(lower 16 bits).

ECX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block
(upper 16 bits).

DX Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.

SS:SP Stack pointer 32 kilobytes of Stack Minimum.

SI Update Number The index number of the update block to be read. This value is
zero based and must be less than the update count returned
from the presence test function.

Output:

CF Carry Flag Carry Set - Failure - AH contains Status.

Carry Clear - All
return values
are valid.

AH Return Code Status of the Call.

AL OEM Error Additional OEM Information.

Return Codes: (See T able 8-8 for cod e defi niti ons)

SUCCESS Function completed successfully.

READ_FAILURE A failure because of the inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of update
blocks implemented by the BIOS.

8-50

PROCESSOR MANAGEMENT AND INITIALIZATION

0
¡
FFFFFFFFh. The BIOS is responsible for translating this information into the header provided

b
r
y this function.

8.
}

10.4.5. RETURN CODES

After th
�

e call has been made, the return codes listed in Table 8-8 are available in the AH register.

Table 8-14. Return Code Defin ition s

Return Co de Value Descrip tion

SUCCESS 00h Function completed successfully

NOT_IMPLEMENTED 86h Function not implemented

ERASE_FAILURE 90h A failure because of the inability to erase the storage
device

W
�

RITE_FAILURE 91h A failure because of the inability to write the storage device

READ_FAILURE 92h A failure because of the inability to read the storage device

STORAGE_FULL 93h The BIOS non-volatile storage area is unable to
accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system

CPU_NOT_PRESENT 94h The processor stepping does not currently exist in the
system

INVALID_HEADER 95h The update header contains a header or loader version
t

t
hat is not recognized by the BIOS

INVALID_HEADER_CS 96h The update does not checksum correctly

SECURITY_FAILURE 97h The update was rejected by the processor

INVALID_REVISION 98h The same or more recent revision of the update exists in
t

t
he storage device

UPDATE_NUM_INVALID 99h The update number exceeds the maximum number of
update blocks implemented by the BIOS

9
Memory Cache
Control

9-1

MEMORY CACHE CONTROL

CHAPTER 9
MEMORY CACHE CONTROL

This chapter
l

 describes the Intel Architecture’s memory cache and cache control mechanisms,
t

~
he TLBs, and the write buffer. It also describes the memory type range registers (MTRRs)
fou

�
nd in the P6 family processors and how they are used to control caching of physical memory

lo
¢

cations.

9.1. INTERNAL CACHES, TLBS, A ND BUFFERS

The Intel Architecture supports caches, translation look aside buffers (TLBs), and write buffers
for

�
 temporary on-chip (and external) storage of instructions and data (see Figure 9-1). Table 9-1

s� hows the characteristics of these caches and buffers for the P6 family, Pentium®
£
,¤ and Intel486™

prox cessors. T
¥

he sizes and characteristics of these units are machine specific and may
ch¦ ange in future versions of the processor. The CPUID instruction returns the sizes and char-
acterisn tics of the caches and buffers for the processor on which the instruction is executed. For
m� ore information, see “CPUID—CPU Identification” in Chapter 3 of the I

§
ntel Architecture Soft-

w¨ are Developer’s Manual, Volume 2.

9-2

MEMORY CACHE CONTROL

The Intel A
l

rchitecture defines two separate caches: the level 1 (L1) cache and the level 2 (L2)
cache z (see Figure 9-1). The L1 cache is closely coupled to the instruction fetch unit and execu-
tion
~

units of the processor. For the Pentium®
£
 and P6 family processors, the L1 cache is divided

into two secti
y

ons: one dedicated to caching instructions and one to caching data. For the
Intel486™ processor, the L1 cache is a unified instruction and data cache.

Figu re 9-1. Intel Arc hitec ture Ca ches

Instruction Cache (L11)Instruction Fetch Unit

Bus Interface Unit

System Bus

Cache Bus

Data Cache
Unit (L11)

 (External)

Physical
Memory

Wri
�

te Buffer

Data TLBs

L2 Cache2,3
©

Inst. TLBs

2
©

For the Pentium® and Intel486™ processors, the L2 Cache

1 For the Intel486™ processor, the L1 Cache is a unified
instruction and data cache.

is external to the processor package and there is
no cache bus (that is, the L2 cache interfaces with
th

t
e system bus).

3
ª
 For the Pentium® Pro, Pentium®

«
 II and Pentium®

«
 III processors,

t
t
he L2 Cache is internal to the processor package and there is
a separate cache bus.

9-3

MEMORY CACHE CONTROL

NOTES:

1. In the Intel486™ processor, the L1 cache is a unified instruction and data cache, and the TLB is a unified
instruction and data TLB.

2. In the Intel486™ and Pentium®
¬
 processors, the L2 cache is external to the processor package and

optional.

3. In the Pentium®
¬
 Pro, Pentium®

¬
 II, and Pentium®

¬
 III processors, the L2 cache is internal to the processor

package.

Table 9-1. Characteristic s of the Caches, TLBs, and Write Buffer i n
In
�

tel A rchitecture Processor s

Cache or Buffer Characteristics

L1 Instruction
Cache1

- P6 family and Pentium®
¬
 processors: 8 or 16 KBytes, 4-way set associative,

32-byte cache line size; 2-way set associative for earlier Pentium®
¬
 processors.

- Intel486™ processor: 8 or 16 KBytes, 4-way set associative, 16-byte cache line
size, instruction and data cache combined.

L1 Data Cache1 - P6 family processors: 16 KBytes, 4-way set associative, 32-byte cache line size;
8 KBytes, 2-way set associative for earlier P6 family processors.

- Pentium®
¬
 processors: 16 KBytes, 4-way set associative, 32-byte cache line size;

8 KBytes, 2-way set associative for earlier Pentium®
¬
 processors.

- Intel486™ processor: (see L1 instruction cache).

L2 Unified Cache2,3 - P6 family processors: 128 KBytes, 256 KBytes, 512 KBytes, 1 MByte, or 2
MByte, 4-way set associative, 32-byte cache line size.

- Pentium®
¬
 processor: System specific, typically 256 or 512 KBytes, 4-way set

associative, 32-byte cache line size.
- Intel486™ processor: System specific.

Instruction TLB (4-
KByte Pages)1

- P6 family processors: 32 entries, 4-way set associative.
- Pentium®

¬
 processor: 32 entries, 4-way set associative; fully set

 associative for Pentium®
¬
 processors with MMX™ technology.

- Intel486™ processor: 32 entries, 4-way set associative, instruction
 and data TLB combined.

Data TLB (4-KByte
Pages)1

- Pentium®
¬
 and P6 family processors: 64 entries, 4-way set associative; fully set

associative for Pentium®
¬
 processors with MMX™ technology.

- Intel486™ processor: (see Instruction TLB).

Instruction TLB
(Large Pages)

- P6 family processors: 2 entries, fully associative
- Pentium®

¬
 processor: Uses same TLB as used for 4-KByte pages.

- Intel486™ processor: None (large pages not supported).

Data TLB (Large
Pages)

- P6 family processors: 8 entries, 4-way set associative.
- Pentium®

¬
 processor: 8 entries, 4-way set associative; uses same TLB as used

f
w
or 4-KByte pages in Pentium®

¬
 processors with MMX™ technology.

- Intel486™ processor: None (large pages not supported).

W
�

rite Buffer - P6 family processors: 12 entries.
- Pentium®

¬
 processor: 2 buffers, 1 entry each (Pentium®

¬
 processors

 with MMX™ technology have 4 buffers for 4 entries).
- Intel486™ processor: 4 entries.

9-4

MEMORY CACHE CONTROL

The L2 cache is a unified cache for storage of both instructions and data. It is closely coupled to
the L1
~

 cache through the processor’s cache bus (for the P6 family processors) or the system bus
(fo
�

r the Pentium®
£
 and Intel486™ processors).

The cache lines for the P6 family and Pentium®
£
 processors’ L1 and L2 caches are 32 bytes wide.

The pr
l

ocessor always reads a cache line from system memory beginning on a 32-byte boundary.
(A 32
�

-byte aligned cache line begins at an address with its 5 least-significant bits clear.) A cache
line can be filled from memory with a 4-transfer burst transaction. The caches do not support
parx tially-fill ed cache lines, so caching even a single doubleword requires caching an entire line.
(Th
�

e cache line size for the Intel486™ processor is 16 bytes.)

The L1 and L2 caches are available in all execution modes. Using these caches greatly improves
th
~

e performance of the processor both in single- and multiple-processor systems. Caching can
aln so be used in system management mode (SMM); however, it must be handled carefully. For
more information, see Section 12.4.2., “SMRAM Caching” , in Chapter 12, S

­
ystem Management

M
®

ode (SMM).

The TLB
l

s store the most recently used page-directory and page-table entries. They speed up
memory accesses when paging is enabled by reducing the number of memory accesses that are
req� uired to read the page tables stored in system memory. The TLBs are divided into four
g� roups: instruction TLBs for 4-KByte pages, data TLBs for 4-KByte pages; instruction TLBs
for large pages (2-MByte or 4-MByte pages), and data TLBs for large pages. (Only 4-KByte
pagx es are supported for Intel386™ and Intel486™ processors.) The TLBs are normally active
onm ly in protected mode with paging enabled. When paging is disabled or the processor is in real-
adn dress mode, the TLBs maintain their contents until explicitly or implicitly flushed. For more
info
y

rmation, see Section 9.10., “Invalidating the Translation Lookaside Buffers (TLBs)”.

The write
l

buffer is associated with the processors instruction execution units. It allows writes to
syst� em memory and/or the internal caches to be saved and in some cases combined to optimize
the p
~

rocessor’s bus accesses. The write buffer is always enabled in all execution modes.

The pro
l

cessor’s caches are for the most part transparent to software. When enabled, instructions
andn data flow through these caches without the need for explicit software control. However,
kn
�

owledge of the behavior of these caches may be useful in optimizing software performance.
For exam
�

ple, knowledge of cache dimensions and replacement algorithms gives an indication
ofm how large of a data structure can be operated on at once without causing cache thrashing.

In
�

 multiprocessor systems, maintenance of cache consistency may, in rare circumstances,
req� uire intervention by system software. For these rare cases, the processor provides privileged
cache z control instructions for use in flushing caches.

9.2. CACHING TERMINOLOGY

Th
l

e Intel Architecture (beginning with the Pentium®
£
 processor) uses the MESI (modified, exclu-

si� ve, shared, invalid) cache protocol to maintain consistency with internal caches and caches in
othm er processors. For more information, see Sect

�
ion 9.4., “Cache Control Protocol”. (The

In
�

tel486™ processor uses an implementation defined caching protocol that operates in a similar
manner to the MESI protocol.)

9-5

MEMORY CACHE CONTROL

W
�

hen the processor recognizes that an operand being read from memory is cacheable, the
prox cessor reads an entire cache line into the appropriate cache (L1, L2, or both). This operation
is

y
 called a ca¦ che line fill . If the memory location containing that operand is still cached the next

ti
~

me the processor attempts to access the operand, the processor can read the operand from the
cache inz stead of going back to memory. This operation is called a cache hit¦ .

W
�

hen the processor attempts to write an operand to a cacheable area of memory, it first checks
if a cache line for that memory location exists in the cache. If a valid cache line does exist, the
prox cessor (depending on the write policy currently in force) can write the operand into the cache
in

y
stead of writing it out to system memory. This operation is called a write h¯ it. If a write misses

the cache (
~

that is, a valid cache line is not present for the area of memory being written to), the
px rocessor performs a cache line fill, write allocation. Then it writes the operand into the cache
li

¢
ne and (depending on the write poli cy currently in force) can also write it out to memory. If the

om perand is to be written out to memory, it is written first into the write buffer, and then written
fro

�
m the write buffer to memory when the system bus is available. (Note that for the Intel486™

and Penn tium®
£
 processors, write misses do not result in a cache line fill; they always result in a

write to� memory. For these processors, only read misses result in cache line fills.)

W
�

hen operating in a multiple-processor system, Intel Architecture processors (beginning with
th

~
e Intel486™ processor) have the ability to s° noop other processor’s accesses to system

memory and to their internal caches. They use this snooping abilit y to keep their internal caches
consistz ent both with system memory and with the caches in other processors on the bus. For
examp� le, in the Pentium®

£
 and P6 family processors, if through snooping one processor detects

that ano
~

ther processor intends to write to a memory location that it currently has cached in
sh° ared state,¤ the snooping processor wil l invalidate its cache line forcing it to perform a cache
li

¢
ne fill the next time it accesses the same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping) that another
prox cessor is trying to access a memory location that it has modified in its cache, but has not yet
writt� en back to system memory, the snooping processor wil l signal the other processor (by
means of the HITM# signal) that the cache line is held in modified state and will preform an
im

y
plicit write-back of the modified data. The implicit write-back is transferred directly to the

i
y
nitial requesting processor and snooped by the memory controller to assure that system memory
has been updated. Here, the processor with the valid data may pass the data to the other proces-
s� ors without actually writing it to system memory; however, it is the responsibility of the
memo� ry controller to snoop this operation and update memory.

9.3. METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the L1 and L2 caches. Within
individ

y
ual pages or regions of system memory, it also allows the type of caching (also called

memory t ype)
±

to be specified, using a variety of system flags and registers. For more informa-
ti

~
on, see Sect

�
ion 9.5., “Cache Control” . The caching methods currently defined for the Intel

Architecture ar
�

e as follows. (Table 9-2 lists which types of caching are available on specific Intel
Architecture processors.)

• Uncach
²

eable (UC)—System memory locations are not cached. All reads and writes appear
onm the system bus and are executed in program order, without reordering. No speculative

9-6

MEMORY CACHE CONTROL

memory accesses, page-table walks, or prefetches of speculated branch targets are made.
Th

l
is type of cache-control is useful for memory-mapped I/O devices. When used with

n� ormal RAM, it greatly reduces processor performance.

NOTES:

1. Requires programming of MTRRs to implement.

2. Speculative reads not supported.

• W
�

rite Combining (WC)—System memory locations are not cached (as with uncacheable
m� emory) and coherency is not enforced by the processor’s bus coherency protocol.
Specu

�
lative reads are allowed. Writes may be delayed and combined in the write buffer to

reduce memory accesses. The writes may be delayed until the next occurrence of a buffer
om r processor serialization event, e.g., CPUID execution, a read or write to uncached
mem� ory, interrupt occurrence, LOCKed instruction execution, etc. if the WC buffer is
px artially filled. This type of cache-control is appropriate for video frame buffers, where the
om rder of writes is unimportant as long as the writes update memory so they can be seen on
the g

~
raphics display. See Section 9.3.1., “Buffering of Write Combining Memory

Locations”, for more information about caching the WC memory type. The preferred
m� ethod is to use the new SFENCE (store fence) instruction introduced in the Pentium®

³
 III

prox cessor. The SFENCE instruction ensures weakly ordered writes are written to memory
in order, i.e., it serializes only the store operations.

• W
�

rite-through (WT)—Writes and reads to and from system memory are cached. Reads
coz me from cache lines on cache hits; read misses cause cache fills. Speculative reads are
allowedn . All writes are written to a cache line (when possible) and through to system
mem� ory. When writing through to memory, invalid cache lines are never filled, and valid
cachz e lines are either filled or invalidated. Write combining is allowed. This type of cache-
coz ntrol is appropriate for frame buffers or when there are devices on the system bus that
access sn ystem memory, but do not perform snooping of memory accesses. It enforces
coz herency between caches in the processors and system memory.

• W
�

rite-back (WB)—Writes and reads to and from system memory are cached. Reads come
f

�
rom cache lines on cache hits; read misses cause cache fills. Speculative reads are

allon wed. Write misses cause cache line fills (in the P6 family processors), and writes are
px erformed entirely in the cache, when possible. Write combining is allowed. The write-
b

r
ack memory type reduces bus traffic by eliminating many unnecessary writes to system

mem� ory. Writes to a cache line are not immediately forwarded to system memory; instead,

Table 9-2. Methods of Cac hing Available in P6 Family , Pentiu m®
´
, µ

and¶ Inte l486™ Processors

Cachin g Method P6 Famil y
Processors

Pent ium®
´
 Processor Intel486™ Processor

Uncacheable (UC) Yes Yes Yes

W
�

rite Combining (WC) Yes1 No No

W
�

rite Through (WT) Yes Yes2 Ye
·

s2

Writ
�

e Back (WB) Yes Yes2 No

W
�

rite Protected (WP) Yes1 No No

9-7

MEMORY CACHE CONTROL

th
~

ey are accumulated in the cache. The modified cache lines are written to system memory
later

¢
, when a write-back operation is performed. Write-back operations are triggered when

cache z lines need to be deallocated, such as when new cache lines are being allocated in a
cache that isz already full. They also are triggered by the mechanisms used to maintain
cache z consistency. This type of cache-control provides the best performance, but it requires
that all

~
devices that access system memory on the system bus be able to snoop memory

accessn es to insure system memory and cache coherency.

• W
�

rite protected (WP)—Reads come from cache lines when possible, and read misses
cause cache fillz s. Writes are propagated to the system bus and cause corresponding cache
lines on all processors on the bus to be invalidated. Speculative reads are allowed. This
cachinz g option is available in the P6 family processors by programming the MTRRs
(seeT

�
able 9-5).

9.3.1. Bufferi ng of Write Combining Memory Locat ions

W
�

rites to WC memory are not cached in the typical sense of the word cached. They are retained
in an intern

y
al buffer that is separate from the internal L1 and L2 caches. The buffer is not

sn� ooped and thus does not provide data coherency. The write buffering is done to allow software
a sn mall window of time to supply more modified data to the buffer while remaining as nonintru-
s� ive to software as possible. The size of the buffer is not architecturally defined, However the
Pentium®

£
 Pro and Pentium®

£
 II processors implement a single concurrent 32-byte buffer. The size

of thm is buffer was chosen by implementation convenience. In the Pentium®
£
 III processor there

are 4n write combine buffers. The size is the same as for the Pentium®
£
 Pro and Pentium®

£
 II proces-

s� ors. Buffer size and quantity changes may occur in future generations of the P6 family proces-
so� rs and so software should not rely upon the current 32-byte WC buffer size or the existence of
a sin ngle concurrent buffer or the 4 buffers in the Penitum III processor. The WC buffering of
writes� also causes data to be collapsed (for example, multiple writes to the same location will
leav
¢

e the last data written in the location and the other writes will be lost).

Fo
�

r the Pentium®
£
 Pro and Pentium®

£
 II processors, once software writes to a region of memory

t
~
hat is addressed outside of the range of the current 32-byte buffer, the data in the buffer is auto-
maticall� y forwarded to the system bus and written to memory. Therefore software that writes
mor� e than one 32-byte buffers worth of data will ensure that the data from the first buffers
adn dress range is forwarded to memory. The last buffer written in the sequence may be delayed
by the p

r
rocessor longer unless the buffers are deliberately emptied. Software developers should

not rely on the fact � that there is only one active WC buffer at a time. Software developers
creatinz g software that is sensiti ve to data being delayed must deliberately empty the WC buffers
and n not assume the hardware will.

Once t
�

he processor has started to move data into the WC buffer, it wil l make a bus transaction
st� yle decision based on how much of the buffer contains valid data. If the buffer is full (for
examp� le, all 32 bytes are valid) the processor will execute a burst write transaction on the bus
th

~
at will result in all 32 bytes being transmitted on the data bus in a single transaction. If one or

more of the WC buffer’s bytes are invalid (for example, have not been written by software) then
th

~
e processor wil l start to move the data to memory using “partial write” transactions on the

s� ystem bus. There will be a maximum of 4 partial write transactions for one WC buffer of data
s� ent to memory. Once data in the WC buffer has started to be propagated to memory, the data is

9-8

MEMORY CACHE CONTROL

s� ubject to the weak ordering semantics of its definition. Ordering is not maintained between the
success� ive allocation/deallocation of WC buffers (for example, writes to WC buffer 1 followed
by
r

 writes to WC buffer 2 may appear as buffer 2 followed by buffer 1 on the system bus. When
a Wn C buffer is propagated to memory as partial writes there is no guaranteed ordering between
success� ive partial writes (for example, a partial write for chunk 2 may appear on the bus before
the par
~

tial write for chunk 1 or vice versa). The only elements of WC propagation to the system
bu
r

s that are guaranteed are those provided by transaction atomicity. For the P6 family proces-
so� rs, a completely full WC buffer will always be propagated as a single burst transaction using
ann y of the chunk orders. In a WC buffer propagation where the data will be propagated as
parx tials, all data contained in the same chunk (0 mod 8 aligned) will be propagated simulta-
neo� usly.

9.3.2. Choosing a Memory T ype

The simplest system memory model does not use memory-mapped I/O with read or write side
ef� fects, does not include a frame buffer, and uses the write-back memory type for all memory.
An
�

I/O agent can perform direct memory access (DMA) to write-back memory and the cache
prx otocol maintains cache coherency.

A s
�

ystem can use uncacheable memory for other memory-mapped I/O, and should always use
unp cacheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes
desirable, b
�

ecause those writes cannot be observed at the other port until they reach the memory
agenn t. A system can use uncacheable, write-through, or write-combining memory for frame
bu
r

ffers or dual-ported memory that contains pixel values displayed on a screen. Frame buffer
m� emory is typically large (a few megabytes) and is usually written more than it is read by the
prx ocessor. Using uncacheable memory for a frame buffer generates very large amounts of bus
traf
~

fic, because operations on the entire buffer are implemented using partial writes rather than
line writes. Usi
¢

ng write-through memory for a frame buffer can displace almost all other useful
cachedz lines in the processor’s L2 cache and L1 data cache. Therefore, systems should use write-
comz bining memory for frame buffers whenever possible.

Software can
�

 use page-level cache control, to assign appropriate effective memory types when
so� ftware will not access data structures in ways that benefit from write-back caching. For
exam� ple, software may read a large data structure once and not access the structure again until
th
~

e structure is rewritten by another agent. Such a large data structure should be marked as
up ncacheable, or reading it will evict cached lines that the processor will be referencing again. A
si� milar example would be a write-only data structure that is written to (to export the data to
anon ther agent), but never read by software. Such a structure can be marked as uncacheable,
b
r
ecause software never reads the values that it writes (though as uncacheable memory, it will be

written� using partial writes, while as write-back memory, it will be written using line writes,
wh� ich may not occur until the other agent reads the structure and triggers implicit write-backs).

On
�

 the Pentium®
£
 III processor, new capabiliti es exist that may allow the programmer to perform

si� milar functions with the prefetch and streaming store instructions. For more information on
these instruction
~

s, see Section 3.2., “Instruction Reference” in Chapter 3, Ins
§

truction Set Refer-
ence¸ .

9-9

MEMORY CACHE CONTROL

9.4. CACHE CONTROL PROTOCOL

The following section describes the cache control protocol currently defined for the Intel Archi-
tect

~
ure processors. This protocol is used by the P6 family and Pentium®

£
 processors. The

Intel486™ processor uses an implementation defined protocol that does not support the MESI
fou
�

r-state protocol, but instead uses a two-state protocol with valid and invalid states defined.

In
�

the L1 data cache and the P6 family processors’ L2 cache, the MESI (modified, exclusive,
s� hared, invalid) cache protocol maintains consistency with caches of other processors. The L1
data cache and the L2 cache has t
�

wo MESI status flags per cache line. Each line can thus be
mark� ed as being in one of the states defined in Table 9-3. In general, the operation of the MESI
px rotocol is transparent to programs.

The L1 i
l

nstruction cache implements only the “SI” part of the MESI protocol, because the
inst
y

ruction cache is not writable. The instruction cache monitors changes in the data cache to
maintain consistency between the caches when instructions are modified. See Section 9.7.,
“Self-Modifying Code”, for more information on the implications of caching instructions.

9.5. CACHE CONTROL

The cur
l

rent Intel Architecture provides the following cache-control mechanisms for use in
enablin� g caching and/or restricting caching to various pages or regions in memory (see Figure
9-2

¹
):

• C
�

D flag, bit 30 of control register CR0—Controls caching of system memory locations.
For more information, see Section 2.5., “Control Registers”, in Chapter 2, System Ar

­
chi-

tecturº e Overview. If the CD flag is clear, caching is enabled for the whole of system
memo� ry, but may be restricted for individual pages or regions of memory by other cache-
conz trol mechanisms. When the CD flag is set, caching is restricted in the L1 and L2 caches
fo

�
r the P6 family processors and prevented for the Pentium®

£
 and Intel486™ processors

(see n
�

ote below). With the CD flag set, however, the caches will still respond to snoop
traf

~
fic. Caches should be explicitly flushed to insure memory coherency. For highest

prx ocessor performance, both the CD and the NW flags in control register CR0 should be
clearedz . Table 9-4 shows the interaction of the CD and NW flags.

Table 9-3. MESI Cache Lin e States

Cache Li ne State M (Modified) E (Excl usive) S (Shared) I (Inval id)

This cache line is valid? Yes Yes Yes No

The memory copy is… …out of date …valid …valid —

Copies exist in caches of
other processors?

No No Maybe Maybe

A write to this line … …does not go to
bus

…does not go to
bus

…causes the
processor to
gain exclusive
ownership of the
line

…goes directly
to bus

t

9-10

MEMORY CACHE CONTROL

NOTE

The effect of setting the CD flag is somewhat different for the P6 family, Pentium®
£
,¤

ann d Intel486™ processors (see Table 9-4). To insure memory coherency after the
C
�

D flag is set, the caches should be explicitly flushed. For more information, see
Sectio
�

n 9.5.2., “Preventing Caching” . Setting the CD flag for the P6 family
px rocessors modifies cache line fill and update behaviour. Also for the P6 family
px rocessors, setting the CD flag does not force strict ordering of memory accesses
up nless the MTRRs are disabled and/or all memory is referenced as uncached. For
mo� re information, see Section 7.2.4., “Strengthening or Weakening the Memory
Ord
�

ering Model” , in Chapter 7, Multiple-Processor Management.

Figure 9-2. Cache-Control M echanisms Avail able in the Intel Archite cture Processors

Page-Directory or
Page-Table Entry

TL
»

Bs

MTRRs3
ª

Physical Memory

0

FFFFFFFFH2

control overall caching
of system memory

CD and NW Flags PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

MTRRs control caching
of selected regions of
physical memory

P
C

¼

D

CR3

Control caching of
page directory

P
W
T

C
¼

D

CR0

N
W

½

W
�

rite Buffer

P
C

¼

D

P
W

½

T
¾G

¿ 1

CR4

Enables global pages

P
G

¿

E

designated with G flag

Memory Types Allowed:
—Uncacheable (UC)
—Write-Protected (WP)
—Write-Combining (WC)
—Write-Through (WT)
—Write-Back (WB)

1. G flag only available in P6 family processors.

3. MTRRs available only in P6 family processors;
 similar control available in Pentium® processor with
KEN# and WB/WT# pins, and in Intel486™ processor.

2. If 36-bit physical addressing is being used, the maximum
physical address size is FFFFFFFFFH.

9-11

MEMORY CACHE CONTROL

NOTE:

1. The P6 family processors are the only Intel Architecture processors that contain an integrated L2 cache.
The L2 column in t

»
his table is definitive for the P6 family processors. It is intended to represent what could

be implemented in a Pentium®
¬
 processor based system with a platform specific write-back L2 cache.

T
s
able 9-4. Cache Operating M odes

CD NW Cachin g and Read/Write Poli cy L1 L21

0 0 Normal highest performance cache operation.
- Read hits access the cache; read misses may cause replacement.
- Write hits update the cache.
- (Pentium®

¬
 and P6 family processors.) Only writes to shared lines

 and write misses update system memory.
- (P6 family processors.) Write misses cause cache line fills; write
 hits can change shared lines to exclusive under control of the MTRRs
- (Pentium®

¬
 processor.) Write misses do not cause cache line fills; write

 hits can change shared lines to exclusive under control of WB/WT#.
- (Intel486™ processor.) All writes update system memory; write misses
 do not cause cache line fills.
- Invalidation is allowed.
- External snoop traffic is supported.

Yes
Yes
Yes

Yes

Yes

Yes

Ye
·

s
Ye

·
s

Yes
Yes
Yes

Yes

Ye
·

s
Ye

·
s

0 1 Invalid setting.
A

�
 general-protection exception (#GP) with an error code of 0 is

generated.
NA NA

1 0 Memory coherency is maintained.
- Read hits access the cache; read misses do not cause replacement.
- Write hits update the cache.
- (Pentium®

¬
 and P6 family processors.) Only writes to shared lines

 and write misses update system memory.
- (Intel486™ processor.) All writes update system memory
- (Pentium®

¬
 processor.) Write hits can change shared lines to exclusive

 under control of the WB/WT#.
- (P6 family processors.) Strict memory ordering is not enforced
 unless the MTRRs are disabled and/or all memory is referenced as
 uncached. For more information, see Section 7.2.4., “Strengthening or
W

�
eakening the Memory Ordering Model”.

- Invalidation is allowed.
- External snoop traffic is supported.

Yes
Yes
Yes

Yes
Yes

Yes

Ye
·

s
Ye

·
s

Yes
Yes
Yes

Yes

Yes
Ye

·
s

1 1 Memory coherency is not maintained. This is the state of the processor
after a power up or reset.
- Read hits access the cache; read misses do not cause replacement.
- Write hits update the cache.
- (Pentium®

¬
 and P6 family processors.) Write hits change exclusive

 lines to modified.
- (Pentium®

¬
 and P6 family processors.) Shared lines remain shared

 after write hit.
- Write misses access memory.
- (P6 family processors.) Strict memory ordering is not enforced
 unless the MTRRs are disabled and/or all memory is referenced as
 uncached. For more information, see Section 7.2.4., “Strengthening or
W

�
eakening the Memory Ordering Model”.

- Invalidation is inhibited when snooping; but is allowed with INVD and
 WBINVD instructions.
- External snoop traffic is supported.

Yes
Yes
Yes

Yes

Yes
Yes

Ye
·

s
No

Yes
Yes
Yes

Yes

Yes
Yes

Ye
·

s
Ye

·
s

9-12

MEMORY CACHE CONTROL

• NW
�

flag, bit 29 of control register CR0—Controls the write policy for system memory
loca

¢
tions. For more information, see Section 2.5., “Control Registers”, in Chapter 2,

S
­
ystem Architecture Overview. If the NW and CD flags are clear, write-back is enabled for

t
~
he whole of system memory (write-through for the Intel486™ processor), but may be
r� estricted for individual pages or regions of memory by other cache-control mechanisms.
T

l
able 9-4 shows how the other combinations of CD and NW flags affects caching.

NOTE

For the Pentium®
£
 processor, when the L1 cache is disabled (the CD and NW

f
�
lags in control register CR0 are set), external snoops are accepted in DP

(
�
dual-processor) systems and inhibited in uniprocessor systems. When

sno� ops are inhibited, address parity is not checked and APCHK# is not
assn erted for a corrupt address; however, when snoops are accepted, address
px arity is checked and APCHK# is asserted for corrupt addresses.

• PCD flag in the page-directory and page-table entries—Controls caching for individual
px age tables and pages, respectively. For more information, see Section 3.6.4., “Page-
Directory and Page-Table Entries” , in Chapter 3, Protected-Mode Memory Management.
Th

l
is flag only has effect when paging is enabled and the CD flag in control register CR0 is

clearz . The PCD flag enables caching of the page table or page when clear and prevents
cachz ing when set.

• PWT flag in the page-directory and page-table entries—Controls the write policy for
i

y
ndividual page tables and pages, respectively. For more information, see Section 3.6.4.,
“Page-Directory and Page-Table Entries” , in Chapter 3, Protected-Mode Memory
M

®
anagement. This flag only has effect when paging is enabled and the NW flag in control

r� egister CR0 is clear. The PWT flag enables write-back caching of the page table or page
whe� n clear and write-through caching when set.

• PCD and PWT flags in control register CR3. Control the global caching and write policy
f

�
or the page directory. For more information, see Se

�
ction 2.5., “Control Registers”, in

Ch
�

apter 2, System
­

 Architecture Overview. The PCD flag enables caching of the page
d

�
irectory when clear and prevents caching when set. The PWT flag enables write-back

cachz ing of the page directory when clear and write-through caching when set. These flags
d

�
o not affect the caching and write policy for individual page tables. These flags only have

ef� fect when paging is enabled and the CD flag in control register CR0 is clear.

• G (glo
À

bal) flag in the page-directory and page-table entries (introduced to the Intel Archi-
t

~
ecture in the P6 family processors)—Controls the flushing of TLB entries for individual
px ages. See Section 3.7., “Translation Lookaside Buffers (TLBs)”, in Chapter 3, P

Á
rotected-

Mo
®

de Memory Management, fo¤ r more information about this flag.

• PGE (page global enable) flag in control register CR4—Enables the establishment of
g� lobal pages with the G flag. See Section 3.7., “Translation Lookaside Buffers (TLBs)”, in
Ch

�
apter 3, P

Á
rotected-Mode Memory Management, ¤ for more information about this flag.

• Memory type range registers (MTRRs) (introduced in the P6 family processors)—Control
the typ

~
e of caching used in specific regions of physical memory. Any of the caching types

d
�
escribed in Section 9.3., “Methods of Caching Available”, can be selected. See Section

9-13

MEMORY CACHE CONTROL

9.
¹

12., “Memory Type Range Registers (MTRRs)”, for a detailed description of the
MTR

�
Rs.

• KEN# an
Â

d WB/WT# pins on Pentium®
£
 processor and KEN# pin alone on the Intel486™

prx ocessor—These pins allow external hardware to control the caching method used for
specific � areas of memory. They perform similar (but not identical) functions to the MTRRs
in

y
 the P6 family processors.

• PCD and PWT pins on the Pentium®
£
 and Intel486™ processors—These pins (which are

assn ociated with the PCD and PWT flags in control register CR3 and in the page-directory
andn page-table entries) permit caching in an external L2 cache to be controlled on a page-
by

r
-page basis, consistent with the control exercised on the L1 cache of these processors.

Th
l

e P6 family processors do not provide these pins because the L2 cache in internal to the
chipz package.

9.5.1. Precedence of Cache Cont rols (P6 Family Processor)

In the P6 family processors, the cache control flags and MTRRs operate hierarchically for
rest� ricting caching. That is, if the CD flag is set, caching is prevented globally (see Table 9-4).
If the CD flag is clear, either the PCD flags and/or the MTRRs can be used to restrict caching.
If

�
there is an overlap of page-level caching control and MTRR caching control, the mechanism

that
~

prevents caching has precedence. For example, if an MTRR makes a region of system
memory uncachable, a PCD flag cannot be used to enable caching for a page in that region. The
convz erse is also true; that is, if the PCD flag is set, an MTRR cannot be used to make a region
of m system memory cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching
policies x to a page and a region of memory, the write-through policy takes precedence. The write-
combz ining policy (which can only be assigned through an MTRR) takes precedence over either
wri� te-through or write-back.

T
l
able 9-5 describes the mapping from MTRR memory types and page-level caching attributes

to ef
~

fective memory types, when normal caching is in effect (the CD and NW flags in control
register CR0 are clear). Combinations that appear in gray are implementation-defined and may
be implemen

r
ted differently on future Intel Architecture processors. System designers are

encou� raged to avoid these implementation-defined combinations.

W
�

hen normal caching is in effect, the effective memory type is determined using the following
rules� :

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is
id

y
entical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3.
�

If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the
WB

�
 memory type and the MTRR-defined memory type for all other memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specif ic for the WP
andn WC memory types and architecturally-defined for the WB, WT, and UC memory
ty

~
pes.

9-14

MEMORY CACHE CONTROL

NOTE:

This t
»

able assumes that the CD and NW flags in register CR0 are set to 0. The effective memory types in the
grey areas are implementation defined and may be different in future Intel Architecture processors.

9.5.2. Prevent ing Caching

To prevent the L1 and L2 caches from performing caching operations after they have been
enab� led and have received cache fill s, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag
to

~
 0.

2.
�

Flush all caches using the WBINVD instruction.

3.
�

Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the
up ncached memory type. For more information, see the discussion of the TYPE field and
the

~
E flag in Secti

�
on 9.12.2.1., “MTRRdefType Register”.

The cach
l

es must be flushed when the CD flag is cleared to insure system memory coherency. If
th
~

e caches are not flushed in step 2, cache hits on reads will still occur and data will be read from
valid cache o lines.

T
s
able 9-5. Effective Memory Type Dependin g on MTRR, PCD, and PWT Setti ngs

MTRR Memory T ype PCD Value PWT Value Effect ive Memory Type

UC X X UC

WC
�

0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT
�

0 X WT

1 X UC

WP
�

0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB
�

0 0 WB

0 1 WT

1 X UC

9-15

MEMORY CACHE CONTROL

9.6. CACHE MANAGEMENT INSTRUCTIONS

The INVD and WBINVD instructions are used to invalidate the contents of the L1 and L2
caches. The INVD instz ruction invalidates all internal cache entries, then generates a special-
function bus cycle that indicates that external caches also should be invalidated. The INVD
inst

y
ruction should be used with care. It does not force a write-back of modified cache lines;

th
~

erefore, data stored in the caches and not written back to system memory will be lost. Unless
th

~
ere is a specific requirement or benefit to invalidating the caches without writing back the

mod� ified lines (such as, during testing or fault recovery where cache coherency with main
memo� ry is not a concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches, then
invalidates

y
the contents of both L1 and L2 caches. It ensures that cache coherency with main

m� emory is maintained regardless of the write policy in effect (that is, write-through or write-
back)

r
. Following this operation, the WBINVD instruction generates one (P6 family processors)

om r two (Pentium®
£
 and Intel486™ processors) special-function bus cycles to indicate to external

cache coz ntrollers that write-back of modified data followed by invalidation of external caches
sh� ould occur.

9.7. SELF-MODIFYING CODE

A
�

write to a memory location in a code segment that is currently cached in the processor causes
the ass

~
ociated cache line (or lines) to be invalidated. This check is based on the physical address

om f the instruction. In addition, the P6 family and Pentium®
£
 processors check whether a write to

a con de segment may modify an instruction that has been prefetched for execution. If the write
afn fects a prefetched instruction, the prefetch queue is invalidated. This latter check is based on
th
~

e linear address of the instruction.

In
�

practice, the check on linear addresses should not create compatibil ity problems among Intel
Architecture processors. Applications that include self-modifying code use the same linear
addrn ess for modifying and fetching the instruction. Systems software, such as a debugger, that
m� ight possibly modify an instruction using a different linear address than that used to fetch the
instruction, will execute a serializing operation, such as a CPUID instruction, before the modi-
fied inst

�
ruction is executed, which will automatically resynchronize the instruction cache and

prefx etch queue. See Sect
�

ion 7.1.3., “Handling Self- and Cross-Modifying Code”, in Chapter 7,
Multiple-Processor Management,¤ for more information about the use of self-modify ing code.

F
�

or Intel486™ processors, a write to an instruction in the cache will modify it in both the cache
and memon ry, but if the instruction was prefetched before the write, the old version of the instruc-
ti
~

on could be the one executed. To prevent the old instruction from being executed, flush the
inst
y

ruction prefetch unit by coding a jump instruction immediately after any write that modifies
an instrun ction.

9-16

MEMORY CACHE CONTROL

9.8. IMPLICIT CACHING (P6 FAMILY PR OCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the
element may� never have been accessed in the normal von Neumann sequence. Implicit caching
occum rs on the P6 family processors due to aggressive prefetching, branch prediction, and TLB
miss� handling. Implicit caching is an extension of the behavior of existing Intel386™,
In
�

tel486™, and Pentium®
£
 processor systems, since software running on these processor families

alsn o has not been able to deterministically predict the behavior of instruction prefetch.

T
l
o avoid problems related to implicit caching, the operating system must explicitly invalidate

the cache w
~

hen changes are made to cacheable data that the cache coherency mechanism does
not automatically handle. This includes writes to dual-ported or physically aliased memory
bo
r

ards that are not detected by the snooping mechanisms of the processor, and changes to page-
tab
~

le entries in memory.

The code in Example 9-1 shows the effect of implicit caching on page-table entries. The linear
addn ress F000H points to physical location B000H (the page-table entry for F000H contains the
valuo e B000H), and the page-table entry for linear address F000 is PTE_F000.

Example 9-1. Effec t of Im plic it Cac hing on Page-Table Entries

mov EAX, CÃ R3 ; Invalidate the TLB

mov CR3, EÃ AX ; by copying CR3 to itself

mov PTE_F0Ã 00, A000H; Change F000H to point to A000H

mov EBX, [Ã F000H];

B
�

ecause of speculative execution in the P6 family processors, the last MOV instruction
perx formed would place the value at physical location B000H into EBX, rather than the value at
t
~
he new physical address A000H. This situation is remedied by placing a TLB invalidation
between
r

the load and the store.

9.9. EXPLICIT CACHING

The Pentium®
£
 III processor introduced a new instruction designed to provide some control over

cachinz g of data. The prefetch instruction is a “hint” to the processor that the data requested by
the p
~

refetch instruction should be read into cache, even though it is not needed yet. The
px rocessor assumes it will be needed soon.

Exp
�

licit caching occurs when the application program executes a prefetch instruction. The
prx ogrammer must be judicious in the use of the prefetch instruction. Overuse can lead to
resou� rce confli cts and hence reduce the performance of an application. For more detailed infor-
mation� on the proper use of the prefetch instruction, refer to Chapter 6, “Optimizing Cache Utili-
zaÄ tion for Pentium®

Å
 III Processors” , i¤ n the Intel Architecture Optimization Reference Manual

(Ord
�

er Number 245127-001).

Prefetch
Æ

can be used to read data into the cache prior to the application actually requiring it. This
helps to reduce the long latency typically associated with reading data from memory and causing
th
~

e processor to “stall”. It is important to remember that prefetch is only a hint to the processor

9-17

MEMORY CACHE CONTROL

t
~
o fetch the data now or as soon as possible. It will be used soon. The prefetch instruction has
d

�
ifferent variations that allow the programmer to control into which cache level the data will be

read.� For more information on the variations of the prefetch instruction refer to Section 9.5.3.1.,
“Cacheabilit y Hint Instructions”, Chapter 9, Programming with the Streaming SIMD Exten-
siÇ ons,¤ if the Intel Ar

§
chitecture Software Developer’s Manual, Volume 2.

9.10. INVALIDATING THE TRANSLATION LOOKASI DE BUFFERS
(TLBS)

The processor updates its address translation caches (TLBs) transparently to software. Several
mechan� isms are available, however, that allow software and hardware to invalidate the TLBs
eit� her explicitly or as a side effect of another operation.

The INVLPG
l

instruction invalidates the TLB for a specific page. This instruction is the most
ef� ficient in cases where software only needs to invalidate a specific page, because it improves
perfx ormance over invalidating the whole TLB. This instruction is not affected by the state of the
G flag in

À
 a page-directory or page-table entry.

The follo
l

wing operations invalidate all TLB entries except global entries. (A global entry is one
for which the G (global) flag is set in its corresponding page-directory or page-table entry. The
glob� al flag was introduced into the Intel Architecture in the P6 family processors, see Section
9.5

¹
., “Cache Control”.)

• W
�

riting to control register CR3.

• A task switch that changes control register CR3.

Th
l

e following operations invalidate all TLB entries, irrespective of the setting of the G flag:

• Asserting or de-asserting the FLUSH# pin.

• (P6
�

 family processors only.) Writing to an MTRR (with a WRMSR instruction).

• W
�

riting to control register CR0 to modify the PG or PE flag.

• (P
�

6 family processors only.) Writing to control register CR4 to modify the PSE, PGE, or
PA

Æ
E flag.

S
�

ee S
�

ection 3.7., “Translation Lookaside Buffers (TLBs)”, in Chapter 3, Pr
Á

otected-Mode
Memory Management, ¤ for additional information about the TLBs.

9.11. WRITE BUFFER

Intel Architectur
�

e processors temporarily store each write (store) to memory in a write buffer.
The write buffer improves processor performance by allowing the processor to continue
ex� ecuting instructions without having to wait until a write to memory and/or to a cache is
compz lete. It also allows writes to be delayed for more efficient use of memory-access bus cycles.

9-18

MEMORY CACHE CONTROL

In general, the existence of the write buffer is transparent to software, even in systems that use
mu� ltiple processors. The processor ensures that write operations are always carried out in
prx ogram order. It also insures that the contents of the write buffer are always drained to memory
in the following situations:

• W
�

hen an exception or interrupt is generated.

• (
�
P6 family processors only.) When a serializing instruction is executed.

• W
�

hen an I/O instruction is executed.

• W
�

hen a LOCK operation is performed.

• (
�
P6 family processors only.) When a BINIT operation is performed.

• (P
�

entium®
£
 III processors only.) When using SFENCE to order stores.

The di
l

scussion of write ordering in Sect
�

ion 7.2., “Memory Ordering”, in Chapter 7, Mu
®

ltiple-
P
Á

rocessor Management, ¤ gives a detailed description of the operation of the write buffer.

9.12. MEMORY TYPE RANGE REGISTERS (MTRRS)

The following section pertains only to the P6 family processors.

The m
l

emory type range registers (MTRRs) provide a mechanism for associating the memory
ty
~

pes with physical-address ranges in system memory. For more information, see Section 9.3.,
“Methods of Caching Available”. They allow the processor to optimize operations for different
typ
~

es of memory such as RAM, ROM, frame-buffer memory, and memory-mapped I/O devices.
They also simplify system hardware design by eliminating the memory control pins used for this
fu
�

nction on earlier Intel Architecture processors and the external logic needed to drive them.

The MTRR
l

 mechanism allows up to 96 memory ranges to be defined in physical memory, and
it defines a set of model-specific registers (MSRs) for specifying the type of memory that is
conz tained in each range. Table 9-6 shows the memory types that can be specified and their prop-
e� rties; Figure 9-3 shows the mapping of physical memory with MTRRs. See Section 9.3.,
“Methods of Caching Available”, for a more detailed description of each memory type.

F
�

ollowing a hardware reset, a P6 family processor disables all the fixed and variable MTRRs,
which � in effect makes all of physical memory uncachable. Initi alization software should then set
the MTR
~

Rs to a specific, system-defined memory map. Typically, the BIOS (basic input/output
syst� em) software configures the MTRRs. The operating system or executive is then free to
mo� dify the memory map using the normal page-level cacheability attributes.

In a multiprocessor system, different P6 family processors MUST use the identical MTRR
memo� ry map so that software has a consistent view of memory, independent of the processor
execu� ting a program.

9-19

MEMORY CACHE CONTROL

NOTE:

* Using these encoding result in a general-protection exception (#GP) being generated.

T
s
able 9-6. MTRR Memory Types and Their Properti eÈ s

Mnemon ic
Encodi ng in

MTRR

Cacheable in
L1 and L2

Caches
Writeback
Cacheabl e

Allows
Specul ative

Reads
Memory Orderi ng

Model

Uncacheable
(UC)

0 No No No Strong Ordering

W
�

rite Combining
(WC)

1 No No Yes Weak Ordering

W
�

rite-through
(WT)

4 Yes No Yes Speculative
Processor Ordering

W
�

rite-protected
(WP)

5 Yes for reads,
no for writes

No Yes Speculative
Processor Ordering

W
�

riteback (WB) 6 Yes Yes Yes Speculative
Processor Ordering

Reserved
Encodings*

2, 3,
7 through 255

9-20

MEMORY CACHE CONTROL

9.12.1. MTRR Feature Ident ification

The av
l

ailability of the MTRR feature is model-specific. Software can determine if MTRRs are
supp� orted on a processor by executing the CPUID instruction and reading the state of the MTRR
flag
�

(bit 12) in the feature information register (EDX).

If the MTR
�

R flag is set (indicating that the processor implements MTRRs), additional informa-
tion ab
~

out MTRRs can be obtained from the 64-bit MTRRcap register. The MTRRcap register
is
y

 a read-only MSR that can be read with the RDMSR instruction. Figure 9-4 shows the contents
ofm the MTRRcap register. The functions of the flags and field in this register are as follows:

VCNT
É

 (variable range registers count) field, bits 0 through 7
In

�
dicates the number of variable ranges implemented on the processor. The P6

fam
�

i ly processors have eight pairs of MTRRs for setting up eight variable
ranges.

Figure 9-3. Mapping Phys ical Memory With MTRRs

0
Ê

FFFFFFFFH

80
�

000H

BFFFFH
C

¼
0000H

FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

8 variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)

9-21

MEMORY CACHE CONTROL

FIX (fixed range registers supported) flag, bit 8
F
�

ixed range MTRRs (MTRRfix64K_00000 through MTRRfix4K_0F8000)
are supn ported when set; no fixed range registers are supported when clear.

W
Ë

C (wri te combining) flag, bit 10
The wr
l

ite-combining (WC) memory type is supported when set; the WC type
is
y

 not supported when clear.

Bit 9 and bits 11 through 63 in the MTRRcap register are reserved. If software attempts to write
to the

~
MTRRcap registers, a general-protection exception (#GP) is generated.

F
�

or the P6 family processors, the MTRRcap register always contains the value 508H.

9.12.2. Setting Me mory Ranges with M TRRs

The memory ranges and the types of memory specified in each range are set by three groups of
registers:� the MTRRdefType register, the fixed-range MTRRs, and the variable range MTRRs.
These registers can be read and written to using the RDMSR and WRMSR instructions, respec-
ti

~
vely. The MTRRcap register indicates the availability of these registers on the processor. For

mor� e information, see S
�

ection 9.12.1., “MTRR Feature Identification”.

9
Ì

.12.2.1. MTRRDEFTYPE REGISTER

The MTRRdefType register (see Figure 9-4) sets the default properties of the regions of physical
memo� ry that are not encompassed by MTRRs. For more information, see Section 9.4., “Cache
C

�
ontrol Protocol”. The functions of the flags and field in this register are as follows:

Type field, bits 0 through 7
In
�

dicates the default memory type used for those physical memory address
ran� ges that do not have a memory type specified for them by an MTRR. See
Table 9-6 for the encoding of this field. If the MTRRs are disabled, this field
d
�
efines the memory type for all of physical memory. The legal values for this

fi
�

eld are 0, 1, 4, 5, and 6. All other values result in a general-protection excep-
t
~
ion (#GP) being generated.

Figu re 9-4. MTRRcap Register

VCNT—Number of variable range registers
FIX—Fixed range registers supported
WC—Write-combining memory type supported

63
Í

0
Ê

Reserved W
C

Î

71011

VCNT
F

Ï
I
X

8
�

9
Ð

Reserved

9-22

MEMORY CACHE CONTROL

Intel recommends the use of the UC (uncached) memory type for all physical
mem� ory addresses where memory does not exist. To assign the UC type to
no� nexistent memory locations, it can either be specified as the default type in
t

~
he Type field or be explicitly assigned with the fixed and variable MTRRs.

FE
Ñ

 (fixed MTRRs enabled) flag, bit 10
Fixed-

�
range MTRRs are enabled when set; fixed-range MTRRs are disabled

when� clear. When the fixed-range MTRRs are enabled, they take priority over
t

~
he variable-range MTRRs when overlaps in ranges occur. If the fixed-range
MTRRs are disabled, the variable-range MTRRs can still be used and can map
t

~
he range ordinarily covered by the fixed-range MTRRs.

E
Ò

(MT RRs enabled) flag, bit 11
MTRRs are enabled when set; all MTRRs are disabled when clear, and the UC
memory type is applied to all of physical memory. When this flag is set, the FE
flag

�
 can disable the fixed-range MTRRs; when the flag is clear, the FE flag has

no affect. When the E flag is set, the type specified in the default memory type
field is used for areas of memory not already mapped by either a fixed or vari-
an ble MTRR.

Bits 8 and 9, and bits 12 through 63, in the MTRRdefType register are reserved; the processor
g� enerates a general-protection exception (#GP) if software attempts to write nonzero values to
th
~

em.

9.
Ì

12.2.2. FIXED RANGE MTRRS

The fixed memory ranges are mapped with 8 fixed-range registers of 64 bits each. Each of these
registers is divided into 8-bit fields that are used to specify the memory type for each of the sub-
ran� ges the register controls. Table 9-7 shows the relationship between the fixed physical-address
ranges and the corresponding fields of the fixed-range MTRRs; Table 9-6 shows the encoding
ofm these field:

• Register MTRRfix64K_00000. Maps the 512-KByte address range from 0H to 7FFFFH.
Th

l
is range is divided into eight 64-KByte sub-ranges.

Figure 9-5. MTRRdefType Register

Type—Default memory type

FE—Fixed-range MTRRs enable/disable
E—MTRR enable/disable

63
Í

0
Ê

Reserved F
Ï
E

71011

Type

8
�

9
Ð

12

E

Reserved

9-23

MEMORY CACHE CONTROL

• Registers MTRRfix16K_80000 and MTRRfi x16K_A0000. Maps the two 128-KByte
addn ress ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub-
ran� ges, 8 ranges per register.

• Registers MTRRfix4K_C0000. and MTRRfi x4K_F8000. Maps eight 32-KByte address
ran� ges from C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-
ran� ges, 8 ranges per register.

S
�

ee the Pentium®
Å

 Pro BIOS Writer’s Guide for examples of assigning memory types with fixed-
rang� e MTRRs.

9
Ì

.12.2.3. VARIAB LE RANGE MTRRS

The P
l

6 family processors permit software to specify the memory type for eight variable-size
addrn ess ranges, using a pair of MTRRs for each range. The first of each pair (MTRRphysBasenÓ)

±

defin
�

es the base address and memory type for the range, and the second (MTRRphysMasknÓ)
±

containz s a mask that is used to determine the address range. The “nÓ ” suffix indicates registers
paix rs 0 through 7. Figure 9-6 shows flags and fields in these registers. The functions of the flags
and n fields in these registers are as follows:

Table 9-7. Addre ss Mapping for Fix ed-Range MTRRs

Address Ran ge (hexadeci mal) Register

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

MTRRfix64K
_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

MTRRfix16K
_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

MTRRfix16K
_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

MTRRfix4K_
C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

MTRRfix4K_
C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

MTRRfix4K_
D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

MTRRfix4K_
D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

MTRRfix4K_
E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

MTRRfix4K_
E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

MTRRfix4K_
F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

MTRRfix4K_
F8000

9-24

MEMORY CACHE CONTROL

Type field, bits 0 through 7
Specifies t

�
he memory type for the range. See Table 9-6 for the encoding of this

field.
�

PhysBase field, bits 12 through 35
Specifies th

�
e base address of the address range. This 24-bit value is extended

b
r
y 12 bits at the low end to form the base address, which automatically aligns

t
~
he address on a 4-KByte boundary.

Phy
Ô

sMask field, bits 12 through 35
Specifies a 2

�
4-bit mask that determines the range of the region being mapped,

accon rding to the following relationship:

Add
�

ress_Within_Range AND PhysMask = PhysBase AND PhysMask

This 24-bit value is extended by 12 bits at the low end to form the mask value.
See

�
Sectio

�
n 9.12.3., “Example Base and Mask Calculations”, for more infor-

mation� and some examples of base address and mask computations.

V (v
É

alid) flag, bit 11
En

�
ables the register pair when set; disables register pair when clear.

A
�

ll other bits in the MTRRphysBasenÓ and MTRRphysMasknÓ registers are reserved; the
px rocessor generates a general-protection exception (#GP) if software attempts to write to them.

O
�

verlapping variable MTRR ranges are not supported generically. However, two variable
ran� ges are allowed to overlap, if the following conditions are present:

• I
�
f both of them are UC (uncached).

Figure 9-6. MTRRphysB asen and MTRRphys Maskn Variable-Range Register Pa ir

V—Valid
PhysMask—Sets range mask

MTRRphysMasknÕ Register

63
Í

0
Ê

Reserved

101112

V Reserved

36
Ö

35

PhysMask

Type—Memory type for range
PhysBase—Base address of range

MTRRphysBasen Register

63
Í

0
Ê

Reserved

1112

Ty
»

pe

36
Ö

35

PhysBase

7
B

8
�

Reserved

9-25

MEMORY CACHE CONTROL

• If one range is of type UC and the other is of type WB (write back).

In b
�

oth cases above, the effective type for the overlapping region is UC. The processor’s
behav

r
ior is undefined for all other cases of overlapping variable ranges.

A variable range can overlap a fixed range (provided the fixed range MTRR’s are enabled).
Here, th

×
e memory type specified in the fixed range register overrides the one specified in vari-

abln e-range register pair.

NO
Ø

TE

So
�

me mask values can result in discontinuous ranges. In a discontinuous
rang� e, the area not mapped by the mask value is set to the default memory
typ

~
e. Intel does not encourage the use of discontinuous ranges, because they

couz ld require physical memory to be present throughout the entire 4-GByte
phx ysical memory map. If memory is not provided for the complete memory
map, the behaviour of the processor is undefined.

9.12.3. Example Base and Mask Calculations

The
l

base and mask values entered into the variable-range MTRR pairs are 24-bit values that the
prox cessor extends to 36-bits. For example, to enter a base address of 2 MBytes (200000H) to the
MTR

�
RphysBase3 register, the 12 least-significant bits are truncated and the value 000200H is

ent� ered into the PhysBase field. The same operation must be performed on mask values. For
instance, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4 MBytes), a mask
valo ue of FFFE00000H is required. Here again, the 12 least-significant bits of this mask value
are trun ncated, so that the value entered in the PhysMask field of the MTRRphysMask3 register
is FFFE00H. This mask is chosen so that when any address in the 200000H to 3FFFFFH range
is

y
 ANDed with the mask value it wi ll return the same value as when the base address is ANDed

wit� h the mask value (which is 200000H).

To map the address range from 400000H 7FFFFFH (4 MBytes to 8 MBytes), a base value of
000

¡
400H is entered in the PhysBase field and a mask value of FFFC00H is entered in the Phys-

Mas
�

k field.

Here is a real-life example of setting up the MTRRs for an entire system. Assume that the system
has the f

Ù
ollowing characteristics:

• 96
¹

 MBytes of system memory is mapped as write-back memory (WB) for highest system
perx formance.

• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64
MB

�
ytes. This restriction forces the 96 MBytes of system memory to be addressed from 0

t
~
o 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 4-MByte hole for the I/O
cardz .

• An 8-MB
�

yte graphics card is mapped to write-combining memory (WC) beginning at
addn ress A0000000H.

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

9-26

MEMORY CACHE CONTROL

The following settings for the MTRRs will yield the proper mapping of the physical address
space fo� r this system configuration. The x0_0x notation is used below to add clarity to the large
nu� mbers represented.

MTRRPhysBase0 = 0000_0000_0000_0006h
MTRRPhysMask0 = 0000_000F_FC00_0800h Caches 0-64 MB as WB cache type.
MTRRPhysBase1 = 0000_0000_0400_0006h
MTRRPhysMask1 = 0000_000F_FE00_0800h Caches 64-96 MB as WB cache type.
MTRRPhysBase2 = 0000_0000_0600_0006h
MTRRPhysMask2 = 0000_000F_FFC0_0800h Caches 96-100 MB as WB cache type.
MTRRPhysBase3 = 0000_0000_0400_0000h
MTRRPhysMask3 = 0000_000F_FFC0_0800h Caches 64-68 MB as UC cache type.
MTRRPhysBase4 = 0000_0000_00F0_0000h
MTRRPhysMask4 = 0000_000F_FFF0_0800h Caches 15-16 MB as UC cache type
MTRRPhysBase5 = 0000_0000_A000_0001h
MTRRPhysMask5 = 0000_000F_FF80_0800h Cache A0000000h-A0800000 as WC type.

Th
l

is MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are
mapped to WB and UC memory types) to minimize the number of MTRR registers that are
requ� ired to configure the memory environment. This setup also fulfil ls the requirement that two
reg� ister pairs are left for operating system usage.

9.12.4. Range Size and Ali gnment Requirement

The range that is to be mapped to a variable-range MTRR must meet the following “power of
2” size an
�

d alignment rules:

1. The minimum range size is 4 KBytes, and the base address of this range must be on at least
a 4n -KByte boundary.

2.
�

For ranges greater than 4 KBytes, each range must be of length 2nÚ ann d its base address
must be aligned on a 2nÚ bou

r
ndary, where n is a value equal to or greater than 12. The base-

adn dress alignment value cannot be less than its length. For example, an 8-KByte range
canz not be aligned on a 4-KByte boundary. It must be aligned on at least an 8-KByte
b

r
oundary.

9.
Ì

12.4.1. MTRR PRECEDENCES

If the MTR
�

Rs are not enabled (by setting the E flag in the MTRRdefType register), then all
memo� ry accesses are of the UC memory type. If the MTRRs are enabled, then the memory type
used fp or a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs
arn e enabled, the processor uses the memory type stored for the appropriate fixed-range
MTRR.

9-27

MEMORY CACHE CONTROL

2. Otherwise, the processor attempts to match the physical address with a memory type range
set wi� th a pair of variable-range MTRRs:

a.n If one variable memory range matches, the processor uses the memory type stored in
th
~

e MTRRphysBasenÓ register for that range.

b.
r

If two or more variable memory ranges match and the memory types are identical,
then
~

 that memory type is used.

c.z If two or more variable memory ranges match and one of the memory types is UC, the
UC
²

 memory type used.

d.
�

If two or more variable memory ranges match and the memory types are WT and WB,
the
~

WT memory type is used.

e.� If two or more variable memory ranges match and the memory types are other than UC
ann d WB, the behaviour of the processor is undefined.

3.
�

If no fixed or variable memory range matches, the processor uses the default memory type.

9.12.5. MTRR Ini tialization

On a hard
�

ware reset, a P6 family processor clears the valid flags in the variable-range MTRRs
and n clears the E flag in the MTRRdefType register to disable all MTRRs. Al l other bits in the
MTR

�
Rs are undefined. Prior to initiali zing the MTRRs, software (normally the system BIOS)

must initi� alize all fixed-range and variable-range MTRR registers fields to 0. Software can then
initialize the MTRRs according to the types of memory known to it, including memory on
d

�
evices that it auto-configures. This initiali zation is expected to occur prior to booting the oper-

atin ng system.

S
�

ee Secti
�

on 9.12.8., “Multiple-Processor Considerations”, for information on initializing
MTR

�
Rs in multiple-processor systems.

9.12.6. Remapping Memory T ypes

A system designer may re-map memory types to tune performance or because a future processor
may � not implement all memory types supported by the P6 family processors. The following
rules� support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker
memo� ry ordering model. For example, the uncacheable type cannot be mapped into any
othm er type, and the write-back, write-through, and write-protected types cannot be mapped
into the weakly ordered write-combining type.

2.
�

A memory type that does not delay writes should not be mapped into a memory type that
do

�
es delay writes, because applications of such a memory type may rely on its write-

th
~

rough behavior. Accordingly, the write-back type cannot be mapped into the write-
t

~
hrough type.

9-28

MEMORY CACHE CONTROL

3.
�

A memory type that views write data as not necessarily stored and read back by a
sub� sequent read, such as the write-protected type, can only be mapped to another type with
t

~
he same behaviour (and there are no others for the P6 family processors) or to the
up ncacheable type.

In
�

 many specific cases, a system designer can have additional information about how a memory
ty
~

pe is used, allowing additional mappings. For example, write-through memory with no asso-
ciated write side efz fects can be mapped into write-back memory.

9.12.7. MTRR Maint enanc e Programmi ng Int erface

The o
l

perating system maintains the MTRRs after booting and sets up or changes the memory
typ
~

es for memory-mapped devices. The operating system should provide a driver and applica-
tion pro
~

gramming interface (API) to access and set the MTRRs. The function calls
MemT
�

ypeGet() and MemTypeSet() define this interface.

9.
Ì

12.7.1. MEMTYPEGET() FUNCTION

The MemTypeGet() function returns the memory type of the physical memory range specified
by
r

 the parameters base and size. The base address is the starting physical address and the size is
th
~

e number of bytes for the memory range. The function automatically aligns the base address
andn size to 4-KByte boundaries. Pseudocode for the MemTypeGet() function is given in
Exam
�

ple 9-2.

Example 9-2. MemTypeGet() Pseudo code

#define MIXED_TYPES -1 /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 64-GByte address space

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ←Û Get4KMemType (BASE);
/* O

�
btains memory type for first 4-KByte range */

/*
�

 See Get4KMemType (4KByteRange) in Example 9-3 */
FOR each additional 4-KByte range specified in SIZE

NextType ←Û Get4KMemType (4KByteRange);
IF NextType ≠Ü FirstType

THEN return MixedTypes;
FI;

ROF;
return FirstType;

9-29

MEMORY CACHE CONTROL

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs
are n not enabled, then the UC memory type is returned. If more than one memory type corre-
s� ponds to the specified range, a status of MIXED_TYPES is returned. Otherwise, the memory
type d

~
efined for the range (UC, WC, WT, WB, or WP) is returned.

The
l

pseudocode for the Get4KMemType() function in Example 9-3 obtains the memory type
for a single 4-KByte range at a given physical address. The sample code determines whether an
PHY_

Æ
ADDRESS falls within a fixed range by comparing the address with the known fixed

r� anges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH (16-KByte regions), and C0000H
to FF

~
FFFH (4-KByte regions). If an address falls within one of these ranges, the appropriate bits

wi� thin one of its MTRRs determine the memory type.

Example 9-3. Get4KMemType() Pseudo code

IF MTRRcap.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range

return MTRRfixed.Type;
FI;
FOR each variable-range MTRR in MTRRcap.VCNT

IF MTRRphysMask.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND MTRRphysMask.Mask) = (MTRRphysBase.Base

AND MTRRphysMask.Mask)
THEN

return MTRRphysBase.Type;
FI;

ROF;
return MTRRdefType.Type;

9
Ì

.12.7.2. MEMTYPESET() FUNCTION

The MemTypeSet() function in Example 9-4 sets a MTRR for the physical memory range spec-
ified b

y
y the parameters base and size to the type specified by type. The base address and size are

m� ultiples of 4 KBytes and the size is not 0.

Example 9-4. MemTypeSet Pseudoc ode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID;

FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;

9-30

MEMORY CACHE CONTROL

FI;
IF TYPE is invalid for P6 family processors

THEN return UNSUPPORTED;
FI;
IF TYPE is WC and not supported

THEN return UNSUPPORTED;
FI;
IF MTRRcap.FIX is set AND range can be mapped using a fixed-range MTRR

THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)
IF MTRRcap.VCNT = 0

THEN return UNSUPPORTED;
FI;
IF conflicts with current variable ranges

THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available

THEN return VAR_NOT_AVAILABLE;
FI;
IF BASE and SIZE do not meet the power of 2 requirements for variable MTRRs

THEN return INVALID_VAR_REQUEST;
FI;
pre_mtrr_change();
Update affected MTRRs;
post_mtrr_change();

FI;

pre_mtrr_change()
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()

BEGIN
flush caches and TLBs;
enable MTRRs;

9-31

MEMORY CACHE CONTROL

enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects
confz licts with current variable range registers by cycling through them and determining whether
the ph

~
ysical address in question matches any of the current ranges. During this scan, the algo-

rithm can detect whether any current variable ranges overlap and can be concatenated into a
s� ingle range.

The pre_
l

mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid
executin� g code with a partially valid MTRR setup. The algorithm disables caching by setting
the C

~
D flag and clearing the NW flag in control register CR0. The caches are invalidated using

the WB
~

INVD instruction. The algorithm disables the page global flag (PGE) in control register
CR

�
4, if necessary, then flushes all TLB entries by updating control register CR3. Finally, it

disables
�

 MTRRs by clearing the E flag in the MTRRdefType register.

After the mem
�

ory type is updated, the post_mtrr_change() function re-enables the MTRRs and
again invn alidates the caches and TLBs. This second invalidation is required because of the
prox cessor’s aggressive prefetch of both instructions and data. The algorithm restores interrupts
ann d re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache inval-
i

y
dations occur.

9.12.8. Mul tiple-Processor Consi derations

In multiple-processor systems, the operating systems must maintain MTRR consistency
between all

r
the processors in the system. The P6 family processors provide no hardware support

to
~

 maintain this consistency. In general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes a multiple-processor system,
it

y
 must load the MTRRs of the boot processor while the E flag in register MTRRdefType is 0.

The op
l

erating system then directs other processors to load their MTRRs with the same memory
map. After all the processors have loaded their MTRRs, the operating system signals them to
enable their MTR� Rs. Barrier synchronization is used to prevent further memory accesses until
alln processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-
down

�
 style algorithm, with shared variables and interprocessor interrupts.

An
�

y change to the value of the MTRRs in a multiple-processor system requires the operating
s� ystem to repeat the loading and enabling process to maintain consistency, using the following
prox cedure:

1. Broadcast to all processors to execute the following code sequence.

2
�
. Disable interrupts.

3.
�

Wait for all processors to reach this point.

9-32

MEMORY CACHE CONTROL

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag
to

~
 0.)

5.
Ý

Flush all caches using the WBINVD instruction.

6.
Þ

Clear the PGE flag in control register CR4 (if set).

7.
ß

Flush all TLBs. (Execute a MOV from control register CR3 to another register and then a
MOV fr

�
om that register back to CR3.)

8.
q

Disable all range registers (by clearing the E flag in register MTRRdefType). If only
vo ariable ranges are being modified, software may clear the valid bits for the affected
r� egister pairs instead.

9
¹
. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only
vo ariable-range registers were modified and their individual valid bits were cleared, then set
the

~
valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for P6 family
px rocessors. Executing the WBINVD instruction is not needed when using P6 family
px rocessors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control
r� egister CR0 to 0.)

13. Set PGE flag in control register CR4, if previously cleared.

14. Wait for all processors to reach this point.

15. Enable interrupts.

9.12.9. Large Page S ize Considerations

The MTRRs provide memory typing for a limited number of regions that have a 4 KByte gran-
ularity p (the same granularity as 4-KByte pages). The memory type for a given page is cached in
the pr
~

ocessor’s TLBs. When using large pages (2 or 4 MBytes), a single page-table entry covers
mu� ltiple 4-KByte granules, each with a single memory type. Because the memory type for a
lar
¢

ge page is cached in the TLB, the processor can behave in an undefined manner if a large page
is mapped to a region of memory that MTRRs have mapped with multiple memory types.

Und
²

efined behavior can be avoided by insuring that all MTRR memory-type ranges within a
lar
¢

ge page are of the same type. If a large page maps to a region of memory containing different
MTRR-defined memory types, the PCD and PWT flags in the page-table entry should be set for
the
~

most conservative memory type for that range. For example, a large page used for memory
map� ped I/O and regular memory is mapped as UC memory. Alternatively, the operating system
canz map the region using multiple 4-KByte pages each with its own memory type. The require-
men� t that all 4-KByte ranges in a large page are of the same memory type implies that large
pagx es with different memory types may suffer a performance penalty, since they must be marked
with� the lowest common denominator memory type.

9-33

MEMORY CACHE CONTROL

The P6 family processors provide special support for the physical memory range from 0 to 4
MB

�
ytes, which is potentially mapped by both the fixed and variable MTRRs. This support is

invo
y

ked when a P6 family processor detects a large page overlapping the first 1 MByte of this
memory range with a memory type that conflicts with the fixed MTRRs. Here, the processor
m� aps the memory range as multiple 4-KByte pages within the TLB. This operation insures
corrz ect behavior at the cost of performance. To avoid this performance penalty, operating-
sy� stem software should reserve the large page option for regions of memory at addresses greater
th

~
an or equal to 4 MBytes.

9.13. PAGE ATTRIBUTE TABLE (PAT)

The Page Attribute Table (PAT) is an extension to Intel’s 32-bit processor virtual memory archi-
tect

~
ure for certain P6 family processors. Specifically, the PAT is an extension of the page-table

for
�

mat, which allows the specification of memory types to regions of physical memory based
on m linear address mappings. The PAT provides the equivalent functionality of an unlimited
num� ber of Memory Type Range Registers (MTRRs).

Us
²

ing the PAT in conjunction with the MTRRs of the P6 family of processors extends the
memory type information present in the current Intel Architecture page-table format. It
coz mbines the extendable and programmable qualities of the MTRRs with the flexibility of the
page tx ables, allowing operating systems or applications to select the best memory type for their
needs. The ability to apply the best memory type in a flexible way enables higher levels of
perfx ormance.

NO
Ø

TE

In multiple processor systems, the operating system(s) must maintain MTRR
coz nsistency between all the processors in the system. The P6 family
prx ocessors provide no hardware support for maintaining this consistency. In
g� eneral, all processors must have the same MTRR values.

9.13.1. Background

The P6
l

family of processors support the assignment of specific memory types to physical
addrn esses. Memory type support is provided through the use of Memory Type Range Registers
(MTR

�
Rs). Currently there are two interacting mechanisms that work together to set the effective

m� emory type: the MTRRs and the page tables. Refer to the Intel Ar
§

chitecture Software Devel-
operà ’s Manual, Volume 3: System Programming Guide.

The MT
l

RRs define the memory types for physical address ranges. MTRRs have specific align-
ment � and length requirements for the memory regions they describe. Therefore, they are useful
for statically describing memory types for physical ranges, and are typically set up by the system
B

�
IOS. However, they are incapable of describing memory types for the dynamic, linearly

addrn essed data structures of programs. The MTRRs are an expandable and programmable way
to

~
encode memory types, but are inflexible because they can only apply those memory types to

phyx sical address ranges.

9-34

MEMORY CACHE CONTROL

The page tables allow memory types to be assigned dynamically to linearly addressed pages of
memo� ry. This gives the operating system the maximum amount of flexibility in applying
memo� ry types to any data structure. However, the page tables only offer three of the five basic
P6 processor family memory type encodings: Write-back (WB), Write-through (WT) and
Uncach
²

ed (UC). The PAT extends the existing page-table format to enable the specification of
an dditional memory types.

9.13.2. Detect ing Support for the P AT Feature

The page attribute table (PAT) feature is detected by an operating system through the use of the
C
�

PUID instruction. Specifically, the operating system executes the CPUID instruction with the
vo alue 1 in the EAX register, and then determines support for the feature by inspecting bit 16 of
th
~

e EDX register return value. If the PAT is supported, an operating system is permitted to utilize
the mo
~

del specific register (MSR) specified for programming the PAT, as well as make use of
th
~

e PAT-index bit (PATi
á
)
±
, which was formerly a reserved bit in the page tables.

Note that ther
�

e is not a separate flag or control bit in any of the control registers that enables the
use of this p feature. The PAT is always enabled on all processors that support it, and the table
lookup always occurs whenever paging is enabled and for all paging modes (e.g., PSE, PAE).

9.13.3. Technic al Descript ion of the PAT

The
l

Page Attribute Table is a Model Specific Register (MSR) at address 277H (for information
abn out the MSRs, refer to Appendix B, Model-Specific Registers. The model specific register
addn ress for the PAT is defined and will remain at the same address on future Intel processors that
s� upport this feature. Figure 9-7 shows the format of the 64-bit register containing the PAT.

Figure 9-7. Page Attrib ute Table Model Specifi c Register

Each of the eight page attribute fields can contain any of the available memory type encodings,
orm indexes, as specified in Table 9-1.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Rsvd PA3 Rsvd PA 2 Rsvd PA 1 Rsvd PA 0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Rsvd PA7 Rsvd PA6 Rsvd PA5 Rsvd PA4

NOTES:

1. PA0-7 = Specifies the eight page attribute locations contained within the PAT

2. Rsvd = Most significant bits for each Page Attribute are reserved for future expansion

9-35

MEMORY CACHE CONTROL

9.13.4. Accessing t he PAT

Access to the memory types that have been programmed into the PAT register fields is accom-
plx ished with a 3-bit index consisting of the PATi

á
, ¤ PCD, and PWT bits. Table 9-8 shows how the

PAT register fields are indexed. The last column of the table shows which memory type the
prox cessor assigns to each PAT field at processor reset and initi alization. These initial values
px rovide complete backward compatibility with previous Intel processors and existing software
th

~
at use the previously existing page-table memory types and MTRRs.

Table 9-8. PAT Index ing and V alues Aft er Reset

NOTES:

1. PATi bit is defined as bit 7 for 4 KB PTEs, bit 12 for PDEs mapping 2 MB/4 MB pages.

2. UC- is the page encoding PCD, PWT = 10 on P6 family processors that do not support this feature. UC-
in the page table is overridden by WC in the MTRRs.

3. UC is the page encoding PCD, PWT = 11 on P6 family processors that do not support this feature. UC in
the pa

t
ge-table overrides WC in the MTRRs.

I
�
n P6 family processors that do not support the PAT, the PCD and PWT bits are used to deter-

mine the page-table memory types of a given physical page. The PAT feature redefines these two
bi

r
ts and combines them with a newly defined PAT-index bit (PATi

á
)
±

in the page-directory and
page-x table entries. These three bits create an index into the 8-entry Page Attribute Table. The
memory type from the PAT is used in place of PCD and PWT for computing the effective
memo� ry type.

The
l

bit used for PATi
á
 differs depending upon the level of the paging hierarchy. PATi

á
 is bit 7 for

page-x table entries, and bit 12 for page-directory entries that map to large pages. Reserved bit
faults are d

�
isabled for nonzero values for PATi

á
, ¤ but remain present for all other reserved bits.

This is true
l

for 4 KB/2 MB pages when PAE is enabled. The PAT index scheme for each level
of m the paging hierarchy is shown in Figure 9-8.

PATi1
â

PCD PWT PAT Entry Memory Type at Reset

0 0 0 0 WB

0 0 1 1 WT

0 1 0 2 UC-2
©

0 1 1 3 UC3
ª

1 0 0 4 WB

1 0 1 5 WT

1 1 0 6 UC-2

1 1 1 7 UC3
ª

9-36

MEMORY CACHE CONTROL

NOTE:

This f
»

igure only shows the format of the lower 32 bits of the PDE, PDEPTR, and PTEs when in PAE mode
Refer to Figure 3-21 from Chapter 3, Protected-Mode Memory Management of the Intel Architecture Soft-
ware Developer’s Manual, Volume 3: System Programming Guide. Additionally, the formats shown in this
fi

w
gure are not meant to accurately represent the entire structure, but only the labeled bits.

Figure 9-8 shows that the PAT bit is not defined in CR3, the Page-Directory-Pointer Tables when
P
Æ
AE is enabled, or the Page Directory when it doesn’t describe a large page. In these cases, only

P
Æ

CD and PWT are used to index into the PAT, limiting the operating system to using only the
first 4 entries of PAT for describing the memory attributes of the paging hierarchy. Note that all
8 P
q

AT entries are available for describing a 4 KB/2 MB/4 MB page.

Th
l

e memory type as now defined by PAT interacts with the MTRR memory type to determine
th
~

e effective memory type as outlined in Table 9-9. Compare this to Table 9-5.

F
{

igure 9-8. Page Attrib ute Table Index Sch eme for Pa ging Hierarc hy

PCD PWT

PATi
á

PA
Æ

Ti
á

PW
Æ

T

PWT

PW
Æ

T

PW
Æ

T

PC
Æ

D

PCD

PC
Æ

D

PC
Æ

D

31
�

4 3

31
�

31
�

31
�

31
�

4
ã

4

4
ã

4

3
�

3
�

3
�

3
�

13 12

8 7
q

Page-Directory Base Register (CR3)

P
Æ

age-Directory Pointer Table Entry

4 K
ã

B Page-Directory Entry

P
Æ

CD and PWT provide 2 bit
ind
y

ex into the PAT, allowing use
of firm st 4 entries

2 MB
�

/4 MB Page-Directory Entry

4
ã

KB Page-Table Entry

PATi
á
, P¤ CD, and PWT provide 3 bit

in
y

dex into the PAT, allowing use of
all 8n entries

9-37

MEMORY CACHE CONTROL

Table 9-9. Effectiv e Memory Type Depend ing o n MTRRs and PAT

NOTES:

• This table assumes that the CD and NW flags in register CR0 are set to 0. If CR0.CD = 1, then the effec-
tive mem

t
ory type returned is UC, regardless of what is indicated in the table. However, this does not force

strict ordering. To ensure strict ordering, the MTRRs also must be disabled.

• The effective memory types in the gray areas are implementation dependent and may be different
between implementations of Intel Architecture processors.

• UC_MTRR indicates that the UC attribute came from the MTRRs and the processor(s) are not required to
snoop their caches since the data could never have been cached. This is preferred for performance rea-
sons.

• UC_PAGE indicates that the UC attribute came from the page tables and processors are required to
check their caches because the data may be cached due to page aliasing, which is not recommended.

• UC
ä

- is the page encoding PCD, PWT = 10 on P6 family processors that do not support this feature. UC- in the
PT

å
E/PDE is overridden by WC in the MTRRs.

• UC
ä

 is the page encoding PCD, PWT = 11 on P6 family processors that do not support this feature. UC in the
PT

å
E/PDE overrides WC in the MTRRs.

W
�

henever the MTRRs are disabled, via bit 11 (E) in the MTRRDefType register, the effective
memory type is UC for all memory ranges.

An op
�

erating system can program the PAT and select the 8 most useful attribute combinations.
The P

l
AT allows an operating system to offer performance-enhancing memory types to applica-

ti
~

ons.

PAT Memory T ype MTRR Memory T ype Effective M emory T ype

UC- WB, WT UC_PAGE

WC WC

UC UC_MTRR

WP Undefined

UC WB, WT, WP, WC UC_PAGE

UC UC_MTRR

WC
�

X WC

WT WB, WT WT

UC UC_MTRR

WC Undefined

WP Undefined

WP
�

WB, WP WP

UC UC_MTRR

WC, WT Undefined

WB
�

WB WB

UC UC_MTRR

WC WC

WT
�

WT

WP
�

WP

9-38

MEMORY CACHE CONTROL

The page attribute for addresses containing a page directory or page table supports only the first
fou
�

r entries in the PAT, since a PAT-index bit is not defined for these mappings. The page
attribn ute is determined by using the two-bit value specified by PCD and PWT in CR3 (for page
directo
�

ry) or the page-directory entry (for page tables). The same applies to Page-Directory-
Pointer T
Æ

ables when PAE is enabled.

9.13.5. Progra mming t he PAT

The Page Attribute Table is read/write accessible to software operating at ring 0 through the use
ofm the rdmsr andn wrmsr instructions. Accesses are directed to the PAT through use of model
specific register add� ress 277H. Refer to Figure 9-7 for the format of the 64-bit register
conz taining the PAT.

Th
l

e PAT implementation on processors that support the feature defines only the 3 least signifi-
cant bz its for page attributes. These bits are used to specify the memory type with the same
enco� ding as used for the P6 family MTRRs as shown in Table 9-6. Processors that support the
P
Æ
AT feature modify those encodings slightly, in that encoding 0 is UC and encoding 7 is UC-,

asn indicated in the Table 9-10. Encoding 7 remains undefined for the fixed and variable MTRRs,
andn any attempt to write an undefined memory type encoding continues to generate a GP fault.
Attem
�

pting to write an undefined memory type encoding into the PAT generates a GP fault.

Table 9-10. PAT Memory Types and Their Prope rties

The operating system is responsible for ensuring that changes to a PAT entry occur in a manner
that main
~

tains the consistency of the processor caches and translation lookaside buffers (TLB).
This is accomplished by following the procedure as specified in the Intel Architecture Software

Mnemon ic Encodi ng Cacheabl e
Writeback
Cacheabl e

Allows
Specul ative

Reads
Memory Order ing

Model

Uncacheable
(UC)

0 No No No Strong
Ordering

W
�

rite Combining
(WC)

1 No No Yes Weak
Ordering

W
�

rite-through
(WT)

4 Yes No Yes Speculative
Processor
Ordering

Write-protect
(WP)

5 Yes for
reads, no for
writes

No Yes Speculative
Processor
Ordering

W
�

rite-back (WB) 6 Yes Yes Yes Speculative
Processor
Ordering

Uncached (UC-) 7 No No No Strong Ordered,
but can be
overridden by WC
in the MTRRs

Reserved 2, 3, 87-255

9-39

MEMORY CACHE CONTROL

Developer’s Manual, Volume 3: System Programming Guide, ¤ for changing the value of an
MTR

�
R. It involves a specific sequence of operations that includes flushing the processor(s)

cachz es and TLBs. An operating system must ensure that the PAT of all processors in a multipro-
cesz sing system have the same values.

The P
l

AT allows any memory type to be specified in the page tables, and therefore it is possible
t

~
o have a single physical page mapped by two different linear addresses with differing memory
ty

~
pes. This practice is strongly discouraged by Intel and should be avoided as it may lead to

undp efined results. In particular, a WC page must never be aliased to a cacheable page because
W

�
C writes may not check the processor caches. When remapping a page that was previously

mapped as a cacheable memory type to a WC page, an operating system can avoid this type of
aln iasing by:

• R
�

emoving the previous mapping to a cacheable memory type in the page tables; that is,
make them not present.

• Flushing the TLBs of processors that may have used the mapping, even speculatively.

• C
�

reating a new mapping to the same physical address with a new memory type, for
instance, WC.

• Flushing the caches on all processors that may have used the mapping previously.

Operating
�

 systems that use a Page Directory as a Page Table and enable Page Size Extensions
must carefully scrutinize the use of the PATi

á
 index bit for the 4 KB Page-Table Entries. The PATi

á

index
y

 bit for a PTE (bit 7) corresponds to the page size bit in a PDE. Therefore, the operating
s� ystem can only utilize PAT entries PA0-3 when setting the caching type for a page table that is
alsn o used as a page directory. If the operating system attempts to use PAT entries PA4-7 when
using this memorp y as a page table, it effectively sets the PS bit for the access to this memory as
a pagn e directory.

9-40

MEMORY CACHE CONTROL

10
MMX™ T echnology
System Programming

10-1

M
æ

MX™ TECHNOLOGY SYSTEM PROGRAMMING

CHAPTER 10
MMX™ TECHNOLOGY SYSTEM PROGRAMMING

This ch
l

apter describes those features of the MMX™
�

 technology that must be considered when
des
�

igning or enhancing an operating system to support MMX™ technology. It covers MMX™
i
y
nstruction set emulation, the MMX™ state, aliasing of MMX™ registers, saving MMX™ state,

t
~
ask and context switching considerations, exception handling, and debugging.

10.1. EMULATION OF THE MMX™ INSTRUCTION SET

The Intel Architecture does not support emulation of the MMX™ technology, as it does for
flo
�

ating-point instructions. The EM flag in control register CR0 (provided to invoke emulation
ofm floating-point instructions) cannot be used for MMX™ technology emulation. If an MMX™
i
y
nstruction is executed when the EM flag is set, an invalid opcode (UD#) exception is generated.

10.2. THE MMX™ STATE AND MMX™ REGISTER ALIASING

The MMX ™ state consists of eight 64-bit registers (MM0 through MM7). These registers are
aliasn ed to the 64-bit mantissas (bits 0 through 63) of floating-point registers R0 through R7 (see
Fi
�

gure 10-2). Note that the MMX™ registers are mapped to the physical locations of the
floating-point registers (R0 through R7), not to the relative locations of the registers in the
fl
�

oating-point register stack (ST0 through ST7). As a result, the MMX™ register mapping is
fixed
�

 and is not affected by value in the Top Of Stack (TOS) field in the floating-point status
word� (bits 11 through 13).

W
�

hen a value is written into an MMX™ register using an MMX™ instruction, the value also
apn pears in the corresponding floating-point register in bits 0 through 63. Likewise, when a
floating-point value written into a floating-point register by a floating-point instruction, the
man� tissa of that value also appears in a the corresponding MMX™ register.

The
l

execution of MMX™ instructions have several side effects on the FPU state contained in
the
~

floating-point registers, the FPU tag word, and the FPU the status word. These side effects
are as fon llows:

• W
�

hen an MMX ™ instruction writes a value into an MMX™ register, at the same time, bits
6

Þ
4 through 79 of the corresponding floating-point register (the exponent field and the sign

bi
r

t) are set to all 1s.

• W
�

hen an MMX™
�

 instruction (other than the EMMS instruction) is executed, each of the
tag

~
 fields in the FPU tag word is set to 00B (valid). (See also Section 10.2.1., “Effect of

MMX™
�

 and Floating-Point Instructions on the FPU Tag Word”.)

• W
�

hen the EMMS instruction is executed, each tag field in the FPU tag word is set to 11B
(e

�
mpty).

10-2

MMX™ TECHNOLOGY SYSTEM PROGRAMMING

• Each time an MMX™ instruction is executed, the TOS value is set to 000B.

Execution of MMX™ instructions does not affect the other bits in the FPU status word (bits 0
t

~
hrough 10 and bits 14 and 15) or the contents of the other FPU registers that comprise the FPU
s� tate (the FPU control word, instruction pointer, data pointer, or opcode registers).

Table 10-1 summarizes the effects of the MMX™ instructions on the FPU state.

Figu re 10-1. Mappin g of M MX™ Registers to Floati ng-Poi nt Registers

079

R7

R6

R5

R4

R3

R2

R1

R0

Floating-Point Registers
64 63

FPU Status Register
1113

FPU Tag

MMXTM
ç

 Registers
TOS

Register

0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

63

TOS = 0

00

00

00

00

00

00

00

00

000

Mantissa

10-3

M
æ

MX™ TECHNOLOGY SYSTEM PROGRAMMING

NOTE:

MMn refers to one MMX™ register; Rn refers to corresponding floating-point register.

10.2.1. Effect of MMX™ and Floating-Point Inst ructions on the
FPU Tag Word

Table 10-2 summarizes the effect of MMX™ and floating-point instructions on the tags in the
FP

�
U tag word and the corresponding tags in an image of the tag word stored in memory.

Table 10-1. Effects of MMX™ Instruc tion s on FPU State

MMX™
Inst ruction

T
è

ype FPU Tag Word

TOS Field of
FPU Status

Word
Other FPU
Registers

Expo nent Bit s
and Sign Bit of

Rn Mant issa of Rn

Read from
MMn register

All tags set to
00B (Valid)

000B Unchanged Unchanged Unchanged

W
�

rite to MMn
register

All tags set to
00B (Valid)

000B Unchanged Set to all 1s Overwritten with
MMX™ data

EMMS All fields set to
11B (Empty)

000B Unchanged Unchanged Unchanged

Table 10-2. Effec t of th e MMX™ and Floating -Point Instru ction s on the
FPU T
{

ag Word

Inst ruct ion
T

è
ype Instruction FPU Tag Wor d

Image of FPU Tag Word
Stored in Memory

MMX™
Instruction

A
�

ll (except
EMMS)

A
�

ll tags are set to 00B (valid). Not affected.

MMX™
Instruction

EMMS All tags are set to 11B (empty). Not affected.

Floating-Point
Instruction

A
�

ll (except
FXSAVE/FSAVE,
FSTENV,
FXRSTOR/FRST
OR, FLDENV)

T
»

ag for modified floating-point
register is set to 00B or 11B.

Not affected.

Floating-Point
Instruction

FXSAVE/FSAVE,
FSTENV

T
»

ags and register values are read
and interpreted; then all tags are set
to 1

t
1B.

T
»

ags are set according to the
actual values in the floating-
point registers; that is, empty
registers are marked 11B
and valid registers are
marked 00B (nonzero), 01B
(zero), or 10B (special).

Floating-Point
Instruction

FXRSTOR/FRST
OR, FLDENV

A
�

ll tags marked 11B in memory are
set to 11B;
all other tags are set according to the
value in the corresponding floating-
point register: 00B (nonzero), 01B
(zero), or 10B (special).

T
»

ags are read and
interpreted, but not modified.

10-4

MMX™ TECHNOLOGY SYSTEM PROGRAMMING

The values in the fields of the FPU tag word do not affect the contents of the MMX™ registers
orm the execution of MMX™ instructions. However, the MMX™ instructions do modify the
conz tents of the FPU tag word, as is described in Section 10.2., “The MMX™ State and MMX™
Register Aliasing”. These modifications may affect the operation of the FPU when executing
flo
�

ating-point instructions, if the FPU state is not initialized or restored prior to beginning
flo
�

ating-point instruction execution.

No
�

te that the FXSAVE/FSAVE and FSTENV instructions (which save FPU state information)
read� the FPU tag register and contents of each of the floating-point registers, determine the
actual tag vn alues for each register (empty, nonzero, zero, or special), and store the updated tag
wo� rd in memory. After executing these instructions, all the tags in the FPU tag word are set to
emp� ty (11B). Likewise, the EMMS instruction clears MMX™ state from the MMX™/floating-
px oint registers by setting all the tags in the FPU tag word to 11B.

10.3. SAVING AND RESTORING THE MMX™ STATE AND
REGISTERS

The
l

recommended method of saving and restoring the MMX™
�

 technology state is as follows:

• Execute an FXSAVE/FSAVE/FNSAVE instruction to write the entire state of the
MMX™

�
/FPU, the SIMD floating-point registers and the SIMD floating-point MXCSR to

mem� ory.

• Execute an FXRSTOR/FRSTOR instruction to read the entire saved state of the
MMX™/FPU,

�
the SIMD floating-point registers and the SIMD floating-point MXCSR

f
�
rom memory into the FPU registers, the aliased MMX ™ registers, the SIMD floating-

px oint registers and the SIMD floating-point MXCSR.

Th
l

is save and restore method is required for operating systems (refer to Section 10.4.,
“Designing Operating System Task and Context Switching Facilities”).

Applications can in some cases save and restore only the MMX™ registers, in the following
way:�

• Ex
�

ecute eight MOVQ instructions to write the contents of the MMX™ registers MM0
thr

~
ough MM7 to memory. An EMMS instruction may then (optionally) be executed to

clear z the MMX™ state in the FPU.

• Ex
�

ecute eight MOVQ instructions to read the saved contents of the MMX ™ registers from
memory into the MM0 through MM7 registers.

NOTE

I
�
ntel does not support scanning the FPU tag word and then only saving valid

en� tries.

10-5

M
æ

MX™ TECHNOLOGY SYSTEM PROGRAMMING

10.4. DESIGNING OPERATING SYSTEM TASK AND CONTEXT
SWITCHING FACILITIES

W
�

hen switching from one task or context to another, it is often necessary to save the MMX
�

™
state (� just as it is often necessary to save the state of the FPU). As a general rule, if the existing
tas

~
k switching code for an operating system includes facilities for saving the state of the FPU,

th
~

ese facilities can also be relied upon to save the MMX™ state, without rewriting the task
s� witch code. This reliance is possible because the MMX™ state is aliased to the FPU state (refer
to

~
Section 10.2., “The MMX™ State and MMX ™ Register Aliasing”).

W
�

hen designing new MMX™ (and/or FPU) state saving facilities for an operating system,
s� everal approaches are available:

• The operating system can require that applications (which will be run as tasks) take
respo� nsibility for saving the state of the MMX™/FPU prior to a task suspension during a
task swit

~
ch and for restoring the MMX™/FPU state when the task is resumed. The

appn lication can use either of the state saving and restoring techniques given in Section
10.3., “Saving and Restoring the MMX™ State and Registers”. This approach to saving
MMX™ /FPU state is appropriate for cooperative multitasking operating systems, where
th

~
e application has control over (or is able to determine) when a task switch is about to

occum r and can save state prior to the task switch.

• The operating system can take the responsibility for automatically saving the
MMX™

�
/FPU state as part of the task switch process (using an FXSAVE/FSAVE

instruction
y

) and automatically restoring the MMX™/FPU state when a suspended task is
resumed (using an FXRSTOR/FRSTOR instruction). Here, the MMX™/FPU state must be
saved � as part of the task state. This approach is appropriate for preemptive multi tasking
opm erating systems, where the application cannot know when it is going to be preempted
andn cannot prepare in advance for task switching. The operating system is responsible for
saving� and restoring the task and MMX™/FPU state when necessary.

• The o
l

perating system can take the responsibilit y for saving the MMX™
�

/FPU state as part
om f the task switch process, but delay the saving of the MMX™/FPU state until an MMX ™
orm floating-point instruction is actually executed by the new task. Using this approach, the
MMX™/

�
FPU state is saved only if an MMX™ or floating-point instruction needs to be

execu� ted in the new task. (Refer to Section 10.4.1., “Using the TS Flag in Control Register
C

�
R0 to Control MMX™/FPU State Saving” , for more information on this MMX™/FPU

stat� e saving technique.)

10.4.1. Using the TS Flag in Control Regis ter CR0 to Control
MMX™/FPU State Saving

Sav
�

ing the MMX™
�

/FPU state using the FXSAVE/FSAVE instruction is a relatively high-over-
head operation. If a task being switched to will not access the FPU (by executing an MMX™ or
a fn loating-point instruction), this overhead can be avoided by not automatically saving the
MMX™

�
/FPU state on a task switch.

10-6

MMX™ TECHNOLOGY SYSTEM PROGRAMMING

The TS flag in control register CR0 is provided to allow the operating system to delay saving
th
~

e MMX™
�

/FPU state until the FPU is actually accessed in the new task. When this flag is set,
th
~

e processor monitors the instruction stream for MMX™ or floating-point instructions. When
the pro
~

cessor detects an MMX ™ or floating-point instruction, it raises a device-not-available
excep� tion (#NM) prior to executing the instruction. The device-not-available exception handler
can thz en be used to save the MMX™ /FPU state for the previous task (using an FXSAVE/FSAVE
instruction) and load the MMX™/FPU state for the current task (using an FXRSTOR/FRSTOR
in
y

struction). If the task never encounters an MMX™ or floating-point instruction, the device-
n� ot-available exception will not be raised and the MMX™/FPU state will not be saved unnec-
ess� arily.

Th
l

e TS flag can be set either explicitly (by executing a MOV instruction to control register CR0)
om r implicitly (using the processors native task switching mechanism). When the native task
sw� itching mechanism is used, the processor automatically sets the TS flag on a task switch.
After the d
�

evice-not-available handler has saved the MMX™/FPU state, it should execute the
C
�

LTS instruction to clear the TS flag in CR0.

Figure 10-2 gives an example of an operating system that implements MMX™/FPU state saving
up sing the TS flag. In this example, task A is the currently running task and task B is the task
bei
r

ng switched to.

The o
l

perating system maintains an MMX™/FPU save area for each task and defines a variable
(MMX™
�

/FPUStateOwner) that indicates which task “owns” the MMX™/FPU state. In this
exam� ple, task A is the current MMX™/FPU state owner.

On a task swi
�

tch, the operating system task switching code must execute the following pseudo-
codz e to set the TS flag according to who is the current MMX™/FPU state owner. If the new task

Figure 10-2. Example of MMX™/FPU State Savin g Durin g an Operati ng
Sys
é

tem-Controll ed Task Switc h

Task A T
»

ask B

Appl icat ion

Operat ing Sy stem

Task A
MMX™/FPU

State Save Area

Ta
»

sk B
MMX™/FPU

State Save Area

Operating System
T

»
ask Switching Code

Device-Not-Available
Exception Handler

MMX™/FPU
State Owner

CR0.TS=1 and
Floating-point or
MMX™ Instruction
is encountered.

Saves Task A
MMX™/FPU State

Loads Task B
MMX™/FPU State

10-7

M
æ

MX™ TECHNOLOGY SYSTEM PROGRAMMING

(tas
�

k B in this example) is not the current MMX™ /FPU state owner, the TS flag is set to 1; other-
wi� se, it is set to 0.

IF Task_Being_Switched_To ≠ê MMX/FPUStateOwner
 THEN
 CR0.TS ←ë 1;
 ELSE
 CR0.TS ←ë 0;
FI;

If a new task attempts to use an MMX™ or floating-point instruction while the TS flag is set to
1, a device-not-available exception (#NM) is generated and the device-not-available exception
handler executes the following pseudo-code.

CR0.TS ←ë 0;
FSAVE “To MMX/FPU State Save Area for Current MMX/FPU State Owner”;
FRSTOR “MMX/FPU State From Current Task’s MMX/FPU State Save Area”;
MMX/FPUStateOwner ←ë Current_Task;

This handler code performs the following tasks:

• C
�

lears the TS flag.

• Saves t
�

he MMX™/FPU state in the state save area for the current MMX™ /FPU state
ownm er.

• R
�

estores the MMX™
�

/FPU state from the new task’s MMX™ /FPU state save area.

• Upd
²

ates the current MMX™ /FPU state owner to be the current task.

10.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
MMX™ INSTRUCTIONS

MMX™ i nstructions do not generate floating-point exceptions, nor do they affect the
prox cessor’s status flags in the EFLAGS register or the FPU status word. The following excep-
ti

~
ons can be generated during the execution of an MMX™ instruction:

• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.

• System excep
�

tions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an MMX ™
in
y

struction is executed. (Refer to Section 10.1., “Emulation of the MMX™ Instruction
Set”)
�

.

10-8

MMX™ TECHNOLOGY SYSTEM PROGRAMMING

— Device not available (#NM), if an MMX™ instruction is executed when the TS flag in
controz l register CR0 is set. (See Refer to Section 10.4.1., “Using the TS Flag in
Con
�

trol Register CR0 to Control MMX ™/FPU State Saving” .)

• Floating-point error (#MF). (See Refer to Secti
�

on 10.5.1., “Effect of MMX™ Instructions
onm Pending Floating-Point Exceptions”.)

• Other
�

 exceptions can occur indirectly due to the faulty execution of the exception handlers
for the above exceptions. For example, if a stack-segment fault (#SS) occurs due to
MMX™

�
 instructions, the interrupt gate for the stack-segment fault can direct the processor

to
~

 invalid TSS, causing an invalid TSS exception (#TS) to be generated.

10.5.1. Effect of MMX™ Instructions on Pendi ng Floating-Point
Excep tions

If a floating
�

-point exception is pending and the processor encounters an MMX™
�

instruction, the
prx ocessor generates a floating-point error (#MF) prior to executing the MMX™ instruction, to
allon w the exception to be handled by the floating-point error exception handler. While the
h
Ù
andler is executing, the FPU state is maintained and is visible to the handler. Upon returning

from the exception handler, the MMX™ instruction is executed, which will alter the FPU state,
asn described in Section 10.2., “The MMX™ State and MMX ™ Register Aliasing”.

10.6. DEBUGGING

The debug facilities of the Intel Architecture operate in the same manner when executing
MMX™
�

 instructions as when executing other Intel Architecture instructions. These facilities
enab� le debuggers to debug MMX™ technology code.

To correctly interpret the contents of the MMX™ or FPU registers from the FXSAVE/FSAVE
im
y

age in memory, a debugger needs to take account of the relationship between the floating-
pox int register’s logical locations relative to TOS and the MMX™ register’s physical locations.

In the floating-point context, STnÓ refers to a floating-point register at location nÓ relative to the
T
l

OS. However, the tags in the FPU tag word are associated with the physical locations of the
fl
�

oating-point registers (R0 through R7). The MMX™ registers always refer to the physical
locations of the registers (with MM0 through MM7 being mapped to R0 through R7).

In
�

 Figure 10-2, the inner circle refers to the physical location of the floating-point and MMX™
regi� sters. The outer circle refers to the floating-point registers’s relative location to the current
TOS.

10-9

M
æ

MX™ TECHNOLOGY SYSTEM PROGRAMMING

W
�

hen the TOS equals 0 (case A in Figure 10-2), ST0 points to the physical location R0 on the
floating

�
-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.

W
�

hen the TOS equals 2 (case B in Figure 10-2), ST0 points to the physical location R2. MM0
maps� to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 10-3. Mappi ng of MMX™ Registe rs to Floating-Po int (F P) Registers

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST1

ST2

ST7

ST0 ST6

ST7

ST1

TOS
»TOS

FP “push” FP “pop” FP “push

FP “pop”

Case A: TOS=0 Case B: TOS=2

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST0

Outer circle = FP register’s logical location relative to TOS
Inner circle = FPU tags = MMX™ register’s location = FP registers’s physical location

(R0)

(R2)(R2)

(R0)

10-10

MMX™ TECHNOLOGY SYSTEM PROGRAMMING

11
Streaming SIMD
Extensions System
Programming

11-1

CHAPTER 11
STREAMING SIMD EXTENSIONS SYSTEM

PROGRAMMING

This chapter describes those features of the Streaming SIMD Extensions that must be considered
when des� igning or enhancing an operating system to support the Pentium®

£
 III processor. It

coz vers extensions emulation, the new SIMD floating-point architectural state, similarities to
MMX™ technology, task and context switching considerations, exception handling, and debug-
gi� ng.

11.1. EMULATION OF THE STREAMING SIMD EXTENSIONS

The Intel Architecture does not support emulation of the Streaming SIMD Extensions, as it does
for

�
 floating-point instructions. The EM flag in control register CR0 (provided to invoke emula-

t
~
ion of floating-point instructions) cannot be used for Streaming SIMD Extensions emulation.
If a Streaming SIMD Extensions instruction is executed when the EM flag is set (CR0.EM), an
invalid

y
opcode (UD#/INT6) exception is generated instead of a device not available exception

(NM#/INT7
�

).

11.2. MMX™ STATE AND STREA MING SIMD EXTENSIONS

The SIMD-integer instructions of the Streaming SIMD Extensions use the same registers as the
MMX™

�
 technology instructions. In addition they have been implemented so the same rules for

MMX™ technology instructions apply to the Streaming SIMD Extensions. Hence everything
refer� enced in chapter 10 relating to MMX™ technology and system programming is applicable
to the

~
SIMD-integer instructions in the Streaming SIMD Extensions.

11.3. NEW PENTIUM®
ì

 III PROCESSOR REGISTERS

The Pentium®
£
 III Processor introduced a set of 128-bit general-purpose registers. These registers

are directly adn dressable and can be used to hold data only. In addition, the Pentium®
£
 III

Processor also introduced a new control/status register (MXCSR) that is used to flag exceptions
res� ulting from computations involving the SIMD floating-point registers, mask/unmask excep-
t
~
ions, and control the rounding and flush-to-zero modes. These registers are described more
coz mpletely in the following sections.

11-2

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.3.1. SIMD Float ing-point Regi sters

S
�

treaming SIMD Extensions provides eight 128-bit general-purpose registers, each of which
can bz e directly addressed. These registers are new state, and require support from the operating
syst� em to use them.

The S
l

IMD fl oating-point registers can hold packed 128-bit data. The SIMD fl oating-point
instruction
y

s access the SIMD floating-point registers directly using the register names XMM0
to XMM7 (T
~

able 11-1). These registers can be used to perform calculations on data. They cannot
be u
r

sed to address memory; addressing is accomplished by using the integer registers and
exi� sting IA addressing modes.

The contents of SIMD floating-point registers are cleared upon reset.

Ther
l

e is a new control/status register MXCSR which is used to mask/unmask numerical excep-
t
~
ion handling, to set rounding modes, to set the flush-to-zero mode, and to view status flags.

11.3.2. SIMD Float ing-point Control/Stat us Regist ers

The control/status register is used to enable masked/unmasked numerical exception handling, to
s� et rounding modes, to set the flush-to-zero mode, and to view status flags. The contents of this
reg� ister can be loaded with the LDMXCSR and FXRSTOR instructions and stored in memory
with the STMXC� SR and FXSAVE instructions. Figure 11-1 shows the format and encoding of
th
~

e fields in the MXCSR.

T
s
able 11-1. SIMD Floati ng-po int R egis ter Set

128 97 96 64 63 32 31 0

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

11-3

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

Bits 5-0 indicate whether a Streaming SIMD Extensions numerical exception has been detected.
They

l
 are “sticky” f lags, and can be cleared by using the LDMXCSR instruction to write zeroes

to these f
~

ields. If a LDMX CSR instruction clears a mask bit and sets the corresponding excep-
ti

~
on flag bit, an exception will not be generated because of this change. This type of exception

wi� ll occur only upon the next Streaming SIMD Extensions instruction to cause it. Streaming
S

�
IMD Extensions use only one exception flag for each exception. There is no provision for indi-

vo idual exception reporting within a packed data type. In situations where multiple identical
exceptio� ns occur within the same instruction, the associated exception flag is updated and indi-
catesz that at least one of these conditions happened. These flags are cleared upon reset.

Bits 12-7 configure numerical exception masking; an exception type is masked if the corre-
s� ponding bit is set and it is unmasked if the bit is clear. These bits are set upon reset, meaning
that all nu

~
merical exceptions are masked.

Bits 14-13 encode the rounding control, which provides for the common round to nearest mode,
as weln l as directed rounding and true chop (refer to Section 11.3.2.1., “Rounding Control
Fi

�
eld”). The rounding control is set to round to nearest upon reset.

Bit 15 (FZ) is used to turn on the flush-to-zero mode (refer to Section 11.3.2.2., “Flush-to-
Zero”)

í
. This bit is cleared upon reset, disabling the flush-to-zero mode.

The ot
l

her bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared; attempting
to

~
 write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions,

wi� ll result in a general protection exception.

11.3.2.1. ROUNDING CONTROL FIELD

The rou
l

nding control (RC) field of MXCSR (bits 13 and 14) controls how the results of floating-
poix nt instructions are rounded. Four rounding modes are supported: round to nearest, round up,
rou� nd down, and round toward zero (see Table 11-2). Round to nearest is the default rounding
mod� e and is suitable for most applications. It provides the most accurate and statistically unbi-
asn ed estimate of the true result.

Figure 11-1. Stream ing SIM D Exten sion s Control/ Status Registe r Format

31-16 15 10 5 0
F
î

R R P U O ZReserved D I
ï

R P U O Z D I
MZ C C M M M M M s

vð

d
ñ

E E E E E E

11-4

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

The
ò

round up and round down modes are termed d
ó
irected rounding and can be used to imple-

ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the
tru
ô

e result of a multistep computation, when the intermediate results of the computation are
sõ ubject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
pö erforming integer arithmetic with the processor.

W
÷

henever possible, the processor produces an infini tely precise result. However, it is often the
case ø that the infinitely precise result of an arithmetic or store operation cannot be encoded
exactly in the foù rmat of the destination operand. For example, the following value (aú) has

û
 a 24-

b
ü
it fraction. The least-significant bit of this fraction (the underlined bit) cannot be encoded

exactly ù in the single-real format (which has only a 23-bit fraction):

(
ý
aú) 1

û
.0001 0000 1000 0011 1001 0111E2

þ 101

T
ò
o round this result (aú),

û
 the processor first selects two representable fractions b

ÿ
a� nd c� that most

closely bø racket a ú in value (b
ÿ

< � a ú < � c�).
û

(
ý
b
ÿ
) 1

û
.0001 0000 1000 0011 1001 011E2

þ 101

(
ý
c�) 1.0

û
001 0000 1000 0011 1001 100E2

þ 101

The processor then sets the result to b
ÿ

or t� o c� according to the rounding mode selected in the RC
field.
�

Rounding introduces an error in a result that is less than one unit in the last place to which
th
ô

e result is rounded.

The rounded result is called the inexact result. When the processor produces an inexact result,
th
ô

e floating-point precision (inexact) flag (PE) is set in MXCSR.

W
÷

hen the infinitely precise result is between the largest positive finite value allowed in a partic-
ular form� at and +∞, t� he processor rounds the result as shown in Table 11-3.

T
�
able 11-2. Roundin g Con trol Fie ld (RC)

Roundi ng
Mode

RC Field
Settin g Descri ptio n

Round to
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values
are equally close, the result is the even value (that is, the one with the
least-significant bit of zero).

Round down
(toward −∞)

01B Rounded result is closest to, but no greater than the infinitely precise
result.

Round up
(toward +∞)

10B Rounded result is closest to, but no less than the infinitely precise result.

Round toward
zero (truncate)

11B Rounded result is closest to, but no greater in absolute value than the
infinitely precise result.

11-5

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

W
÷

hen the infini tely precise result is between the largest negative finite value allowed in a partic-
ular f� ormat and −∞, � the processor rounds the result as shown in Table 11-4.

The ro
ò

unding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

11.3.2.2. FLUSH-TO-ZERO

T
ò

urning on the Flush-To-Zero mode has the following effects when tiny results occur (i.e. when
th

ô
e infinitely precise result rounded to the destination precision with an unbounded exponent, is

sõ maller in absolute value than the smallest normal number that can be represented; this is similar
to

ô
 the underflow condition when underflow traps are unmasked):

• Zero resu
�

lts are returned with the sign of the true result

• Precision and underflow exception flags are set

The IEEE mand
ò

ated masked response to underflow is to deliver the denormalized result (i.e.,
grad	 ual underflow); consequently, the flush-to-zero mode is not compatible with IEEE Standard
754

. It is provided primarily for performance reasons. At the cost of a slight precision loss, faster

executioù n can be achieved for applications where underflow is common. Underflow for flush-
to-zero

ô
 is defined to occur when the exponent for a computed result, prior to denormalization

sõ caling, fall s in the denormal range; this is regardless of whether a loss of accuracy has occurred.
Unmasking

�
 the underflow exception takes precedence over flush-to-zero mode; this means that

an� exception handler will be invoked for a Streaming SIMD Extensions instruction that gener-
at� es an underflow condition while this exception is unmasked, regardless of whether flush-to-
zero � is enabled.

Table 11-3. Round ing o f Positive Numb ers Greater tha n the
Maximum Posi tive Fini te Value

Roundi ng Mode Result

Rounding to nearest (even) +∞

Rounding down (toward −∞) Maximum, positive finite value

Rounding up (toward +∞) +∞

Rounding toward zero (Truncate) Maximum, positive finite value

Table 11-4. Roundin g of Ne gati ve Numbers Smaller than the
Maximu m Negativ e Finite Value

Roun din g Mode Result

Rounding to nearest (even) -∞

Rounding toward zero (Truncate) Maximum, negative finite value

Rounding up (toward +∞) Maximum, negative finite value

Rounding down (toward −∞) -∞

11-6

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.4. ENABLING ST REAMING SIMD EXTENSIONS SUPPORT

This section describes the interface of the Intel Architecture Streaming SIMD Extensions with
the o
ô

perating system.

11.4.1. Enabling Streaming SIMD Extensions Support

C

ertain steps must be taken in both the application and the OS to check if the CPU supports
St
�

reaming SIMD Extensions and associated unmasked exceptions. This section describes this
prö ocess, which is conducted using the bits described in Table 11-5 and Table 11-6.

If th
�

e OS wants to use FXSAVE/FXRSTOR, it wi ll first check CPUID.FXSR to determine if the
C

PU supports these instructions. If the CPU does support FXSAVE/FXRSTOR, then the OS can
setõ CR4.OSFXSR without faulting and enable code for context switching that utili zes
FXS
�

AVE/FXRSTOR instead of FSAVE/FRSTOR.

At
�

this point, if the OS also supports unmasked SIMD floating-point exceptions, it should check
C

PUID.XMM to see if this is a Streaming SIMD Extensions-enabled processor. If
CPUID.XMM is

 set, this verifies that the OS can set CR4.OSXMMEXCPT without faulting.

The pro
ò

cess by which an application detects the existence of Streaming SIMD Extensions as
di
�

scussed in Section 9.5.1., “Detecting Support for Streaming SIMD Extensions Using the
C

PUID Instruction” Chapter 9, Pr
�

ogramming with the Streaming SIMD Extensions,� in the Intel
�

Ar
�

chitecture Software Developer’s Manual, Volume 1. For additional information and examples,
see AP-90õ 0, Identifying Support for Streaming SIMD Extensions in the Processor and Oper-
aú ting System.

11.4.2. Device Not Available (DNA) Exceptions

St
�

reaming SIMD Extensions will cause a DNA Exception (#NM) if the processor attempts to
execuù te a SIMD floating-point instruction while CR0.TS is set. If CPUID.XMM is clear, execu-

Table 11-5. CPUID Bits for Strea ming SIMD Extensio ns Su pport

CPUID bi t (EAX = 1) Meaning

FXSR
(EDX bit24)

If set, CPU supports FXSAVE/FXRSTOR. The OS can read this bit
t

�
o determine if it can use FXSAVE/FXRSTOR in place of
FSAVE/FRSTOR for context switches.

XMM
(EDX bit25)

If set, the Streaming SIMD Extensions set is supported by the
processor.

Table 11-6. CR4 Bi ts for Streaming SI MD Extens ions Support

CR4 bit Meaning

OSFXSR
(bit9)

Defaults to clear. If both the CPU and the OS support FXSAVE/FXRSTOR for
use during context switches, then the OS will set this bit.

OSXMMEXCPT
(bit10)

Defaults to clear. The OS will set this bit if it supports unmasked SIMD floating-
point exceptions.

11-7

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

ti
ô

on of any Streaming SIMD Extensions instruction will cause an invalid opcode fault regardless
of � the state of CR0.TS.

11.4.3. FXSAVE/FXRSTOR as a Replac ement for FSAVE/FRSTOR

The FXSAVE and FXRSTOR instructions are designed to be a replacement for
F

�
SAVE/FRSTOR, to be used by the OS for context switches. These have been optimized to be

fast
�

er than FSAVE/FRSTOR, while still saving/restoring the additional SIMD floating-point
sõ tate. To meet this goal, FXSAVE differs from FSAVE in that it does not cause an FINIT to be
pö erformed, nor does FXSAVE initialize the SIMD floating-point registers in any way. While
F

�
XSAVE/FXRSTOR does save/restore the x87-FP state, FSAVE/FRSTOR does not affect the

S
�

IMD floating-point state. This allows for FXSAVE/FXRSTOR and FSAVE/FRSTOR to be
nested. State saved with � FXSAVE and restored with FRSTOR (and vice versa) wil l result in
in

�
correct restoration of state in the processor. FXSAVE will not save the SIMD floating-point

stõ ate (SIMD f loating-point registers and MXCSR register) if the CR4.OSFXSR bit is not set.

11.4.4. Numeric Error flag a nd IGNNE#

St
�

reaming SIMD Extensions ignore CR0.NE (treats it as if it were always set) and the IGNNE#
piö n and always use the vector 19 software exception for error reporting.

11.5. SAVING AND RESTORING THE STREAMING SIMD
EXTENSIONS STATE

The recommended method of saving and restoring the Streaming SIMD Extensions state is as
fo

�
llows:

• Execu
�

te an FXSAVE instruction to write the entire state of the MMX™/FPU, the SIMD
floating-point registers, and the SIMD floating-point MXCSR to memory.

• Execute an FXRSTOR instruction to read the entire saved state of the MMX™ /FPU, the
S

�
IMDP floating-point registers and the SIMD floating-point MXCSR from memory into

the FPU reg
ô

isters and the aliased MMX™ registers.

This save an
ò

d restore method is required for operating systems (see Section 10.6., “Designing
Op

�
erating System Task and Context Switching Facilities”).

Applications can in some cases save and restore only the SIMD floating-point registers, in the
following

�
 way:

• Execu
�

te eight MOVAPS instructions to write the contents of the SIMD floating-point
registers XMM0 through XMM7 to memory. Execute a STMXCSR instruction to save the
MX

�
CSR register to memory.

• Execu
�

te eight MOVAPS instructions to read the saved contents of the SIMD floating-point
registers from memory into the XMM0 through XMM7 registers. Execute a LDMXCSR

11-8

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

instruction to read the saved contents of the MXCSR register from memory into the
M

�
XCSR register.

11.6. DESIGNING OPERATING SYSTEM TASK AND CONTEXT
SWITCHING FACILITIES

W
÷

hen switching from one task or context to another, it is often necessary to save the SIMD
floating
�

-point state (just as it is often necessary to save the state of the FPU). As mentioned in
the prev
ô

ious chapter, the MMX™ state is aliased on the FPU state. The SIMD floating-point
regi� sters in the Pentium®

�
 III processor introduce a new state. When designing new SIMD

flo
�

ating-point state saving facilities for an operating system, several approaches are available:

• The operating system can require that applications (which will be run as tasks) take
r� esponsibilit y for saving the SIMD floating-point state prior to a task suspension during a
task

ô
 switch and for restoring the SIMD floating-point state when the task is resumed. The

ap� plication can use either of the state saving and restoring techniques given in Section
10.5., “Saving and Restoring the Streaming SIMD Extensions state”. This approach to
savõ ing the SIMD floating-point state is appropriate for cooperative multitasking operating
systemsõ , where the application has control over (or is able to determine) when a task
switõ ch is about to occur and can save state prior to the task switch.

• The op
ò

erating system can take the responsibility for automatically saving the SIMD
floating-point state as part of the task switch process (using an FXSAVE instruction) and
au� tomatically restoring the SIMD floating-point state when a suspended task is resumed
(

ý
using an FXRSTOR instruction). Here, the SIMD floating-point state must be saved as

part of thö e task state. This approach is appropriate for preemptive multitasking operating
systemsõ , where the application cannot know when it is going to be preempted and cannot
pö repare in advance for task switching. The operating system is responsible for saving and
restoring the task and SIMD floating-point state when necessary.

• The operating system can take the responsibility for saving the SIMD floating-point state
as� part of the task switch process, but delay the saving of the SIMD floating-point state
un� til a Streaming SIMD Extensions instruction is actually executed by the new task. Using
th

ô
is approach, the SIMD floating-point state is saved only if a Streaming SIMD Extensions

instru
�

ction needs to be executed in the new task. (See Section 10.6.1., “Using the TS Flag
in Control Register CR0 to Control SIMD Floating-Point State Saving”, for more
in

�
formation on this SIMD floating-point state saving technique.)

11.6.1. Using the TS Flag in Control R egister CR0 to Co ntrol SI MD
Floating-Point S tate Saving

S
�

aving the SIMD floating-point state using the FXSAVE instruction is not as high-overhead
op� eration as FSAVE. However an operating system may choose to wait to save the SIMD
floating-point state to avoid this overhead. If a task being switched to will not access the SIMD
flo
�

ating-point registers (by executing a Streaming SIMD Extensions instruction), this overhead
can ø be avoided by not automatically saving the SIMD fl oating-point state on a task switch.

11-9

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

The TS flag in control register CR0 is provided to allow the operating system to delay saving
th

ô
e SIMD floating-point state until the SIMD floating-point registers are actually accessed in the

n� ew task. When this flag is set, the processor monitors the instruction stream for Streaming
S

�
IMD Extensions instructions. When the processor detects a Streaming SIMD Extensions

in
�

struction, it raises a device-not-available exception (#NM) prior to executing the instruction.
The devi

ò
ce-not-available exception handler can then be used to save the SIMD floating-point

sõ tate for the previous task (using an FXSAVE instruction) and load the SIMD floating-point state
for

�
 the current task (using an FXRSTOR instruction). If the task never encounters a Streaming

S
�

IMD Extensions instruction, the device-not-available exception will not be raised and the
S

�
IMD floating-point state will not be saved unnecessarily.

Th
ò

e TS flag can be set either explicitly (by executing a MOV instruction to control register CR0)
o� r implicitly (using the processor’s native task switching mechanism). When the native task
sõ witching mechanism is used, the processor automatically sets the TS flag on a task switch.
After th

�
e device-not-available handler has saved the SIMD floating-point state, it should execute

the C
ô

LTS instruction to clear the TS flag in CR0.

Figure 10-2 gives an example of an operating system that implements SIMD floating-point state
sõ aving using the TS flag. In this example, task A is the currently running task and task B is the
tas

ô
k being switched to.

The o
ò

perating system maintains a SIMD floating-point save area for each task and defines a
variab� le (SIMD-fpStateOwner) that indicates which task “owns” the SIMD floating-point state.
In

�
this example, task A is the current SIMD floating-point state owner.

On
�

 a task switch, the operating system task switching code must execute the following pseudo-
code to setø the TS flag according to the current SIMD floating-point state owner. If the new task

F
�

igure 11-2. Example of SIMD Floatin g-Poin t State Saving Du ring an Operating System-
Controlled Task Switch

Task A T

ask B

Appl icat ion

Operat ing Sy stem

Task A
SIMD floating-point
State Save Area

Ta

sk B
SIMD floating-point
State Save Area

Operating System
T

ask Switching Code

Device-Not-Available
Exception Handler

SIMD floating-point
State Owner

CR0.TS=1 and
extensions
instruction
is encountered.

Saves Task A
SIMD floating-point State

Loads Task B
SIMD floating-point State

11-10

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

(task B
ý

 in this example) is not the current SIMD floating-point state owner, the TS flag is set to
1; otherwise, it is set to 0.

IF Task_Being_Switched_To ≠! SIMD-fpStateOwner
 THEN
 CR0.TS ←" 1;
 ELSE
 CR0.TS ←" 0;
FI;

If a new task attempts to use a Streaming SIMD Extensions instruction while the TS flag is set
to 1, a device-n
ô

ot-available exception (#NM) is generated and the device-not-available excep-
t
ô
ion handler executes the following pseudo-code.

CR0.TS ←" 0;
FXSAVE “To SIMD floating-point State Save Area for Current SIMD Floating-point State
Owner”;
FXRSTOR “SIMD floating-point State From Current Task’s SIMD Floating-point State Save
Area”;
SIMF-fpStateOwner ←" Current_Task;

11-11

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

This handler code performs the following tasks:

• C

lears the TS flag.

• Saves t
�

he SIMD floating-point state in the state save area for the current SIMD floating-
pö oint state owner.

• Restores the SIMD floating-point state from the new task’s SIMD floating-point state save
area.�

• Up
�

dates the current SIMD floating-point state owner to be the current task.

11.7. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
STREAMING SIMD EXTENSIONS INSTRUCTIONS

St
�

reaming SIMD Extensions can generate two kinds of exceptions:

• Non
#

-numeric exceptions

• Numer
#

ic exceptions

S
�

treaming SIMD Extensions can generate the same type of memory access exceptions as the
Intel

�
Architecture instructions do. Some examples are: page fault, segment not present, and limit

violation� s. Existing exception handlers can handle these types of exceptions without any code
modification. The SIMD floating-point PREFETCH instruction hints will not generate any kind
of � exception and instead will be ignored.

St
�

reaming SIMD Extensions can generate the same six numeric exceptions that x87-FP instruc-
ti

ô
ons can generate. All Streaming SIMD Extensions numeric exceptions are reported indepen-

dent
�

ly of x87-FP numeric exceptions. Independent masking and unmasking of Streaming SIMD
Ex

�
tensions numeric exceptions is achieved by setting/resetting specific bits in the MXCSR

register.

The application
$

 must ensure that the OS can support unmasked SIMD floating-point exceptions
b

ü
efore unmasking them. For more details, refer to Section 9.5.1., “Detecting Support for

S
�

treaming SIMD Extensions Using the CPUID Instruction” Chapter 9, Programming with the
St

%
reaming SIMD Extensions, � in the In

�
tel Architecture Software Developer’s Manual, Volume 1

and AP� -900, I
�
dentifying Support for Streaming SIMD Extensions in the Processor and Oper-

atú ing System. If an application unmasks exceptions using either FXRSTOR or LDMXCSR
wit& hout the required OS support being enabled, then an invalid opcode fault, instead of a SIMD
flo

�
ating-point exception, will be generated on the first faulting SIMD floating-point instruction.

11-12

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.7.1. SIMD Float ing-point Non-N umeric Except ions

• Exceptions during memory accesses:

— Invalid opcode (#UD).

— Stack exception (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.

• System ex
�

ceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set, the CPUID.XMM
b
ü
it is not set, or the CR4.OSFXSR* bit is not set, when a Streaming SIMD Extensions

i
�
nstruction is executed (see Section 10.1., “Emulation of the Streaming SIMD Exten-

siõ ons”).

— Device not available (#NM), if a Streaming SIMD Extensions instruction is executed
w& hen the TS flag in control register CR0 is set. (See Section 10.6.1., “Using the TS
Fl
�

ag in Control Register CR0 to Control SIMD Floating-Point State Saving”.)

• Other
�

 exceptions can occur indirectly due to the faulty execution of the exception handlers
f

�
or the above exceptions. For example, if a stack-segment fault (#SS) occurs due to

Stream
�

ing SIMD Extensions instructions, the interrupt gate for the stack-segment fault can
d

�
irect the processor to invalid TSS, causing an invalid TSS exception (#TS) to be

ge	 nerated.

T
$
able 11-7 lists the causes for Interrupt 6 and Interrupt 7 with Streaming SIMD Extensions.

T
'
able 11-7. Streamin g SIMD Extensi ons Faul ts

CR0.EM CR4.OSFXSR CPUID.XMM CR0.TS EXCEPTION

 1 - - - #UD Interrupt 6

 - 0 - - #UD Interrupt 6

 - - 0 - #UD Interrupt 6

 0 1 1 1 #NM Interrupt 7

11-13

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.7.2. SIMD Float ing-point Numeri c Exceptions

There are six classes of numeric exception conditions that can occur while executing Streaming
S

�
IMD Extensions:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Deno
(

rmal operand (#D)

• Numer
#

ic overflow (#O)

• Numer
#

ic underflow (#U)

• In
�

exact result (Precision) (#P)

Invalid, Divide-by-zero and Denormal exceptions are pre-computation exceptions, i.e., they are
detected befo

�
re any arithmetic operation occurs. Underflow, Overflow and Precision exceptions

are p� ost-computation exceptions.

W
÷

hen numeric exceptions occur, a processor supporting Streaming SIMD Extensions takes one
o� f two possible courses of action:

• Th
$

e processor can handle the exception by itself, producing the most reasonable result and
allowing� numeric program execution to continue undisturbed (i.e., masked exception
r� esponse).

• A so
�

ftware exception handler can be invoked to handle the exception (i.e., unmasked
excepù tion response).

Each
�

 of the six exception conditions described above has corresponding flag and mask bits in
the MXC

ô
SR. If an exception is masked (the corresponding mask bit in MXCSR = 1), the

proö cessor takes an appropriate default action and continues with the computation. If the excep-
ti

ô
on is unmasked (mask bit = 0) and the OS supports SIMD floating-point exceptions (i.e.

CR

4.OSXMM EXCPT = 1), a software exception handler is invoked immediately through
S

�
IMD floating-point exception interrupt vector 19. If the exception is unmasked (mask bit = 0)

and � the OS does not support SIMD fl oating-point exceptions (i.e. CR4.OSXMM EXCPT = 0),
an inv� alid opcode exception is signaled instead of a SIMD floating-point exception.

Note that b
#

ecause SIMD floating-point exceptions are precise and occur immediately, the situ-
ati� on does not arise where an x87-FP instruction, an FWAIT instruction, or another Streaming
S

�
IMD Extensions instruction will catch a pending unmasked SIMD floating-point exception.

11.7.2.1. EXCEPTION PRIORITY

The processor handles exceptions according to a predetermined precedence. When a sub-
o� perand of a packed instruction generates two or more exception conditions, the exception
precedö ence sometimes results in the higher-priority exception being handled and the lower-
priö ority exceptions being ignored. For example, dividing an SNaN by zero could potentially
sõ ignal an invalid-arithmetic-operand exception (due to the SNaN operand) and a divide-by-zero
exceptioù n. Here, if both exceptions are masked, the processor handles the higher-priority excep-
ti

ô
on only (the invalid-arithmetic-operand exception), returning the quiet version of the SNaN to

11-14

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

th
ô

e destination. The prioritization policy also applies for unmasked exceptions; if both invalid
an� d divide-by-zero are unmasked for the previous example, only the invalid flag will be set.
P
)

rioritization of exceptions is performed only on an individual sub-operand basis, and not
b
ü
etween suboperands; for example, an invalid exception generated by one sub-operand will not

prö event the reporting of a divide-by-zero exception generated by another sub-operand.

The
$

precedence for SIMD floating-point numeric exceptions is as follows:

1. Invalid operation exception due to NaN operands (refer to Table 11-8).

2.
*

QNaN operand. Though this is not an exception, the handling of a QNaN operand has
pö recedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

3
+
. Any other invalid operation exception not mentioned above or a divide-by-zero exception

(
ý
refer to Table 11-8).

4. Denormal operand exception. If masked, then instruction execution continues, and a
lower

,
-priority exception can occur as well.

5.
-

Numeric overflow and underflow exceptions possibly in conjunction with the inexact
result exception.

6.
.

Inexact result exception.

11.7.2.2. AUTOMATIC MASKED EXCEPTION HANDLING

If th
�

e processor detects an exception condition for a masked exception (an exception with its
mask bit set), it delivers a predefined (default) response and continues executing instructions.
The m
$

asked (default) responses to exceptions have been chosen to deli ver a reasonable result
fo
�

r each exception condition and are generally satisfactory for most application code. By
masking or unmasking specif ic floating-point exceptions in the MXCSR, programmers can
d
�
elegate responsibility for most exceptions to the processor and reserve the most severe excep-

t
ô
ion conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
hav
/

e occurred since they were last cleared. A programmer can thus mask all exceptions, run a
calculation,ø and then inspect the exception flags to see if any exceptions were detected during
the calcu
ô

lation.

No
#

te that when exceptions are masked, the processor may detect multiple exceptions in a single
instruction
�

, because:

• It continues executing the instruction after performing its masked response; for example,
the

ô
processor could detect a denormalized operand, perform its masked response to this

exù ception, and then detect an underflow

• Exceptions may occur naturally in pairs, such as numeric underflow and inexact result
(

ý
precision)

• Packed
)

 instructions can produce independent exceptions for each pair of operands.

11-15

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

Updat
�

ing of exception flags is generated by a logical-OR of exception conditions for all sub-
oper� and computations, where the OR is done independently for each type of exception; for
packedö computations this means 4 sub-operands and for scalar computations this means 1 sub-
oper� and (the lowest one).

11.7.2.3. SOFTWARE EXCEPTION HANDLING - UNMASKED EXCEPTIONS

An ap
�

plication must ensure that the operating system supports unmasked exceptions before
unm� asking any of the exceptions in the MXCSR (refer to Section 9.5.1., “Detecting Support for
S

�
treaming SIMD Extensions Using the CPUID Instruction” Chapter 9, Programming with the

St
%

reaming SIMD Extensions, V� olume 1 of the P
�

rogrammer’s Reference Manual)
,

.

If th
�

e processor detects a condition for an unmasked SIMD floating-point application exception,
a sof� tware handler is invoked immediately at the end of the excepting instruction. The handler
i

�
s invoked through the SIMD floating-point exception interrupt (vector 19), irrespective of the
stõ ate of the CR0.NE flag. If an exception is unmasked, but SIMD fl oating-point unmasked
exceptioù ns are not enabled (CR4.OSXMMEXCPT = 0), an invalid opcode fault is generated.
Ho

0
wever, the corresponding exception bit will st ill be set in the MXCSR, as it would be if

CR

4.OSXMM EXCPT =1, since the invalid opcode handler or the user needs to determine the
cause ofø the exception.

A ty
�

pical action of the exception handler is to store x87-FP and SIMD floating-point state infor-
m1 ation in memory (with the FXSAVE/FXRSTOR instructions) so that it can evaluate the excep-
ti

ô
on and formulate an appropriate response. Other typical exception handler actions can include:

• Examine stored x87-FP and SIMD floating-point state information (control/status) to
d

�
etermine the nature of the error.

• Taking action to correct the condition that caused the error.

• C

lear the exception bits in the x87-FP status word (FSW) or the SIMD floating-point
conø trol register (MXCSR)

• Return to the interrupted program and resume normal execution.

In lieu o
�

f writing recovery procedures, the exception handler can do one or more of the
fo

�
llowing:

• Increment in software an exception counter for later display or printing.

• Print or display diagnostic information (such as the SIMD fl oating-point register state).

• Halt fur
0

ther program execution.

W
÷

hen an unmasked exception occurs, the processor will not alter the contents of the source
regi� ster operands prior to invoking the unmasked handler. Similarly, the integer EFLAGS will
als� o not be modified if an unmasked exception occurs while executing the COMISS or
UC

�
OMISS instructions. Exception flags will be updated according to the following rules:

• Upd
�

ating of exception flags is generated by a logical-OR of exception conditions for all
sub-õ operand computations, where the OR is done independently for each type of

11-16

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

exù ception; for packed computations this means 4 sub-operands and for scalar computations
t

ô
his means 1 sub-operand (the lowest one).

• I
�
n the case of only masked exception conditions, all f lags will be updated,

• In the case of an unmasked pre-computation type of exception condition (e.g., denormal
in

�
put), all flags relating to all pre-computation conditions (masked or unmasked) will be

u� pdated, and no subsequent computation is performed (i.e., no post-computation condition
can oø ccur if there is an unmasked pre-computation condition).

• In the case of an unmasked post-computation exception condition, all flags relating to all
poö st-computation conditions (masked or unmasked) will be updated; all pre-computation
conø ditions, which must be masked-only wil l also be reported.

11.7.2.4. INTERACTION WITH X87 NUMERIC EXCEPTIONS

The
$

Streaming SIMD Extensions control/status register was separated from its x87-FP counter-
pö arts to allow for maximum flexibility . Consequently, the Streaming SIMD Extensions architec-
t
ô
ure is independent of the x87-FP architecture, but has the following implications for x87-FP
app� lications that call Streaming SIMD Extensions-enabled libraries:

• Th
$

e x87-FP rounding mode specified in FCW will not apply to calls in a Streaming SIMD
Extensions library (unless the rounding control in MXCSR is explicitly set to the same
mo1 de).

• x2 87-FP exception observability may not apply to a Streaming SIMD Extensions library.

• An application that expects to catch x87-FP exceptions that occur in an x87-FP
lib
,

rary will not be notified if an exception occurs in a Streaming SIMD Extensions
librar
,

y, unless the exception masks enabled in FCW have also been enabled in
MXCSR.

• An application will not be able to unmask exceptions after returning from a
St
�

reaming SIMD Extensions library call to detect if an error occurred. A SIMD
floating-point exception flag that is already set when the corresponding exception
is
�

 unmasked will not generate a fault; only the next occurrence of that exception
wi& ll generate an unmasked fault.

• An application which checks FSW to determine if any masked exception flags
were s& et during an x87-FP library call will also need to check MXCSR in order to
ob� serve a similar occurrence of a masked exception within a Streaming SIMD
Extensions library.

11.7.3. SIMD Float ing-point Numeric Exception Conditions and
Masked/ Unmasked Responses

The following sections describe the various conditions that cause a SIMD floating-point
nu� meric exception to be generated and the masked response of the processor when these condi-
tions are
ô

detected.

11-17

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.7.3.1. INVALID OPERATION EXCEPTION(#IA)

The invalid operation exception occurs in response to an invalid arithmetic operand, or to an
invalid

�
combination of operands.

If the invalid o
�

peration exception is masked, the processor sets the IE flag in MXCSR and
returns the single-precision QNaN indefinite value or another QNaN value (derived from a NaN
i

�
nput operand) to the destination operand. This value overwrites the destination register speci-
fied

�
 by the instruction.

If the invalid operation exception is not masked, the processor sets the IE flag in MXCSR and
an exceptio� n handler is invoked (see Section 11.7.2.3., “Software Exception Handling -
Unmasked

�
Exceptions”) and the operands remain unchanged.

The processor can detect a variety of invalid arithmetic operations that can be coded in a
proö gram. These operations generally indicate a programming error, such as dividing ∞ by ∞.
T

$
able 11-8 lists the SIMD floating-point invalid arithmetic operations that the processor detects.

This group includes the invalid operations defined in IEEE Std. 854.

Th
$

e flag (IE) for this exception is bit 0 of MXCSR, and the mask bit (IM) is bit 7 of MXCSR.

The in
$

valid operation exception is not affected by the flush-to-zero mode.

11-18

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

Table 11-8. Inval id Arith meti c Operations and the Masked Respon ses to Th em

NOTE:

RCPPS/RCPSS/RSQRTPS/RSQRTSS with QNaN/SNaN operand(s) do not raise an invalid exception.
They return either the SNaN operand converted to QNaN, or the original QNaN operand.
RSQRTPS/RSQRTSS with negative operands (but not for negative zero) do not raise an invalid excep-
ti

�
on, and return QNaN Indefinite.

11.7.3.2. DIVISION-BY-ZERO EXCEPTION (#Z)

The p
$

rocessor reports a divide-by-zero exception whenever an instruction attempts to divide a
fi
�

nite non-zero operand by 0. This is possible with DIVPS, DIVSS.

The masked response for DIVPS, DIVSS is to set the ZE flag in MXCSR and return an infinity
siõ gned with the exclusive OR of the signs of the operands. If the divide-by-zero exception is not
masked,1 the ZE flag is set, a software exception handler is invoked (see Section 11.7.2.3., “Soft-
ware Excep& tion Handling - Unmasked Exceptions”) and the source operands remain unchanged.

No
#

te that the response for RCPPS, RSQRTPS, RCPSS and RSQRTSS is to return an infinity of
the
ô

same sign as the operand. These instructions do not set any exception flags and thus are not
af� fected by the exception masks.

Th
$

e flag (ZE) for the divide-by-zero exception is bit 2 of MXCSR, and the mask bit (ZM) is bit
9
3
 of MXCSR.

The divide-by-zero exception is not affected by the flush-to-zero mode.

Condi tion Masked Response

ADDPS/ADDSS/DIVPS/DIVSS/
MULPS/MULSS/SUBPS/SUBSS with a SNaN
operand.

Return the Signaling NaN converted to a quiet
NaN; Refer to Table 7-18, in Chapter 7,
Floating-Point Unit, for more details; set #IA
flag.

CMPPS/CMPSS with QNaN/SNaN operands
(QNaN applies only for predicates "lt", "le", "nlt",
"nle")

Return a mask of all 0’s for predicates "eq", "lt",
"le", and "ord", and a mask of all 1’s for
predicates "neq", "nlt", "nle", and "unord"; set
#IA flag.

COMISS with QNaN/SNaN operand(s). Set EFLAGS values to ’not comparable’; set
#IA flag.

UCOMISS with SNaN operand(s). Set EFLAGS values to ’not comparable’; set
#IA flag.

SQRTPS/SQRTSS with SNaN operand(s). Return the SNan converted to a QNaN; set #IA
fl

4
ag;

Add
5

ition of opposite signed infinities or
subtraction of like-signed infinities.

Return the QNaN Indefinite; set #IA flag.

Multiplication of infinity by zero. Return the QNaN Indefinite; set #IA flag.

Divide of (0/0) or(/ .) Return the QNaN Indefinite; set #IA flag.

SQRTPS/SQRTSS of negative operands (except
negative zero).

Return the QNaN Indefinite; set #IA flag.

Conversion to integer when the source register is
a NaN, Infinity or exceeds the representable
range.

Return the Integer Indefinite; set #IA flag.

∞ ∞

11-19

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

11.7.3.3. DENORMAL OPERAND EXCEPTION (#D)

The processor signals the denormal operand exception if an arithmetic instruction attempts to
oper� ate on a denormal operand.

W
÷

hen a denormal operand exception occurs and the exception is masked, the processor sets the
DE flag in MXCSR, then proceeds with the instruction. Operating on denormal numbers will
proö duce results at least as good as, and often better than, what can be obtained when denormal
num� bers are flushed to zero. Programmers can mask this exception so that a computation may
proö ceed, then analyze any loss of accuracy when the final result is delivered.

W
÷

hen a denormal operand exception occurs and the exception is not masked, the processor sets
the DE

ô
bit in MXCSR and a software exception handler is invoked (see Section 11.7.2.3., “Soft-

ware Excep& tion Handling - Unmasked Exceptions”). The source operands remain unchanged.
When

÷
 denormal operands have reduced significance due to loss of low-order bits, it may be

advi� sable to not operate on them. Precluding denormal operands from computations can be
accomp� li shed by an exception handler that responds to unmasked denormal operand exceptions.

No
#

te that the response for RCPPS, RSQRTPS, RCPSS and RSQRTSS is to return an infinity of
the

ô
same sign as the operand. These instructions do not set any exception flags and thus are not

af� fected by the exception masks.

Co

nversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI,
C

VTTSS2SI) do not signal denormal exceptions.

The flag (DE) for this exception is bit 1 of MXCSR, and the mask bit (DM) is bit 8 of MXCSR.

The d
$

enormal operand exception is not affected by the flush-to-zero mode.

11.7.3.4. NUMERIC OVERFLOW EXCEPTION (#O)

The pro
$

cessor reports a floating-point numeric overflow exception whenever the result of an
instruction rounded to the destination precision with unbounded exponent exceeds the largest
all� owable fini te value that will fit into the destination operand. This is possible with ADDPS,
AD

�
DSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS.

W
÷

hen a numeric overflow exception occurs and the exception is masked, the processor sets the
MXC

�
SR.OE and MXCSR.PE flags and returns one of the values shown in Table 11-9 according

t
ô
o the current rounding mode of the processor (see Section 11.3.2.1., “Rounding Control Field”).

W
÷

hen a numeric overflow exception occurs and the exception is unmasked, the operands are left
unaltered� and a software exception handler is invoked (see Section 11.7.2.3., “Software Excep-
ti

ô
on Handling - Unmasked Exceptions”) . The MXCSR.OE flag is set; the MXCSR.PE flag is

only� set if a loss of accuracy has occurred in addition to overflow when rounding the result to
t

ô
he destination precision, with unbounded exponent.

The f
$

lag (OE) for the numeric overflow exception is bit 3 of MXCSR, and the mask bit (OM) is
bi

ü
t 10 of MXCSR.

The n
$

umeric overflow exception is not affected by the flush-to-zero mode.

11-20

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

No
#

te that the overflow status f lag is not set by RCPPS/RCPSS, since these instructions are
comø binatorial and are not affected by exception masks.
.

11.7.3.5. NUMERIC UNDERFLOW EXCEPTION (#U)

The
$

processor might report a floating-point numeric underflow exception whenever the rounded
resu� lt of an arithmetic instruction is tiny; that is, the result rounded to the destination precision
with& unbounded exponent is less than the smallest possible normalized, finite value that will fit
into the destination op
�

erand. The Underflow exception can occur in the execution of the instruc-
tions ADDP
ô

S, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS and DIVSS.

Two related events contribute to underflow:

• C

reation of a tiny result which, because it is so small, may cause some other exception
l

,
ater (such as overflow upon division).

• Creatio

n of an inexact result; i.e. the delivered result differs from what would have been
coø mputed were both the exponent and precision unbounded.

Wh
÷

ich of these events triggers the underflow exception depends on whether the underflow
excepù tion is masked:

• Und
�

erflow exceptions masked. The underflow exception is signaled when the result is both
tiny

ô
 and inexact.

• Und
�

erflow exceptions not masked: The underflow exception is signaled when the result is
tin

ô
y, regardless of inexactness.

The
$

response to an underflow exception also depends on whether the exception is masked:

• Masked response: The result is normal, denormal or zero. The precision exception is also
trig

ô
gered. The OE and PE flags are set in MXCSR.

• Unm
�

asked response: The UE flag is set in MXCSR. If the original computation generated
an i� mprecise mantissa, the inexact (#P) status flag PE will also be set in the MXCSR. In
eitherù case (result imprecise or not), the underflow (#U) status flag is set, the operands are

Table 11-9. Masked Respo nses to Numer ic Over flow

Round ing Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number

11-21

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

left unaltered, and a software exception handler is invoked (see Section 11.7.2.3.,
“Software Exception Handling - Unmasked Exceptions”) .

If un
�

derflow is masked and flush-to-zero mode is enabled, an underflow condition will set the
und� erflow (#U) and inexact (#P) status flags UE and PE in MXCSR and a correctly signed zero
resu� lt will be returned; this will avoid the performance penalty associated with generating a
deno

�
rmalized result. If underflow is unmasked, the flush-to-zero mode is ignored and an under-

flow condition will be handled as described above.

Note t
#

hat the underflow status flag is not set by RCPPS/RCPSS, since these instructions are
combø inatorial and are not affected by exception masks.

The flag (UE) for the numeric underflow exception is bit 4 of MXCSR and the mask bit (UM)
is

�
 bit 11 of MXCSR.

11.7.3.6. INEXACT RESULT (PRECISION) EXCEPTION (#P)

The in
$

exact result exception (also called the precision exception) occurs if the result of an oper-
ati� on is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely repr

ü
esented in binary form. This exception occurs frequently and indicates that

sõ ome (normally acceptable) accuracy has been lost. The exception is supported for applications
that n

ô
eed to perform exact arithmetic only. Because the rounded result is generally satisfactory

for
�

 most applications, this exception is commonly masked.

If
�

the inexact result exception is masked when an inexact result condition occurs and a numeric
o� verflow or underflow condition has not occurred, the processor sets the inexact (#P) status flag
(P

ý
E flag) and stores the rounded result in the destination operand. The current rounding mode

det
�

ermines the method used to round the result (refer to Section 11.3.2.1., “Rounding Control
Field”).

If the in
�

exact result exception is not masked when an inexact result occurs and numeric overflow
or � underflow has not occurred, the operands are left unaltered, the PE flag is set in MXCSR, the
inexact (#P) status flag is set, and a software exception handler is invoked (see Section 11.7.2.3.,
“Software Exception Handling - Unmasked Exceptions”).

If an
�

inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and� the PE flag are set in MXCSR and the result is stored as described for the overflow or
un� derflow exceptions (see Section 11.7.3.4., “Numeric Overflow Exception (#O)”. or
Secti

�
on 11.7.3.5., “Numeric Underflow Exception (#U)”). If the inexact result exception is

un� masked, the processor also invokes the software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow, the OE or UE flag
and� the PE flag are set and the software exception handler is invoked.

No
#

te that the inexact result flag is not set by RCPPS, RSQRTPS, RCPSS and RSQRTSS, since
these inst

ô
ructions are combinatorial and are not affected by the exception masks.

The inex
$

act result exception flag (PE) is bit 5 of MXCSR, and the mask bit (PM) is bit 12 of
MX

�
CSR.

11-22

STREAMING SIMD EXTENSIONS SYSTEM PROGRAMMING

In flush-to-zero mode, the inexact result exception is reported along with the underflow excep-
tio
ô

n (the latter must be masked).

11.7.4. Effect of Streaming SIMD Extensi ons Inst ructions on
Pending Floating-Point E xcept ions

Un
�

like MMX™ instructions which will generate a floating-point error (#MF) prior to executing
the MMX™
ô

 instruction, execution of a Streaming SIMD Extensions instruction does not
g	 enerate a floating-point error (#MF) prior to executing the instruction. Hence they will not
catchø pending x87 floating-point exceptions. In addition, they will not cause assertion of FERR#
(ind
ý

ependent of the value of CR0.NE) and they ignore the assertion/de-assertion of IGNNE#.

11.8. DEBUGGING

The debug facilities of the Intel Architecture operate in the same manner when executing
St
�

reaming SIMD Extensions as when executing other Intel Architecture instructions. These
faciliti es enable debuggers to debug code utilizi ng these instructions.

T
$
o correctly interpret the contents of the Pentium®

�
 III processor registers from the FXSAVE

im
�

age in memory, a debugger needs to take account of the relationship between the floating-
poö int register’s logical locations relative to TOS and the MMX™ register’s physical locations
(ref
ý

er to Section 10.6., “Debugging”, Chapter 10, MM
6

X™ Technology System Programming).
û

In
�

 addition it needs to have knowledge of the SIMD floating-point registers and the state save
data ar
�

ea used by the FXSAVE instruction.

Co

mparisons of the Streaming SIMD Extensions and x87 results can be performed within the
Pen
)

tium®
�
 III processor at the internal single precision format and/or externally at the memory

siõ ngle precision format. The internal format comparison is required to allow the partitioning of
the d
ô

ata space to reduce test time.

12
System Management
Mode

12-1

SYSTEM M
7

ANAGEMENT MODE (SMM)

CHAPTER 12
SYSTEM MANAGEMENT MODE (SMM)

This
$

chapter describes the Intel Architecture’s System Management Mode (SMM) architecture.
S

�
MM was introduced into the Intel Architecture in the Intel386™ SL processor (a mobile

sõ pecialized version of the Intel386™ processor). It is also available in the Intel486™ processors
(b

ý
eginning with the Intel486™ SL and Intel486™ enhanced versions) and in the Intel Pentium®

�

and P6 family pro� cessors. For a detailed description of the hardware that supports SMM, refer
to the

ô
developer’s manuals for each of the Intel Architecture processors.

12.1. SYSTEM MANAGEMENT MODE OVERVIEW

S
�

MM is a special-purpose operating mode provided for handling system-wide functions like
powerö management, system hardware control, or proprietary OEM-designed code. It is intended
for

�
 use only by system firmware, not by applications software or general-purpose systems soft-

ware. The main ben& efit of SMM is that it offers a distinct and easily isolated processor environ-
ment that oper1 ates transparently to the operating system or executive and software applications.

When
÷

 SMM is invoked through a system management interrupt (SMI), the processor saves the
currø ent state of the processor (the processor’s context), then switches to a separate operating
envirù onment contained in system management RAM (SMRAM). While in SMM, the processor
executù es SMI handler code to perform operations such as powering down unused disk drives or
monitors, executing proprietary code, or placing the whole system in a suspended state. When
th

ô
e SMI handler has completed its operations, it executes a resume (RSM) instruction. This

inst
�

ruction causes the processor to reload the saved context of the processor, switch back to
proö tected or real mode, and resume executing the interrupted application or operating-system
proö gram or task.

The fo
$

ll owing SMM mechanisms make it transparent to applications programs and operating
syõ stems:

• The only way to enter SMM i s by means of an SMI.

• Th
$

e processor executes SMM code in a separate address space (SMRAM) that can be
made inaccessible from the other operating modes.

• Upo
�

n entering SMM, the processor saves the context of the interrupted program or task.

• Al
�

l interrupts normally handled by the operating system are disabled upon entry into
SMM.

�

• The RSM instruction can be executed only in SMM.

S
�

MM is similar to real-address mode in that there are no privilege levels or address mapping.
An SMM program can address up to 4 GBytes of memory and can execute all I/O and applicable
sõ ystem instructions. Refer to S

�
ection 12.5., “SMI Handler Execution Environment” for more

info
�

rmation about the SMM execution environment.

12-2

SYSTEM MANAGEMENT MODE (SMM)

NOTE

The physical address extension (PAE) mechanism available in the P6 family
pö rocessors is not supported when a processor is in SMM.

12.2. SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or
thro
ô

ugh an SMI message received through the APIC bus. The SMI is a nonmaskable external
interrupt that operates independently from the processor’s interrupt- and exception-handling
mech1 anism and the local APIC. The SMI takes precedence over an NMI and a maskable inter-
ru� pt. SMM is nonreentrant; that is, the SMI is disabled while the processor is in SMM.

NOTE

In the P6 family processors, when a processor that is designated as the
app� lication processor during an MP initialization protocol is waiting for a
startupõ IPI, it is in a mode where SMIs are masked.

12.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES

Figure 2-2 in Chapter 2, System Ar
%

chitecture Overview shows how the processor moves between
S
�

MM and the other processor operating modes (protected, real-address, and virtual-8086).
S
�

ignaling an SMI while the processor is in real-address, protected, or virtual-8086 modes always
causes the pø rocessor to switch to SMM. Upon execution of the RSM instruction, the processor
always retur� ns to the mode it was in when the SMI occurred.

12.3.1. Enteri ng SMM

The processor always handles an SMI on an architecturally defined “interruptible” point in
prö ogram execution (which is commonly at an Intel Architecture instruction boundary). When
the p
ô

rocessor receives an SMI, it waits for all instructions to retire and for all stores to complete.
The processor then saves its current context in SMRAM (refer to Section 12.4., “SMRAM”),
entersù SMM, and begins to execute the SMI handler.

Upo
�

n entering SMM, the processor signals external hardware that SMM handling has begun.
The signaling mechanism used is implementation dependent. For the P6 family processors, an
SMI ack
�

nowledge transaction is generated on the system bus and the multiplexed status signal
EXF4 is as
�

serted each time a bus transaction is generated while the processor is in SMM. For
th
ô

e Pentium®
�
 and Intel486™ processors, the SMIACT# pin is asserted.

An SMI
�

has a greater priority than debug exceptions and external interrupts. Thus, if an NMI,
maskable h1 ardware interrupt, or a debug exception occurs at an instruction boundary along with
an S� MI, only the SMI is handled. Subsequent SMI requests are not acknowledged while the
prö ocessor is in SMM. The first SMI interrupt request that occurs while the processor is in SMM

12-3

SYSTEM M
7

ANAGEMENT MODE (SMM)

(that is, af
ý

ter SMM has been acknowledged to external hardware) is latched and serviced when
th

ô
e processor exits SMM with the RSM instruction. The processor will latch only one SMI while

in SMM.
�

Refer to Sectio
�

n 12.5., “SMI Handler Execution Environment” for a detailed description of the
executioù n environment when in SMM.

12.3.1.1. EXITING FROM SMM

Th
$

e only way to exit SMM is to execute the RSM instruction. The RSM instruction is o
�

nly avail-
ab� le to the SMI handler; if the processor is not in SMM, attempts to execute the RSM instruction
res� ult in an invalid-opcode exception (#UD) being generated.

The R
$

SM instruction restores the processor’s context by loading the state save image from
S

�
MRAM back into the processor’s registers. The processor then returns an SMIACK transaction

on � the system bus and returns program control back to the interrupted program.

Upon
�

 successful completion of the RSM instruction, the processor signals external hardware
that S

ô
MM has been exited. For the P6 family processors, an SMI acknowledge transaction is

gener	 ated on the system bus and the multiplexed status signal EXF4 is no longer generated on
bus cy

ü
cles. For the Pentium®

�
 and Intel486™ processors, the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown
sõ tate and generates a special bus cycle to indicate it has entered shutdown state. Shutdown
h

8
appens only in the following situations:

• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not
hap

8
pen unless SMI handler code modifies reserved areas of the SMRAM saved state map

(r
ý

efer to S
�

ection 12.4.1., “SMRAM State Save Map”). Note that CR4 is not distinctly part
of� the saved state map.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1
and� PE set to 0, or NW set to 1 and CD set to 0.

• (Fo
ý

r the Pentium®
�
 and Intel486™ processors only.) If the address stored in the SMBASE

regis� ter when an RSM instruction is executed is not aligned on a 32-KByte boundary. This
restrictio� n does not apply to the P6 family processors.

In shutdown state, the processor stops executing instructions until a RESET#, INIT# or NMI#
is

�
 asserted. The processor also recognizes the FLUSH# signal while in the shutdown state. In

ad� dition, the Pentium®
�
 processor recognizes the SMI# signal while in shutdown state, but the P6

family and Intel486™ processors do not. (It is not recommended that the SMI# pin be asserted
on a � Pentium®

�
 processor to bring the processor out of shutdown state, because the action of the

pö rocessor in this circumstance is not well defined.)

If the processor is in the HALT state when the SMI is received, the processor handles the return
from

�
 SMM slightly differently (refer to S

�
ection 12.10., “Auto HALT Restart”). Also, the

S
�

MBASE address can be changed on a return from SMM (refer to Section 12.11., “SMBASE
Relocation”).

12-4

SYSTEM MANAGEMENT MODE (SMM)

12.4. SMRAM

W
÷

hile in SMM, the processor executes code and stores data in the SMRAM space. The SMRAM
space is mapõ ped to the physical address space of the processor and can be up to 4 GBytes in size.
The processor uses this space to save the context of the processor and to store the SMI handler
codø e, data and stack. It can also be used to store system management information (such as the
systõ em configuration and specific information about powered-down devices) and OEM-specific
information.

The def
$

ault SMRAM size is 64 KBytes beginning at a base physical address in physical memory
calø led the SMBASE (refer to Figure 12-1). The SMBASE default value following a hardware
reset is 30000H. The processor looks for the first instruction of the SMI handler at the address
[SMBASE + 8000H]. It stores the processor’s state in the area from [SMBASE + FE00H] to
[SMBASE + FFFFH]. Refer to Section 12.4.1., “SMRAM State Save Map” for a description of
the m
ô

apping of the state save area.

The
$

system logic is minimally required to decode the physical address range for the SMRAM
fro
�

m [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The
siõ ze of this SMRAM can be between 32 KBytes and 4 GBytes.

The location
$

 of the SMRAM can be changed by changing the SMBASE value (refer to Section
12.11., “SMBASE Relocation”). It should be noted that all processors in a multiple-processor
syõ stem are initialized with the same SMBASE value (30000H). Initi alization software must
sequenõ tially place each processor in SMM and change its SMBASE so that it does not overlap
th
ô

ose of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM
memo1 ry. The processor generates an SMI acknowledge transaction (P6 family processors) or
as� serts the SMIACT# pin (Pentium®

�
 and Intel486™ processors) when the processor receives an

SMI (
�

refer to Section 12.3.1., “Entering SMM”). System logic can use the SMI acknowledge
transaction o
ô

r the assertion of the SMIACT# pin to decode accesses to the SMRAM and redirect
them
ô

(if desired) to specific SMRAM memory. If a separate RAM memory is used for SMRAM,
sõ ystem logic should provide a programmable method of mapping the SMRAM into system
memo1 ry space when the processor is not in SMM. This mechanism will enable start-up proce-
du
�

res to initialize the SMRAM space (that is, load the SMI handler) before executing the SMI
handler during SMM.

12-5

SYSTEM M
7

ANAGEMENT MODE (SMM)

12.4.1. SMRAM State Save Map

W
÷

hen the processor initially enters SMM, it writes its state to the state save area of the SMRAM.
The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE +
800

9
0H + 7E00H]. Table 12-1 shows the state save map. The offset in column 1 is relative to the

S
�

MBASE value plus 8000H. Reserved spaces should not be used by software.

S
�

ome of the registers in the SMRAM state save area (marked YES in column 3) may be read
and ch� anged by the SMI handler, with the changed values restored to the processor registers by
the R

ô
SM instruction. Some register images are read-only, and must not be modified (modifying

th
ô

ese registers will result in unpredictable behavior). An SMI handler should not rely on any
values stored� in an area that is marked as reserved.

Figure 12-1. SMRAM Usage

Table 12-1. SMRAM State Save Map

Offset
(Added to SMBASE + 8000H) Register Writabl e?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point

12-6

SYSTEM MANAGEMENT MODE (SMM)

NOTE:

* Upper two bytes are reserved.

The
$

following registers are saved (but not readable) and restored upon exiting SMM:

• C

ontrol register CR4 (CR4 is set to “0” while in the SMM handler).

• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS,
GS, an

:
d SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all
reserv� ed locations in the SMM state save must be saved to nonvolatile memory.

The fo
$

l lowing state is not automatically saved and restored following an SMI and the RSM
instruction, respectively:

• Debug registers DR0 through DR3.

• Th
$

e FPU registers.

• The MTRRs.

• Co

ntrol register CR2.

• Th
$

e model-specific registers (for the P6 family and Pentium®
�
 processors) or test registers

TR3 through TR7 (for the Pentium®
�
 and Intel486™ processors).

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR* No

7FC0H LDT Base* No

7FBCH GS* No

7FB8H FS* No

7FB4H DS* No

7FB0H SS* No

7FACH CS* No

7FA8H ES* No

7FA7H - 7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

Table 12-1. SMRAM State Save Map (Con td.)

Offset
(Added to SMBASE + 8000H) Register Wri table?

12-7

SYSTEM M
7

ANAGEMENT MODE (SMM)

• The state of the trap controller.

• The machine-check architecture registers.

• Th
$

e APIC internal interrupt state (ISR, IRR, etc.).

• The microcode update state.

If an S
�

MI is used to power down the processor, a power-on reset will be required before
return� ing to SMM, which will reset much of this state back to its default values. So an SMI
handler that is going to trigger power down should first read these registers listed above directly,
an� d save them (along with the rest of RAM) to nonvolatile storage. After the power-on reset, the
contø inuation of the SMI handler should restore these values, along with the rest of the system’s
sõ tate. Anytime the SMI handler changes these registers in the processor, it must also save and
rest� ore them.

NO
;

TE

A small subset of the MSRs (such as, the time-stamp counter and
perö formance-monitoring counter) are not arbitrarily writable and therefore
cannø ot be saved and restored. SMM-based power-down and restoration
sõ hould only be performed with operating systems that do not use or rely on
the values of these

ô
registers. Operating system developers should be aware of

this fact
ô

and ensure that their operating-system assisted power-down and
restoration software is immune to unexpected changes in these register
val� ues.

12.4.2. SMRAM Caching

An Intel Architecture processor supporting SMM does not unconditionally write back and inval-
idate its

�
 cache before entering SMM. Therefore, if SMRAM is in a location that is “shadowed”

b
ü
y any existing system memory that is visible to the application or operating system, then it is

necessary for the system to flush the cache upon entering SMM. This may be accomplished by
as� serting the FLUSH# pin at the same time as the request to enter SMM. The priorities of the
F

�
LUSH# pin and the SMI# are such that the FLUSH# will be serviced first. To guarantee this

behav
ü

ior, the processor requires that the following constraints on the interaction of SMI# and
FL

�
USH# be met.

In a
�

system where the FLUSH# pin and SMI# pins are synchronous and the set up and hold times
are met, then the FLUS� H# and SMI# pins may be asserted in the same clock. In asynchronous
sõ ystems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee
th

ô
at the FLUSH# pin is serviced first. Note that in Pentium®

�
 processor systems that use the

FLUSH# pin to write back and invalidate cache contents before entering SMM, the processor
wi& ll prefetch at least one cache line in between when the Flush Acknowledge cycle is run, and
t
ô
he subsequent recognition of SMI# and the assertion of SMIACT#. It is the obligation of the
sõ ystem to ensure that these lines are not cached by returning KEN# inactive to the Pentium®

�

proö cessor.

12-8

SYSTEM MANAGEMENT MODE (SMM)

Intel Architecture processors do not write back or invalidate their internal caches upon leaving
SMM. F
�

or this reason, references to the SMRAM area must not be cached if any part of the
S
�

MRAM shadows (overlays) non-SMRAM memory; that is, system DRAM or video RAM. It
is the obligation of the system to ensure that all memory references to overlapped areas are
un� cached; that is, the KEN# pin is sampled inactive during all references to the SMRAM area
fo
�

r the Pentium®
�
 processor. The WBINVD instruction should be used to ensure cache coherency

at the � end of a cached SMM execution in systems that have a protected SMM memory region
prö ovided by the chipset.

The P6 f
$

amily of processors have no external equivalent of the KEN# pin. All memory accesses
are typ� ed via the MTRRs. It is not practical therefore to have memory access to a certain address
be
ü

cached in one access and not cached in another. Intel does not recommend the caching of
SMM s
�

pace in any overlapping memory environment on the P6 family of processors.

12.5. SMI HANDLER EXECUTION ENVIRONMENT

After saving the current context of the processor, the processor initializes its core registers to the
valu� es shown in Table 12-2. Upon entering SMM, the PE and PG flags in control register CR0
are cleared� , which places the processor is in an environment similar to real-address mode. The
dif
�

ferences between the SMM execution environment and the real-address mode execution
envù ironment are as follows:

• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). (The
pö hysical address extension (enabled with the PAE flag in control register CR4) is not
sõ upported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the addressable
SMR

�
AM address space to the 1-MByte real-address mode limit for native real-address-

mode code. However, operand-size and address-size override prefixes can be used to
access the add� ress space beyond the 1-MByte.

• Near
#

jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit
o� perand-size override prefix is used. Due to the real-address-mode style of base-address
f

�
ormation, a far call or jump cannot transfer control to a segment with a base address of

m1 ore than 20 bits (1 MByte). However, since the segment limit in SMM is 4 GBytes,
of� fsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
o� perand-size override prefixes. Any program control transfer that does not have a 32-bit
o� perand-size override prefix truncates the EIP value to the 16 low-order bits.

12-9

SYSTEM M
7

ANAGEMENT MODE (SMM)

• Data and the stack can be located anywhere in the 4-GByte address space, but can be
access� ed only with a 32-bit address-size override if they are located above 1 MByte. As
with the cod& e segment, the base address for a data or stack segment cannot be more than 20
b

ü
its.

Th
$

e value in segment register CS is automatically set to the default of 30000H for the SMBASE
sõ hifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. When the EIP value
is

�
 added to shifted CS value (the SMBASE), the resulting linear address points to the first

in
�

struction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits
are s� et to 4 GBytes. In this state, the SMRAM address space may be treated as a single flat 4-
Gbyte linear ad

:
dress space. If a segment register is loaded with a 16-bit value, that value is then

sõ hifted left by 4 bits and loaded into the segment base (hidden part of the segment register). The
li

,
mits and attributes are not modified.

Mask
�

able hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts,
sõ ingle-step traps, breakpoint traps, and INIT operations are inhibited when the processor enters
S

�
MM. Maskable hardware interrupts, exceptions, single-step traps, and breakpoint traps can be

enù abled in SMM if the SMM execution environment provides and initializes an interrupt table
and the n� ecessary interrupt and exception handlers (refer to Section 12

�
.6., “Exceptions and

Interr
�

upts Within SMM”).

Table 12-2. Proc essor Reg ister Initia lizatio n in SMM

Regis ter Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS and PG flags set to 0; others unmodified

DR6 Undefined

DR7 00000400H

12-10

SYSTEM MANAGEMENT MODE (SMM)

12.6. EXCEPTIONS AND INTERRUPTS WITHIN SMM

Wh
÷

en the processor enters SMM, all hardware interrupts are disabled in the following manner:

• Th
$

e IF flag in the EFLAGS register is cleared, which inhibits maskable hardware
interrupts from being generated.

• The TF flag in the EFLAGS register is cleared, which disables single-step traps

• Deb
(

ug register DR7 is cleared, which disables breakpoint traps. (This action prevents a
d

�
ebugger from accidentally breaking into an SMM handler if a debug breakpoint is set in

n� ormal address space that overlays code or data in SMRAM.)

• NMI,
#

 SMI, and A20M interrupts are blocked by internal SMM logic. (Refer to Section
12.7., “NMI Handling While in SMM” for further information about how NMIs are
h

8
andled in SMM.)

So
�

ftware-invoked interrupts and exceptions can still occur, and maskable hardware interrupts
canø be enabled by setting the IF flag. Intel recommends that SMM code be written in so that it
d
�
oes not invoke software interrupts (with the INT n< , INT� O, INT 3, or BOUND instructions) or

gen	 erate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table and the
n� ecessary exception and interrupt handlers must be created and initialized from within SMM.
Un
�

til the interrupt table is correctly initialized (using the LIDT instruction), exceptions and soft-
ware in& terrupts will result in unpredictable processor behavior.

The
$

following restrictions apply when designing SMM interrupt and exception-handling
faciliti
�

es:

• The interrupt table should be located at linear address 0 and must contain real-address
mo1 de style interrupt vectors (4 bytes containing CS and IP).

• Due
(

 to the real-address mode style of base address formation, an interrupt or exception
canø not transfer control to a segment with a base address of more that 20 bits.

• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits
(

ý
64 KBytes).

• W
÷

hen an exception or interrupt occurs, only the 16 least-significant bits of the return
ad� dress (EIP) are pushed onto the stack. If the offset of the interrupted procedure is greater
th

ô
an 64 KBytes, it is not possible for the interrupt/exception handler to return control to

th
ô

at procedure. (One solution to this problem is for a handler to adjust the return address on
the s

ô
tack.)

• Th
$

e SMBASE relocation feature affects the way the processor will return from an interrupt
o� r exception generated while the SMI handler is executing. For example, if the SMBASE
is relo

�
cated to above 1 MByte, but the exception handlers are below 1 MByte, a normal

r� eturn to the SMI handler is not possible. One solution is to provide the exception handler
with & a mechanism for calculating a return address above 1 MByte from the 16-bit return
ad� dress on the stack, then use a 32-bit far call to return to the interrupted procedure.

12-11

SYSTEM M
7

ANAGEMENT MODE (SMM)

• If an SMI handler needs access to the debug trap facilities, it must insure that an SMM
access� ible debug handler is available and save the current contents of debug registers DR0
t

ô
hrough DR3 (for later restoration). Debug registers DR0 through DR3 and DR7 must then
be i

ü
nitialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that an SMM
access� ible single-step handler is available, and then set the TF flag in the EFLAGS
register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or
sõ oftware-generated interrupts while in SMM, it must ensure that SMM accessible interrupt
handlers are available and then set the IF flag in the EFLAGS register (using the STI
ins

�
truction). Software interrupts are not blocked upon entry to SMM, so they do not need

to b
ô

e enabled.

12.7. NMI HANDLING WHILE IN SMM

NMI i
#

nterrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the
S

�
MI handler, it is latched and serviced after the processor exits SMM. Only one NMI request

wil& l be latched during the SMI handler. If an NMI request is pending when the processor
exù ecutes the RSM instruction, the NMI is serviced before the next instruction of the interrupted
code sø equence.

Al though NMI requests are blocked when the CPU enters SMM, they may be enabled through
sõ oftware by executing an IRET/IRETD instruction. If the SMM handler requires the use of NMI
in

�
terrupts, it should invoke a dummy interrupt service routine for the purpose of executing an

IRET/IRETD instruction. Once an IRET/IRETD instruciton is executed, NMI interrupt requr-
esù ts are serviced in the same “real mode” manner in which they are handled outside of SMM.

A special case can
�

 occur if an SMI handler nests inside an NMI handler and then another NMI
o� ccurs. During NMI interrupt handling, NMI interrupts are disabled, so normally NMI inter-
rup� ts are serviced and completed with an IRET instruction one at a time. When the processor
enters SMM while executingù an NMI handler, the processor saves the SMRAM state save map
b

ü
ut does not save the attribute to keep NMI interrupts disabled. Potentially, an NMI could be

l
,
atched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous
NMI h

#
andler has still not completed. One or more NMIs could thus be nested inside the first

NMI h
#

andler. The NMI interrupt handler should take this possibility into consideration.

Al
�

so, for the Pentium®
�
 processor, exceptions that invoke a trap or fault handler will enable NMI

in
�

terrupts from inside of SMM. This behavior is implementation specific for the Pentium®
�

proö cessor and is not part the Intel Architecture.

12.8. SAVING THE FPU STATE WHILE IN SMM

In
�

some instances (for example prior to powering down system memory when entering a 0-volt
sõ uspend state), it is necessary to save the state of the FPU while in SMM. Care should be taken
wh& en performing this operation to insure that relevant FPU state information is not lost. The

12-12

SYSTEM MANAGEMENT MODE (SMM)

safesõ t way to perform this task is to place the processor in 32-bit protected mode before saving
the FPU s
ô

tate. The reason for this is as follows.

The
$

FSAVE instruction saves the FPU context in any of four different formats, depending on
which & mode the processor is in when FSAVE is executed (refer to Figures 7-13 through 7-16 in
th
ô

e I
�
ntel Architecture Software Developer’s Manual, Volume 1). W

û
hen in SMM, by default, the

16-bit real-address mode format is used (shown in Figure 7-16). If an SMI interrupt occurs while
th
ô

e processor is in a mode other than 16-bit real-address mode, FSAVE and FRSTOR will be
u� nable to save and restore all the relevant FPU information, and this situation may result in a
mal1 function when the interrupted program is resumed. To avoid this problem, the processor
sõ hould be in 32-bit protected mode when executing the FSAVE and FRSTOR instructions.

The
$

following guidelines should be used when going into protected mode from an SMI handler
to save a
ô

nd restore the FPU state:

• Use the C
�

PUID instruction to insure that the processor contains an FPU.

• C

reate a 32-bit code segment in SMRAM space that contains procedures or routines to
save andõ restore the FPU using the FSAVE and FRSTOR instructions, respectively. A
GDT with an

:
 appropriate code-segment descriptor (D bit is set to 1) for the 32-bit code

segmenõ t must also be placed in SMRAM.

• W
÷

rite a procedure or routine that can be called by the SMI handler to save and restore the
FPU state. This procedure should do the following:

— Place the processor in 32-bit protected mode as describe in Section 8.8.1., “Switching
t
ô
o Protected Mode” in Chapter 8, Pr

�
ocessor Management and Initialization.

— Execute a far JMP to the 32-bit code segment that contains the FPU save and restore
proö cedures.

— Place the processor back in 16-bit real-address mode before returning to the SMI
handler (refer to Section 8.8.2., “Switching Back to Real-Address Mode” in Chapter 8,
Pr
�

ocessor Management and Initialization).
û

The SMI h
$

andler may continue to execute in protected mode after the FPU state has been saved
an� d return safely to the interrupted program from protected mode. However, it is recommended
th
ô

at the handler execute primaril y in 16- or 32-bit real-address mode.

12.9. SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM exten-
sioõ ns that are supported by the processor (refer to Figure 12-2). The SMM revision identifier
is written d
�

uring SMM entry and can be examined in SMRAM space at offset 7EFCH. The
lower word of the SMM revision identifier refers to the version of the base SMM architecture.

12-13

SYSTEM M
7

ANAGEMENT MODE (SMM)

The u
$

pper word of the SMM revision identifier refers to the extensions available. If the I/O
in

�
struction restart flag (bit 16) is set, the processor supports the I/O instruction restart (refer to

S
�

ection 12.12., “I/O Instruction Restart”); if the SMBASE relocation flag (bit 17) is set,
SMR

�
AM base address relocation is supported (refer to Section 12.11., “SMBASE Relocation”).

12.10. AUTO HALT RESTART

If th
�

e processor is in a HALT state (due to the prior execution of a HLT instruction) when it
receives an SMI, the processor records the fact in the auto HALT restart flag in the saved
proö cessor state (refer to Figure 12-3). (This flag is located at offset 7F02H and bit 0 in the state
sõ ave area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI
occur� red when the processor was in the HALT state), the SMI handler has two options:

• It can l
�

eave the auto HALT restart flag set, which instructs the RSM instruction to return
pö rogram control to the HLT instruction. This option in effect causes the processor to re-
enù ter the HALT state after handling the SMI. (This is the default operation.)

• It can
�

 clear the auto HALT restart flag, with instructs the RSM instruction to return
pö rogram control to the instruction following the HLT instruction.

Figure 12-2 . SMM Revis ion Iden tifier

Figu
�

re 12-3. Auto HAL T Restart Field

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Reserved

Register Offset
7EFCH

31
=

0
>

Reserved

1817 16 15

Auto HALT Restart

0
>

15

Reserved

Register Offset
7F02H

1

12-14

SYSTEM MANAGEMENT MODE (SMM)

These options are summarized in Table 12-3. Note that if the processor was not in a HALT state
wh& en the SMI was received (the auto HALT restart flag is cleared), setting the flag to 1 will
cause unø predictable behavior when the RSM instruction is executed.

If
�

the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT
instruction (if it is not in the internal cache), and execute a HLT bus transaction. This behavior
resu� lts in multiple HLT bus transactions for the same HLT instruction.

12.10.1. Executing the HL T Inst ructi on i n SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled
b
ü
y setting the IF flag in the EFLAGS register. If the processor is halted in SMM, the only event

that can remo
ô

ve the processor from this state is a maskable hardware interrupt or a hardware
reset.

12.11. SMBASE RELOCATION

Th
$

e default base address for the SMRAM is 30000H. This value is contained in an internal
prö ocessor register called the SMBASE register. The operating system or executive can relocate
the
ô

SMRAM by setting the SMBASE field in the saved state map (at offset 7EF8H) to a new
valu� e (refer to Figure 12-4). The RSM instruction reloads the internal SMBASE register with
the v
ô

alue in the SMBASE field each time it exits SMM. All subsequent SMI requests will use
the n
ô

ew SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H)
and� the SMRAM state save area (from SMBASE + FE00H to SMBASE + FFFFH). (The
prö ocessor resets the value in its internal SMBASE register to 30000H on a RESET, but does not
chø ange it on an INIT.) In multiple-processor systems, initialization software must adjust the

T
'
able 12-3. Auto HALT Restart Flag Values

Value of Fl ag A fter E ntry
to

?
 SMM

Value of F lag When
Exiting SMM Actio n of Processor W hen Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program
or task

Unpredictable

Returns to next instruction after HLT instruction

Returns to HALT state

12-15

SYSTEM M
7

ANAGEMENT MODE (SMM)

S
�

MBASE value for each processor so that the SMRAM state save areas for each processor do
not� overlap. (For Pentium®

�
 and Intel486™ processors, the SMBASE values must be aligned on

a 3� 2-KByte boundary or the processor will enter shutdown state during the execution of a RSM
instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the abilit y
to relo

ô
cate the SMBASE (refer to Section 12.9., “SMM Revision Identifier”).

12.11.1. Reloc ating SMRAM to an Addres s Abov e 1 MByte

In SMM, the segment base registers can only be updated by changing the value in the segment
regi� sters. The segment registers contain only 16 bits, which allows only 20 bits to be used for a
sõ egment base address (the segment register is shifted left 4 bits to determine the segment base
addr� ess). If SMRAM is relocated to an address above 1MByte, software operating in real-
ad� dress mode can no longer initiali ze the segment registers to point to the SMRAM base address
(SMBASE).

ý

The SMRAM can still be accessed by using 32-bit address-size override prefixes to generate an
o� ffset to the correct address. For example, if the SMBASE has been relocated to FFFFFFH
(im

ý
mediately below the 16-MByte boundary) and the DS, ES, FS, and GS registers are still

initi alized to 0H, data in SMRAM can be accessed by using 32-bit displacement registers, as in
the fo

ô
ll owing example:

mov esi,00FFxxxxH; 64K segment immediately below 16M

mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

12.12. I/O INSTRUCTION RESTART

If the I/O instruction restart flag in the SMM revision identifier field is set (refer to Section 12.9.,
“SMM Revision Identifier”), the I/O instruction restart mechanism is present on the processor.
Th

$
is mechanism allows an interrupted I/O instruction to be re-executed upon returning from

S
�

MM mode. For example, if an I/O instruction is used to access a powered-down I/O device, a
chip sø et supporting this device can intercept the access and respond by asserting SMI#. This
act� ion invokes the SMI handler to power-up the device. Upon returning from the SMI handler,
the I/O i

ô
nstruction restart mechanism can be used to re-execute the I/O instruction that caused

th
ô

e SMI.

Figure 12-4. SMBASE Reloca tion Field

0
>

31
=

SMM Base
Register Offset
7EF8H

12-16

SYSTEM MANAGEMENT MODE (SMM)

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, refer to Figure
12-5) controls I/O instruction restart. When an RSM instruction is executed, if this field contains
the value F
ô

FH, then the EIP register is modified to point to the I/O instruction that received the
SMI requ
�

est. The processor will then automatically re-execute the I/O instruction that the SMI
trapp
ô

ed. (The processor saves the necessary machine state to insure that re-execution of the
in
�

struction is handled coherently.)

If
�

the I/O instruction restart field contains the value 00H when the RSM instruction is executed,
th
ô

en the processor begins program execution with the instruction following the I/O instruction.
(Wh
ý

en a repeat prefix is being used, the next instruction may be the next I/O instruction in the
repeat� loop.) Not re-executing the interrupted I/O instruction is the default behavior; the
pö rocessor automatically initializes the I/O instruction restart field to 00H upon entering SMM.
T
$
able 12-4 summarizes the states of the I/O instruction restart field.

Note that the I/O instruction
#

 restart mechanism does not indicate the cause of the SMI. It is the
responsibility of the SMI handler to examine the state of the processor to determine the cause of
th
ô

e SMI and to determine if an I/O instruction was interrupted and should be restarted upon
exitingù SMM. If an SMI interrupt is signaled on a non-I/O instruction boundary, setting the I/O
instruction restart field to FFH prior to executing the RSM instruction will likely result in a
prö ogram error.

12.12.1. Back-to-Bac k SMI Interr upts When I/O Instruc tion Restart
Is Being Us ed

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred
on� an I/O instruction boundary, the processor will service the new SMI request before restarting
th
ô

e originally interrupted I/O instruction. If the I/O instruction restart field is set to FFH prior to
retu� rning from the second SMI handler, the EIP will point to an address different from the orig-
in
�

ally interrupted I/O instruction, which will lik ely lead to a program error. To avoid this situa-
tion,
ô

 the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts

Figure 12-5. I/O Instruc tion Re start Field

Table 12-4. I/O Instructio n Restart Fi eld Values

Value of Flag After
Entry to SMM

Value of Flag When
Exitin g SMM Acti on of Processor W hen Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

0
>

15

I/O Instruction Restart Field Register Offset
7F00H

12-17

SYSTEM M
7

ANAGEMENT MODE (SMM)

wh& en I/O instruction restart is being used and insure that the handler sets the I/O instruction
rest� art field to 00H prior to returning from the second invocation of the SMI handler.

12.13. SMM MULTIPLE-PROCESSOR CONSIDERATIONS

The following should be noted when designing multiple-processor systems:

• Any processor in a multiprocessor system can respond to an SMM.

• Each
�

 processor needs its own SMRAM space. This space can be in system memory or in a
sõ eparate RAM.

• The SMRAMs for different processors can be overlapped in the same memory space. The
on� ly stipulation is that each processor needs its own state save area and its own dynamic
data storag

�
e area. (Also, for the Pentium®

�
 and Intel486™ processors, the SMBASE

add� ress must be located on a 32-KByte boundary.) Code and static data can be shared
amo� ng processors. Overlapping SMRAM spaces can be done more efficiently with the P6
family processors because they do not require that the SMBASE address be on a 32-KByte
bo

ü
undary.

• Th
$

e SMI handler will need to initialize the SMBASE for each processor.

• Processors can respond to local SMIs through their SMI# pins or to SMIs received through
the APIC

ô
 interface. The APIC interface can distribute SMIs to different processors.

• T
$
wo or more processors can be executing in SMM at the same time.

• W
÷

hen operating Pentium®
�
 processors in dual processing (DP) mode, the SMIACT# pin is

dr
�

iven only by the MRM processor and should be sampled with ADS#. For additional
d

�
etails, refer to Chapter 14 of the Pen

�
tium®

@
 Pr

�
ocessor Family User’s Manual, Volume 1.

S
�

MM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE.
If th

�
ere is a need to support two or more processors in SMM mode at the same time then each

proö cessor should have dedicated SMRAM spaces. This can be done by using the SMBASE
Relocation feature (refer to S

�
ection 12.11., “SMBASE Relocation”).

12-18

SYSTEM MANAGEMENT MODE (SMM)

13
Machine-Check
Ar chitecture

13-1

MACHINE-CHECK ARCHITECTURE

CHAPTER 13
MACHINE-CHECK ARCHITECTURE

This chapter d
$

escribes the P6 family’s machine-check architecture and machine-check excep-
ti

ô
on mechanism. Refer to Chapter 5, Interrupt and Exception Handling for more information on

the mach
ô

ine-check exception. A brief description of the Pentium®
�
 processor’s machine check

capø ability is also given.

13.1. MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE

The P6 family of processors implement a machine-check architecture that provides a mecha-
nis� m for detecting and reporting hardware (machine) errors, such as system bus errors, ECC
erroù rs, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers
(MSR

ý
s) that are used to set up machine checking and additional banks of MSRs for recording

the erro
ô

rs that are detected. The processor signals the detection of a machine-check error by
gener	 ating a machine-check exception (#MC). A machine-check exception is generally an abort
clasø s exception. The implementation of the machine-check architecture, does not ordinarily
permö it the processor to be restarted reliably after generating a machine-check exception;
however, the machine-check-exception handler can collect information about the machine-
check ø error from the machine-check MSRs.

13.2. COMPATIBILITY WITH PENTIUM®
A

PROCESSOR

The P6 family processors support and extend the machine-check exception mechanism used in
th

ô
e Pentium®

�
 processor. The Pentium®

�
 processor reports the following machine-check errors:

• Data par
(

ity errors during read cycles.

• Unsuccess
�

ful completion of a bus cycle.

These errors are reported through the P5_MC_TYPE and P5_MC_ADDR MSRs, which are
implemen

�
tation specific for the Pentium®

�
 processor. These MSRs can be read with the RDMSR

instruction. Refer to Table B-1 in Appendix B, Model-Specific Registers for the register
addr� esses for these MSRs.

The mach
$

ine-check error reporting mechanism that the Pentium®
�
 processors use is similar to

that
ô

used in the P6 family processors. That is, when an error is detected, it is recorded in the
P
)

5_MC_TYPE and P5_MC_ADDR MSRs and then the processor generates a machine-check
exceptioù n (#MC).

Refer to S
�

ection 13.3.3., “Mapping of the Pentium® Processor Machine-Check Errors to the P6
F
�

amily Machine-Check Architecture” and Section 13.7.2., “Pentium® Processor Machine-
C

heck Exception Handling” for information on compatibili ty between machine-check code
writt& en to run on the Pentium®

�
 processors and code written to run on P6 family processors.

13-2

MACHINE-CHECK ARCHITECTURE

13.3. MACHINE-CHECK MSRS

The machine check MSRs in the P6 family processors consist of a set of global control and
stõ atus registers and several error-reporting register banks (refer to Figure 13-1). Each error-
rep� orting bank is associated with a specific hardware unit (or group of hardware units) within
the p
ô

rocessor. The RDMSR and WRMSR instructions are used to read and write these
r� egisters.

13.3.1. Mach ine-Check Global Control MSRs

The machine-check global control registers include the MCG_CAP, MCG_STATUS, and
MCG_
�

CTL MSRs. Refer to Appendix B, Mo
6

del-Specific Registers for the addresses of these
r� egisters.

13.3.1.1. MCG_CAP MSR

The MCG_CAP MSR is a read-only register that provides information about the machine-check
arch� itecture implementation in the processor (refer to Figure 13-2). It contains the following
field an
�

d flag:

Co
B

unt field, bits 0 through 7
In
�

dicates the number of hardware unit error-reporting banks available in a particular
prö ocessor implementation.

MCG_CTL_P (register present) flag, bit 8
In
�

dicates that the MCG_CTL register is present when set, and absent when clear.

Bi
C

ts 9 through 63 are reserved. The effect of writing to the MCG_CAP register is undefined.
Figure 5-1 shows the bit fields of MCG_CAP.

Figure 1 3-1. Machine-Ch eck MSRs

0

63 0

63

MCG_CAP Register

MCG_STATUS Register

Error-Reporting Bank Registers

0

63 0

63

MCi_CTL Register

MCi_STATUS Register

0

63 0

63

MCi
D
_ADDR Register

MCi
D
_MISC Register

Global Control Registers
(One Set for Each Hardware Unit)

063

MCG_CTL Register*

* Not present in the Pentium® Pro
 processor.

13-3

MACHINE-CHECK ARCHITECTURE

13.3.1.2. MCG_STATUS MSR

The MCG_STATUS MSR describes the current state of the processor after a machine-check
exceptioù n has occurred (refer to Figure 13-3). This register contains the following flags:

RI
E

PV (restart IP valid) flag, bit 0
Indicates (when set) that program execution can be restarted reliably at the instruction
poinö ted to by the instruction pointer pushed on the stack when the machine-check
exceptioù n is generated. When clear, the program cannot be reliably restarted at the
pusö hed instruction pointer.

EI
F

PV (error IP valid) flag, bit 1
In

�
dicates (when set) that the instruction pointed to by the instruction pointer pushed

onto� the stack when the machine-check exception is generated is directly associated
wi& th the error. When this flag is cleared, the instruction pointed to may not be associ-
ated with the � error.

MCI P (machine check in progress) flag, bit 2
Ind

�
icates (when set) that a machine-check exception was generated. Software can set

or � clear this flag. The occurrence of a second Machine-Check Event while MCIP is set
wi& ll cause the processor to enter a shutdown state.

B
C

its 3 through 63 in the MCG_STATUS register are reserved.

F
�

igure 13-2. MCG_CAP Regi ster

F
�

igure 13-3. MCG_STATUS Regis ter

Count—Number of reporting banks
MCG_CTL_P—MCG_CTL register present

63
G

0
>

Reserved

7
H

Count

8
�

9
I

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63
G

0
>

Reserved

12
J

3
=

E
K
I

L
P
V

M
M
C

N
I

L
P

R
O
I

L
P

P
V

RIPV—Restart IP valid flag

13-4

MACHINE-CHECK ARCHITECTURE

13.3.1.3. MCG_CTL MSR

The MCG_CTL register is present if the capabil ity flag MCG_CTL_P is set in the MCG_CAP
reg� ister. The MCG_CTL register controls the reporting of machine-check exceptions. If present
(MCG
ý

_CTL_P flag in the MCG_CAP register is set), writing all 1s to this register enables all
machine-check features and writing all 0s disables all machine-check features. All other values
are u� ndefined and/or implementation specific.

13.3.2. Error-Reporting Register Banks

Each error-reporting register bank can contains an MCi
Q
_CTL, MCi

Q
_STATUS, MCi

Q
_ADDR, and

MC
�

i
Q
_MISC MSR. The P6 family processors provide five banks of error-reporting registers. The

firs
�

t error-reporting register (MC0_CTL) always starts at address 400H. Refer to Table B-1 in
Appendix B, Model-Specific Registers for the addresses of the other error-reporting registers.

13.3.2.1. MCi_CTL MSR

The MC
$

i
Q
_CTL MSR controls error reporting for specific errors produced by a particular hard-

ware u& nit (or group of hardware units). Each of the 64 flags (EEj
R
) r

û
epresents a potential error.

Sett
�

ing an EEj
R
 flag enables reporting of the associated error and clearing it disables reporting of

th
ô

e error. Writing the 64-bit value FFFFFFFFFFFFFFFFH to an MCi
Q
_CTL register enables

log
,

ging of all errors. The processor does not write changes to bits that are not implemented.
Figure 13-4 shows the bit fields of MCi

Q
_CTL

NOTE

Ope
�

rating system or executive software must not modify the contents of the
MC0_CTL register. The MC0_CTL register is internally aliased to the
EB

�
L_CR_POWERON register and as such controls system-specific error

h
8
andling features. These features are platform specific. System specific

firmware (the BIOS) is responsible for the appropriate initiali zation of
MC

�
0_CTL. The P6 family processors only allows the writing of all 1s or all

0s
S

 to the MCi
Q
_CTL registers.

Figure 13-4. MCi_CTL Register

EEj
T
—Error reporting enable flag

63
G

0
>

123
=

E
E
0

U
1

E
E
0

U
2

V

E
E
0

U
0

U

E
E

K
6

W
1

E
E

K
6

W
2

V

E
K
E

K
6

W
3

X

62
G

61

.

 (where j is 00 through 63)

13-5

MACHINE-CHECK ARCHITECTURE

13.3.2.2. MCi_STATUS MSR

The MCi
Q
_STATUS MSR contains information related to a machine-check error if its VAL

(valid)
ý

 flag is set (refer to Figure 13-5). Software is responsible for clearing the MCi
Q
_STATUS

regY ister by writing it with all 0s; writing 1s to this register will cause a general-protection excep-
ti

ô
on to be generated. The flags and fields in this register are as follows:

M
Z

CA (machine-check architecture) error code field, bits 0 through 15
S

�
pecifies the machine-check architecture-defined error code for the machine-check

erro[r condition detected. The machine-check architecture-defined error codes are
guar	 anteed to be the same for all Intel Architecture processors that implement the
machin1 e-check architecture. Refer to Secti

�
on 13.6., “Interpreting the MCA Error

C

odes” for information on machine-check error codes.

Model-specific error code field, bits 16 thr ough 31
S

�
pecifies the model-specific error code that uniquely identifies the machine-check

erro[r condition detected. The model-specific error codes may differ among Intel Archi-
tect

ô
ure processors for the same machine-check error condition.

Oth
\

er information field, bits 32 through 56
The fun

$
ctions of the bits in this field are implementation specific and are not part of the

machine-check architecture. Software that is intended to be portable among Intel
Arch

�
itecture processors should not rely on the values in this field.

PCC (pr
]

ocessor context corrup t) flag, bit 57
Indicates (when set) that the state of the processor might have been corrupted by the
erro[r condition detected and that reliable restarting of the processor may not be
possi^ ble. When clear, this flag indicates that the error did not affect the processor’s
sõ tate.

AD
_

DRV (MC i
`
_ADDR register valid) flag, bit 58

Ind
�

icates (when set) that the MCi
Q
_ADDR register contains the address where the error

occura red (refer to Section 13.3.2.3., “MCi_ADDR MSR”). When clear, this flag indi-
catesø that the MCi

Q
_ADDR register does not contain the address where the error

occura red. Do not read these registers if they are not implemented in the processor.

Figu
�

re 13-5. MCi_STATUS Regis ter

PCC—Processor context corrupt

63
G

0
>

62
G

6160 5958 5756 32 31 16 15

V
O

b U
c
C

N E
N

P
C

N
C

N Other Information Model-Specific MCA Error Code
Error Code

ADDRV—MCi_ADDR register valid
MISCV—MCi

D
_MISC register valid

EN—Error enabled
UC—Uncorrected error
OVER—Error overflow
VAL—MCi

D
_STATUS register valid

A
L

d

13-6

MACHINE-CHECK ARCHITECTURE

MI SCV (MCi
`
_MISC register valid) flag, bit 59

In
�

dicates (when set) that the MCi
Q
_MISC register contains additional information

regY arding the error. When clear, this flag indicates that the MCi
Q
_MISC register does

not contain additional information regarding the error. Do not read these registers if
they
ô

 are not implemented in the processor

EN (
F

error enabled) flag, bit 60
Indicates (when set) that the error was enabled by the associated EEj bit of the
MC
�

i
Q
_CTL register.

UC (err
e

or uncorrected) flag, bit 61
Indicates (when set) that the processor did not or was not able to correct the error condi-
tion.
ô

 When clear, this flag indicates that the processor was able to correct the error
coø ndition.

OVE
\

R (machine check overflow) f lag, bit 62
In
�

dicates (when set) that a machine-check error occurred while the results of a previous
error [were still in the error-reporting register bank (that is, the VAL bit was already set
in the MCi

Q
_STATUS register). The processor sets the OVER flag and software is

respoY nsible for clearing it. Enabled errors are written over disabled errors, and uncor-
rectedY errors are written over corrected errors. Uncorrected errors are not written over
pr^ evious valid uncorrected errors.

VA
f

L (MCi
`
_STATUS register valid) flag, bit 63

Ind
�

icates (when set) that the information within the MCi
Q
_STATUS register is valid.

W
÷

hen this flag is set, the processor follows the rules given for the OVER flag in the
MC
�

i
Q
_STATUS register when overwriting previously valid entries. The processor sets

the V
ô

AL flag and software is responsible for clearing it.

13.3.2.3. MCi_ADDR MSR

The MCi
Q
_ADDR MSR contains the address of the code or data memory location that produced

the machine-
ô

check error if the ADDRV flag in the MCi
Q
_STATUS register is set (refer to Section

13.3.2.2., “MCi_STATUS MSR”). The address returned is either 32-bit offset into a segment,
32
+

-bit linear address, or 36-bit physical address, depending upon the type of error encountered.
B
C

its 36 through 63 of this register are reserved for future address expansion and are always read
as zeros.g

Figure 13-6. Machine-Ch eck Bank Addres s Regis ter

Address

63
G

0
>

Reserved

35
=

36
=

13-7

MACHINE-CHECK ARCHITECTURE

13.3.2.4. MCi_MISC MSR

The MCi
Q
_MISC MSR contains additional information describing the machine-check error if the

MISCV flag in th
�

e MCi
Q
_STATUS register is set. This register is not implemented in any of the

erro[r-reporting register banks for the P6 family processors.

13.3.3. Mapping of the Pentium ®
A

Processor M achine-Check Errors
to

h
the P6 Fami ly Machine -Check Architec ture

Th
$

e Pentium®
�
 processor reports machine-check errors using two registers: P5_MC_TYPE and

P5_MC_ADDR. The P6 family processors map these registers into the MCi
Q
_STATUS and

MC
�

i
Q
_ADDR registers of the error-reporting register bank that reports on the type of external bus

erro[rs reported in the P5_MC_TYPE and P5_MC_ADDR registers. The information in these
registers can then be accessed in either of two ways:

• By reading the MCi
Q
_STATUS and MCi

Q
_ADDR registers as part of a generalized machine-

checkø exception handler written for a P6 family processor.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers with the RDMSR instruction.

Th
$

e second access capability permits a machine-check exception handler written to run on a
Pe

)
ntium®

�
 processor to be run on a P6 family processor. There is a limitation in that information

returned by the P6 family processor will be encoded differently than it is for the Pentium®
�

p^ rocessor. To run the Pentium®
�
 processor machine-check exception handler on a P6 family

p^ rocessor, it must be rewritten to interpret the P5_MC_TYPE register encodings correctly.

13.4. MACHINE-CHECK AVAILAB ILITY

The machine-check architecture and machine-check exception (#MC) are model-specific
feature

�
s. Software can execute the CPUID instruction to determine whether a processor imple-

ments these features. Following the execution of the CPUID instruction, the settings of the MCA
flag (b

�
it 14) and MCE flag (bit 7) in the EDX register indicate whether the processor implements

the mach
ô

ine-check architecture and machine-check exception, respectively.

13.5. MACHINE-CHECK INITIALIZATIO N

To use the processors machine-check architecture, software must initialize the processor to acti-
vate the mach� ine-check exception and the error-reporting mechanism. Example 13-1 gives
ps^ eudocode for performing this initialization. This pseudocode checks for the existence of the
machin1 e-check architecture and exception on the processor, then enables the machine-check
exceptio[n and the error-reporting register banks. The pseudocode assumes that the machine-
chø eck exception (#MC) handler has been installed on the system. This initialization procedure
is

�
 compatible with the Pentium®

�
 and P6 family processors.

13-8

MACHINE-CHECK ARCHITECTURE

Example 13-1. Machine-Ch eck Initi alizatio n Pseudo code

EXECUTE the CPUID instruction;
READ bits 7 (MCE) and 14 (MCA) of the EDX register;
IF CPU supports MCE

THEN
IF CPU supports MCA

THEN
IF MCG_CAP.MCG_CTL_P = 1 (* MCG_CTL register is present *)

Set MCG_CTL register to all 1s; (* enables all MCA features *)
FI;
COUNT ←i MCG_CAP.Count;
(* determine number of error-reporting banks supported *)
FOR error-reporting banks (1 through COUNT) DO

Set MCi_CTL register to all 1s;
(* enables logging of all errors except for the MC0_CTL register *)

OD
FOR error-reporting banks (0 through COUNT) DO

Set MCi_STATUS register to all 0s; (* clears all errors *)
OD

FI;
Set the MCE flag (bit 6) in CR4 register to enable machine-check exceptions;

FI;

The processor can write valid information (such as an ECC error) into the MCi
Q
_STATUS regis-

ters wh
ô

ile it is being powered up. As part of the initialization of the MCE exception handler, soft-
ware m& ight examine all the MCi

Q
_STATUS registers and log the contents of them, then rewrite

th
ô

em all to zeros. This procedure is not included in the initiali zation pseudocode in Example
13-1.

13.6. INTERPRETING THE MCA ERROR CODES

W
÷

hen the processor detects a machine-check error condition, it writes a 16-bit error code in the
MCA Erro
�

r Code field of one of the MCi
Q
_STATUS registers and sets the VAL (valid) flag in

that register
ô

. The processor may also write a 16-bit Model-specific Error Code in the
MCi

Q
_STATUS register depending on the implementation of the machine-check architecture of

the p
ô

rocessor.

The MC
$

A error codes are architecturally defined for Intel Architecture processors; however, the
specific MCõ i

Q
_STATUS register that a code is written into is model specific. To determine the

cause oø f a machine-check exception, the machine-check exception handler must read the VAL
flag fo
�

r each MCi
Q
_STATUS register, and, if the flag is set, then read the MCA error code field

ofa the register. It is the encoding of the MCACOD value that determines the type of error being
repY orted and not the register bank reporting it.

Ther
$

e are two types of MCA error codes: simple error codes and compound error codes.

13-9

MACHINE-CHECK ARCHITECTURE

13.6.1. Simpl e Error Codes

Table 13-1 shows the simple error codes. These unique codes indicate global error information.

13.6.2. Compound Error Codes

The comp
$

ound error codes describe errors related to the TLBs, memory, caches, bus and inter-
connø ect logic. A set of sub-fields is common to all of the compound error encodings. These sub-
fields describe

�
the type of access, level in the memory hierarchy, and type of request. Table 13-2

sõ hows the general form of the compound error codes. The interpretation column indicates the
name of a compound error. The name is constructed by substituting mnemonics from Tables
13-2 through 13-6 for the sub-field names given within curly braces. For example, the error code
IC

�
ACHEL1_RD_ERR is constructed from the form:

{TT}CACHE{LL}_{RRRR}_ERR

where & {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

The 2
$

-bit TT sub-field (refer to Table 13-2) indicates the type of transaction (data, instruction,
or gena eric). It applies to the TLB, cache, and interconnect error conditions. The generic type is
reported when the processor cannot determine the transaction type.

Table 13-1. Simp le Error Co des

Error Code Bin ary Encod ing Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM Parity
Error

0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused
t

�
his processor to enter machine check.

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check)
master/slave error

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors

Table 13-2. General Forms of Com poun d Error Code s

T
j

ype Form Interpretatio n

TLB Er

rors 0000 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Hierarchy Errors 0000 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect
Errors

0000 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

13-10

MACHINE-CHECK ARCHITECTURE

The 2-b
$

it LL sub-field (refer to Table 13-4) indicates the level in the memory hierarchy where
t
ô
he error occurred (level 0, level 1, level 2, or generic). The LL sub-field also applies to the TLB,
cachø e, and interconnect error conditions. The P6 family processors support two levels in the
cache hierarø chy and one level in the TLBs. Again, the generic type is reported when the
pr^ ocessor cannot determine the hierarchy level.

The 4-bit RRRR sub-field (refer to Table 13-5) indicates the type of action associated with the
erro[r. Actions include read and write operations, prefetches, cache evictions, and snoops.
Generic erro
:

r is returned when the type of error cannot be determined. Generic read and generic
write are r& eturned when the processor cannot determine the type of instruction or data request
that caused the er
ô

ror. Eviction and Snoop requests apply only to the caches. All of the other
reqY uests apply to TLBs, caches and interconnects.

Table 13-3. Encodin g for T T (Transaction Type) Sub-Field

Transactio n Type Mnemonic Binary Encod ing

Instruction I 00

Data D 01

Generic G 10

Table 13-4. Level Encod ing for LL (Memory Hierarc hy Level) Sub -Field

Hierarchy Level Mnemonic Binary Encod ing

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 13-5. Encod ing o f Request (RRRR) Sub-Fi eld

Request Type Mnemoni c Binar y Encodi ng

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

13-11

MACHINE-CHECK ARCHITECTURE

The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out),
and 2-g bit II (memory or I/O) sub-fields, in addition to the LL and RRRR sub-fields (refer to
T

$
able 13-6). The bus error conditions are implementation dependent and related to the type of

bus implemen
ü

ted by the processor. Likewise, the interconnect error conditions are predicated on
a sg pecific implementation-dependent interconnect model that describes the connections
between the dif

ü
ferent levels of the storage hierarchy. The type of bus is implementation depen-

dent,
k

and as such is not specified in this document. A bus or interconnect transaction consists of
a reqg uest involving an address and a response.

13.6.3. Interpre ting the Machine-Check Error Codes for External
Bus Errors

Table 13-7 gives additional information for interpreting the MCA error code, model-specific
erro[r code, and other information error code fields for machine-check errors that occur on the
extern[al bus. This information can be used to design a machine-check exception handler for the
pro^ cessor that offers greater granularity for the external bus errors.

Table 13-6. Encoding s of PP, T, and II Sub-Fields

Sub-Fi eld Transact ion Mnemonic
Binary

Enco din g

PP (Participation) Local processor originated request SRC 00

Local processor responded to request RES 01

Local processor observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

Table 13-7. Encodin g of t he MCi_STATUS Register for Externa l Bus Errors

Bit
No. Bit Function Bit D escri ptio n

0-1 MCA Error
Code

Undefined.

2-3 MCA Error
Code

Bit 2 is set to 1 if the access was a special cycle.
Bit 3 is set to 1 if the access was a special cycle OR a I/O cycle.

4-7 MCA Error
Code

00WR; W = 1 for writes, R = 1 for reads.

13-12

MACHINE-CHECK ARCHITECTURE

8-9 MCA Error
Code

Undefined.

10 MCA Error
Code

Set to 0 for all EBL errors.
Set to 1 for internal watch-dog timer time-out.
For a watch-dog timer time-out, all the MCACOD bits except this bit are set to
0. A watch-dog timer time-out only occurs if the BINIT driver is enabled.

11 MCA Error
Code

Set to 1 for EBL errors.
Set to 0 for internal watch-dog timer time-out.

12-15 MCA Error
Code

Reserved.

16-18 Model-
Specific Error
Code

Reserved.

19-24 Model-
Specific Error
Code

 000000 for BQ_DCU_READ_TYPE error.
 000010 for BQ_IFU_DEMAND_TYPE error.
 000011 for BQ_IFU_DEMAND_NC_TYPE error.
 000100 for BQ_DCU_RFO_TYPE error.
 000101 for BQ_DCU_RFO_LOCK_TYPE error.
 000110 for BQ_DCU_ITOM_TYPE error.
 001000 for BQ_DCU_WB_TYPE error.
 001010 for BQ_DCU_WCEVICT_TYPE error.
 001011 for BQ_DCU_WCLINE_TYPE error.
 001100 for BQ_DCU_BTM_TYPE error.
 001101 for BQ_DCU_INTACK_TYPE error.
 001110 for BQ_DCU_INVALL2_TYPE error.
 001111 for BQ_DCU_FLUSHL2_TYPE error.
 010000 for BQ_DCU_PART_RD_TYPE error.
 010010 for BQ_DCU_PART_WR_TYPE error.
 010100 for BQ_DCU_SPEC_CYC_TYPE error.
 011000 for BQ_DCU_IO_RD_TYPE error.
 011001 for BQ_DCU_IO_WR_TYPE error.
 011100 for BQ_DCU_LOCK_RD_TYPE error.
 011110 for BQ_DCU_SPLOCK_RD_TYPE error.
 011101 for BQ_DCU_LOCK_WR_TYPE error.

27-25 Model-
Specific Error
Code

 000 for BQ_ERR_HARD_TYPE error.
 001 for BQ_ERR_DOUBLE_TYPE error.
 010 for BQ_ERR_AERR2_TYPE error.
 100 for BQ_ERR_SINGLE_TYPE error.
 101 for BQ_ERR_AERR1_TYPE error.

28 Model-
Specific Error
Code

 1 if FRC error is active.

29 Model-
Specific Error
Code

 1 if BERR is driven.

Table 13-7. Encodin g of the MCi_STATUS Register for Ex terna l Bus Errors (Contd .)

Bit
No. Bit Functio n Bit Descripti on

13-13

MACHINE-CHECK ARCHITECTURE

30 Model-
Specific Error
Code

 1 if BINIT is driven for this processor.

31 Model-
Specific Error
Code

Reserved.

32-34 Other
Information

Reserved.

35 Other
Information
BINIT

 1 if BINIT is received from external bus.

36 Other
Information
RESPONSE
PARITY
ERROR

This bit is ass

erted in the MCi
D
_STATUS register if this component has received

a parity error on the RS[2:0]# pins for a response transaction. The RS signals
are checked by the RSP# external pin.

37 Other
Information
BUS BINIT

This bit is ass

erted in the MCi
D
_STATUS register if this component has received

a hard error response on a split transaction (one access that has needed to be
split across the 64-bit external bus interface into two accesses).

38 Other
Information
TIM

EOUT

BINIT

This bit

 is asserted in the MCi
D
_STATUS register if this component has

experienced a ROB time-out, which indicates that no microinstruction has been
retired for a predetermined period of time. A ROB time-out occurs when the 15-
bit ROB time-out counter carries a 1 out of its high order bit.

The t

imer is cleared when a microinstruction retires, an exception is detected
by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB t

ime-out counter is prescaled by the 8-bit PIC timer which is a divide
by 128 of the bus clock (the bus clock is 1:2, 1:3, 1:4 the core clock). When a
carry out of the 8-bit PIC timer occurs, the ROB counter counts up by one.

W
l

hile this bit is asserted, it cannot be overwritten by another error.

39-41 Other
Information

Reserved.

42 Other
Information
HARD
ERROR

This bit

 is asserted in the MCi
D
_STATUS register if this component has initiated

a bus transactions which has received a hard error response. While this bit is
asserted, it cannot be overwritten.

43 Other
Information
IERR

This bit

 is asserted in the MCi
D
_STATUS register if this component has

experienced a failure that causes the IERR pin to be asserted. While this bit is
asserted, it cannot be overwritten.

44 Other
Information
AE

5
RR

This bit

 is asserted in the MCi
D
_STATUS register if this component has initiated

2 failing bus transactions which have failed due to Address Parity Errors (AERR
asserted). While this bit is asserted, it cannot be overwritten.

Table 13-7. Encoding of th e MCi_STATUS Register f or Exte rnal Bu s Errors (Contd.)

Bit
No. Bit Function Bit D escri ptio n

13-14

MACHINE-CHECK ARCHITECTURE

13.7. GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE

The machine-check architecture and error logging can be used in two different ways:

• To detect machine errors during normal instruction execution, using the machine-check
ex[ception (#MC).

• To periodically check and log machine errors.

T
$
o use the machine-check exception, the operating system or executive software must provide

a g machine-check exception handler. This handler can be designed specifically for P6 family
pr^ ocessors or be a portable handler that also handles Pentium®

�
 processor machine-check errors.

A sp
�

ecial program or utili ty is required to log machine errors.

Guidelines f
:

or writing a machine-check exception handler or a machine-error logging utility are
g	 iven in the following sections.

13.7.1. Machine-Check Excepti on Handler

The m
$

achine-check exception (#MC) corresponds to vector 18. To service machine-check
ex[ceptions, a trap gate must be added to the IDT, and the pointer in the trap gate must point to a
mach1 ine-check exception handler. Two approaches can be taken to designing the exception
han
8

dler:

• The handler can merely log all the machine status and error information, then call a
d

k
ebugger or shut down the system.

• Th
$

e handler can analyze the reported error information and, in some cases, attempt to
coø rrect the error and restart the processor.

45 Other
Information
UECC

Uncorrectable ECC error bit is asserted in the MCi
D
_STATUS register for

uncorrected ECC errors. While this bit is asserted, the ECC syndrome field will
not be overwritten.

46 Other
Information
CECC

The correc

table ECC error bit is asserted in the MCi
D
_STATUS register for

corrected ECC errors.

47-54 Other
Information
SYNDROME

The ECC syndr

ome field in the MCi
D
_STATUS register contains the 8-bit ECC

syndrome only if the error was a correctable/uncorrectable ECC error,
and there wasn’t a previous valid ECC error syndrome logged in the
MCi

D
_STATUS register.

A
5

 previous valid ECC error in MCi
D
_STATUS is indicated by MCi

D
_STATUS.bit45

(uncorrectable error occurred) being asserted. After processing an ECC error,
machine-check handling software should clear MCi

D
_STATUS.bit45 so that

fut
4

ure ECC error syndromes can be logged.

55-56 Other
Information

Reserved.

Table 13-7. Encodin g of the MCi_STATUS Register for Ex terna l Bus Errors (Contd .)

Bit
No. Bit Functio n Bit Descripti on

13-15

MACHINE-CHECK ARCHITECTURE

V
m

irtually all the machine-check conditions detected with the P6 family processors cannot be
recovY ered from (they result in abort-type exceptions). The logging of status and error informa-
ti

ô
on is therefore a baseline implementation. Refer to Sectio

�
n 13.7., “Guidelines for Writing

Machine-Check Software” for more information on logging errors.

F
�

or future P6 family processor implementations, where recovery may be possible, the following
things sho

ô
uld be considered when writing a machine-check exception handler:

• To determine the nature of the error, the handler must read each of the error-reporting
regY ister banks. The count field in the MCG_CAP register gives number of register banks.
Th

$
e first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each MCi
Q
_STATUS register indicates whether the error

in
�

formation in the register is valid. If this flag is clear, the registers in that bank do not
conø tain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the MCi
Q
_STATUS

regY ister should be checked. Refer to S
�

ection 13.6., “Interpreting the MCA Error Codes” for
in

�
formation that can be used to write an algorithm to interpret this field.

• The RIPV, PCC, and OVER flags in each MCi
Q
_STATUS register indicate whether

recoY very from the error is possible. If either of these fields is set, recovery is not possible.
Th

$
e OVER field indicates that two or more machine-check error occurred. When recovery

is not possible, the handler typically records the error information and signals an abort to
the o

ô
perating system.

• C

orrected errors wil l have been corrected automatically by the processor. The UC flag in
each MC[i

Q
_STATUS register indicates whether the processor automatically corrected the

err[or.

• Th
$

e RIPV flag in the MCG_STATUS register indicates whether the program can be
restarted at the instruction pointed to by the instruction pointer pushed on the stack when
th

ô
e exception was generated. If this flag is clear, the processor may still be able to be

resY tarted (for debugging purposes), but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the MCG_STATUS register indicates whether
th

ô
e instruction pointed to by the instruction pointer pushed on the stack when the exception

was & generated is related to the error. If this flag is clear, the pushed instruction may not be
related to the error.

• The MCIP flag in the MCG_STATUS register indicates whether a machine-check
excep[tion was generated. Before returning from the machine-check exception handler,
soõ ftware should clear this flag so that it can be used reliably by an error logging utility . The
MC

�
IP flag also detects recursion. The machine-check architecture does not support

recuY rsion. When the processor detects machine-check recursion, it enters the shutdown
statõ e.

13-16

MACHINE-CHECK ARCHITECTURE

Example 13-2 gives typical steps carried out by a machine-check exception handler:

Exam
n

ple 13-2. Machine -Check Exception Ha ndle r Pseu doc ode

IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in MCG_STATUS;

13.7.2. Pentium®
A

Processor Machi ne-Check Except ion Handling

T
$
o make the machine-check exception handler portable to the Pentium®

�
 and P6 family proces-

sors, cheõ cks can be made (using the CPUID instruction) to determine the processor type. Then
based
ü

on the processor type, machine-check exceptions can be handled specifically for Pentium®
�

ora P6 family processors.

W
÷

hen machine-check exceptions are enabled for the Pentium®
�
 processor (MCE flag is set in

conø trol register CR0), the machine-check exception handler uses the RDMSR instruction to read
the er
ô

ror type from the P5_MC_TYPE register and the machine check address from the
P5_MC_ADDR register. The handler then normally reports these register values to the system
conø sole before aborting execution (refer to Example 13-2).

13.7.3. Logging Correctable M achine-C heck Errors

If a machine-check error is correctable, the processor does not generate a machine-check excep-
tion
ô

for it. To detect correctable machine-check errors, a util ity program must be written that
readY s each of the machine-check error-reporting register banks and logs the results in an
accog unting file or data structure. This utilit y can be implemented in either of the following ways:

• A system daemon that polls the register banks on an infrequent basis, such as hourly or
da

k
i ly.

13-17

MACHINE-CHECK ARCHITECTURE

• A user-initiated application that polls the register banks and records the exceptions. Here,
th

ô
e actual polling service is provided by an operating-system driver or through the system

call interfø ace.

Example 13-3 gives pseudocode for an error logging utility .

Ex
n

ample 13-3. Machine-Ch eck Error Log ging Pseudoco de

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ MCi_STATUS;
IF VAL flag in MCi_STATUS = 1

THEN
IF ADDRV flag in MCi_STATUS = 1

THEN READ MCi_ADDR;
FI;
IF MISCV flag in MCi_STATUS = 1

THEN READ MCi_MISC;
FI;
IF MCIP flag in MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in MCi_STATUS = 1
AND RIPV flag in MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of
erro[r-reporting registers looking for valid register entries, and then saves the values of the
MCi

Q
_STATUS, MCi

Q
_ADDR, MCi

Q
_MISC and MCG_STATUS registers for each bank that is

valid. The ro� utine minimizes processing time by recording the raw data into a system data struc-
tu

ô
re or file, reducing the overhead associated with polling. User utilities analyze the collected

d
k
ata in an off-li ne environment.

W
÷

hen the MCIP flag is set in the MCG_STATUS register, a machine-check exception is in
pro^ gress and the machine-check exception handler has called the exception logging routine.
Once the log

�
ging process has been completed the exception-handling routine must determine

13-18

MACHINE-CHECK ARCHITECTURE

whether& execution can be restarted, which is usually possible when damage has not occurred
(Th
ý

e PCC flag is clear, in the MCi
Q
_STATUS register) and when the processor can guarantee that

execu[tion is restartable (the RIPV flag is set in the MCG_STATUS register). If execution cannot
be restarted, the s
ü

ystem is not recoverable and the exception-handling routine should signal the
conø sole appropriately before returning the error status to the Operating System kernel for subse-
quo ent shutdown.

The machine-check architecture allows buffering of exceptions from a given error-reporting
ban
ü

k although the P6 family processors do not implement this feature. The error logging routine
shõ ould provide compatibilit y with future processors by reading each hardware error-reporting
ban
ü

k’s MCi
Q
_STATUS register and then writing 0s to clear the OVER and VAL flags in this

regiY ster. The error logging utility should re-read the MCi
Q
_STATUS register for the bank

ensur[ing that the valid bit is clear. The processor will write the next error into the register bank
andg set the VAL flags.

Ad
�

ditional information that should be stored by the exception-logging routine includes the
pr^ ocessor’s time-stamp counter value, which provides a mechanism to indicate the frequency of
ex[ceptions. A multiprocessing operating system stores the identity of the processor node incur-
ringY the exception using a unique identifier, such as the processor’s APIC ID (refer to Section
7

.5.9., “Interrupt Destination and APIC ID”).

The basic algorithm given in Example 13-3 can be modified to provide more robust recovery
tech
ô

niques. For example, software has the flexibilit y to attempt recovery using information
unp available to the hardware. Specifically, the machine-check exception handler can, after
logging carefully analyze the error-reporting registers when the error-logging routine reports an
erro[r that does not allow execution to be restarted. These recovery techniques can use external
b
ü
us related model-specific information provided with the error report to localize the source of

the er
ô

ror within the system and determine the appropriate recovery strategy.

14
Code Optimization

14-1

CHAPTER 14
CODE OPTIMIZATION

Th
$

is chapter describes the more important code optimization techniques for Intel Architecture
p^ rocessors with and without MMX ™ technology, as well as with and without Streaming SIMD
Ex

�
tensions. The chapter begins with general code-optimization guidelines and continues with a

b
ü
rief overview of the more important blended techniques for optimizing integer, MMX ™ tech-

nology, floating-point, and SIMD fl oating-point code. A comprehensive discussion of code opti-
mization 1 techniques can be found in the Intel

�
 Architecture Optimization Manual, Order Numb� er

242
*

816.

14.1. CODE OPTIMIZATION GUIDELINES

This section contains general guidelines for optimizing applications code, as well as specific
gui	 delines for optimizing MMX™, floating-point, and SIMD floating-point code. Developers
creatø ing applications that use MMX™ and/or floating-point instructions should apply the first
sõ et of guidelines in addition to the MMX™ and/or floating-point code optimization guidelines.
Devel

(
opers creating applications that use SIMD floating-point code should apply the fi rst set of

g	 uidelines, as well as the MMX™ and/or floating-point code optimization guidelines, in addi-
ti

ô
on to the SIMD floating-point code optimization guidelines.

14.1.1. General Code Optimi zation Guide line s

Us
�

e the following guidelines to optimize code to run efficiently across several families of Intel
Architecture pro

�
cessors:

• Use a curr
�

ent generation compiler that produces optimized code to insure that efficient
codø e is generated from the start of code development.

• W
÷

rite code that can be optimized by the compiler. For example:

— Minimize the use of global variables, pointers, and complex control flow statements.

— Do not use the “register” modifier.

— Use the “const” modifier.

— Do not defeat the typing system.

— Do not make indirect calls.

— Use minimum sizes for integer and floating-point data types, to enable SIMD paral-
lelism
,

.

14-2

CODE OPTIMIZATION

• Pay attention to the branch prediction algorithm for the target processor. This optimization
is p

�
articularly important for P6 family processors. Code that optimizes branch predict-

abig lity will spend fewer clocks fetching instructions.

• Take advantage of the SIMD capabilities of MMX™ technology and Streaming SIMD
Ex

�
tensions.

• A
�

void partial register stalls.

• Align all data.

• Or
�

ganize code to minimize instruction cache misses and optimize instruction prefetches.

• S
�

chedule code to maximize pairing on Pentium®
�
 processors.

• Avoid prefixed opcodes other than 0FH.

• W
÷

hen possible, load and store data to the same area of memory using the same data sizes
ang d address alignments; that is, avoid small loads after large stores to the same area of
memory, and avoid large loads after small stores to the same area of memory.

• Use so
�

ftware pipelining.

• Al
�

ways pair CALL and RET (return) instructions.

• Avoid self-modifying code.

• Do not place data in the code segment.

• C

alculate store addresses as soon as possible.

• Avoid instructions that contain 4 or more micro-ops or instructions that are more than 7
b

ü
ytes long. If possible, use instructions that require 1 micro-op.

• C

leanse partial registers before calling callee-save procedures.

14.1.2. Guide lines for Optimi zing MMX ™ Code

Us
�

e the following guidelines to optimize MMX™ code:

• Do
(

 not intermix MMX™ instructions and floating-point instructions.

• Use the
�

oq pcode reg, mem instruction format whenever possible. This format helps to free
rY egisters and reduce clocks without generating unnecessary loads.

• Put an EMMS ins
)

truction at the end of all MMX™ code sections that you know will
trans

ô
ition to floating-point code.

• Optimize d
�

ata cache bandwidth to MMX™ registers.

14.1.3. Guideline s for Optimizing Floating- Point Code

 Use the following guidelines to optimize floating-point code:

14-3

CO
r

DE OPTIMIZATION

• Und
�

erstand how the compiler handles floating-point code. Look at the assembly dump and
see what transforõ ms are already performed on the program. Study the loop nests in the
appg lication that dominate the execution time.

• Determine why the compiler is not creating the fastest code. For example, look for
dep

k
endences that can be resolved by rearranging code

• Lo
s

ok for and correct situations known to cause slow execution of floating-point code, such
as:g

— Large memory bandwidth requirements.

— Poor cache locality.

— Long-latency floating-point arithmetic operations.

• Do not use more precision than is necessary. Single precision (32-bits) is faster on some
opa erations and consumes only half the memory space as double precision (64-bits) or
do

k
uble extended (80-bits).

• Use a l
�

ibrary that provides fast floating-point to integer routines. Many library routines do
mo1 re work than is necessary.

• Insure whenever possible that computations stay in range. Out of range numbers cause
v� ery high overhead.

• S
�

chedule code in assembly language using the FXCH instruction. When possible, unroll
loops and pipeline code.

• Perform transformations to improve memory access patterns. Use loop fusion or
comø pression to keep as much of the computation in the cache as possible.

• Break dependency chains.

14.1.4. Guidel ines for Optimizi ng SIMD Floating-point Code

Gen
:

erally, it is important to understand and balance port utilization to create efficient SIMD
floating-point code. Use the following guidelines to optimize SIMD floating-point code:

• Balance the limitations of the architecture.

• Sch
�

edule instructions to resolve dependencies.

• Sch
�

edule utilization of the triple/quadruple rule (port 0, port 1, port 2, 3, and 4).

• Grou
:

p instructions that utili ze the same registers as closely as possible. Take into consider-
atg ion the resolution of true dependencies.

• Intermix SIMD-fp operations that utili ze port 0 and port 1.

• Do not issue consecutive instructions that utilize the same port.

• Use
�

the reciprocal instructions followed by iteration for increased accuracy. These instruc-
tions yield redu

ô
ced accuracy but execute much faster. If reduced accuracy is acceptable,

14-4

CODE OPTIMIZATION

up se them with no iteration. If near full accuracy is needed, use a Newton-Raphson
iteration

�
. If full accuracy is needed, then use divide and square root which provide more

accug racy, but slow down performance.

• Exceptions: mask exceptions to achieve higher performance. Unmasked exceptions may
cauø se a reduction in the retirement rate.

• Utilize th
�

e flush-to-zero mode for higher performance to avoid the penalty of dealing with
d

k
enormals and underflows.

• Incorporate the prefetch instruction whenever possible (for details, refer to Chapter 6,
“Optimizing Cache Utilization for Pentium®

�
 III processa ors”).

• Try to emulate conditional moves by masked compares and logicals instead of using
conø ditional jumps.

• Utilize MM
�

X™ technology instructions if the computations can be done in SIMD-integer
or foa r shuffling data or copying data that is not used later in SIMD floating-point computa-
tio

ô
ns.

• I
�
f the algorithm requires extended precision, then conversion to SIMD fl oating-point code

is not advised because the SIMD floating-point instructions are single-precision.

14.2. BRANCH PREDICTION OPTIMIZATION

Th
$

e P6 family and Pentium®
�
 processors provide dynamic branch prediction using the branch

t
ô
arget buffers (BTBs) on the processors. Understanding the flow of branches and improving the
p^ redictabilit y of branches can increase code execution speed significantly.

14.2.1. Branch Prediction Rules

Three elements of dynamic branch prediction are important to understand:

• If the instruction address is not in the BTB, execution is predicted to continue without
b

ü
ranching (fall through).

• Predicted taken branches have a 1 clock delay.

• The BTB stores a four-bit history of branch predictions on Pentium®
�
 Pro processors, the

Pen
)

tium®
�
 II processor family, and the Pentium®

�
 III processor.

• The Pentium®
�
 II and Pentium®

�
 III processor’s BTB pattern matches on the direction of the

last fo
,

ur branches to dynamically predict whether a branch will be taken.

Durin
(

g the process of instruction prefetch, the instruction address of a conditional instruction is
chø ecked with the entries in the BTB. When the address is not in the BTB, execution is predicted
to
ô

 fall through to the next instruction.

On P6
�

family processors, branches that do not have a history in the BTB are predicted using a
stõ atic prediction algorithm. The static prediction algorithm does the following:

14-5

CO
r

DE OPTIMIZATION

• Predicts unconditional branches to be taken.

• Predicts backward conditional branches to be taken. This rule is suitable for loops.

• Predicts for
)

ward conditional branches to be not t taken.

14.2.2. Optimizing Bra nch Predic tions in Code

To optimize branch predictions in an application code, apply the following techniques:

• R
u

educe or eliminate branches (see Section 14.2.3., “Eliminating and Reducing the Number
ofa Branches”).

• Insure that each CALL instruction has a matching RET instruction. The P6 family of
pr^ ocessors have a return stack buffer that keeps track of the target address of the next RET
instruction. Do not use pops and jumps to return from a CALL instruction; always use the
RET in

u
struction.

• Do
(

 not intermingle data with instructions in a code segment. Unconditional jumps, when
not in the BTB, are predicted to be not taken. If data follows a unconditional branch, the
dat

k
a might be fetched, causing the loss of instruction fetch cycles and valuable instruction-

cache space. Wø hen data must be stored in the code segment, move it to the end where it
will& not be in the instruction fetch stream.

• Unr
�

oll all very short loops. Loops that execute for less than 2 clocks waste loop overhead.

• W
÷

rite code to follow the static prediction algorithm. The static prediction algorithm
follows the natural flow of program code. Following this algorithm reduces the number of
br

ü
anch mispredictions.

14.2.3. Elimina ting a nd Reducing the Numbe r of Br anches

Eliminating branches improves processor performance by:

• Removing the possibility of branch mispredictions.

• Red
u

ucing the number of BTB entries required.

Branches can be eliminated by using the SETcc� instruction, or by using the P6 family proces-
soõ rs’ conditional move (CMOVcc� or FCMOVcc�) in

û
structions.

The f
$

ollowing C code example shows conditions that are dependent upon on of the constants A
and B:g

/* C Cod
v

e /*
ebx = (A < B) ? C1 : C2;

Th
$

is code conditionally compares the values A and B. If the condition is true, EBX is set to C1;
ota herwise it is set to C2. The assembly-language equivalent of the C code is shown in the
examp[le below:

; Assembly Code

14-6

CODE OPTIMIZATION

cmp A, B ; condition
j

w
ge L30 ; conditional branch
mov ebx, CONST1
j

w
mp L31 ; unconditional branch

L30:
mov ebx, CONST2

L31:

By replacing the JGE instruction as shown in the previous example with a SETcc� instruction,
the EB
ô

X register is set to either C1 or C2. This code can be optimized to eliminate the branches
asg shown in the following code:

xor ebx, ebx ;clear ebx
cmp A, B
setge bl ;When ebx = 0 or 1

;OR the complement condition
dec ebx ;ebx=00...00 or 11...11
and ebx, (CONST2-CONST1) ;ebx=0 or(CONST2-CONST1)
add ebx, min(CONST1,CONST2) ;ebx=CONST1 or CONST2

The optimized code sets register EBX to 0 then compares A and B. If A is greater than or equal
to B
ô

 then EBX is set to 1. EBX is then decremented and ANDed with the difference of the
conø stant values. This sets EBX to either 0 or the difference of the values. By adding the
minimum of the two constants the correct value is written to EBX. When CONST1 or CONST2
is
�

 equal to zero, the last instruction can be deleted as the correct value already has been written
to EB
ô

X.

W
÷

hen ABS(CONST1-CONST2) is 1 of {2,3,5,9}, the following example applies:

xor ebx, ebx
cmp A, B
setge bl ; or the complement condition
lea ebx, [ebx*D+ebx+CONST1-CONST2]

where & D stands for ABS(CONST1 − CONST2) − 1.

A se
�

cond way to remove branches on P6 family processors is to use the new CMOVcc� and
FCMOVcc� instructions. The following example shows how to use the CMOVcc� instruction to
eliminate the b[ranch from a test and branch instruction sequence. If the test sets the equal flag
then
ô

 the value in register EBX wil l be moved to register EAX. This branch is data dependent,
andg is representative of a unpredictable branch.

test ecx, ecx
jn

w
e 1h

mov eax, ebx
1h:

To change the code, the JNE and the MOV instructions are combined into one CMOVcc� instruc-
tion,
ô

 which checks the equal flag. The optimized code is shown below:

test ecx, ecx ; test the flags
cmoveqeax, ebx ; if the equal flag is set, move ebx to eax

1h:

14-7

CO
r

DE OPTIMIZATION

The label 1h: is no longer needed unless it is the target of another branch instruction. These
in

�
structions will generate invalid opcodes when used on previous generation Intel Architecture

pro^ cessors. Therefore, use the CPUID instruction to check feature bit 15 of the EDX register,
which wh& en set indicates presence of the CMOVcc� family of instructions. Do not use the family
and g model codes returned by CPUID to test for the presence of specific features.

Ad
�

ditional information on branch optimization can be found in the In
�

tel Architecture Optimiza-
tix on Manual.

14.3. REDUCING PARTIAL REGI STER STALLS ON P6 FAMILY
PROCESSORS

On P6
�

 family processors, when a large (32-bit) general-purpose register is read immediately
after a g small register (8- or 16-bit) that is contained in the large register has been written, the
read Y is stalled until the write retires (a minimum of 7 clocks). Consider the example below:

MOV AX, 8
ADD ECX, EAX ; Partial stall occurs on access of

; the EAX register

Here, t
0

he first instruction moves the value 8 into the small register AX. The next instruction
accesg ses the large register EAX. This code sequence results in a partial register stall.

Pe
)

ntium®
�
 and Intel486™ processors do not generate this stall.

T
$
able 14-1 lists the groups of small registers and their corresponding large register for which a

partial ^ register stall can occur. For example, writing to register BL, BH, or BX and subsequently
readY ing register EBX will result in a stall.

B
C

ecause the P6 family processors can execute code out of order, the instructions need not be
immediately ad

�
jacent for the stall to occur. The following example also contains a partial stall:

MOV AL, 8
MOV EDX, 0x40
MOV EDI, new_value

Table 14-1. Small and L arge General -Purpos e Register Pairs

Smal l Registers Large Registers

AL AH AX EAX

BL BH BX EBX

CL CH CX ECX

DL DH DX EDX

SP ESP

BP EBP

DI EDI

SI ESI

14-8

CODE OPTIMIZATION

ADD EDX, EAX ; Partial stall occurs on access of
; the EAX register

In addition, any micro-ops that follow the stalled micro-op will also wait until the clock cycle
aftg er the stalled micro-op continues through the pipe. In general, to avoid stalls, do not read a
large register after writing a small register that is contained in the large register.

Special
�

cases of writing and reading corresponding small and large registers have been imple-
men1 ted in the P6 family processors to simpli fy the blending of code across processor genera-
tions. Th
ô

e special cases include the XOR and SUB instructions when using EAX, EBX, ECX,
EDX, EB
�

P, ESP, EDI and ESI as shown in the following examples:

xor eax, eax
movb al, mem8
add eax, mem32 ; no partial stall

xor eax, eax
movw ax, mem16
add eax, mem32 ; no partial stall

sub ax, ax
movb al, mem8
add ax, mem16 ; no partial stall

sub eax, eax
movb al, mem8
or ax, mem16 ; no partial stall

xor ah, ah
movb al, mem8
sub ax, mem16 ; no partial stall

In general, when implementing this sequence, always write all zeros to the large register then
write to& the lower half of the register.

14-9

CO
r

DE OPTIMIZATION

14.4. ALIGNMENT RULES AND GUIDELINES

The following section gives rules and guidelines for aligning of code and data for optimum code
executio[n speed.

14.4.1. Alignment Penalties

The f
$

ollowing are common penalties for accesses to misaligned data or code:

• On a
�

Pentium®
�
 processor, a misaligned access costs 3 clocks.

• On a
�

P6 family processor, a misaligned access that crosses a cache line boundary costs 6 to
9 clo

3
cks.

• On a
�

P6 family processor, unaligned accesses that cause a data cache split stall the
pr^ ocessor. A data cache spli t is a memory access that crosses a 32-byte cache line
bo

ü
undary.

F
�

or best performance, make sure that data structures and arrays greater than 32 bytes, are 32-
byte ali

ü
gned, and that access patterns to data structures and arrays do not break the alignment

rulesY .

14.4.2. Code Alignment

The P6 family and Pentium®
�
 processors have a cache line size of 32 bytes. Since the prefetch

buf
ü

fers fetch on 16-byte boundaries, code alignment has a direct impact on prefetch buffer effi-
ciencyø .

For optimal performance across the Intel Architecture family, it is recommended that:

• A loop entry label should be 16-byte aligned when it is less than 8 bytes away from that
bo

ü
undary.

• A label that follows a conditional branch should not be aligned.

• A label that follows an unconditional branch or function call should be 16-byte aligned
when& it is less than 8 bytes away from that boundary.

14.4.3. Data Alignme nt

A mis
�

aligned access in the data cache or on the bus costs at least 3 extra clocks on the Pentium®
�

pro^ cessor. A misaligned access in the data cache, which crosses a cache line boundary, costs 9
to

ô
 12 clocks on the P6 family processors. It is recommended that data be aligned on the

fo
�

llowing boundaries for optimum code execution on all processors:

• Al
�

ign 8-bit data on any boundary.

• Align 16-bit data to be contained within an aligned 4-byte word.

• Align 32-bit data on any boundary that is a multiple of 4.

• Alig
�

n 64-bit data on any boundary that is a multiple of 8.

14-10

CODE OPTIMIZATION

• Align 80-bit data on a 128-bit boundary (that is, any boundary that is a multiple of 16
by

ü
tes).

• Al
�

ign 128-bit SIMD floating-point data on a 128-bit boundary (that is, any boundary that is
a mg ultiple of 16 bytes).

14.4.3.1. ALIGNMENT OF DATA STRUCTURES AND ARRAYS GREATER
THAN 3

y
2 BYTES

A 3
�

2-byte or greater data structure or array should be aligned such that the beginning of each
stõ ructure or array element is aligned on a 32 byte boundary, and such that each structure or array
element d[oes not cross a 32-byte cache line boundary.

Does th
z

is general discussion adequately cover the differences between 8, 16, and 32 bit
a{ lignments?

14.4.3.2. ALIGNMENT OF DATA IN MEMORY AND ON THE STACK

On
�

 the Pentium®
�
 processor, accessing 64-bit variables that are not 8-byte aligned will cost an

ex[tra 3 clocks. On the P6 family processors, accessing a 64-bit variable will cause a data cache
spõ lit . Some commercial compilers do not align double precision variables on 8-byte boundaries.
In such cases, the following techniques can be used to force optimum alignment of data:

• Use st
�

atic variables instead of dynamic (stack) variables.

• Use in
�

-line assembly code that explicitly aligns data.

• In C code, use “malloc” to explicitly allocate variables.

The
$

following sections describe these techniques.

St
|

atic Variab les

W
÷

hen a compiler allocates stack space for a dynamic variable, it may not align the variable (see
Fi
�

gure 14-1). However, in most cases, when the compiler allocates space in memory for static
var� iables, the variables are aligned.

14-11

CO
r

DE OPTIMIZATION

Al ignment Using Assembly Language

Us
�

e in-line assembly code to explicitly align variables. The following example aligns the stack
to

ô
 64-bits.

; procedure prologue
push ebp
mov esp, ebp
and ebp, -8
sub esp, 12

; procedure epilogue
add esp, 12
pop ebp
ret

Dynami
z

c Al location Using MALLOC

W
÷

hen using dynamic allocation, check that the compiler aligns doubleword or quadword values
on 8a -byte boundaries. If the compiler does not implement this alignment, then use the following
techniq

ô
ue to align doublewords and quadwords for optimum code execution:

1. Al locate memory equal to the size of the array or structure plus 4 bytes.

2.
*

Use “bitwi
�

se” and to make sure that the array is aligned, for example:

double a[5];
double *p, *newp;
p = (double*)malloc ((sizeof(double)*5)+4)
newp = (p+4) & (-7)

Figu re 14-1. Stack and Memory La you t of Sta tic Variab les

static float a;
float b;
static float c;

Stack

Memory

b
b

a
c

14-12

CODE OPTIMIZATION

14.5. INSTRUCTION SCHEDULING OVERVIEW

On all
�

Intel Architecture processors, the s} cheduling of (arrangement of) instructions in the
instruction
�

 stream can have a significant affect on the execution speed of the processor. For
exam[ple, when executing code on a Pentium®

�
 or later Intel Architecture processor, two 1-clock

i
�
nstructions that do not have register or data dependencies between them can generally be
execu[ted in parallel (in a single clock) if they are paired—placed adjacent to one another in the
instruction stream. Likewise, a long-latency instruction such as a floating-point instruction can
oa ften be executed in parallel with a sequence of 1-clock integer instructions or shorter latency
flo
�

ating-point instructions if the instructions are scheduled appropriately in the instruction
stõ ream.

T
$

he following sections describe two aspects of scheduling that can provide improved perfor-
m1 ance in Intel Architecture processors: pairing and pipelining. Pairing is generall y used to opti-
mize the execution of integer and MMX ™ instructions; pipelining is generall y used to optimize
th
ô

e execution of MMX™ and floating-point instructions.

14.5.1. Instruc tion Pairing Guide line s

The microarchitecture for the Pentium®
�
 family of processors (with and without MMX ™ tech-

no~ logy) contain two instruction execution pipelines: the U-pipe and the V-pipe. These pipelines
are capabg le of executing two Intel Architecture instructions in parallel (during the same clock
oa r clocks) if the two instructions are pa� irable. Pairable instructions are those instructions that
wh& en they appear adjacent to one another in the instruction stream will normally be executed in
par^ allel. By ordering a code sequence so that whenever possible pairable instructions occur
sequenõ tially, code can be optimized to take advantage of the Pentium®

�
 processor’s two-pipe

micro1 architecture.

NOTE

Pairing of instructions improves Pentium®
�
 processor performance signifi-

canø tly. It does not slow and sometimes improves the performance of P6
f

�
amily processors.

The following subsections describe the Pentium®
�
 processor pairing rules for integer, MMX ™,

ang d, floating-point instructions. The pairing rules are grouped into types, as follows:

• General p
:

airing rules

• Integer instruction pairing rules.

• MMX™ instruction pairing rules.

• Flo
�

ating-point instruction pairing rules.

14.5.1.1. GENERAL PAIRING RULES

The following are general rules for instruction pairing in code written to run on Pentium®
�

pr^ ocessors:

14-13

CO
r

DE OPTIMIZATION

• Unp
�

airable instructions are always executed in the U-pipe.

• For paired instructions to execute in parallel, the first instruction of the pair must fall on an
in

�
struction boundary that forces the instruction to be executed in the U-pipe. The following

placem^ ents of an instruction in the instruction stream will force an instruction to be
execu[ted in the U-pipe:

— If the first instruction of a pair of pairable instructions is the first instruction in a block
oa f code, the first instruction will be executed in the U-pipe and the second of the pair
will b& e executed in the V-pipe, resulting in parallel execution of the two instructions.

— If the first instruction of a pair of pairable instructions follows an unpairable
instruction in the instruction stream, the first of the pairable instructions will be
execu[ted in the U-pipe and the second of the pair in the V-pipe, resulting in parallel
ex[ecution.

— After one pair of instructions has been executed in parallel, subsequent pairs will also
be ex
ü

ecuted in parallel until an unpairable instruction is encountered.

• Parallel ex
)

ecution of paired instructions will not occur if:

— The next two instructions are not pairable instructions.

— The next two instructions have some type of register contention (implicit or explicit).
Th
$

ere are some special exceptions (see “Special Pairs” , in Section 14.5.1.2., “Integer
Pairing Rules”) to this rule where register contention can occur with pairing.

— The instructions are not both in the instruction cache. An exception to this that permits
pairin^ g is if the first instruction is a one byte instruction.

— The processor is operating in single-step mode.

• Instructions that have data dependencies should be separated by at least one other
in

�
struction.

• Pentium®
�
 processors without MMX™ technology do not execute a set of paired instruc-

tio
ô

ns if either instruction is longer than 7 bytes; Pentium®
�
 processors with MMX™

tech
ô

nology do not execute a set of paired instructions if the first instruction is longer than
11 bytes or the second instruction is longer than 7 bytes. Prefixes are not counted.

• On P
�

entium®
�
 processors without MMX ™ technology, prefixed instructions are pairable

oa nly in the U-pipe. On Pentium®
�
 processors with MMX™ technology, instructions with

0FH, 6
S

6H or 67H prefixes are also pairable in the V-pipe. For this and the previous rule,
stalõ ls at the entrance to the instruction FIFO, on Pentium®

�
 processors with MMX™

tech
ô

nology, will prevent pairing.

• Floating-point instructions are not pairable with MMX ™ instructions.

14.5.1.2. INTEGER PAIRING RULES

T
$
able 14-2 shows the integer instructions that can be paired. The table is divided into two halves:

one a for the U-pipe and one for the V-pipe. Any instruction in the U-pipe list can be paired with
any g instruction in the V-pipe list, and vice versa.

14-14

CODE OPTIMIZATION

NOTES:

ALU—Arithmetic or logical instruction such as ADD, SUB, or AND. In general, most simple ALU instructions
are pairable.

imm—Immediate.

reg—Register.

mem—Memory location.

r/m—Register or memory location.

acc� —Accumulator (EAX or AX register).

G
�

eneral Integer-Instruction Pairability Rules

The following are general rules for pairabilit y of integer instructions. These rules summarize the
p^ airing of instructions in Table 14-2.

• NP
#

 Instructions—T
$

he following integer instructions cannot be paired:

— The shift and rotate instructions with a shif t count in the CL register.

— Long-arithmetic instructions, such as MUL and DIV.

— Extended instructions, such as RET, ENTER, PUSHA, MOVS, STOS, and LOOPNZ.

— Inter-segment instructions, such as PUSH sreg and CALL far.

• UV I
�

nstructions—The following instructions can be paired when issued to the U- or V-
pi^ pes:

— Most 8/32 bit ALU operations, such as ADD, INC, and XOR.

— All 8/32 bit compare instructions, such as CMP and TEST.

— All 8/32 bit stack operations using registers, such as PUSH reg and POP reg.

• PU instructions—The following instructions when issued to the U-pipe can be paired with
a suitable g instruction in the V-Pipe. These instructions never execute in the V-pipe.

— Carry and borrow instructions, such as ADC and SBB.

T
'
able 14-2. Pairable Integer Instruct ions

Integer Inst ruct ion Pairable in U-Pipe Integer Inst ruct ion Pairabl e in V-Pipe

MOV reg, reg ALU reg, imm PUSH reg MOV reg, reg ALU reg, imm PUSH reg

MOV reg, mem ALU mem, imm PUSH imm MOV reg, mem ALU mem, imm PUSH imm

MOV mem, reg ALU eax, imm POP reg MOV mem, reg ALU eax, imm POP reg

MOV reg, imm ALU mem, reg NOP MOV reg, imm ALU mem, reg JMP
�

 near

MOV mem,
imm

ALU reg, mem SHIFT/ROT by
1

MOV mem,
imm

ALU reg, mem J
�

cc� near

MOV eax, mem INC/DEC reg SHIFT by imm MOV eax, mem INC./DEC reg 0F Jcc�

MOV mem, eax INC/DEC mem TEST reg, r/m MOV m, eax INC/DEC mem CALL near

ALU reg, reg LEA reg, mem TEST ac� c, imm ALU reg, reg LEA reg, mem NOP

TE

ST reg, r/m TEST ac� c, imm

14-15

CO
r

DE OPTIMIZATION

— Prefixed instructions.

— Shift with immediate instructions.

• PV in
)

structions—The following instructions when issued to the V-pipe can be paired with
a sg uitable instruction in the U-Pipe. The simple control transfer instructions, such as the
C

ALL near, JMP near, or Jcc� instructions, can execute in either the U-pipe or the V-pipe,

bu
ü

t they can be paired with other instructions only when they are in the V-pipe. Since these
instructions change the instruction pointer (EIP), they cannot pair in the U-pipe since the
nex~ t instruction may not be adjacent. The PV instructions include both Jcc� short and Jcc�

near~ (which have a 0FH prefix) versions of the Jcc� instruction.

Un
e

pairab ility Due to Register Dependencies

Ins
�

truction pairing is also affected by instruction operands. The following instruction pairings
wi& ll not result in parallel execution because of register contention. Exceptions to these rules are
gi	 ven in “Special Pairs” , in Section 14.5.1.2., “Integer Pairing Rules” .

• Flow Dependence—The first instruction writes to a register that the second one reads
fr

�
om, as in the following example:

mov eax, 8
mov [ebp], eax

• Ou
�

tput Dependence—Both instructions write to the same register, as in the following
exam[ple.

mov eax, 8
mov eax, [ebp]

This output dependence limitation does not apply to a pair of instructions that write to the
EFLAG

�
S register (for example, two ALU operations that change the condition codes). The

coø ndition code after the paired instructions execute will have the condition from the V-pipe
in

�
struction.

No
#

te that a pair of instructions in which the first reads a register and the second writes to the
sõ ame register (anti-dependence) may be paired, as in the following example:

mov eax, ebx
mov ebx, [ebp]

F
�

or purposes of determining register contention, a reference to a byte or word register is treated
asg a reference to the containing 32-bit register. Therefore, the following instruction pair does not
execute [in parallel because of output dependencies on the contents of the EAX register.

mov al, 1
mov ah, 0

14-16

CODE OPTIMIZATION

Sp
|

ecial Pairs

So
�

me integer instructions can be paired in spite of the previously described general integer-
in
�

struction rules. These special pairs overcome register dependencies, and most involve implicit
reads/writes to the ESP register or implicit writes to the condition codes:

• Stack
�

 Pointer.

push reg/imm ; push reg/imm
push reg/imm ; call
pop reg ; pop reg

• C

ondition Codes.

cmp ; jcc
add ; jne

Note that
#

the special pairs that consist of PUSH/POP instructions may have only immediate or
regY ister operands, not memory operands.

Res
E

trictions On Pair Execution

So
�

me integer-instruction pairs may be issued simultaneously but wil l not execute in parallel:

• Data-Cache Conflict—If both instructions access the same data-cache memory bank then
th

ô
e second request (V-pipe) must wait for the first request to complete. A bank conflict

oa ccurs when bits 2 through 4 of the two physical addresses are the same. A bank conflict
rY esults in a 1-clock penalty on the V-pipe instruction.

• I
�
nter-Pipe Concurrency—Parallel execution of integer instruction pairs preserves memory-

access g ordering. A multi clock instruction in the U-pipe will execute alone until it s last
mem1 ory access.

For examp
�

le, the following instructions add the contents of the register and the value at the
memory location, then put the result in the register. An add with a memory operand takes 2
clockø s to execute. The first clock loads the value from the data cache, and the second clock
per^ forms the addition. Since there is only one memory access in the U-pipe instruction, the add
in the V-pipe can start in the same clock.

add eax, meml
add ebx, mem2 ; 1
(add) (add) ; 2 2-cycle

The following instructions add the contents of the register to the memory location and store the
result Y at the memory location. An add with a memory result takes 3 clocks to execute. The first
cloø ck loads the value, the second performs the addition, and the third stores the result. When
p^ aired, the last clock of the U-pipe instruction overlaps with the first clock of the V-pipe instruc-
tion execution
ô

.

add meml, eax ; 1
(add) ; 2
(add) add mem2, ebx ; 3
(add) ; 4
(add) ; 5

14-17

CO
r

DE OPTIMIZATION

No other instruction
#

s may begin execution until the instructions already executing have
compø leted.

T
$
o expose the opportunities for scheduling and pairing, it is better to issue a sequence of simple

instructions rather than a complex instruction that takes the same number of clocks. The simple
inst

�
ruction sequence can take advantage of more issue slots. The load/store style code genera-

ti
ô

on requires more registers and increases code size. This impacts Intel486™ processor perfor-
mance, although only as a second order effect. To compensate for the extra registers needed,
ex[tra effort should be put into register allocation and instruction scheduling so that extra regis-
ters

ô
 are only used when parallelism increases.

14.5.1.3. MMX™ INSTRUCTION PAIRING GUIDELINES

This section specifies guidelines and restrictions for pairing MMX™ instructions with each
ota her and with integer instructions.

Pa
]

iring Two MM X™ Instructions

The following restrictions apply when pairing of two MMX ™ instructions:

• Two MMX™ instructions that both use the MMX™ shifter unit (pack, unpack, and shift
instruction

�
s) are not pairable because there is only one MMX™ shifter unit. Shift

opa erations may be issued in either the U-pipe or the V-pipe, but cannot executed in both
p^ ipes in the same clock.

• Tw
$

o MMX™ instructions that both use the MMX™ multiplier unit (PMULL, PMULH,
PMADD type instructions) are not pairable because there is only one MMX™ multiplier
up nit. Multiply operations may be issued in either the U-pipe or the V-pipe, but cannot
execu[ted in both pipes in the same clock.

• MMX ™ instructions that access either memory or a general-purpose register can be issued
in

�
 the U-pipe only. Do not schedule these instructions to the V-pipe as they will wait and be

iss
�

ued in the next pair of instructions (and to the U-pipe).

• The MMX™ destination register of the U-pipe instruction should not match the source or
des

k
tination register of the V-pipe instruction (dependency check).

• Th
$

e EMMS instruction is not pairable with other instructions.

• If either the TS flag or the EM flag in control register CR0 is set, MMX ™ instructions
cannø ot be executed in the V-pipe.

Pairing an Integer Ins
]

truction in the U-Pipe With an MMX™ Instruction in the V-Pipe

Us
�

e the following guidelines for pairing an integer instruction in the U-pipe and an MMX™
in

�
struction in the V-pipe:

• The
$

MMX™ instruction is not the first MMX ™ instruction following a floating-point
instruction.

• The V-pipe MMX™ instruction does not access either memory or a general-purpose
regY ister.

14-18

CODE OPTIMIZATION

• The U-pipe integer instruction is a pairable U-pipe integer instruction (see Table 14-2).

Pairing a
]

n MMX™ Instruction in the U-Pipe with an Integer Instruction in the V-Pipe

Us
�

e the following guidelines for pairing an MMX™ instruction in the U-pipe and an integer
instruction in the V-pipe:

• The U-pipe MMX™ instruction does not access either memory or a general-purpose
reY gister.

• The V-pipe instruction is a pairable integer V-pipe instruction (see Table 14-2).

14.5.2. Pipelining G uideli nes

The term
$

p� ipelining refers to the practice of scheduling instructions in the instruction stream to
reduce processor stalls due to register, data, or data-cache dependencies. The effect of pipelining
ona code execution is highly dependent on the family of Intel Architecture processors the code is
in
�

tended to run on. Pipelining can greatly increase the performance of code written to run on the
Pentium®

�
 family of processors. It is less important for code written to run on the P6 family

pr^ ocessors, because the dynamic execution model that these processors use does a significant
amog unt of pipelining automatically.

The following subsections describe general pipelining guidelines for MMX ™ and floating-
po^ int instructions. These guidelines yield significant improvements in execution speed for code
ruY nning on the Pentium®

�
 processors and may yield additional improvements in execution speed

ona the P6 family processors. Specific pipelining guidelines for the P6 family processors are
gi	 ven in Section 14.5.3., “Scheduling Rules for P6 Family Processors”

14.5.2.1. MMX™ INSTRUCTION PIPELINING GUIDELINES

All MMX
�

™ instructions can be pipelined on P6 family and Pentium®
�
 (with MMX ™ tech-

nology) processors, including the multiply instructions. All MMX ™ instructions take a single
cloø ck to execute except the MMX™ multiply instructions which take 3 clocks.

Si
�

nce MMX™ multiply instructions take 3 clocks to execute, the result of a multiply instruction
can bø e used only by other instructions issued 3 clocks later. For this reason, avoid scheduling a
d
k
ependent instruction in the 2 instruction pairs following the multiply.

The
$

store of a register after writing the register must wait for 2 clocks after the update of the
register. Scheduling the store 2 clocks after the update avoids a pipeline stall.

14.5.2.2. FLOATING-POINT PIPELINING GUIDELINES

Many
�

 of the floating-point instructions have a latency greater than 1 clock, therefore on
Pen
)

tium®
�
 processors the next floating-point instruction cannot access the result until the first

oa peration has finished execution. To hide this latency, instructions should be inserted between
the p
ô

air that causes the pipe stall. These instructions can be integer instructions or floating-point
instruction
�

s that will not cause a new stall themselves. The number of instructions that should
be inserted
ü

 depends on the length of the latency. Because of the out-of-order execution capa-

14-19

CO
r

DE OPTIMIZATION

b
ü
ilit y of the P6 family processors, stalls will not necessarily occur on an instruction or micro-op

bas
ü

is. However, if an instruction has a very long latency such as an FDIV, � then scheduling can
im
�

prove the throughput of the overall application. The following sections list considerations for
floating-point pipelining on Pentium®

�
 processors.

Pai
]

r ing of Floating-Point Instruct ions

In
�

 a Pentium®
�
 processor, pairing floating-point instructions with one another (with one excep-

ti
ô

on) does not result in a performance enhancement because the processor has only one floating-
p^ oint unit (FPU). However, some floating-point instructions can be paired with integer instruc-
ti

ô
ons or the FXCH instruction to improve execution times. The following are some general

pairing^ rules and restrictions for floating-point instructions:

• All floating-point instructions can be executed in the V-pipe and paired with suitable
in

�
structions (generally integer instructions) in the U-pipe.

• The only floating-point instruction that can be executed in the U-pipe is the FXCH
instruction

�
. The FXCH instruction, if executed in the U-pipe can be paired with another

float
�

ing-point instruction executing in the V-pipe.

• The floating-point instructions FSCALE, FLDCW, and FST cannot be paired with any
in

�
struction (integer instruction or the FXCH instruction).

Us
e

ing Int eger Instructions to Hide Latencies and Schedule Floating-Point Instruct ions

W
÷

hen a floating-point instruction depends on the result of the immediately preceding instruc-
ti

ô
on, and that instruction is also a floating-point instruction, performance can be improved by

pl^ acing one or more integer instructions between the two floating-point instructions. This is true
even if[the integer instructions perform loop control. The following example restructures a loop
in

�
 this manner:

for (i=0; i<Size; i++)
array1 [i] += array2 [i];

; assume eax=Size-1, esi=array1, edi=array2

PENTIUM(R) PROCESSORCLOCKS

LoopEntryPoint:
fld real4 ptr [esi+eax*4] ; 2 - AGI
fadd real4 ptr [edi+eax*4] ; 1
fstp real4 ptr [esi+eax*4] ; 5 - waits for fadd
dec eax ; 1
jn

w
z LoopEntryPoint

; assume eax=Size-1, esi=array1, edi=array2

jm
w

p LoopEntryPoint
Align 16

TopOfLoop:
fstp real4 ptr [esi+eax*4+4] ; 4 - waits for fadd + AGI

LoopEntryPoint:
fld real4 ptr [esi+eax*4] ;1

14-20

CODE OPTIMIZATION

fadd real4 ptr [edi+eax*4] ;1
dec eax ;1
jn

w
z TopOfLoop

;
fstp real4 ptr [esi+eax*4+4]

By moving the integer instructions between the FADDS and FSTPS instructions,� the integer
instruction
�

s can be executed while the F
�
ADDS instruction is

�
 completing in the floating-point unit

andg before the FSTPS instruction b
ü
egins execution. Note that this new loop structure requires a

separate entryõ point for the first iteration because the loop needs to begin with the FLDS instruc-
tion. Also, there needs to be an additional FST

�
PS instruction after the conditional jump to finish

th
ô

e final loop iteration.

Hi
�

ding the One-Clock Latency of a Floating-Point Store

A fl
�

oating-point store must wait an extra clock for its floating-point operand. After an FL
�

D, a� n
FST must wait 1 clock, as shown in the following example:

fld meml ; 1 fld takes 1 clock
; 2 fst waits, schedule something here

fst mem2 ; 3,4 fst takes 2 clocks

After the common arithmetic operations, FMUL and FADD, which normally have a latency of
3 clo
+

cks, FST waits an extra clock for a total of 4 (see following example).

fadd meml ; 1 add takes 3 clocks
; 2 add, schedule something here
; 3 add, schedule something here
; 4 fst waits, schedule something here

fst mem2 ; 5,2 fst takes 2 clocks

Other in
�

structions such as FADDP and FSUBRP also exhibit this type of latency.

In
�

 the next example, the store is not dependent on the previous load:

fld meml ; 1
fld mem2 ; 2
fxch st(l) ; 2
fst mem3 ; 3 stores values loaded from meml

Here, a
0

register may be used immediately after it has been loaded (with FLD
�

):
û

fld mem1 ; l
fadd mem2 ; 2,3,4

Us
�

e of a register by a floating-point operation immediately after it has been written by another
FADD, � FSUB, or� FM

�
UL causes a 2-clock delay. If instructions are inserted between these two,

th
ô

en latency and a potential stall can be hidden.

Ad
�

ditionally, there are multiclock floating-point instructions (FDIV and FSQRT)
û
 that execute in

t
ô
he floating-point unit pipe (the U-pipe). While executing these instructions in the floating-point
up nit pipe, integer instructions can be executed in parallel. Emitting a number of integer instruc-
tions
ô

after such an instruction wil l keep the integer execution units busy (the exact number of
in
�

structions depends on the floating-point instruction’s clock count).

14-21

CO
r

DE OPTIMIZATION

Integer instructions generally overlap with the floating-point operations except when the last
fl

�
oating-point operation was FXCH. In this case there is a 1 clock delay:

:

Integer and Floating-Point Mu ltiply

Th
$

e integer multiply operations, the MU
�

L and IM
�

UL instructions, ar� e executed by the FPU’s
multiply unit. Therefore, for the Pentium®

�
 processor, these instructions cannot be executed in

p^ arallel with a floating-point instruction. This restriction does not apply to the P6 family proces-
sõ ors, because these processors have two internal FPU execution units.

A floating-point multiply instruction (FMUL) de
û

lays for 1 clock if the immediately preceding
clock execuø ted an FMUL or an FMUL-FXCH pair. The multiplier can only accept a new pair of
opera ands every other clock.

Floating-Point Operations with Integer Operands

Fl
�

oating-point operations that take integer operands (the FIADD or FISUB instruction)
û
 should be

avg oided. These instructions should be split into two instructions: the F
�
ILD instruction and ag

floating-point operation. The number of clocks before another instruction can be issued
(t
ý

hroughput) for FIADD is 4, while for FILD and simple floating-point operations it is 1, as
sõ hown in the example below:
.

Us
�

ing the FILD and FADDP instructions in place of FIADD yields 2 free clocks for executing
ota her instructions.

F
�

STSW Instruction

The FSTSW instruction that usually appears after a floating-point comparison instruction
(

ý
FCOM, � FCOMP, � FCOMPP)

û
 delays for 3 clocks. Other instructions may be inserted after the

coø mparison instruction to hide this latency. On the P6 family processors the FCM
�

OVcc instruc-
ti
ô

on can be used instead.

U-pipe V-pipe

fadd fxch ; 1

; 2 fxch delay

mov eax, 1 inc edx

Complex Instructions Better for Potential Overlap

fiadd [ebp] ; 4 fild [ebp] ; 1

faddp st(l) ; 2

14-22

CODE OPTIMIZATION

Transcendental Instructions

T
$

ranscendental instructions execute in the U-pipe and nothing can be overlapped with them, so
ang integer instruction following a transcendental instruction will wait until the previous instruc-
tio
ô

n completes.

T
$

ranscendental instructions execute on the Pentium®
�
 processor (and later Intel Architecture

pr^ ocessors) much faster than the software emulations of these instructions found in most math
libraries. Therefore, it may be worthwhile in-lining transcendental instructions in place of math
lib
,

rary calls to transcendental functions. Software emulations of transcendental instructions will
execu[te faster than the equivalent instructions only if accuracy is sacrificed.

FXCH Guidelines

The
$

FXCH instruction costs no extra clocks on the Pentium®
�
 processor when all of the following

coø nditions occur, allowing the instruction to execute in the V-pipe in parallel with another
floating-point instruction executing in the U-pipe:

• A floating-point instruction follows the FXCH instruction.

• A flo
�

ating-point instruction from the following list immediately precedes the FXCH
instruction: FADD, � FSUB, � FMUL, � FLD, � FCOM, � FUCOM, � FCHS, � FTST, � FABS, or � FDIV.

• An FXCH instruction has already been executed. This is because the instruction boundaries
in the cache are mar

�
ked the first time the instruction is executed, so pairing only happens

the
ô

second time this instruction is executed from the cache.

W
÷

hen the above conditions are true, the instruction is almost “free” and can be used to access
elements [in the deeper levels of the floating-point stack instead of storing them and then loading
them again.
ô

14.5.3. Scheduling Rule s for P 6 Family Proc essors

The P6 family pro
$

cessors have 3 decoders that translate Intel Architecture macro instructions
into micro operations (micro-ops, also called “uops”). The decoder limitations are as follows:

• The first decoder (decoder 0) can decode instructions up to 7 bytes in length and with up to
4

�
 micro-ops in one clock cycle. The second two decoders (decoders 1 and 2) can decode

instructions that are 1 micro-op instructions, and these instructions will also be decoded in
oa ne clock cycle.

• Three m
$

acro instructions in an instruction sequence that fall into this envelope will be
d

k
ecoded in one clock cycle.

• Macro instructions outside this envelope will be decoded through decoder 0 alone. While
d

k
ecoder 0 is decoding a long macro instruction, decoders 1 and 2 (second and third

d
k
ecoders) are quiescent.

App
�

endix C of the Intel Ar
�

chitecture Optimization Manual lists all Intel macro-instructions and
the d
ô

ecoders on which they can be decoded.

14-23

CO
r

DE OPTIMIZATION

The macro instructions entering the decoder travel through the pipe in order; therefore, if a
m1 acro instruction will not fit in the next available decoder then the instruction must wait until
t

ô
he next clock to be decoded. It is possible to schedule instructions for the decoder such that the
instructions in the in-order pipeline are less likely to be stalled.

C

onsider the following examples:

• If
�

 the next available decoder for a multimicro-op instruction is not decoder 0, the
multimicro-op instruction will wait for decoder 0 to be available, usually in the next clock,
leaving

,
 the other decoders empty during the current clock. Hence, the following two

in
�

structions will take 2 clocks to decode.

add eax, ecx ; 1 uop instruction (decoder 0)
add edx, [ebx] ; 2 uop instruction (stall 1 cycle wait till

; decoder 0 is available)

• D
(

uring the beginning of the decoding clock, if two consecutive instructions are more than
1 micro-op, decoder 0 will decode one instruction and the next instruction will not be
d

k
ecoded until the next clock.

add eax, [ebx] ; 2 uop instruction (decoder 0)
mov ecx, [eax] ; 2 uop instruction (stall 1 cycle to wait until

; decoder 0 is available)
add ebx, 8 ; 1 uop instruction (decoder 1)

In
�

structions of the opcoq de reg, mem form produce two micro-ops: the load from memory and
t

ô
he operation micro-op. Scheduling for the decoder template (4-1-1) can improve the decoding
t

ô
hroughput of your application.

In gener
�

al, the oq pcode reg, mem forms of instructions are used to reduce register pressure in code
that is no

ô
t memory bound, and when the data is in the cache. Use simple instructions for

impro
�

ved speed on the Pentium®
�
 and P6 family processors.

The fo
$

llowing rules should be observed while using the opcq ode reg, mem instruction on
Pentium®

�
 processors with MMX™ technology:

• Sch
�

edule for minimal stalls in the Pentium®
�
 processor pipe. Use as many simple instruc-

tio
ô

ns as possible. Generally, 32-bit assembly code that is well optimized for the Pentium®
�

pr^ ocessor pipeline wil l execute well on the P6 family processors.

• Wh
÷

en scheduling for Pentium®
�
 processors, keep in mind the primary stall conditions and

deco
k

der (4-1-1) template on the P6 family processors, as shown in the example below.

pmaddw mm6, [ebx] ; 2 uops instruction (decoder 0)
paddd mm7, mm6 ; 1 uop instruction (decoder 1)
ad ebx, 8 ; 1 uop instruction (decoder 2)

14-24

CODE OPTIMIZATION

14.6. ACCESSING MEMORY

The following subsections describe optimizations that can be obtained when scheduling instruc-
tions that access memo
ô

ry.

14.6.1. Using MMX™ Instruct ions That Access Memory

An MMX
�

™ instruction may have two register operands (opq code reg, reg) o
û

r one register and
ona e memory operand (oq pcode reg, mem),

û
 where opq code represents the instruction opcode, re� g

represents the register, and mem� represents memory. The opq code reg, mem� instructions are
usefup l in some cases to reduce register pressure, increase the number of operations per clock,
andg reduce code size.

The following discussion assumes that the memory operand is present in the data cache. If it is
no~ t, then the resulting penalty is usually large enough to obviate the scheduling effects discussed
in
�

 this section.

In Pentium®
�
 processor with MMX™ technology, the opq code reg, mem MMX ™ instructions do

n~ ot have longer latency than the opq code reg, re� g instructions (assuming a cache hit). They do
h
8
ave more limited pairing opportunities, however. In the Pentium®

�
 II and Pentium®

�
 III proces-

soõ rs, the opq code reg, me� m MMX ™ instructions translate into two micro-ops, as opposed to one
micro1 -op for the oq pcode reg, re� g instructions. Thus, they tend to limit decoding bandwidth and
occua py more resources than the opq code reg, re� g instructions.

The recommended usage of the opq code reg, reg instructions depends on whether the MMX™
codø e is memory-bound (that is, execution speed is limited by memory accesses). As a rule of
th
ô

umb, an MMX ™ code sequence is considered to be memory-bound if the following inequality
holds:

For
�

memory-bound MMX™ code, Intel recommends merging loads whenever the same
memo1 ry address is used more than once to reduce memory accesses. For example, the following
codø e sequence can be speeded up by using a MOVQ instruction in place of the opc� ode reg,
mem� forms of the MMX™ instructions:

OPCODE MM0, [address A]
OPCODE MM1, [address A]
; optimized by use of a MOVQ instruction and opcode reg, mem forms
; of the MMX(TM) instructions

MOVQ MM2, [address A]
OPCODE MM0, MM2
OPCODE MM1, MM2

An
�

other alternative is to incorporate the prefetch instruction introduced in the Pentium®
�
 III

pr^ ocessor. Prefetching the data preloads the cache prior to actually needing the data. Proper use
ofa prefetch can improve performance if the application is not memory bandwidth bound or the

Instructi ons
2

--------------------------------- MemoryAccesses
Non

�
MMX Instructi ons

2
---+<

14-25

CO
�

DE OPTIMIZATION

data d
k

oes not already fit into cache. For more information on proper usage of the prefetch
in

�
struction see the Int

�
el Architecture Optimization Manual order number 245127-001.

Fo
�

r MMX™ code that is not memory-bound, load merging is recommended only if the same
memory address is used more than twice. Where load merging is not possible, usage of the
o� pcode reg, me� m inst

�
ructions is recommended to minimize instruction count and code size. For

examp� le, the following code sequence can be shortened by removing the MOVQ instruction and
us� ing an op� code reg, mem� form of the MMX™ instruction:

MOVQ mm0, [address A]
OPCODE mm1, mm0
; optimized by removing the MOVQ instruction and using an
; opcode reg, mem form of the MMX(TM) instructions

OPCODE mm1, [address A]

In
�

many cases, a MOVQ re� g, � re� g and op� code reg, mem� can be rep� laced by a MOVQ re� g, � mem� and
th
�

e op� code reg, reg. This should be done where possible, since it saves one micro-op on the
Pe
�

ntium®
�
 II and Pentium®

�
 III processors. The following example is one where the op� code is a

s� ymmetric operation:

MOVQ mm1, mm0 (1 micro-op)
OPCODE mm1, [address A] (2 micro-ops)

One cl

ock can be saved by rewriting the code as follows:

MOVQ mm1, [address A] (1 micro-op)
OPCODE mm1, mm0 (1 micro-op)

14.6.2. Partial Memory Acce sses Wit h MMX™ Inst ruct ions

The
¡

MMX™
¢

 registers allow large quantiti es of data to be moved without stalling the processor.
Instead

�
of loading single array values that are 8-, 16-, or 32-bits long, the values can be loaded

in a single quadword, with the structure or array pointer being incremented accordingly.

An
�

y data that will be manipulated by MMX™ instructions should be loaded using either:

• Th
¡

e MMX
¢

™ instruction that loads a 64-bit operand (for example, MOVQ MM0, m64),
£

 or

• The register-memory form of any MMX™ instruction that operates on a quadword
memo¤ ry operand (for example, PMADDW MM0, m64).

£

All
�

 data in MMX™ registers should be stored using the MMX™ instruction that stores a 64-bit
oper¥ and (for example, MOVQ m64, MM0).

£

Th
¡

e goal of these recommendations is twofold. First, the loading and storing of data in MMX™
regi¦ sters is more efficient using the larger quadword data block sizes. Second, using quadword
dat

§
a block sizes helps to avoid the mixing of 8-, 16-, or 32-bit load and store operations with 64-

b
¨
it MMX™ load and store operations on the same data. This, in turn, prevents situations in

which s© mall loads follow large stores to the same area of memory, or large loads follow small
s� tores to the same area of memory. The Pentium®

�
 II and Pentium®

�
 III processors will stall in

th
�

ese situations.

14-26

CODE OPTIMIZATION

C
ª

onsider the following examples.

The
¡

first example il lustrates the effects of a large load after a series of small stores to the same
area o« f memory (beginning at memory address mem�). T

£
he large load will stall the processor:

MOV mem, eax ; store dword to address "mem"
MOV mem + 4, ebx ; store dword to address "mem + 4"

 :
 :

MOVQ mm0, mem ; load qword at address "mem", stalls

The MOVQ instruction in this example must wait for the stores to write memory before it can
access« all the data it requires. This stall can also occur with other data types (for example, when
by
¨

tes or words are stored and then words or doublewords are read from the same area of
memo¤ ry). By changing the code sequence as follows, the processor can access the data without
del
§

ay:

MOVD mm1, ebx ; build data into a qword first before storing it to memory
MOVD mm2, eax
PSLLQ mm1, 32
POR mm1, mm2
MOVQ mem, mm1 ; store SIMD variable to "mem" as a qword

 :
 :

MOVQ mm0, mem ; load qword SIMD variable "mem", no stall

The second example illustrates the effect of a series of small loads after a large store to the same
area o« f memory (beginning at memory address me¬ m). Her

£
e, the small loads will stall the

pr­ ocessor:

MOVQ mem, mm0 ; store qword to address "mem"
 :
 :

MOV bx, mem + 2 ; load word at address "mem + 2" stalls
MOV cx, mem + 4 ; load word at address "mem + 4" stalls

The wo
¡

rd loads must wait for the MOVQ instruction to write to memory before they can access
the d
�

ata they require. This stall can also occur with other data types (for example, when double-
word© s or words are stored and then words or bytes are read from the same area of memory).
C
ª

hanging the code sequence as follows allows the processor to access the data without a stall:

MOVQ mem, mm0 ; store qword to address "mem"
 :
 :

MOVQ mm1, mem ; load qword at address "mem"
MOVD eax, mm1 ; transfer "mem + 2" to ax from

; MMX(TM) register not memory
PSRLQ mm1, 32
SHR eax, 16
MOVD ebx, mm1 ; transfer "mem + 4" to bx from

; MMX register, not memory
AND ebx, 0ffffh

14-27

CO
�

DE OPTIMIZATION

These transformations, in general, increase the number the instructions required to perform the
d

§
esired operation. For the Pentium®

�
 II and Pentium®

�
 III processors, the performance penalty due

to th
�

e increased number of instructions is more than offset by the number of clocks saved. For
th

�
e Pentium®

�
 processor with MMX ™ technology, however, the increased number of instruc-

ti
�

ons can negatively impact performance. For this reason, careful and efficient coding of these
t

�
ransformations is necessary to minimize any potential negative impact to Pentium®

�
 processor

perf­ ormance.

14.6.3. Wri te Allocation Effects

P
�

6 family processors have a “write allocate by read-for-ownership” cache, whereas the
Pentium®

�
 processor has a “no-write-allocate; write through on write miss” cache.

On P6 f

amily processors, when a write occurs and the write misses the cache, the entire 32-byte
cache li� ne is fetched. On the Pentium®

�
 processor, when the same write miss occurs, the write is

s� imply sent out to memory.

W
®

rite allocate is generally advantageous, since sequential stores are merged into burst writes,
and « the data remains in the cache for use by later loads. This is why P6 family processors
ad« opted this write strategy, and why some Pentium®

�
 processor system designs implement it for

the L2
�

 cache.

W
®

rite allocate can be a disadvantage in code where:

• Just
¯

 one piece of a cache line is written.

• The entire cache line is not read.

• Strides are lar
°

ger than the 32-byte cache line.

• W
®

rites to a large number of addresses (greater than 8000).

When
®

 a large number of writes occur within an application, and both the stride is longer than the
32-

±
byte cache line and the array is large, every store on a P6 family processor will cause an entire

cach� e line to be fetched. In addition, this fetch will probably replace one (sometimes two) dirty
cach� e line(s). The result is that every store causes an additional cache line fetch and slows down
the ex

�
ecution of the program. When many writes occur in a program, the performance decrease

can b� e significant.

The fo
¡

l lowing Sieve of Erastothenes example program demonstrates these cache effects. In this
examp� le, a large array is stepped through in increasing strides while writing a single value of the
array« with zero.

NOTE

Th
¡

is is a very simplistic example used only to demonstrate cache effects.
Many other optimizations are possible in this code.

14-28

CODE OPTIMIZATION

boolean array[max];
for(i=2;i<max;i++) {

array = 1;
}

for(i=2;i<max;i++) {
if(array[i]) {

for(j=2;j<max;j+=i) {
array[j] = 0; /*here we assign memory to 0 causing

the cache line fetch within the j
loop */

}
}

}

Two optimizations are available for this specific example:

• Optimization

 1—In “boolean” in this example there is a “char” array. Here, it may well be
b

¨
etter to make the “boolean” array into an array of bits, thereby reducing the size of the

ar« ray, which in turn reduces the number of cache line fetches. The array is packed so that
r¦ ead-modify-writes are done (since the cache protocol makes every read into a read-
modify-write). Unfortunately, in this example, the vast majority of strides are greater than
2

²
56 bits (one cache line of bits), so the performance increase is not significant.

• Optimization

 2—Another optimization is to check if the value is already zero before
writin© g (as shown in the following example), thereby reducing the number of writes to
mem¤ ory (dirty cache lines)

boolean array[max];
for(i=2;i<max;i++) {

array = 1;
}

for(i=2;i<max;i++) {
if(array[i]) {

 for(j=2;j<max;j+=i) {
 if(array[j] != 0) { /* check to see if value is

already 0 */
array[j] = 0;
}

}
}

}

The external bus activity is reduced by half because most of the time in the Sieve program the
data is alread
§

y zero. By checking first, you need only 1 burst bus cycle for the read and you save
the b
�

urst bus cycle for every line you do not write. The actual write back of the modified line is
no³ longer needed, therefore saving the extra cycles.

14-29

CO
�

DE OPTIMIZATION

NO
´

TE

This operation benefits the P6 family processors, but it may not enhance the
per­ formance of Pentium®

�
 processors. As such, it should not be considered

genµ eric.

14.7. ADDRESSING MODES AND REGISTER USAGE

On

 the Pentium®
�
 processor, when a register is used as the base component, an additional clock

is used if that register is the destination of the immediately preceding instruction (assuming all
inst

�
ructions are already in the prefetch queue). For example:

add esi, eax ; esi is destination register
mov eax, [esi] ; esi is base, 1 clock penalty

S
°

ince the Pentium®
�
 processor has two integer pipelines, a register used as the base or index

comp� onent of an effective address calculation (in either pipe) causes an additional clock if that
register is the d¦ estination of either instruction from the immediately preceding clock (see Figure
14-2). This effect is known as Address Generation Interlock (AGI). To avoid the AGI, the
i

�
nstructions should be separated by at least 1 clock by placing other instructions between them.
The MMX

¡
™ registers cannot be used as base or index registers, so the AGI does not apply for

MMX™ register destinations.

No
¶

 penalty occurs in the P6 family processors for the AGI condition.

Figure 1 4-2. Pipeline Example of AGI Stall

PF

DI

D2

E

WB

AGI

AGI P
·

enalty

PF

DI

D2

E

WB

PF

DI

D2

E

WB

14-30

CODE OPTIMIZATION

No
¶

te that some instructions have implicit reads/writes to registers. Instructions that generate
add« resses implicitly through ESP (such as PUSH, POP, RET, CALL) also suffer from the AGI
pen­ alty, as shown in the following example:

sub esp, 24
; 1 clock cycle stall
push ebx
mov esp, ebp
; 1 clock cycle stall
pop ebp

Th
¡

e PUSH and POP instructions also implicitly write to the ESP register. These writes, however,
do
§

 not cause an AGI when the next instruction addresses through the ESP register. Pentium®
�

pr­ ocessors “rename” the ESP register from PUSH and POP instructions to avoid the AGI
pen­ alty (see the following example):

push edi ; no stall
mov ebx, [esp]

On

 Pentium®
�
 processors, instructions that include both an immediate and« a« displacemen

§
t field

are « pairable in the U-pipe. When it is necessary to use constants, it is usually more efficient to
use immed� iate data instead of loading the constant into a register first. If the same immediate
data is used m
§

ore than once, however, it is faster to load the constant in a register and then use
th
�

e register multiple times, as illustrated in the following example:

mov result, 555 ; 555 is immediate, result is
; displacement

mov word ptr [esp+4], 1 ; 1 is immediate, 4 is displacement

Si
°

nce MMX™ instructions have 2-byte opcodes (0FH opcode map), any MMX™ instruction
th
�

at uses base or index addressing with a 4-byte displacement to access memory will have a
l
¸
ength of 8 bytes. Instructions over 7 bytes can slow macro instruction decoding and should be
av« oided where possible. It is often possible to reduce the size of such instructions by adding the
immediate value to the value in the base or index register, thus removing the immediate field.

14.8. INSTRUCTION LENGTH

On

 Pentium®
�
 processors, instructions greater than 7 bytes in length cannot be executed in the V-

p­ ipe. In addition, two instructions cannot be pushed into the instruction FIFO unless both are 7
b
¨
ytes or less in length. If only one instruction is pushed into the instruction FIFO, pairing will

no³ t occur unless the instruction FIFO already contains at least one instruction. In code where
p­ airing is very high (as is often the case in MMX™ code) or after a mispredicted branch, the
in
�

struction FIFO may be empty, leading to a loss of pairing whenever the instruction length is
ov¥ er 7 bytes.

In addition, the P6 family processors can only decode one instruction at a time when an instruc-
t
�
ion is longer than 7 bytes.

S
°

o, for best performance on all Intel processors, use simple instructions that are less than 8 bytes
in length.

14-31

CO
�

DE OPTIMIZATION

14.9. PREFIXED OPCODES

On

 the Pentium®
�
 processor, an instruction with a prefix is pairable in the U-pipe (PU) if the

i
�
nstruction (without the prefix) is pairable in both pipes (UV) or in the U-pipe (PU). The prefixes
are i« ssued to the U-pipe and get decoded in 1 clock for each prefix and then the instruction is
i

�
ssued to the U-pipe and may be paired.

F
�

or the P6 family and Pentium®
�
 processors, the prefixes that should be avoided for optimum

code execution� speeds are:

• Lock.

• S
°

egment override.

• Address size.

• Oper

and size.

• 2-
²

byte opcode map (0FH) prefix. An exception is the Streaming SIMD Extensions instruc-
tio

�
ns introduced with the Pentium®

�
 III processor. The first byte of these instructions is

0FH. I
¹

t is not used as a prefix.

• 2-
²

byte opcode map (0FH) prefix.

On

 Pentium®
�
 processors with MMX™ technology, a prefix on an instruction can delay the

pars­ ing and inhibit pairing of instructions.

Th
¡

e following list highlights the effects of instruction prefixes on the Pentium®
�
 processor

instruction FIFO:

• There is no penalty on 0FH-prefix instructions.

• An i
�

nstruction with a 66H or 67H prefix takes 1 clock for prefix detection, another clock
for length calculation, and another clock to enter the instruction FIFO (3 clocks total). It
mu¤ st be the first instruction to enter the instruction FIFO, and a second instruction can be
p­ ushed with it.

• Instructions with other prefixes (not 0FH, 66H, or 67H) take 1 additional clock to detect
each pr� efix. These instructions are pushed into the instruction FIFO only as the first
in

�
struction. An instruction with two prefixes will take 3 clocks to be pushed into the

instruction FIFO (2 clocks for the prefixes and 1 clock for the instruction). A second
in

�
struction can be pushed with the first into the instruction FIFO in the same clock.

The
¡

impact on performance exists only when the instruction FIFO does not hold at least two
en� tries. As long as the decoder (D1 stage) has two instructions to decode there is no penalty. The
in

�
struction FIFO will quickly become empty if the instructions are pulled from the instruction

F
�

IFO at the rate of two per clock. So, if the instructions just before the prefixed instruction suffer
from a performance loss (for example, no pairing, stalls due to cache misses, misalignments,
etc.), th� en the performance penalty of the prefixed instruction may be masked.

On

 the P6 family processors, instructions longer than 7 bytes in length limit the number of
instructions decoded in each clock. Prefixes add 1 to 2 bytes to the length of an instruction,
pos­ sibly limiting the decoder.

14-32

CODE OPTIMIZATION

It is recommended that, whenever possible, prefixed instructions not be used or that they be
s� cheduled behind instructions which themselves stall the pipe for some other reason.

14.10. INTEGER INSTRUCTION SELECTION AND OPTIMIZAT IONS

This section describes both instruction sequences to avoid and sequences to use when generating
o¥ ptimal assembly code. The information applies to the P6 family processors and the Pentium®

�

p­ rocessors with and without MMX ™ technology.

• LEA Instruction. The LEA instruction can be used in the following situations to optimize
coº de execution:

— The LEA instruction may be used sometimes as a three/four operand addition
instruction (for example, LEA ECX, [EAX+EBX+4+a]).

— In many cases, an LEA instruction or a sequence of LEA, ADD, SUB and SHIFT
i
»
nstructions may be used to replace constant multiply instructions. For the P6 family

p­ rocessors the constant multiply is faster relative to other instructions than on the
Pe
¼

ntium®
�
 processor, therefore the trade off between the two options occurs sooner. It is

reco¦ mmended that the integer multiply instruction be used in code designed for P6
family processor execution.

— The above technique can also be used to avoid copying a register when both operands
t

½
o an ADD instruction are still needed after the ADD, since the LEA instruction need

not overwrite its operands.

The
¡

disadvantage of the LEA instruction is that it increases the possibili ty of an AGI
st¾ all with previous instructions. LEA is useful for shifts of 2, 4, and 8 because on the
Pentium®

�
 processor, LEA can execute in either the U- or V-pipe, but the shift can only

execu� te in the U-pipe. On the P6 family processors, both the LEA and SHIFT instruc-
t
½
ions are single micro-op instructions that execute in 1 clock.

• C
ª

omplex Instructions. For greater execution speed, avoid using complex instructions (for
ex� ample, LOOP, ENTER, or LEAVE). Use sequences of simple instructions instead to
acco« mplish the function of a complex instruction.

• Zero-Extension of Short Integers. On the Pentium®
�
 processor, the MOVZX instruction has

a p« refix and takes 3 clocks to execute totaling 4 clocks. It is recommended that the
f
¿
ollowing sequence be used instead of the MOVZX instruction:

xor eax, eax
mov al, mem

If this code occurs within a loop, it may be possible to pull the XOR instruction out of
the
½

loop if the only assignment to EAX is the MOV AL, MEM. This has greater impor-
tance fo
½

r the Pentium®
�
 processor since the MOVZX is not pairable and the new

sequen¾ ce may be paired with adjacent instructions.

In
�

 order to avoid a partial register stall on the P6 family processors, special hardware
has been implemented that allows this code sequence to execute without a stall. Even

14-33

CO
�

DE OPTIMIZATION

s¾ o, the MOVZX instruction is a better choice for the P6 family processors than the
alt« ernative sequences.

• PUS
¼

H Mem
À

. The PUSH mem� instruction takes 4 clocks for the Intel486™ processor. It is
recommended that the following sequence be used in place of a PUSH mem� instruction
becau

¨
se it takes only 2 clocks for the Intel486™ processor and increases pairing

op¥ portunity for the Pentium®
�
 processor.

mov reg, mem
push reg

• Shor
°

t Opcodes. Use 1 byte long instructions as much as possible. This will reduce code
size and¾ help increase instruction density in the instruction cache. The most common
exam� ple is using the INC and DEC instructions rather than adding or subtracting the
conº stant 1 with an ADD or SUB instruction. Another common example is using the PUSH
and« POP instructions instead of the equivalent sequence.

• 8/
Á

16 Bit Operands. With 8-bit operands, try to use the byte opcodes, rather than using 32-
bit o

¨
perations on sign and zero extended bytes. Prefixes for operand size override apply to

16-bit operands, not to 8-bit operands.

S
°

ign Extension is usually quite expensive. Often, the semantics can be maintained by
zero Â extending 16-bit operands. Specifically, the C code in the following example does
not³ need sign extension nor does it need prefixes for operand size overrides.

static short int a, b;
if (a==b) {
 . . .
}

C
ª

ode for comparing these 16-bit operands might be:

Of co

urse, this can only be done under certain circumstances, but the circumstances
tend to b

½
e quite common. This would not work if the compare was for greater than, less

than,
½

greater than or equal, and so on, or if the values in EAX or EBX were to be used
in ano

»
ther operation where sign extension was required.

The P6 family
¡

 processors provides special support for the XOR re� g, � re� g instruction
where b© oth operands point to the same register, recognizing that clearing a register does
not³ depend on the old value of the register. Additionally, special support is provided for
the abo

½
ve specific code sequence to avoid the partial stall.

U Pipe V Pipe

xor eax, eax xor ebx, ebx ; 1

movw ax, [a] ; 2 (prefix) + 1

movw bx, [b] ; 4 (prefix) + 1

cmp eax, ebx ; 6

14-34

CODE OPTIMIZATION

The following straight-forward method may be slower on Pentium®
�
 processors.

movsw eax, a ; 1 prefix + 3
movsw ebx, b ; 5
cmp ebx, eax ; 9

However, the P6 family processors have improved the performance of the MOVZX
in
»

structions to reduce the prevalence of partial stalls. Code written specifically for the
P6
¼

 family processors should use the MOVZX instructions.

• C
ª

ompares. Use the TEST instruction when comparing a value in a register with 0. TEST
ess� entially ANDs the operands together without writing to a destination register. If a value
is

»
ANDed with itself and the result sets the zero condition flag, the value was zero. TEST

is preferred over an AND instruction because AND writes the result register which may
su¾ bsequently cause an AGI or an artificial output dependence on the P6 family processors.
TEST is

¡
 better than CMP .., 0 because the instruction size is smaller.

Us
Ã

e the TEST instruction when comparing the result of a boolean AND with an imme-
d
§
iate constant for equality or inequality if the register is EAX (if (avar & 8) { }).

On

 the Pentium®
�
 processor, the TEST instruction is a 1 clock pairable instruction when

the
½

form is TEST EAX, imm
Ä

 or TEST reg, � reg. Other forms of TEST take 2 clocks and
do
§

 not pair.

• Ad
Å

dress Calculations. Pull address calculations into load and store instructions. Internally,
memory reference instructions can have 4 operands: a relocatable load-time constant, an
imm

»
ediate constant, a base register, and a scaled index register. (In the segmented model, a

seg¾ ment register may constitute an additional operand in the linear address calculation.) In
many cases, several integer instructions can be eliminated by fully using the operands of
mem¤ ory references.

• C
ª

learing a Register. The preferred sequence to move zero to a register is XOR re� g, � re� g.
This sequence saves code space but sets the condition codes. In contexts where the
conº dition codes must be preserved, use MOV re� g, 0.�

• I
�
nteger Divide. Typically, an integer divide is preceded by a CDQ instruction. (Divide

instructions use EDX: EAX as the dividend and CDQ sets up EDX.) It is better to copy
EAX into

Æ
 EDX, then right shift EDX 31 places to sign extend. On the Pentium®

�
 processor,

th
½

e copy/shift takes the same number of clocks as CDQ, but the copy/shift scheme allows
two
½

 other instructions to execute at the same time. If the value is known to be positive, use
XOR
Ç

 EDX, EDX.

On

the P6 family processors, the CDQ instruction is faster, because CDQ is a single
micro-op instruction as opposed to two instructions for the copy/shift sequence.

• Prolog Sequences. Be careful to avoid AGIs in the procedure and function prolog
sequ¾ ences due to register ESP. Since PUSH can pair with other PUSH instructions, saving
callee-savedº registers on entry to functions should use these instructions. If possible, load
p­ arameters before decrementing ESP.

14-35

CO
�

DE OPTIMIZATION

In routines that do not call other routines (leaf routines), use ESP as the base register
to free up

½
 EBP. If you are not using the 32-bit flat model, remember that EBP cannot

be u
¨

sed as a general purpose base register because it references the stack segment.

• Avoid Compares with Immediate Zero. Often when a value is compared with zero, the
o¥ peration producing the value sets condition codes that can be tested directly by a JccÈ

instruction
»

. The most notable exceptions are the MOV and LEA instructions. In these
casesº , use the TEST instruction.

• Epilog Sequence. If only 4 bytes were allocated in the stack frame for the current function,
instead o

»
f incrementing the stack pointer by 4, use POP instructions to prevent AGIs. For

th
½

e Pentium®
�
 processor, use two pops for eight bytes.

14-36

CODE OPTIMIZATION

15
Debugging and
Performance
Monitoring

15-1

CHAPTER 15
DEBUGGING AND PERFORMANCE MONITORING

Th
¡

e Intel Architecture provides extensive debugging facilities for use in debugging code and
monitoring code execution and processor performance. These facilities are valuable for debug-
gÉ ing applications software, system software, and multi tasking operating systems.

The d
¡

ebugging support is accessed through the debug registers (DB0 through DB7) and two
model-specific registers (MSRs). The debug registers of the Intel Architecture processors hold
the ad

½
dresses of memory and I/O locations, called breakpoints. Breakpoints are user-selected

locations in a pr
Ê

ogram, a data-storage area in memory, or specific I/O ports where a programmer
or ¥ system designer wishes to halt execution of a program and examine the state of the processor
by i

Ë
nvoking debugger software. A debug exception (#DB) is generated when a memory or I/O

acces« s is made to one of these breakpoint addresses. A breakpoint is specified for a particular
form of memory or I/O access, such as a memory read and/or write operation or an I/O read
and/« or write operation. The debug registers support both instruction breakpoints and data break-
p­ oints. The MSRs (which were introduced into the Intel Architecture in the P6 family proces-
s¾ ors) monitor branches, interrupts, and exceptions and record the addresses of the last branch,
interru

»
pt or exception taken and the last branch taken before an interrupt or exception.

15.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

• Debug exception (#DB)—Transfers program control to a debugger procedure or task
whenÌ a debug event occurs.

• Breakpoint exception (#BP)—Transfers program control to a debugger procedure or task
whenÌ an INT 3 instruction is executed.

• B
Í

reakpoint-address registers (DB0 through DB3)—Specifies the add
°

resses of up to 4
br

Ë
eakpoints.

• Debug status register (DB6)—Reports the conditions that were in effect when a debug or
br

Ë
eakpoint exception was generated.

• Debug control register (DB7)—S
°

pecifies the forms of memory or I/O access that cause
br

Ë
eakpoints to be generated.

• Debu
Î

gCtlM SR register—Enables last branch, interrupt, and exception recording; taken
br

Ë
anch traps; the breakpoint reporting pins; and trace messages.

• LastBranchToIP and LastBranchFromIP MSRs—Specifies the source and destination
add« resses of the last branch, interrupt, or exception taken. The address saved is the offset in
the co

½
de segment of the branch (source) or target (destination) instruction.

15-2

DEBUGGING AND PERFORMANCE MONITORING

• LastExceptionToIP and LastExceptionFromIP MSRs—Specifies the source and
des

§
tination addresses of the last branch that was taken prior to an exception or interrupt

b
Ë
eing generated. The address saved is the offset in the code segment of the branch (source)

or tar¥ get (destination) instruction.

• T (trap) flag, TSS—Gen
Ï

erates a debug exception (#DB) when an attempt is made to
swit¾ ch to a task with the T flag set in its TSS.

• RF (resume) flag, EFLAGS register— Suppresses multiple exceptions to the same
in

»
struction.

• T
Ð

F (trap) flag, EFLAGS register—G
Ï

enerates a debug exception (#DB) after every
ex� ecution of an instruction.

• Breakpoint instruction (INT 3)—Gener
Ï

ates a breakpoint exception (#BP), which
trans

½
fers program control to the debugger procedure or task. This instruction is an

altern« ative way to set code breakpoints. It is especially useful when more than four
b

Ë
reakpoints are desired, or when breakpoints are being placed in the source code.

These facili
¡

ties allow a debugger to be called either as a separate task or as a procedure in the
conº text of the current program or task. The following conditions can be used to invoke the
deb
§

ugger:

• T
¡
ask switch to a specific task.

• Execution of the breakpoint instruction.

• Execution of any instruction.

• Ex
Æ

ecution of an instruction at a specified address.

• Read or write of a byte, word, or doubleword at a specif ied memory address.

• W
®

rite to a byte, word, or doubleword at a specified memory address.

• I
Ñ
nput of a byte, word, or doubleword at a specified I/O address.

• Out

put of a byte, word, or doubleword at a specif ied I/O address.

• Attempt to change the contents of a debug register.

15.2. DEBUG REGISTERS

The eight debug registers (refer to Figure 15-1) control the debug operation of the processor.
Th
¡

ese registers can be written to and read using the move to or from debug register form of the
MOV i
¢

nstruction. A debug register may be the source or destination operand for one of these
instructions. The debug registers are privileged resources; a MOV instruction that accesses these
reg¦ isters can only be executed in real-address mode, in SMM, or in protected mode at a CPL of
0.
¹

An attempt to read or write the debug registers from any other privilege level generates a
genÉ eral-protection exception (#GP).

15-3

DEBUGGING AND PERFORMANCE MONITORING

Figure 15-1. Debug Registe rs

31
Ò

24 23 22 21 20 19 16 15 1314 12 11 8 7
Ó

0
Ô

DR7L

Reserved Bits, DO NOT DEFINE

0
Õ

123
Ò

45
Ö

6
×

9
Ø

101718252627282930
Ò

G
Ù

0
ÕL

1
L
2

ÚL
3

ÛG
Ù

3
ÛL

E
G

Ù

E
G

Ù

2
Ú G

Ù

10 0
Õ

10 0
Õ G

Ù

D
R/W

0
ÕLEN

0
ÕR/W

1
LEN

1
R/W

2
ÚLEN

2
ÚR/W

3
ÛLEN

3
Û

31
Ò

16 15 1314 12 11 8 7
Ó

0

DR6B
0

Õ

123
Ò

45
Ö

6
×

9
Ø

10

B
1

B
2

ÚB
3

Û0 1
Õ

1B
D

B
S

B
T

Ü 1 11 1 11Reserved (set to 1)

31
Ò

0
Ô

DR5Reserved

31
Ò

0
Ô

DR4Reserved

31
Ò

0
Ô

DR3Breakpoint 3 Linear Address

31
Ò

0
Ô

DR2Breakpoint 2 Linear Address

31
Ò

0
Ô

DR1Breakpoint 1 Linear Address

31
Ò

0
Ô

DR0Breakpoint 0 Linear Address

R
sÝ
vÞ

d
ß

15-4

DEBUGGING AND PERFORMANCE MONITORING

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints,
nu³ mbered 0 though 3. For each breakpoint, the following information can be specified and
detected
§

with the debug registers:

• The linear address where the breakpoint is to occur.

• The length of the breakpoint location (1, 2, or 4 bytes).

• Th
¡

e operation that must be performed at the address for a debug exception to be generated.

• W
®

hether the breakpoint is enabled.

• W
®

hether the breakpoint condition was present when the debug exception was generated.

The
¡

following paragraphs describe the functions of flags and fields in the debug registers.

15.2.1. Debug Address Registers (DR0-DR 3)

Each of the four debug-address registers (DR0 through DR3) holds the 32-bit linear address of
a b« reakpoint (refer to Figure 15-1). Breakpoint comparisons are made before physical address
tran
½

slation occurs. Each breakpoint condition is specified further by the contents of debug
reg¦ ister DR7.

15.2.2. Debug Regi sters DR4 and DR 5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE
flag
¿

in control register CR4 is set), and attempts to reference the DR4 and DR5 registers cause
an « invalid-opcode exception (#UD) to be generated. When debug extensions are not enabled
(when
à

 the DE flag is clear), these registers are aliased to debug registers DR6 and DR7.

15.2.3. Debug S tatus Register (DR6)

The d
¡

ebug status register (DR6) reports the debug conditions that were sampled at the time the
last debug exception was generated (refer to Figure 15-1). Updates to this register only occur
whenÌ an exception is generated. The flags in this register show the following information:

B0
Í

 through B3 (breakpoint condition detected) flags (bits 0 through 3)
Indicates (when set) that its associated breakpoint condition was met when a
deb

§
ug exception was generated. These flags are set if the condition described

fo
¿

r each breakpoint by the LENná , and � R/Wná flags in debug control register
DR7 is true. They are set even if the breakpoint is not enabled by the Lná and
G

Ï
ná flags in register DR7.

B
Í

D (debug register access detected) flag (bit 13)
Indicates that the next instruction in the instruction stream will access one of
the deb

½
ug registers (DR0 through DR7). This flag is enabled when the GD

(g
à

eneral detect) flag in debug control register DR7 is set. Refer to Section
15.2.4., “Debug Control Register (DR7)” for further explanation of the purpose
o¥ f this flag.

15-5

DEBUGGING AND PERFORMANCE MONITORING

BS (single step) flag (bit 14)
In
Ñ

dicates (when set) that the debug exception was triggered by the single-step
execu� tion mode (enabled with the TF flag in the EFLAGS register). The single-
st¾ ep mode is the highest-priority debug exception. When the BS flag is set, any
o¥ f the other debug status bits also may be set.

BT
Í

 (task switch) flag (bit 15)
Indicates (when set) that the debug exception resulted from a task switch where
the T f
½

lag (debug trap flag) in the TSS of the target task was set (refer to Section
6.2
â

.1., “Task-State Segment (TSS)”, in Section 6, “Task Management”, for the
format of a TSS). There is no flag in debug control register DR7 to enable or
d
§
isable this exception; the T flag of the TSS is the only enabling flag.

Note that th
¶

e contents of the DR6 register are never cleared by the processor. To avoid any
confº usion in identifying debug exceptions, the debug handler should clear the register before
ret¦ urning to the interrupted program or task.

15.2.4. Debug Cont rol Regist er (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions
(ref

à
er to Figure 15-1). The flags and fields in this register control the following things:

L0
ã

 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6)
Enable (when set) the breakpoint condition for the associated breakpoint for
the cur
½

rent task. When a breakpoint condition is detected and its associated Lná

flag is
¿

 set, a debug exception is generated. The processor automatically clears
these flag
½

s on every task switch to avoid unwanted breakpoint conditions in the
new t³ ask.

G0 t
ä

hrough G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7)
Enable (when set) the breakpoint condition for the associated breakpoint for all
tas
½

ks. When a breakpoint condition is detected and its associated Gná flag is set,
a deb« ug exception is generated. The processor does not clear these flags on a
t
½
ask switch, allowing a breakpoint to be enabled for all tasks.

LE
ã

 and GE (local and global exact breakpoint enable) flags (bits 8 and 9)
(Not sup
à

ported in the P6 family processors.) When set, these flags cause the
pr­ ocessor to detect the exact instruction that caused a data breakpoint condi-
tio
½

n. For backward and forward compatibility with other Intel Architecture
pr­ ocessors, Intel recommends that the LE and GE flags be set to 1 if exact
br
Ë

eakpoints are required.

GD (g
ä

eneral detect enable) flag (bit 13)
Enab
Æ

les (when set) debug-register protection, which causes a debug exception
to
½

be generated prior to any MOV instruction that accesses a debug register.
W
®

hen such a condition is detected, the BD flag in debug status register DR6 is
set¾ prior to generating the exception. This condition is provided to support in-
circuit emulatorº s. (When the emulator needs to access the debug registers,
emulato� r software can set the GD flag to prevent interference from the program

15-6

DEBUGGING AND PERFORMANCE MONITORING

curº rently executing on the processor.) The processor clears the GD flag upon
enter� ing to the debug exception handler, to allow the handler access to the
d

§
ebug registers.

R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29)
Sp

°
ecifies the breakpoint condition for the corresponding breakpoint. The DE

(deb
à

ug extensions) flag in control register CR4 determines how the bits in the
R/Wná fields are interpreted. When the DE flag is set, the processor interprets
th

½
ese bits as follows:

00
¹

—Break on instruction execution only.
01

¹
—Break on data writes only.

10—Break on I/O reads or writes.
11—Break on data reads or writes but not instruction fetches.

W
®

hen the DE flag is clear, the processor interprets the R/Wná bits the same as
for th

¿
e Intel386™ and Intel486™ processors, which is as follows:

00
¹

—Break on instruction execution only.
01

¹
—Break on data writes only.

10—Undefined.
11—Break on data reads or writes but not instruction fetches.

LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31)
Specify

°
 the size of the memory location at the address specified in the corre-

s¾ ponding breakpoint address register (DR0 through DR3). These fields are
interpreted as follows:

00
¹

—1-byte length
01

¹
—2-byte length

10—Undefined
11—4-byte length

If
Ñ

 the corresponding RWná field in register DR7 is 00 (instruction execution),
th

½
en the LENná field should also be 00. The effect of using any other length is

un� defined. Refer to Section 15.2.5., “Breakpoint Field Recognition” for further
inf

»
ormation on the use of these fields.

15.2.5. Breakpoint Field Recognit ion

The breakpoint address registers (debug registers DR0 through DR3) and the LENná fields for
each b� reakpoint define a range of sequential byte addresses for a data or I/O breakpoint. The
LENná fields permit specification of a 1-, 2-, or 4-byte range beginning at the linear address spec-
i
»
fied in the corresponding debug register (DRná)

£
. Two-byte ranges must be aligned on word

bo
Ë

undaries and 4-byte ranges must be aligned on doubleword boundaries. I/O breakpoint
add« resses are zero extended from 16 to 32 bits for purposes of comparison with the breakpoint
add« ress in the selected debug register. These requirements are enforced by the processor; it uses
the LEN
½

n á field
¿

 bits to mask the lower address bits in the debug registers. Unaligned data or I/O
br
Ë

eakpoint addresses do not yield the expected results.

15-7

DEBUGGING AND PERFORMANCE MONITORING

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an
acces« s is within the range defined by a breakpoint address register and its LENná field. Table 15-1
gives anÉ example setup of the debug registers and the data accesses that would subsequently trap
o¥ r not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where
each br� eakpoint is byte-aligned, and the two breakpoints together cover the operand. These
break

Ë
points generate exceptions only for the operand, not for any neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENná field is
set¾ to 00). The behavior of code breakpoints for other operand sizes is undefined. The processor
recog¦ nizes an instruction breakpoint address only when it points to the first byte of an instruc-
ti

½
on. If the instruction has any prefixes, the breakpoint address must point to the first prefix.

15.3. DEBUG EXCEPTIONS

The I
¡

ntel Architecture processors dedicate two interrupt vectors to handling debug exceptions:
vectorå 1 (debug exception, #DB) and vector 3 (breakpoint exception, #BP). The following

Table 15-1. Breakpointing Examples

Debug Regi ster Setup

Debug Register R/Wnæ Breakpoi nt Ad dress LENnæ

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A
·

0001H
A

·
0002H

B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operatio n Address
Access Leng th

(In Byt es)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A
·

0001H
A

·
0001H

A
·

0002H
A

·
0002H

B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A
·

0000H
A

·
0002H

A
·

0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

15-8

DEBUGGING AND PERFORMANCE MONITORING

s¾ ections describe how these exceptions are generated and typical exception handler operations
fo
¿

r handling these exceptions.

15.3.1. Debug E xcept ion (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or is part of a larger software
syst¾ em. The processor generates a debug exception for any of several conditions. The debugger
can º check flags in the DR6 and DR7 registers to determine which condition caused the exception
and« which other conditions might also apply. Table 15-2 shows the states of these flags
fo
¿

llowing the generation of each kind of breakpoint condition.

In
Ñ

struction-breakpoint and general-detect conditions (refer to Section
°

 15.3.1.3., “General-
Detect
ç

Exception Condition”) result in faults; other debug-exception conditions result in traps.
The debug exception may report either or both at one time. The following sections describe each
clasº s of debug exception. Refer to Section 5.12., “Exception and Interrupt Reference” in Chapter
5,
è

Interr
�

upt and Exception Handling for additional information about this exception.

15.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

The processor reports an instruction breakpoint when it attempts to execute an instruction at an
add« ress specified in a breakpoint-address register (DB0 through DR3) that has been set up to
d
§
etect instruction execution (R/W flag is set to 0). Upon reporting the instruction breakpoint, the

pr­ ocessor generates a fault-class, debug exception (#DB) before it executes the target instruction

Table 15-2. Debug Ex ception Condit ions

Debug or Breakpoi nt Co ndi tion DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(GEn or LEn = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(GEn or LEn = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(GEn or LEn = 1)

R/Wn = 2 Trap

Data read or write (but not instruction
fetches), at addresses defined by DRn
and LENn

Bn = 1 and
(GEn or LEn = 1)

R/Wn = 3 Trap

General detect fault, resulting from an
attempt to modify debug registers
(usually in conjunction with in-circuit
emulation)

BD = 1 Fault

Task switch BT = 1 Trap

15-9

DEBUGGING AND PERFORMANCE MONITORING

for the breakpoint. Instruction breakpoints are the highest priority debug exceptions and are
guarÉ anteed to be serviced before any other exceptions that may be detected during the decoding
or execution¥ of an instruction.

Because the debug exception for an instruction breakpoint is generated before the instruction is
executed� , if the instruction breakpoint is not removed by the exception handler, the processor
wiÌ ll detect the instruction breakpoint again when the instruction is restarted and generate another
debu

§
g exception. To prevent looping on an instruction breakpoint, the Intel Architecture

pro­ vides the RF flag (resume flag) in the EFLAGS register (refer to S
°

ection 2.3., “System Flags
and « Fields in the EFLAGS Register” in Chapter 2, S

é
ystem Architecture Overview). W

£
hen the RF

flag is set, the processor ignores instruction breakpoints.

Al
Å

l Intel Architecture processors manage the RF flag as follows. The processor sets the RF flag
autom« atically prior to calling an exception handler for any fault-class exception except a debug
except� ion that was generated in response to an instruction breakpoint. For debug exceptions
resu¦ lting from instruction breakpoints, the processor does not set the RF flag prior to calling the
debu

§
g exception handler. The debug exception handler then has the option of disabling the

instruction breakpoint or setting the RF flag in the EFLAGS image on the stack. If the RF flag
in the

»
EFLAGS image is set when the processor returns from the exception handler, it is copied

in
»

to the RF flag in the EFLAGS register by the IRETD or task switch instruction that causes the
return. The processor then ignores instruction breakpoints for the duration of the next instruc-
ti

½
on. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image into the

EF
Æ

LAGS register.) Setting the RF flag does not prevent other types of debug-exception condi-
t

½
ions (such as, I/O or data breakpoints) from being detected, nor does it prevent nondebug excep-
ti

½
ons from being generated. After the instruction is successfully executed, the processor clears

the R
½

F flag in the EFLAGS register, except after an IRETD instruction or after a JMP, CALL,
or I¥ NT ná instruction that causes a task switch. (Note that the processor also does not set the RF
flag

¿
 when calling exception or interrupt handlers for trap-class exceptions, for hardware inter-

rup¦ ts, or for software-generated interrupts.)

For the Pentium®
ê
 processor, when an instruction breakpoint coincides with another fault-type

except� ion (such as a page fault), the processor may generate one spurious debug exception after
the s

½
econd exception has been handled, even though the debug exception handler set the RF flag

in the EFLAGS image. To prevent this spurious exception with Pentium®
ê
 processors, all fault-

clasº s exception handlers should set the RF flag in the EFLAGS image.

15.3.1.2. DATA MEMORY AND I/O BREAKPOINT EXCEPTION CONDITIONS

Dat
ç

a memory and I/O breakpoints are reported when the processor attempts to access a memory
or I/O ¥ address specified in a breakpoint-address register (DB0 through DR3) that has been set
up � to detect data or I/O accesses (R/W flag is set to 1, 2, or 3). The processor generates the excep-
ti
½

on after it executes the instruction that made the access, so these breakpoint condition causes
a trap« -class exception to be generated.

B
ë

ecause data breakpoints are traps, the original data is overwritten before the trap exception is
generÉ ated. If a debugger needs to save the contents of a write breakpoint location, it should save
th
½

e original contents before setting the breakpoint. The handler can report the saved value after
the b
½

reakpoint is triggered. The address in the debug registers can be used to locate the new
vå alue stored by the instruction that triggered the breakpoint.

15-10

DEBUGGING AND PERFORMANCE MONITORING

The Intel486™ and later Intel Architecture processors ignore the GE and LE flags in DR7. In
the Intel38
½

6™ processor, exact data breakpoint matching does not occur unless it is enabled by
set¾ ting the LE and/or the GE flags.

The P6 family processors, however, are unable to report data breakpoints exactly for the REP
MOVS
¢

 and REP STOS instructions until the completion of the iteration after the iteration in
whiÌ ch the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the
pr­ ocessor generates the exception after the completion of the first iteration. Repeated INS and
OUTS

 instructions generate an I/O-breakpoint debug exception after the iteration in which the
memory address breakpoint location is accessed.

15.3.1.3. GENERAL-DETECT EXCEPTION CONDITION

W
®

hen the GD flag in DR7 is set, the general-detect debug exception occurs when a program
attempts to « access any of the debug registers (DR0 through DR7) at the same time they are being
used � by another application, such as an emulator or debugger. This additional protection feature
guÉ arantees full control over the debug registers when required. The debug exception handler can
d
§
etect this condition by checking the state of the BD flag of the DR6 register. The processor

genÉ erates the exception before it executes the MOV instruction that accesses a debug register,
which Ì causes a fault-class exception to be generated.

15.3.1.4. SINGLE-STEP EXCEPTION CONDITION

The p
¡

rocessor generates a single-step debug exception if (while an instruction is being executed)
it detects that the TF flag in the EFLAGS register is set. The exception is a trap-class exception,
becau
Ë

se the exception is generated after the instruction is executed. (Note that the processor does
n³ ot generate this exception after an instruction that sets the TF flag. For example, if the POPF
instruction is used to set the TF flag, a single-step trap does not occur until after the instruction
th
½

at follows the POPF instruction.)

The pr
¡

ocessor clears the TF flag before calling the exception handler. If the TF flag was set in a
TSS at the time of a task switch, the exception occurs after the first instruction is executed in the
new t³ ask.

The TF
¡

flag normally is not cleared by privil ege changes inside a task. The INT ná and INTO
instructions, however, do clear this flag. Therefore, software debuggers that single-step code
muì st recognize and emulate INT ná or INTO instructions rather than executing them directly. To
mì aintain protection, the operating system should check the CPL after any single-step trap to see
if single stepping should continue at the current privilege level.

The i
¡

nterrupt priorities guarantee that, if an external interrupt occurs, single stepping stops.
W
®

hen both an external interrupt and a single-step interrupt occur together, the single-step inter-
rupt is processed first. This operation clears the TF flag. After saving the return address or
sw¾ itching tasks, the external interrupt input is examined before the first instruction of the single-
st¾ ep handler executes. If the external interrupt is still pending, then it is serviced. The external
interrupt handler does not run in single-step mode. To single step an interrupt handler, set a break
p­ oint inside the handler and then set the TF flag.

15-11

DEBUGGING AND PERFORMANCE MONITORING

15.3.1.5. TASK-SWITCH EXCEPTION CONDITION

The processor generates a debug exception after a task switch if the T flag of the new task’s TSS
is

»
 set. This exception is generated after program control has passed to the new task, and after the

first i
¿

nstruction of that task is executed. The exception handler can detect this condition by
examin� ing the BT flag of the DR6 register.

No
¶

te that, if the debug exception handler is a task, the T bit of its TSS should not be set. Failure
to

½
 observe this rule will put the processor in a loop.

15.3.2. Breakpoint Excep tion (#B P)—Interrupt V ector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction (refer to
S

°
ection 5.12., “Exception and Interrupt Reference” in Chapter 5, I

�
nterrupt and Exception

Handling).
£

 Debuggers use break exceptions in the same way that they use the breakpoint regis-
ters

½
; that is, as a mechanism for suspending program execution to examine registers and memory

locations. W
Ê

ith earlier Intel Architecture processors, breakpoint exceptions are used extensively
for setting instruction breakpoints. With the Intel386™ and later Intel Architecture processors,
it

»
 is more convenient to set breakpoints with the breakpoint-address registers (DR0 through

DR
ç

3). However, the breakpoint exception still is useful for breakpointing debuggers, because
the b

½
reakpoint exception can call a separate exception handler. The breakpoint exception is also

useful when� it is necessary to set more breakpoints than there are debug registers or when break-
poin­ ts are being placed in the source code of a program under development.

15.4. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING

The P6 family processors provide five MSRs for recording the last branch, interrupt, or excep-
ti

½
on taken by the processor: DebugCtlMSR, LastBranchToIP, LastBranchFromIP, LastExcepti-

onT¥ oIP, and LastExceptionFromIP. These registers can be used to set breakpoints on branches,
interru

»
pts, and exceptions, and to single-step from one branch to the next.

15.4.1. DebugCt lMSR Regist er

The DebugCtlMSR register enables last branch, interrupt, and exception recording; taken
bran

Ë
ch breakpoints; the breakpoint reporting pins; and trace messages. This register can be

writtÌ en to using the WRMSR instruction, when operating at privi lege level 0 or when in real-
addr« ess mode. A protected-mode operating system procedure is required to provide user access
to

½
 this register. Figure 15-2 shows the flags in the DebugCtlMSR register. The functions of these

flags are as f
¿

ollows:

LBR (last branch/interrupt/exception) flag (bit 0)
W
®

hen set, the processor records the source and target addresses for the last
br
Ë

anch and the last exception or interrupt taken by the processor prior to a
deb
§

ug exception being generated. The processor clears this flag whenever a
deb
§

ug exception, such as an instruction or data breakpoint or single-step trap
occu¥ rs.

15-12

DEBUGGING AND PERFORMANCE MONITORING

BTF (single-step on branches) flag (bit 1)
W

®
hen set, the processor treats the TF flag in the EFLAGS register as a “single-

step o¾ n branches” flag rather than a “single-step on instructions” flag. This
mechanism allows single-stepping the processor on taken branches. Software
muì st set both the BTF and TF flag to enable debug breakpoints on branches;
the

½
processor clears both flags whenever a debug exception occurs.

PBi
í
 (performance monitoring /breakpoint pins) flags (bits 2 through 5)

W
®

hen these flags are set, the performance monitoring/breakpoint pins on the
pr­ ocessor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corº responding breakpoint-address registers (DR0 through DR3). The
pr­ ocessor asserts then deasserts the corresponding BPi

Ä
p
î

in when a breakpoint
match occurs. When a PBi

Ä
 flag is clear, the performance monitoring/breakpoint

pin­ s report performance events. Processor execution is not affected by
rep¦ orting performance events.

TR (trace message enable) flag (bit 6)
W

®
hen set, trace messages are enabled. Thereafter, when the processor detects

a « branch, exception, or interrupt, it sends the “to” and “from” addresses out on
the sys

½
tem bus as part of a branch trace message. A debugging device that is

monitoring the system bus can read these messages and synchronize operations
with branÌ ch, exception, and interrupt events. Setting this flag greatly reduces
the p

½
erformance of the processor. When trace messages are enabled, the values

stored¾ in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and
Las

ï
tExceptionFromIP MSRs are undefined.

Note that the “fr
¶

om” addresses sent out on the system bus may differ from
tho

½
se stored in the LastBranchFromIP MSRs or LastExceptionFromIP MSRs.

The from
¡

 address sent out on the bus is always the next instruction in the
instruction stream following a successfully completed instruction. For
exa� mple, if a branch completes successfully, the address stored in the Last-
B

ë
ranchFromIP MSR is the address of the branch instruction, but the address

sent ¾ out on the bus in the trace message is the address of the instruction

Figure 15-2. DebugCtl MSR Registe r

31
Û

TR—Trace messages enable
PBi—Performance monitoring/breakpoint pins
BTF—Single-step on branches
LBR—Last branch/interrupt/exception

7 6
ð

5 4
ñ

3 2 1 0

P
ò

B
2

P
ò

B
1

P
ò

B
0

Ô
B

ó

T
F

T
R

L
ô

B
R

P
ò

B
3

Ò

Reserved

15-13

DEBUGGING AND PERFORMANCE MONITORING

following the branch instruction. If the processor faults on the branch, the
add« ress stored in the LastBranchFromIP MSR is again the address of the
br
Ë

anch instruction and that same address is sent out on the bus.

15.4.2. Last Branch and Last Exception MSRs

The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the
in

»
struction pointers for the last branch, interrupt, or exception that the processor took prior to a

debu
§

g exception being generated (refer to Figure 15-2). When a branch occurs, the processor
loads the

Ê
 address of the branch instruction into the LastBranchFromIP MSR and loads the target

addr« ess for the branch into the LastBranchToIP MSR. When an interrupt or exception occurs
(oth

à
er than a debug exception), the address of the instruction that was interrupted by the excep-

ti
½

on or interrupt is loaded into the LastBranchFromIP MSR and the address of the exception or
in

»
terrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the
in

»
struction pointers for the last branch that the processor took prior to an exception or interrupt

being
Ë

 generated. When an exception or interrupt occurs, the contents of the LastBranchToIP and
LastBranchFromIP MSRs are copied into these registers before the to and from addresses of the
exceptio� n or interrupt are recorded in the LastBranchToIP and LastBranchFromIP MSRs.

These reg
¡

isters can be read using the RDMSR instruction.

15.4.3. Moni toring Branches, Exceptions, and Interrupt s

W
®

hen the LBR flag in the DebugCtlMSR register is set, the processor automatically begins
recor¦ ding branches that it takes, exceptions that are generated (except for debug exceptions), and
interrupts that are serviced. Each time a branch, exception, or interrupt occurs, the processor
recor¦ ds the to and from instruction pointers in the LastBranchToIP and LastBranchFromIP
MS

¢
Rs. In addition, for interrupts and exceptions, the processor copies the contents of the Last-

BranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastException-
F

�
romIP MSRs prior to recording the to and from addresses of the interrupt or exception.

W
®

hen the processor generates a debug exception (#DB), it automatically clears the LBR flag
befo

Ë
re executing the exception handler, but does not touch the last branch and last exception

MS
¢

Rs. The addresses for the last branch, interrupt, or exception taken are thus retained in the
Las

ï
tBranchToIP and LastBranchFromIP MSRs and the addresses of the last branch prior to an

interrupt or exception are retained in the LastExceptionToIP, and LastExceptionFromIP MSRs.

The deb
¡

ugger can use the last branch, interrupt, and/or exception addresses in combination with
code-º segment selectors retrieved from the stack to reset breakpoints in the breakpoint-address
registers (DR0 through DR3), allowing a backward trace from the manifestation of a particular
bug

Ë
 toward its source. Because the instruction pointers recorded in the LastBranchToIP, Last-

B
ë

ranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs are offsets into a code
s¾ egment, software must determine the segment base address of the code segment associated with

15-14

DEBUGGING AND PERFORMANCE MONITORING

the
½

control transfer to calculate the linear address to be placed in the breakpoint-address regis-
ters. The segmen
½

t base address can be determined by reading the segment selector for the code
segment fr¾ om the stack and using it to locate the segment descriptor for the segment in the GDT
or¥ LDT. The segment base address can then be read from the segment descriptor.

Bef
ë

ore resuming program execution from a debug-exception handler, the handler should set the
LB
ï

R flag again to re-enable last branch and last exception/interrupt recording.

15.4.4. Singl e-Stepping on Branches, E xceptions, and Interr up ts

W
®

hen the BTF flag in the DebugCtlMSR register and the TF flag in the EFLAGS register are
b
Ë
oth set, the processor generates a single-step debug exception the next time it takes a branch,

genÉ erates an exception, or services an interrupt. This mechanism allows the debugger to single-
st¾ ep on control transfers caused by branches, exceptions, or interrupts. This “control-flow single
s¾ tepping” helps isolate a bug to a particular block of code before instruction single-stepping
further narrows the search. If the BTF flag is set when the processor generates a debug excep-
tion,
½

 the processor clears the flag along with the TF flag. The debugger must reset the BTF flag
bef
Ë

ore resuming program execution to continue control-flow single stepping.

15.4.5. Initializing Last Branch or Last Except ion/ Interrupt
Recording

The LastB
¡

ranchToIP, LastBranchFromIP, LastExceptionToIP, and LastException-FromIP
MSRs are enabled by setting the LBR flag in the DebugCtlMSR register. Control-flow single
st¾ epping is enabled by setting the BTF flag in the DebugCtlMSR register. The processor clears
bo
Ë

th the LBR and the BTF flags whenever a debug exception is generated. To re-enable these
mechanisms, the debug-exception handler must thus explicitly set these flags before returning
to
½

 the interrupted program.

15.5. TIME-STAMP COUNTER

The Intel Architecture (beginning with the Pentium®
ê
 processor) defines a time-stamp counter

mechì anism that can be used to monitor and identify the relative time of occurrence of processor
even� ts. The time-stamp counter architecture includes an instruction for reading the time-stamp
couº nter (RDTSC), a feature bit (TCS flag) that can be read with the CPUID instruction, a time-
st¾ amp counter disable bit (TSD flag) in control register CR4, and a model-specific time-stamp
couº nter.

Following execution of the CPUID instruction, the TSC flag in register EDX (bit 4) indicates
(when
à

 set) that the time-stamp counter is present in a particular Intel Architecture processor
implemen
»

tation. (Refer to “CPUID—CPU Identification” in Chapter 3 of the In
�

tel Architecture
So
é

ftware Developer’s Manual, Volume 2.)

The time-stamp cou
¡

nter (as implemented in the Pentium®
ê
 and P6 family processors) is a 64-bit

coº unter that is set to 0 following the hardware reset of the processor. Following reset, the counter

15-15

DEBUGGING AND PERFORMANCE MONITORING

is incremented every processor clock cycle, even when the processor is halted by the HLT
i

»
nstruction or the external STPCLK# pin.

The R
¡

DTSC instruction reads the time-stamp counter and is guaranteed to return a monotoni-
callº y increasing unique value whenever executed, except for 64-bit counter wraparound. Intel
guarÉ antees, architecturally, that the time-stamp counter frequency and configuration will be such
th

½
at it will not wraparound within 10 years after being reset to 0. The period for counter wrap is

s¾ everal thousands of years in the Pentium®
ê
 and P6 family processors.

Normally
¶

, the RDTSC instruction can be executed by programs and procedures running at any
pri­ vilege level and in virtual-8086 mode. The TSD flag in control register CR4 (bit 2) allows
us� e of this instruction to be restricted to only programs and procedures running at privilege level
0.

¹
A secure operating system would set the TSD flag during system initialization to disable user

acces« s to the time-stamp counter. An operating system that disables user access to the time-
s¾ tamp counter should emulate the instruction through a user-accessible programming interface.

The R
¡

DTSC instruction is not serializing or ordered with other instructions. Thus, it does not
necess³ arily wait until all previous instructions have been executed before reading the counter.
Si

°
milarly, subsequent instructions may begin execution before the RDTSC instruction operation

is p
»

erformed.

The R
¡

DMSR and WRMSR instructions can read and write the time-stamp counter, respectively,
as« a model-specific register (TSC). The abil ity to read and write the time-stamp counter with the
R

õ
DMSR and WRMSR instructions is not an architectural feature, and may not be supported by

fu
¿

ture Intel Architecture processors. Writing to the time-stamp counter with the WRMSR
instruction resets the count. Only the low order 32-bits of the time-stamp counter can be written
to; the h

½
igh-order 32 bits are 0 extended (cleared to all 0s).

15.6. PERFORMANCE-MONITORING COUNTERS

The Pentium®
ê
 processor introduced model-specific performance-monitoring counters to the

Intel Arch
Ñ

itecture. These counters permit processor performance parameters to be monitored
and measur« ed. The information obtained from these counters can then be used for tuning system
and « compiler performance.

In the
Ñ

Intel P6 family of processors, the performance-monitoring counter mechanism was modi-
fied

¿
and enhanced to permit a wider variety of events to be monitored and to allow greater

coº ntrol over the selection of the events to be monitored.

Th
¡

e following sections describe the performance-monitoring counter mechanism in the
Pe

¼
ntium®

ê
 and P6 family processors.

15.6.1. P6 Famil y Processor Per formance- Monitoring Counters

The P6 family processors provide two 40-bit performance counters, allowing two types of
events to be m� onitored simultaneously. These counters can either count events or measure dura-
ti

½
on. When counting events, a counter is incremented each time a specified event takes place or

a s« pecified number of events takes place. When measuring duration, a counter counts the

15-16

DEBUGGING AND PERFORMANCE MONITORING

number of processor clocks that occur while a specified condition is true. The counters can count
even� ts or measure durations that occur at any privilege level. Table A-1 in Appendix A, Per

ö
for-

man� ce-Monitoring Events lists the events that can be counted with the P6 family performance
monitoring counters.

The p
¡

erformance-monitoring counters are supported by four MSRs: the performance event
sel¾ ect MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and
PerfCtr1). These registers can be read from and written to using the RDMSR and WRMSR
instruction
»

s, respectively. They can be accessed using these instructions only when operating at
pr­ ivilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any privilege level using
the R
½

DPMC (read performance-monitoring counters) instruction.

NOTE

Th
¡

e PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events
listed in Table A-1 in Appendix A, Performance-Monitoring Events are
moì del-specific for P6 family processors. They are not guaranteed to be
av« ailable in future Intel Architecture processors.

15.6.1.1. PERFEVTSEL0 AND PERFEVTSEL1 MSRS

The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring
couº nters, with one register used to set up each counter. They specify the events to be counted,
ho
÷

w they should be counted, and the privilege levels at which counting should take place. Figure
15-3 shows the flags and fields in these MSRs.

The
¡

functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:

E
ø

vent select field (bits 0 through 7)
Selects

°
 the event to be monitored (refer to Table A-1 in Appendix A, Perfor-

man� ce-Monitoring Events for a list of events and their 8-bit codes).

Uni
ù

t mask field (bits 8 through 15)
Further qualif ies the event selected in the event select field. For example, for
some cach¾ e events, the mask is used as a MESI-protocol qualifier of cache
stat¾ es (refer to Table A-1 in Appendix A, Performance-

ö
Monitoring Events).

£

US
ù

R (user mode) flag (bit 16)
Specifies that

°
events are counted only when the processor is operating at priv-

ileg
»

e levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

OS
ú

 (operating system mode) flag (bit 17)
Specifies that

°
events are counted only when the processor is operating at priv-

ileg
»

e level 0. This flag can be used in conjunction with the USR flag.

15-17

DEBUGGING AND PERFORMANCE MONITORING

E (edge detect) flag (bit 18)
Enab
Æ

les (when set) edge detection of events. The processor counts the number
of¥ deasserted to asserted transitions of any condition that can be expressed by
th
½

e other fields. The mechanism is limited in that it does not permit back-to-
b
Ë
ack assertions to be distinguished. This mechanism allows software to

measure ì not only the fraction of time spent in a particular state, but also the
aver« age length of time spent in such a state (for example, the time spent waiting
fo
¿

r an interrupt to be serviced).

PC (p
û

in control) flag (bit 19)
W
®

hen set, the processor toggles the PMi
Ä
 pins and increments the counter when

per­ formance-monitoring events occur; when clear, the processor toggles the
PM
¼

i
Ä
 pins when the counter overflows. The toggling of a pin is defined as asser-

t
½
ion of the pin for a single bus clock followed by deassertion

INT
ü

 (APIC interrup t enable) flag (bit 20)
W
®

hen set, the processor generates an exception through its local APIC on
cº ounter overflow.

E
ø

N (Enable Counters) Flag (bit 22)
Th
¡

is flag is only present in the PerfEvtSel0 MSR. When set, performance
coº unting is enabled in both performance-monitoring counters; when clear, both
couº nters are disabled.

INV (
ü

invert) flag (bit 23)
Inverts the result of the counter-mask comparison when set, so that both greater
than
½

and less than comparisons can be made.

C
ý

ounter mask field (bits 24 through 31)
W
®

hen nonzero, the processor compares this mask to the number of events

Figu
þ

re 15-3. PerfEv tSel0 and PerfEvtS el1 MSRs

31
Û

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8
ÿ

7 0
�

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Co
�

unter Mask EE
�
N

�
I
N
T

19 1618 151720
Ú

21
Ú

22
Ú

23
Ú

24
Ú

Reserved

I
N
V

P
ò
C

� U
�
S

�
R

O
�
S

� Unit Mask

15-18

DEBUGGING AND PERFORMANCE MONITORING

couº nted during a single cycle. If the event count is greater than or equal to this
mask, ì the counter is incremented by one. Otherwise the counter is not incre-
menì ted. This mask can be used to count events only if multiple occurrences
happen per clock (for example, two or more instructions retired per clock). If
the co

½
unter-mask field is 0, then the counter is incremented each cycle by the

nu³ mber of events that occurred that cycle.

15.6.1.2. PERFCTR0 AND PERFCTR1 MSRS

The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts
fo
¿

r the selected events being counted. The RDPMC instruction can be used by programs or
pr­ ocedures running at any privilege level and in virtual-8086 mode to read these counters. The
PCE flag in control register CR4 (bit 8) allows the use of this instruction to be restricted to only
pr­ ograms and procedures running at privilege level 0.

Th
¡

e RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not
necessarily wait until all previous instructions have been executed before reading the counter.
Si
°

milarly, subsequent instructions may begin execution before the RDPMC instruction opera-
t
½
ion is performed.

On

ly the operating system, executing at privilege level 0, can directly manipulate the perfor-
manì ce counters, using the RDMSR and WRMSR instructions. A secure operating system would
set¾ the TSD flag during system initialization to disable direct user access to the performance-
monitoring counters, but provide a user-accessible programming interface that emulates the
RD
õ

PMC instruction.

Th
¡

e WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs
(PerfCtr0
à

 and PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any
valuå e, and the high-order 8 bits are sign-extended according to the value of bit 31. This operation
allo« ws writing both positive and negative values to the performance counters.

15.6.1.3. STARTING AND STOPPING THE PERFORMANCE-MONITORING
COUNTER

�
S

The performance-monitoring counters are started by writing valid setup information in the
PerfEvt
¼

Sel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0
MSR
¢

. If the setup is valid, the counters begin counting following the execution of a WRMSR
instruction that sets the enable counter flag. The counters can be stopped by clearing the enable
couº nters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1
alon« e can be stopped by clearing the PerfEvtSel1 MSR.

15.6.1.4. EVENT AND TIME-STAMP MONITORING SOFTWARE

To use the performance-monitoring counters and time-stamp counter, the operating system
need³ s to provide an event-monitoring device driver. This driver should include procedures for
h
	
andling the following operations:

• Feature checking.

• Initi alize and start counters.

15-19

DEBUGGING AND PERFORMANCE MONITORING

• S
°

top counters.

• Read the event counters.

• R
õ

ead the time-stamp counter.

The event monitor feature determination procedure must determine whether the current
pro­ cessor supports the performance-monitoring counters and time-stamp counter. This proce-
dur

§
e compares the family and model of the processor returned by the CPUID instruction with

t
½
hose of processors known to support performance monitoring. (The Pentium®

ê
 and P6 family

pro­ cessors support performance counters.) The procedure also checks the MSR and TSC flags
retu¦ rned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC
instruction are supported.

The in
¡

itialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for
th
½

e events to be counted and the method used to count them and initializes the counter MSRs
(P
à

erfCtr0 and PerfCtr1) to starting counts. The stop counters procedure stops the performance
counº ters. (Refer to S

°
ection 15.6.1.3., “Starting and Stopping the Performance-Monitoring

Co
ª

unters” for more information about starting and stopping the counters.)

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read
ti
½

me-stamp counter procedure reads the time-stamp counter. These procedures would be
p­ rovided in lieu of enabling the RDTSC and RDPMC instructions that allow application code
to read
½

 the counters.

15.6.2. Moni toring Counter Overflow

The P
¡

6 family processors provide the option of generating a local APIC interrupt when a perfor-
mance-monitoring counter overflows. This mechanism is enabled by setting the interrupt enable
flag

¿
 in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The primary use of this option is for

s¾ tatistical performance sampling.

To use this option, the operating system should do the following things on the processor for
which pÌ erformance events are required to be monitored:

• Pro
¼

vide an interrupt vector for handling the counter-overflow interrupt.

• Initialize the APIC PERF local vector entry to enable handling of performance-monitor
couº nter overflow events.

• Prov
¼

ide an entry in the IDT that points to a stub exception handler that returns without
execu� ting any instructions.

• Provide an event monitor driver that provides the actual interrupt handler and modifies the
reserved¦ IDT entry to point to its interrupt routine.

W
®

hen interrupted by a counter overflow, the interrupt handler needs to perform the following
acti« ons:

• Save
°

the instruction pointer (EIP register), code-segment selector, TSS segment selector,
coº unter values and other relevant information at the time of the interrupt.

15-20

DEBUGGING AND PERFORMANCE MONITORING

• Reset the counter to its initial setting and return from the interrupt.

An
Å

 event monitor application utility or another application program can read the information
collected fº or analysis of the performance of the profiled application.

15.6.3. Pentium®

 Processor P erforman ce-Monito ring Count ers

The Pentium®
ê
 processor provides two 40-bit performance counters, which can be used either to

couº nt events or measure duration. The performance-monitoring counters are supported by three
MSRs: the control and event select MSR (CESR) and the performance counter MSRs (CTR0
and« CTR1). These registers can be read from and written to using the RDMSR and WRMSR
instruction
»

s, respectively. They can be accessed using these instructions only when operating at
pr­ ivil ege level 0. Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which
can º be used to indicate the state of the counter to external hardware.

NOTE

The CESR, CTR0, and CTR1 MSRs and the events listed in Table A-1 in
App

Å
endix A, Perform

ö
ance-Monitoring Events are model-specific for the

Pen
¼

tium®
ê
 processor.

15.6.3.1. CONTROL AND EVENT SELECT REGISTER (CESR)

The 32-bit control and event select MSR (CESR) is used to control the operation of perfor-
manì ce-monitoring counters CTR0 and CTR1 and their associated pins (refer to Figure 15-3). To
conº trol each counter, the CESR register contains a 6-bit event select field (ES0 and ES1), a pin
conº trol flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1). The functions of
these fields are
½

as follows:

ES
ø

0 and ES1 (event select) fields (bits 0 through 5, bits 16 through 21)
Selects

°
 (by entering an event code in the field) up to two events to be moni-

t
½
ored. Refer to Table A-1 in Appendix A, Perf

ö
ormance-Monitoring Events for

a list« of available event codes

CC0
ý

 and CC1 (counter control) fields (bits 6 through 8, bits 22 through 24)
C

ª
ontrols the operation of the counter. The possible control codes are as

fo
¿

ll ows:

CC
ý

n� Me
�

aning
00

¹
0 Count nothing (counter disabled)

00
¹

1 Count the selected event while CPL is 0, 1, or 2
01

¹
0 Count the selected event while CPL is 3

01
¹

1 Count the selected event regardless of CPL
100 Count nothing (counter disabled)
101 Count clocks (duration) while CPL is 0, 1, or 2
110 Count clocks (duration) while CPL is 3
111 Count clocks (duration) regardless of CPL

15-21

DEBUGGING AND PERFORMANCE MONITORING

Note that t
¶

he highest order bit selects between counting events and counting
clockº s (duration); the middle bit enables counting when the CPL is 3; and the
low-order bit enables counting when the CPL is 0, 1, or 2.

PC0 and PC1 (pin control) flags (bit 9, bits 25)
Sel
°

ects the function of the external performance-monitoring counter pin
(PM0/B
à

P0 and PM1/BP1). Setting one of these flags to 1 causes the processor
to as
½

sert its associated pin when the counter has overflowed; setting the flag to
0 cau
¹

ses the pin to be asserted when the counter has been incremented. These
fl
¿

ags permit the pins to be individually programmed to indicate the overflow or
incremented condition. Note that the external signaling of the event on the pins
wilÌ l lag the internal event by a few clocks as the signals are latched and buff-
ered� .

W
®

hile a counter need not be stopped to sample its contents, it must be stopped and cleared or
pres­ et before switching to a new event. It is not possible to set one counter separately. If only
one ¥ event needs to be changed, the CESR register must be read, the appropriate bits modified,
an« d all bits must then be written back to CESR. At reset, all bits in the CESR register are cleared.

15.6.3.2. USE OF THE PERFORMANCE-MONITORING PINS

When
®

 the performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate
when the perÌ formance-monitor counter has incremented and an “occurrence event” is being
counº ted, the associated pin is asserted (high) each time the event occurs. When a “duration
event” is� being counted the associated PM pin is asserted for the entire duration of the event.
W

®
hen the performance-monitor pins are configured to indicate when the counter has over-

flowed, the associated PM pin is not asserted until the counter has overflowed.

W
®

hen the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incre-
mentì ed, it should be noted that although the counters may increment by 1 or 2 in a single clock,

Figu re 15-4. CESR MSR (Pentiu m® Proc essor Only)

31
Û

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8
ÿ

0
Õ

CC0—Counter control 0
ES0—Event select 0

16 1521
Ú

22
Ú

24
Ú

Reserved

9

5
ñ

6
ð

ESOCC0
�P

C
�
0

ÕES1CC1
�P

C
�
1

25
Ú

26
Ú

10

15-22

DEBUGGING AND PERFORMANCE MONITORING

the
½

pins can only indicate that the event occurred. Moreover, since the internal clock frequency
mayì be higher than the external clock frequency, a single external clock may correspond to
mì ultiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an over-
flow
¿

of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an overflow.
A cou
Å

nter may be preset to a specific value less then 240 − 1. After the counter has been enabled
an« d the prescribed number of events has transpired, the counter will overflow. Approximately 5
clockº s later, the overflow is indicated externally and appropriate action, such as signaling an
i
»
nterrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit
emu� lation, during which time the counter increment or overflow function of these pins is not
avai« lable. After RESET, the PM0/BP0 and PM1/BP1 pins are configured for performance moni-
t
½
oring, however a hardware debugger may reconfigure these pins to indicate breakpoint
matì ches.

15.6.3.3. EVENTS COUNTED

The even
¡

ts that the performance-monitoring counters can set to count and record in the CTR0
and« CTR1 MSRs are divided into two categories: occurrences and duration. Occurrences events
are cou« nted each time the event takes place. If the PM0/BP0 or PM1/BP1 pins are configured to
ind
»

icate when a counter increments, they ar asserted each clock the counter increments. Note
that if an even
½

t can happen twice in one clock, the counter increments by 2, however, the pins
are asserted o« nly once.

Fo
�

r duration events, the counter counts the total number of clocks that the condition is true.
W
®

hen configured to indicate when a counter increments, the PM0/BP0 and/or PM1/BP1 pins
are asserted f« or the duration of the event.

T
¡
able A-2 in Appendix A, Perform

ö
ance-Monitoring Events lists the events that can be counted

withÌ the Pentium®
ê
 processor performance-monitoring counters.

16
8086 Emulation

16-1

8086 EMULATION

CHAPTER 16
8086 EMULATION

Intel Arch
Ñ

itecture processors (beginning with the Intel386™ processor) provide two ways to
execute new or legacy pr� ograms that are assembled and/or compiled to run on an Intel 8086
pro­ cessor:

• R
õ

eal-address mode.

• V
�

irtual-8086 mode.

F
�

igure 2-2 in Chapter 2, Sy
é

stem Architecture Overview shows the relationship of these operating
modì es to protected mode and system management mode (SMM).

W
®

hen the processor is powered up or reset, it is placed in the real-address mode. This operating
modì e almost exactly duplicates the execution environment of the Intel 8086 processor, with
s¾ ome extensions. Virtually any program assembled and/or compiled to run on an Intel 8086
pro­ cessor will run on an Intel Architecture processor in this mode.

When
®

 running in protected mode, the processor can be switched to virtual-8086 mode to run
808

Á
6 programs. This mode also duplicates the execution environment of the Intel 8086

pro­ cessor, with extensions. In virtual-8086 mode, an 8086 program runs as a separate protected-
modì e task. Legacy 8086 programs are thus able to run under an operating system (such as
Mi

¢
crosoft Windows*) that takes advantage of protected mode and to use protected-mode facil-

ities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode
muì ltitasking permits multiple virtual-8086 mode tasks (with each task running a separate 8086
pro­ gram) to be run on the processor along with other nonvirtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-
808

Á
6-mode execution environment, available on the Intel Architecture processors beginning

wiÌ th the Intel386™ processor.

16.1. REAL-ADDRESS MODE

The Intel Architecture’s real-address mode runs programs written for the Intel 8086, Intel 8088,
Int

Ñ
el 80186, and Intel 80188 processors, or for the real-address mode of the Intel 286,

Intel386™, Intel486™, Pentium®
ê
, Pen� tium®

ê
 Pro, Pentium®

ê
 II, and P6-family processors.

The execution
¡

 environment of the processor in real-address mode is designed to duplicate the
executio� n environment of the Intel 8086 processor. To an 8086 program, a processor operating
in real-address mode behaves like a high-speed 8086 processor. The principal features of this
architectur« e are defined in Chapter 3, Ba

�
sic Execution Environment, of th� e In

�
tel Architecture

Softw
é

are Developer’s Manual, Volume 1. The following is a summary of the core features of the
real-address mode execution environment as would be seen by a program written for the 8086:

16-2

8086 EMULATION

• The processor supports a nominal 1-MByte physical address space (refer to Section
16.1.1., “Address Translation in Real-Address Mode” for specific details). This address
space is¾ divided into segments, each of which can be up to 64 KBytes in length. The base
o¥ f a segment is specified with a 16-bit segment selector, which is zero extended to form a
2

²
0-bit offset from address 0 in the address space. An operand within a segment is

ad« dressed with a 16-bit offset from the base of the segment. A physical address is thus
formed by adding the offset to the 20-bit segment base (refer to Section 16.1.1., “Address
T

¡
ranslation in Real-Address Mode”).

• All
Å

operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size override
p­ refixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI.
Th

¡
e extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) are

accessi« ble to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS registers are
accessi« ble to programs that explicitly access them.) The CS register contains the segment
selector ¾ for the code segment; the DS and ES registers contain segment selectors for data
segmen¾ ts; and the SS register contains the segment selector for the stack segment.

• The 8
¡

086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP register.
Not

¶
e this register is a 32-bit register and unintentional address wrapping may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is mapped to
t

½
he 16 least significant bits of the 32-bit EFLAGS register.)

• Al l of the Intel 8086 instructions are supported (refer to Sect
°

ion 16.1.3., “I nstructions
S

°
upported in Real-Address Mode”).

• A
Å

single, 16-bit-wide stack is provided for handling procedure calls and invocations of
interrupt and exception handlers. This stack is contained in the stack segment identified
with thÌ e SS register. The SP (stack pointer) register contains an offset into the stack
segmen¾ t. The stack grows down (toward lower segment offsets) from the stack pointer.
The BP (base pointer) register also contains an offset into the stack segment that can be
u� sed as a pointer to a parameter list. When a CALL instruction is executed, the processor
p­ ushes the current instruction pointer (the 16 least-significant bits of the EIP register and,
on¥ far calls, the current value of the CS register) onto the stack. On a return, initiated with
a « RET instruction, the processor pops the saved instruction pointer from the stack into the
EI

Æ
P register (and CS register on far returns). When an implicit call to an interrupt or

ex� ception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order
16-bits only) registers onto the stack. On a return from an interrupt or exception handler,
in

»
itiated with an IRET instruction, the processor pops the saved instruction pointer and

EFLAGS image from the stack into the EIP, CS, and EFLAGS registers.

• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is provided
f

¿
or handling interrupts and exceptions (refer to Figure 16-2). The interrupt table (which has

4-byte entries) takes the place of the interrupt descriptor table (IDT, with 8-byte entries)
u� sed when handling protected-mode interrupts and exceptions. Interrupt and exception
vå ector numbers provide an index to entries in the interrupt table. Each entry provides a
p­ ointer (called a “vector”) to an interrupt- or exception-handling procedure. Refer to

16-3

8086 EMULATION

S
°

ection 16.1.4., “Interrupt and Exception Handling” for more details. It is possible for
software to relo¾ cate the IDT by means of the LIDT instruction on Intel Architecture
pr­ ocessors beginning with the Intel386™ processor.

• The floating-point unit (FPU) is active and available to execute FPU instructions in real-
add« ress mode. Programs written to run on the Intel 8087 and Intel 287 math coprocessors
can º be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the Intel
Archi

Å
tecture’s real-address mode. If backwards compatibility to Intel 286 and Intel 8086 proces-

s¾ ors is required, these features should not be used in new programs written to run in real-address
mode.

• Two additional segment registers (FS and GS) are available.

• Many
¢

 of the integer and system instructions that have been added to P6-family processors
can bº e executed in real-address mode (refer to S

°
ection 16.1.3., “Instructions Supported in

R
õ

eal-Address Mode”).

• Th
¡

e 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit
forms of instructions. This prefix also allows real-address mode programs to use the
pr­ ocessor’s 32-bit general-purpose registers.

• Th
¡

e 32-bit address prefix can be used in real-address mode programs, allowing 32-bit
of¥ fsets.

The f
¡

ollowing sections describe address formation, registers, available instructions, and inter-
rup¦ t and exception handling in real-address mode. For information on I/O in real-address mode,
refer to Chapter 9, Input/Output, in th� e Intel Architecture Software Developer’s Manual, Volume
1

�
.

16.1.1. Addr ess Transl ation in R eal-Addres s Mode

In real-address mode, the processor does not interpret segment selectors as indexes into a
descriptor

§
 table; instead, it uses them directly to form linear addresses as the 8086 processor

d
§
oes. It shifts the segment selector left by 4 bits to form a 20-bit base address (refer to Figure

16-1). The offset into a segment is added to the base address to create a linear address that maps
directly to

§
 the physical address space.

W
®

hen using 8086-style address translation, it is possible to specify addresses larger than 1
MByte. For example, with a segment selector value of FFFFH and an offset of FFFFH, the linear
(and

à
 physical) address would be 10FFEFH (1 megabyte plus 64 KBytes). The 8086 processor,

whiÌ ch can form addresses only up to 20 bits long, truncates the high-order bit, thereby “wrap-
pi­ ng” this address to FFEFH. When operating in real-address mode, however, the processor does
not tru³ ncate such an address and uses it as a physical address. (Note, however, that for Intel
Architecture p

Å
rocessors beginning with the Intel486™ processor, the A20M# signal can be used

in real-address mode to mask address line A20, thereby mimicking the 20-bit wrap-around
behav

Ë
ior of the 8086 processor.) Care should be take to ensure that A20M# based address wrap-

p­ ing is handled correctly in multiprocessor based system.

16-4

8086 EMULATION

The Intel Architecture processors beginning with the Intel386™ processor can generate 32-bit
of¥ fsets using an address override prefix; however, in real-address mode, the value of a 32-bit
of¥ fset may not exceed FFFFH without causing an exception.

For full compatibility with Intel 286 real-address mode, pseudo-protection faults (interrupt 12
or¥ 13) occur if a 32-bit offset is generated outside the range 0 through FFFFH.

16.1.2. Regist ers Supported in Real-Address Mode

The register set available in real-address mode includes all the registers defined for the 8086
pr­ ocessor plus the new registers introduced inP6-family processors, such as the FS and GS
s¾ egment registers, the debug registers, the control registers, and the floating-point unit registers.
The 32-bit operand prefix allows a real-address mode program to use the 32-bit general-purpose
registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

16.1.3. Inst ruct ions Supported in Real-A ddress Mode

The following instructions make up the core instruction set for the 8086 processor. If backwards
coº mpatibili ty to the Intel 286 and Intel 8086 processors is required, only these instructions
sh¾ ould be used in a new program written to run in real-address mode.

• Move (MOV) instructions that move operands between general-purpose registers, segment
registers, and between memory and general-purpose registers,

• Th
¡

e exchange (XCHG) instruction.

• Load segment register instructions LDS and LES.

• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC,
CMP

ª
, and NEG.

• Logical instructions AND, OR, XOR, and NOT.

Figure 16-1. Real-Addres s Mode Addre ss Translatio n

19 0
Õ

16-bit Segment Selector

3
Û

0 0 0 0Base

19 0
Õ

16-bit Effective Address

15

0 0 0 0Offset

0
Õ

20-bit Linear AddressLinear
Addres

·
s

+

=

4
�

16

19

16-5

8086 EMULATION

• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.

• Stack instruction
°

s PUSH and POP (to general-purpose registers and segment registers).

• T
¡
ype conversion instructions CWD, CDQ, CBW, and CWDE.

• Shift an
°

d rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.

• TEST instruction.

• Co
ª

ntrol instructions JMP, JccÈ , CALL� , RET, LOOP, LOOPE, and LOOPNE.

• Interrupt instructions INT n� , I� NTO, and IRET.

• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and
POP

¼
F.

• I/O instructions IN, INS, OUT, and OUTS.

• Load effective address (LEA) instruction, and translate (XLATB) instruction.

• LOCK prefix
ï

.

• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.

• Processor halt (HLT) instruction.

• No
¶

 operation (NOP) instruction.

The following instructions, added to P6-family processors (some in the Intel 286 processor and
th

½
e remainder in the Intel386™ processor), can be executed in real-address mode, if backwards

coº mpatibil ity to the Intel 8086 processor is not required.

• Move (MOV) instructions that operate on the control and debug registers.

• Load segment register instructions LSS, LFS, and LGS.

• Gen
Ï

eralized multiply instructions and multiply immediate data.

• Shift
°

and rotate by immediate counts.

• Stack instruction
°

s PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate data.

• Mov
¢

e with sign extension instructions MOVSX and MOVZX.

• Long-displacement JccÈ instructions.

• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD.

• String
°

instructions MOVS, CMPS, SCAS, LODS, and STOS.

• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on
conº dition instruction SETcÈ c; andº the byte swap (BSWAP) instruction.

• Do
ç

uble shift instructions SHLD and SHRD.

• EFLAGS control instructions PUSHF and POPF.

• ENTER and LEAVE control instructions.

16-6

8086 EMULATION

• BOUND instruction.

• CP
ª

U identification (CPUID) instruction.

• System instruction
°

s CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT,
LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Ex
Æ

ecution of any of the other Intel Architecture instructions (not given in the previous two lists)
in
»

 real-address mode result in an invalid-opcode exception (#UD) being generated.

16.1.4. Interrupt and Exception Hand ling

Wh
®

en operating in real-address mode, software must provide interrupt and exception-handling
faciliti
¿

es that are separate from those provided in protected mode. Even during the early stages
o¥ f processor initialization when the processor is still in real-address mode, elementary real-
ad« dress mode interrupt and exception-handling facilities must be provided to insure reliable
o¥ peration of the processor, or the initiali zation code must insure that no interrupts or exceptions
willÌ occur.

The I
¡

ntel Architecture processors handle interrupts and exceptions in real-address mode similar
to th
½

e way they handle them in protected mode. When a processor receives an interrupt or gener-
ates« an exception, it uses the vector number of the interrupt or exception as an index into the
in
»

terrupt table. (In protected mode, the interrupt table is called the interrup
�

t descriptor table
(I
�

DT),� but in real-address mode, the table is usually called the i
�
nterrupt v ector table, or� simply

th
½

e interrupt table.) The entry in the interrupt vector table provides a pointer to an interrupt- or
excep� tion-handler procedure. (The pointer consists of a segment selector for a code segment and
a 1« 6-bit offset into the segment.) The processor performs the following actions to make an
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-
signif¾ icant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3.
±

Clears the IF flag in the EFLAGS register to disable interrupts.

4.
�

Clears the TF, RC, and AC flags, in the EFLAGS register.

5.
è

Transfers program control to the location specified in the interrupt vector table.

An
Å

IRET instruction at the end of the handler procedure reverses these steps to return program
conº trol to the interrupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (refer to Figure 16-2). Each entry consists
of¥ a far pointer to a handler procedure, made up of a segment selector and an offset. The
pr­ ocessor scales the interrupt or exception vector by 4 to obtain an offset into the interrupt table.
Following reset, the base of the interrupt vector table is located at physical address 0 and its limit
is
»

 set to 3FFH. In the Intel 8086 processor, the base address and limit of the interrupt vector table
cannº ot be changed. In the P6-family processors, the base address and limit of the interrupt vector
table are con
½

tained in the IDTR register and can be changed using the LIDT instruction. (For

16-7

8086 EMULATION

b
Ë
ackward compatibility to Intel 8086 processors, the default base address and limit of the inter-

rup¦ t vector table should not be changed.)

Table 16-1 shows the interrupt and exception vectors that can be generated in real-address mode
and vi« rtual-8086 mode, and in the Intel 8086 processor. Refer to Chapter 5, Interrupt and Excep-
ti� on Handling for a description of the exception conditions.

Figu re 16-2. Interrup t Vector Table in Real-Addres s Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
v� ector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
f

�
or interrupt 0.

16-8

8086 EMULATION

NOTE:

* In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086
modes, this exception covers all general-protection error conditions, including traps to the virtual-8086
monitor from virtual-8086 mode.

Table 16-1. Real-Addre ss Mode Exceptions and Interrupts

Vector
No. Descrip tion

Real-Address
Mode

Virtual -8086
Mode

Intel 8086
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved

19 SIMD Floating-Point Numeric
Error (#XF)

Y
�

es Yes Reserved

20-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 User Defined Interrupts Yes Yes Yes

16-9

8086 EMULATION

16.2. VIRTUAL-8086 MODE

V
�

irtual-8086 mode is actually a special type of a task that runs in protected mode. When the
oper¥ ating-system or executive switches to a virtual-8086-mode task, the processor emulates an
Intel 8086 processor. The execution environment of the processor while in the 8086-emulation
s¾ tate is the same as is described in Secti

°
on 16.1., “Real-Address Mode” for real-address mode,

includ
»

ing the extensions. The major difference between the two modes is that in virtual-8086
mode the 8086 emulator uses some protected-mode services (such as the protected-mode inter-
ru¦ pt and exception-handling and paging facilities).

As
Å

in real-address mode, any new or legacy program that has been assembled and/or compiled
t

½
o run on an Intel 8086 processor will run in a virtual-8086-mode task. And several 8086
pro­ grams can be run as virtual-8086-mode tasks concurrently with normal protected-mode
tas

½
ks, using the processor’s multitasking facilities.

16.2.1. Enabl ing V irtual -8086 Mode

The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS
register is set. Th¦ is flag can only be set when the processor switches to a new protected-mode
t

½
ask or resumes virtual-8086 mode via an IRET instruction.

S
°

ystem software cannot change the state of the VM flag directly in the EFLAGS register (for
examp� le, by using the POPFD instruction). Instead it changes the flag in the image of the
EFLAGS register stored in the TSS or on the stack following a call to an interrupt- or exception-
hand

	
ler procedure. For example, software sets the VM flag in the EFLAGS image in the TSS

when Ì fi rst creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:

• Whe
®

n loading segment registers, to determine whether to use 8086-style address
tr

½
anslation.

• W
®

hen decoding instructions, to determine which instructions are not supported in virtual-
80

Á
86 mode and which instructions are sensitive to IOPL.

• W
®

hen checking privileged instructions, on page accesses, or when performing other
per­ mission checks. (Virtual-8086 mode always executes at CPL 3.)

16.2.2. Struct ure of a Virtua l-8086 Task

A vi
Å

rtual-8086-mode task consists of the following items:

• A 32-bit TSS for the task.

• The 8086 program.

• A vi
Å

rtual-8086 monitor.

• 80
Á

86 operating-system services.

16-10

8086 EMULATION

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does
no³ t load the most-significant word of the EFLAGS register, which contains the VM flag. All
TSS
¡

’s, stacks, data, and code used to handle exceptions when in virtual-8086 mode must also be
3
±
2-bit segments.

The
¡

processor enters virtual-8086 mode to run the 8086 program and returns to protected mode
t
½
o run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL of 0. The
mì onitor consists of initialization, interrupt- and exception-handling, and I/O emulation proce-
du
§

res that emulate a personal computer or other 8086-based platform. Typically, the monitor is
either par� t of or closely associated with the protected-mode general-protection (#GP) exception
han
	

dler, which also runs at a CPL of 0. As with any protected-mode code module, code-segment
des
§

criptors for the virtual-8086 monitor must exist in the GDT or in the task’s LDT. The virtual-
80
Á

86 monitor also may need data-segment descriptors so it can examine the IDT or other parts
of¥ the 8086 program in the first 1 MByte of the address space. The linear addresses above
10FFEFH are available for the monitor, the operating system, and other system software.

The 8086 operating-system services consists of a kernel and/or operating-system procedures
that the 80
½

86 program makes calls to. These services can be implemented in either of the
fol
¿

lowing two ways:

• They can be included in the 8086 program. This approach is desirable for either of the
f

¿
ollowing reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-system services
i
»
nto main operating system or executive.

• Th
¡

ey can be implemented or emulated in the virtual-8086 monitor. This approach is
d

§
esirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated among several
viå rtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure code for
sev¾ eral virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the main
oper¥ ating system or executive.

The ap
¡

proach chosen for implementing the 8086 operating-system services may result in
di
§

fferent virtual-8086-mode tasks using different 8086 operating-system services.

16.2.3. Paging of V irtual -8086 Tasks

Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the
pr­ ocessor converts these addresses into 32-bit l inear addresses before mapping them to the phys-
ical address space. If paging is being used, the 8086 address space for a program running in
virtuå al-8086 mode can be paged and located in a set of pages in physical address space. If paging

16-11

8086 EMULATION

is used, it is transparent to the program running in virtual-8086 mode just as it is for any task
run¦ ning on the processor.

P
¼

aging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in
th

½
e following situations:

• W
®

hen running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 MByte
of¥ the linear address space for each virtual-8086-mode task to be mapped to a different
ph­ ysical address location.

• W
®

hen emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-
style ¾ address translation, it is possible to specify addresses larger than 1 MByte. These
add« resses automatically wraparound in the Intel 8086 processor (refer to Section 16.1.1.,
“Address Translation in Real-Address Mode”). If any 8086 programs depend on address
wrapÌ around, the same effect can be achieved in a virtual-8086-mode task by mapping the
linear addresses between 100000H and 110000H and linear addresses between 0 and
10000H to the same physical addresses.

• W
®

hen sharing the 8086 operating-system services or ROM code that is common to several
80

Á
86 programs running as different 8086-mode tasks.

• Wh
®

en redirecting or trapping references to memory-mapped I/O devices.

16.2.4. Protect ion within a Virtual-8086 Task

Protection is not enforced between the segments of an 8086 program. Either of the following
t

½
echniques can be used to protect the system software running in a virtual-8086-mode task from
t

½
he 8086 program:

• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for the 8086
pr­ ogram. An 8086 processor task cannot generate addresses outside this range.

• Us
Ã

e the U/S flag of page-table entries to protect the virtual-8086 monitor and other system
software ¾ in the virtual-8086 mode task space. When the processor is in virtual-8086 mode,
t

½
he CPL is 3. Therefore, an 8086 processor program has only user privileges. If the pages
of¥ the virtual-8086 monitor have supervisor privilege, they cannot be accessed by the 8086
pr­ ogram.

16.2.5. Entering Virtual-8086 Mode

Fi
�

gure 16-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor
s¾ witches to virtual-8086 mode in either of the following situations:

• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in the TSS
for th

¿
e task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.

• R
õ

eturn from a protected-mode interrupt or exception handler when the VM flag is set to 1
in the EFLAGS register image on the stack.

16-12

8086 EMULATION

W
®

hen a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task
muì st be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register
is not in the TSS, causing the processor to clear the VM flag when it loads the EFLAGS register.)
The
¡

processor updates the VM f lag prior to loading the segment registers from their images in
th
½

e new TSS. The new setting of the VM flag determines whether the processor interprets the

Fig
þ

ure 16-3. Entering and L eaving V irtua l-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

T
�

ask Switch1

VM=1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3
�

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

�

IRET4
�

Interrupt or
Exception2

VM=0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:

16-13

8086 EMULATION

contº ents of the segment registers as 8086-style segment selectors or protected-mode segment
s¾ electors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
s¾ tyle address translation to form base addresses.

Refer to S
°

ection 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode” for informa-
t

½
ion on entering virtual-8086 mode on a return from an interrupt or exception handler.

16.2.6. Leaving V irtua l-8086 Mode

The processor can leave the virtual-8086 mode only through an interrupt or exception. The
fo

¿
llowing are situations where an interrupt or exeception will lead to the processor leaving

viå rtual-8086 mode (refer to Figure 16-3):

• The processor services a hardware interrupt generated to signal the suspension of
execu� tion of the virtual-8086 application. This hardware interrupt may be generated by a
timer or

½
 other external mechanism. Upon receiving the hardware interrupt, the processor

enter� s protected mode and switches to a protected-mode (or another virtual-8086 mode)
task

½
 either through a task gate in the protected-mode IDT or through a trap or interrupt gate

th
½

at points to a handler that initiates a task switch. A task switch from a virtual-8086 task
to an

½
other task loads the EFLAGS register from the TSS of the new task. The value of the

VM flag in
�

 the new EFLAGS determines if the new task executes in virtual-8086 mode or
no³ t.

• The processor services an exception caused by code executing the virtual-8086 task or
services a h¾ ardware interrupt that “belongs to” the virtual-8086 task. Here, the processor
enter� s protected mode and services the exception or hardware interrupt through the
pr­ otected-mode IDT (normally through an interrupt or trap gate) and the protected-mode
excep� tion- and interrupt-handlers. The processor may handle the exception or interrupt
withÌ in the context of the virtual 8086 task and return to virtual-8086 mode on a return from
the han

½
dler procedure. The processor may also execute a task switch and handle the

excep� tion or interrupt in the context of another task.

• Th
¡

e processor services a software interrupt generated by code executing in the virtual-
80

Á
86 task (such as a software interrupt to call a MS-DOS* operating system routine). The

pr­ ocessor provides several methods of handling these software interrupts, which are
d

§
iscussed in detail in S

°
ection 16.3.3., “Class 3—Software Interrupt Handling in Virtual-

80
Á

86 Mode” Most of them involve the processor entering protected mode, often by means
of¥ a general-protection (#GP) exception. In protected mode, the processor can send the
i

»
nterrupt to the virtual-8086 monitor for handling and/or redirect the interrupt back to the
app« lication program running in virtual-8086 mode task for handling.

In
Ñ

tel Architecture processors that incorporate the virtual mode extension (enabled with the
VME flag

�
 in control register CR4) are capable of redirecting software-generated interrupts

back
Ë

 to the program’s interrupt handlers without leaving virtual-8086 mode. Refer to
S

°
ection 16.3.3.4., “Method 5: Software Interrupt Handling” for more information on this

mechanism.

16-14

8086 EMULATION

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of
in

»
terrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 mode,

t
½
he processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-protection
(

à
GP#) fault, which the protected-mode handler generally sends to the virtual-8086 monitor.

Th
¡

e virtual-8086 monitor then determines the correct execution sequence after verifying
that

½
it was entered as a result of a HLT execution.

Re
õ

fer to Sect
°

ion 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode” for informa-
t
½
ion on leaving virtual-8086 mode to handle an interrupt or exception generated in virtual-8086

mode.

16.2.7. Sens itive Instr uctions

W
®

hen an Intel Architecture processor is running in virtual-8086 mode, the CLI, STI, PUSHF,
POPF, INT n� ,� and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS
in
»

structions, which are sensitive to IOPL in protected mode, are not sensitive in virtual-8086
moì de.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt
to
½

 use the IOPL-sensitive instructions listed above triggers a general-protection exception
(#G
à

P). These instructions are sensitive to IOPL to give the virtual-8086 monitor a chance to
em� ulate the facilities they affect.

16.2.8. Virt ual-8086 Mode I/O

Man
¢

y 8086 programs written for nonmultitasking systems directly access I/O ports. This prac-
tice
½

may cause problems in a multitasking environment. If more than one program accesses the
same p¾ ort, they may interfere with each other. Most multitasking systems require application
pr­ ograms to access I/O ports through the operating system. This results in simplified, centralized
conº trol.

The pr
¡

ocessor provides I/O protection for creating I/O that is compatible with the environment
and« transparent to 8086 programs. Designers may take any of several possible approaches to
pr­ otecting I/O ports:

• Protect the I/O address space and generate exceptions for all attempts to perform I/O
d

§
irectly.

• Let the 8086 program perform I/O directly.

• Gen
Ï

erate exceptions on attempts to access specific I/O ports.

• Gen
Ï

erate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlli ng access to I/O ports depends upon whether they are I/O-port mapped
or¥ memory mapped.

16-15

8086 EMULATION

16.2.8.1. I/O-PORT-MAPPED I/O

The I/O permission bit map in the TSS can be used to generate exceptions on attempts to access
s¾ pecific I/O port addresses. The I/O permission bit map of each virtual-8086-mode task deter-
mines ì which I/O addresses generate exceptions for that task. Because each task may have a
dif

§
ferent I/O permission bit map, the addresses that generate exceptions for one task may be

dif
§

ferent from the addresses for another task. This differs from protected mode in which, if the
C

ª
PL is less than or equal to the IOPL, I/O access is allowed without checking the I/O permission

b
Ë
it map. Refer to Chapter 9, Input/Output, in� the Intel Architecture Software Developer’s

M
À

anual, Volume 1, � for more information about the I/O permission bit map.

16.2.8.2. MEMORY-MAPPED I/O

In
Ñ

 systems which use memory-mapped I/O, the paging faciliti es of the processor can be used to
generÉ ate exceptions for attempts to access I/O ports. The virtual-8086 monitor may use paging
to con

½
trol memory-mapped I/O in these ways:

• Map par
¢

t of the linear address space of each task that needs to perform I/O to the physical
add« ress space where I/O ports are placed. By putting the I/O ports at different addresses (in
dif

§
ferent pages), the paging mechanism can enforce isolation between tasks.

• Map par
¢

t of the linear address space to pages that are not-present. This generates an
excep� tion whenever a task attempts to perform I/O to those pages. System software then
canº interpret the I/O operation being attempted.

S
°

oftware emulation of the I/O space may require too much operating system intervention under
s¾ ome conditions. In these cases, it may be possible to generate an exception for only the first
att« empt to access I/O. The system software then may determine whether a program can be given
exclusive co� ntrol of I/O temporaril y, the protection of the I/O space may be lifted, and the
pro­ gram allowed to run at full speed.

16.2.8.3. SPECIAL I/O BUFFERS

B
ë

uffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated
using � page mapping. The linear space for the buffer can be mapped to a different physical space
for each virtual-8086-mode task. The virtual-8086 monitor then can control which virtual buffer
to cop

½
y onto the real buffer in the physical address space.

16.3. INTERRUPT AND EXCEPTION HANDLING IN V IRTUAL-8086
MODE

W
®

hen the processor receives an interrupt or detects an exception condition while in virtual-8086
modì e, it invokes an interrupt or exception handler, just as it does in protected or real-address
modì e. The interrupt or exception handler that is invoked and the mechanism used to invoke it
depen

§
ds on the class of interrupt or exception that has been detected or generated and the state

of ¥ various system flags and fields.

16-16

8086 EMULATION

In virtual-8086 mode, the interrupts and exceptions are divided into three classes for the
pu­ rposes of handling:

• Clas
ª

s 1—All processor-generated exceptions and all hardware interrupts, including the
NMI int

¶
errupt and the hardware interrupts sent to the processor’s external interrupt

d
§
elivery pins. All class 1 exceptions and interrupts are handled by the protected-mode

ex� ception and interrupt handlers.

• C
ª

lass 2—Special case for maskable hardware interrupts (Section 5.1.1.2., “Maskable
Hard

!
ware Interrupts”, in Chapter 5, I

�
nterrupt and Exception Handling) when

£
 the virtual

moì de extensions are enabled.

• Clas
ª

s 3—All software-generated interrupts, that is interrupts generated with the INT n�

in
»

struction1.

The me
¡

thod the processor uses to handle class 2 and 3 interrupts depends on the setting of the
following flags and fields:

• IOPL field (bits 12 and 13 in the EFLAGS register)—Controls how class 3 software
i

»
nterrupts are handled when the processor is in virtual-8086 mode (refer to Section 2.3.,
“System Flags and Fields in the EFLAGS Register” , in Chapter 2, S

é
ystem Architecture

Overview
"

).
£

 This field also controls the enabling of the VIF and VIP flags in the EFLAGS
r¦ egister when the VME flag is set. The VIF and VIP flags are provided to assist in the
handling of class 2 maskable hardware interrupts.

• VME fl
�

ag (bit 0 in control register CR4)—Enables the virtual mode extension for the
p­ rocessor when set (refer to Section 2.5., “Control Registers” , in Chapter 2, S

é
ystem Archi-

tectur� e Overview).
£

• So
°

ftware interrupt redirection bit map (32 bytes in the TSS, refer to Figure
16-5)—Contains 256 flags that indicates how class 3 software interrupts should be handled
wheÌ n they occur in virtual-8086 mode. A software interrupt can be directed either to the
i

»
nterrupt and exception handlers in the currently running 8086 program or to the protected-
moì de interrupt and exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) in the EFLAGS
r¦ egister—Provides v# irt ual int errupt support for the handling of class 2 maskable
h

	
ardware interrupts (refer to Section 16.3.2., “Class 2—Maskable Hardware Interrupt

Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism”).

NOTE

Th
¡

e VME flag, software interrupt redirection bit map, and VIF and VIP flags
ar« e only available in Intel Architecture processors that support the virtual
mì ode extensions. These extensions were introduced in the Intel Architecture
withÌ the Pentium®

ê
 processor.

The following sections describe the actions that processor takes and the possible actions of inter-
ru¦ pt and exception handlers for the two classes of interrupts described in the previous para-
grÉ aphs. These sections describe three possible types of interrupt and exception handlers:

1. The INT 3 instruction is a special case (refer to the description of the INT n instruction in Chapter 3,
Instruction Set Reference, of the Intel Architecture Software Developer’s Manual, Volume 2).

16-17

8086 EMULATION

• Protected-mode interrupt and exceptions handlers—These are the handlers that the
pr­ ocessor calls through the protected-mode IDT.

• V
�

irtual-8086 monitor interrupt and exception handlers—These handlers are resident in the
virå tual-8086 monitor, and they are commonly accessed through a general-protection
excep� tion (#GP, interrupt 13) that is directed to the protected-mode general-protection
excep� tion handler.

• 80
Á

86 program interrupt and exception handlers—These handlers are part of the 8086
pr­ ogram that is running in virtual-8086 mode.

The fo
¡

ll owing sections describe how these handlers are used, depending on the selected class
and « method of interrupt and exception handling.

16.3.1. Class 1—Hardware I nterrupt and E xception Handling in
V

$
irtual-8086 Mode

In virtual-8086 mode, the Pentium®
ê
 and P6 family processors handle hardware interrupts and

exceptio� ns in the same manner as they are handled by the Intel486™ and Intel386™ processors.
They

¡
 invoke the protected-mode interrupt or exception handler that the interrupt or exception

vå ector points to in the IDT. Here, the IDT entry must contain either a 32-bit trap or interrupt gate
or a t¥ ask gate. The following sections describe various ways that a virtual-8086 mode interrupt
or ¥ exception can be handled after the protected-mode handler has been invoked.

Refer to Section 16.3.2., “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086
Mo

¢
de Using the Virtual Interrupt Mechanism” for a description of the virtual interrupt mecha-

n³ ism that is available for handling maskable hardware interrupts while in virtual-8086 mode.
W

®
hen this mechanism is either not available or not enabled, maskable hardware interrupts are

hand
	

led in the same manner as exceptions, as described in the following sections.

16.3.1.1. HANDLING AN INTERRUPT OR EXCEPTION THROUGH A
PROTECTED-MODE TRAP OR INTERRUPT GATE

W
®

hen an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the gate
must in turn point to a nonconforming, privilege-level 0, code segment. When accessing this
code º segment, the processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS,
EFLAGS

Æ
, ESP, SS, ES, DS, FS, and GS registers are saved (refer to Figure 16-4).

3.
±

Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then
clearingº the registers lets the interrupt or exception handler safely save and restore these
reg¦ isters regardless of the type segment selectors they contain (protected-mode or 8086-
s¾ tyle). The interrupt and exception handlers, which may be called in the context of either a
pr­ otected-mode task or a virtual-8086-mode task, can use the same code sequences for
saving¾ and restoring the registers for any task. Clearing these registers before execution of
th

½
e IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures that

16-18

8086 EMULATION

ex� pect values in the segment registers or that return values in the segment registers must
u� se the register images saved on the stack for privilege level 0.

4.
�

Clears the VM flag in the EFLAGS register.

5.
è

Begins executing the selected interrupt or exception handler.

If the t
Ñ

rap or interrupt gate references a procedure in a conforming segment or in a segment at a
pr­ ivilege level other than 0, the processor generates a general-protection exception (#GP). Here,
the er
½

ror code is the segment selector of the code segment to which a call was attempted.

In
Ñ

terrupt and exception handlers can examine the VM flag on the stack to determine if the inter-
rupted procedure was running in virtual-8086 mode. If so, the interrupt or exception can be
handled in one of three ways:

• Th
¡

e protected-mode interrupt or exception handler that was called can handle the interrupt
o¥ r exception.

• The protected-mode interrupt or exception handler can call the virtual-8086 monitor to
h

	
andle the interrupt or exception.

• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 program’s
interrupt and exception handler.

Figure 16-4. Privi lege Level 0 Stack After Inte rrupt or E xception in Virtual -8086 Mode

Unused

Old GS

Old ESP

With Erro r Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP

Error Code New ESP

TS
�

SUnused

Old GS

Old ESP

Without Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP New ESP

TS
�

S

16-19

8086 EMULATION

If the interrupt or exception is handled with a protected-mode handler, the handler can return to
th

½
e interrupted program in virtual-8086 mode by executing an IRET instruction. This instruction

loads the EFLAGS
Ê

 and segment registers from the images saved in the privilege level 0 stack
(ref

à
er to Figure 16-4). A set VM flag in the EFLAGS image causes the processor to switch back

t
½
o virtual-8086 mode. The CPL at the time the IRET instruction is executed must be 0, otherwise
the pr

½
ocessor does not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt and excep-
ti

½
on handlers. It is commonly closely tied to the protected-mode general-protection exception

(
à
#GP, vector 13) handler. If the protected-mode interrupt or exception handler calls the virtual-

8
Á
086 monitor to handle the interrupt or exception, the return from the virtual-8086 monitor to

th
½

e interrupted virtual-8086 mode program requires two return instructions: a RET instruction
to

½
 return to the protected-mode handler and an IRET instruction to return to the interrupted

pro­ gram.

Th
¡

e virtual-8086 monitor has the option of directing the interrupt and exception back to an inter-
rup¦ t or exception handler that is part of the interrupted 8086 program, as described in Section
16.3.1.2., “Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception
Handl

!
er”.

16.3.1.2. HANDLING AN INTERRUPT OR EXCEPTION WITH AN 8086
PROGRAM INTERRUPT OR EXCEPTION HANDLER

B
ë

ecause it was designed to run on an 8086 processor, an 8086 program running in a virtual-
808

Á
6-mode task contains an 8086-style interrupt vector table, which starts at linear address 0. If

the virtual-8
½

086 monitor correctly directs an interrupt or exception vector back to the virtual-
808

Á
6-mode task it came from, the handlers in the 8086 program can handle the interrupt or

ex� ception. The virtual-8086 monitor must carry out the following steps to send an interrupt or
exceptio� n back to the 8086 program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 8086
pr­ ogram interrupt table.

2.
²

Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the
pr­ ivilege-level 3 stack. This is the stack that the virtual-8086-mode task is using. (The
80

Á
86 handler may use or modify this information.)

3
±
. Change the return link on the privilege-level 0 stack to point to the privilege-level 3

han
	

dler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5.
è

When the IRET instruction from the privilege-level 3 handler triggers a general-protection
excep� tion (#GP) and thus effectively again calls the virtual-8086 monitor, restore the
return link on the privilege-level 0 stack to point to the original, interrupted, privilege-level
3 pro

±
cedure.

6
â
. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack to the

pr­ ivilege-level 0 stack (because some 8086 handlers modify these flags to return
in

»
formation to the code that caused the interrupt).

16-20

8086 EMULATION

7
%
. Execute an IRET instruction to pass control back to the interrupted 8086 program.

No
¶

te that if an operating system intends to support all 8086 MS-DOS-based programs, it is
neces³ sary to use the actual 8086 interrupt and exception handlers supplied with the program.
The reason for this is that some programs modify their own interrupt vector table to substitute
(o
à

r hook in series) their own specialized interrupt and exception handlers.

16.3.1.3. HANDLING A N INTERRUPT OR EXCEPTION THROUGH A TASK
GATE

&

W
®

hen an interrupt or exception vector points to a task gate in the IDT, the processor performs a
tas
½

k switch to the selected interrupt- or exception-handling task. The following actions are
carrº ied out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of the TSS
f

¿
or the interrupted virtual-8086-mode task.

3.
±

The EFLAGS register is loaded from the image in the new TSS, which clears the VM flag
an« d causes the processor to switch to protected mode.

4.
�

The NT flag in the EFLAGS register is set.

5.
è

The processor begins executing the selected interrupt- or exception-handler task.

W
®

hen an IRET instruction is executed in the handler task and the NT flag in the EFLAGS
reg¦ ister is set, the processors switches from a protected-mode interrupt- or exception-handler
tas
½

k back to a virtual-8086-mode task. Here, the EFLAGS and segment registers are loaded from
images saved in the TSS for the virtual-8086-mode task. If the VM flag is set in the EFLAGS
image,
»

 the processor switches back to virtual-8086 mode on the task switch. The CPL at the time
the
½

IRET instruction is executed must be 0, otherwise the processor does not change the state of
the VM f
½

lag.

16.3.2. Class 2—M askable H ardware Interr up t Handli ng in Virtual-
8086 Mode Using the Virtual Interrupt Mec hanis m

Maskable hardware interrupts are those interrupts that are delivered through the INTR# pin or
th
½

rough an interrupt request to the local APIC (refer to Sect
°

ion 5.1.1.2., “Maskable Hardware
Int
Ñ

errupts”, in Chapter 5, Interr
�

upt and Exception Handling).
£

 These interrupts can be inhibited
(masked
à

) from interrupting an executing program or task by clearing the IF flag in the EFLAGS
reg¦ ister.

W
®

hen the VME flag in control register CR4 is set and the IOPL field in the EFLAGS register is
less than 3, two additional flags are activated in the EFLAGS register:

• VIF (
�

virtual interrupt) flag, bit 19 of the EFLAGS register.

• VIP
�

 (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

16-21

8086 EMULATION

These flags provide the virtual-8086 monitor with more efficient control over handling
masì kable hardware interrupts that occur during virtual-8086 mode tasks. They also reduce inter-
rup¦ t-handling overhead, by eliminating the need for all IF related operations (such as PUSHF,
POPF, CLI, and STI instructions) to trap to the virtual-8086 monitor. The purpose and use of
these flags are a

½
s follows.

NO
'

TE

The VIF and VIP flags are only available in Intel Architecture processors that
su¾ pport the virtual mode extensions. These extensions were introduced in the
Intel

Ñ
 Architecture with the Pentium®

ê
 processor. When this mechanism is

either no� t available or not enabled, maskable hardware interrupts are handled
as class« 1 interrupts. Here, if VIF and VIP flags are needed, the virtual-8086
mì onitor can implement them in software.

Exist
Æ

ing 8086 programs commonly set and clear the IF flag in the EFLAGS register to enable
and « disable maskable hardware interrupts, respectively; for example, to disable interrupts while
handling another interrupt or an exception. This practice works well in single task environments,
b

Ë
ut can cause problems in multitasking and multiple-processor environments, where it is often

desirable to p
§

revent an application program from having direct control over the handling of
hardware interrupts. When using earlier Intel Architecture processors, this problem was often
s¾ olved by creating a virtual IF flag in software. The Intel Architecture processors (beginning
wiÌ th the Pentium®

ê
 processor) provide hardware support for this virtual IF flag through the VIF

and VIP fl« ags.

The VIF
¡

 flag is a virtualized version of the IF flag, which an application program running from
witÌ hin a virtual-8086 task can used to control the handling of maskable hardware interrupts.
W

®
hen the VIF flag is enabled, the CLI and STI instructions operate on the VIF flag instead of

the IF f
½

lag. When an 8086 program executes the CLI instruction, the processor clears the VIF
flag

¿
 to request that the virtual-8086 monitor inhibit maskable hardware interrupts from inter-

rupting program execution; when it executes the STI instruction, the processor sets the VIF flag
req¦ uesting that the virtual-8086 monitor enable maskable hardware interrupts for the 8086
pro­ gram. But actually the IF flag, managed by the operating system, always controls whether
maskable hardware interrupts are enabled. Also, if under these circumstances an 8086 program
tries

½
 to read or change the IF flag using the PUSHF or POPF instructions, the processor will

changº e the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or pending)
mì askable hardware interrupt. This flag is read by the processor but never explicitly written by
th

½
e processor; it can only be written by software.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable
hard

	
ware interrupt (interrupt vector 0 through 255), the processor performs and the interrupt

hand
	

ler software should perform the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as
describ

§
ed in the following steps. These steps are almost identical to those described for

16-22

8086 EMULATION

method 1 interrupt and exception handling in S
°

ection 16.3.1.1., “Handling an Interrupt or
Ex

Æ
ception Through a Protected-Mode Trap or Interrupt Gate”:

a.« Switches to 32-bit protected mode and privil ege level 0.

b
Ë
. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP,

CS,
ª

EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (refer to Figure 16-4).
In the
Ñ

 EFLAGS image on the stack, the IOPL field is set to 3 and the VIF flag is
copiedº to the IF flag.

c.º Clears the segment registers.

d
§
. Clears the VM flag in the EFLAGS register.

e.� Begins executing the selected protected-mode interrupt handler.

2.
²

The recommended action of the protected-mode interrupt handler is to read the VM flag
f

¿
rom the EFLAGS image on the stack. If this flag is set, the handler makes a call to the

vå irtual-8086 monitor.

3.
±

The virtual-8086 monitor should read the VIF flag in the EFLAGS register.

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the EFLAGS
image on the stack to indicate that there is a deferred interrupt pending and returns to
th
½

e protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it “belongs”
to
½

 the 8086 program running in the interrupted virtual-8086 task; otherwise, it can call
th
½

e protected-mode interrupt handler to handle the interrupt.

4.
�

The protected-mode handler executes a return to the program executing in virtual-8086
mode.

5.
è

Upon returning to virtual-8086 mode, the processor continues execution of the 8086
pr­ ogram.

W
®

hen the 8086 program is ready to receive maskable hardware interrupts, it executes the STI
in
»

struction to set the VIF flag (enabling maskable hardware interrupts). Prior to setting the VIF
flag,
¿

 the processor automatically checks the VIP flag and does one of the following, depending
on¥ the state of the flag:

• If the VIP flag is clear (indicating no pending interrupts), the processor sets the VIF flag.

• I
Ñ
f the VIP flag is set (indicating a pending interrupt), the processor generates a general-

p­ rotection exception (#GP).

The reco
¡

mmended action of the protected-mode general-protection exception handler is to then
calº l the virtual-8086 monitor and let it handle the pending interrupt. After handling the pending
interrupt, the typical action of the virtual-8086 monitor is to clear the VIP flag and set the VIF
flag
¿

in the EFLAGS image on the stack, and then execute a return to the virtual-8086 mode. The
n³ ext time the processor receives a maskable hardware interrupt, it will then handle it as
d
§
escribed in steps 1 through 5 earlier in this section.

If
Ñ

the processor finds that both the VIF and VIP flags are set at the beginning of an instruction,
it g
»

enerates a general-protection exception. This action allows the virtual-8086 monitor to

16-23

8086 EMULATION

handle the pending interrupt for the virtual-8086 mode task for which the VIF flag is enabled.
Note that this

¶
 situation can only occur immediately following execution of a POPF or IRET

i
»
nstruction or upon entering a virtual-8086 mode task through a task switch.

Note th
¶

at the states of the VIF and VIP flags are not modified in real-address mode or during
transiti

½
ons between real-address and protected modes.

NO
'

TE

The virtual interrupt mechanism described in this section is also available for
us� e in protected mode, refer to S

°
ection 16.4., “Protected-Mode Virtual Inter-

ru¦ pts”.

16.3.3. Class 3—S oftware Interrupt Handling in V irtual-8086 Mo de

W
®

hen the processor receives a software interrupt (an interrupt generated with the INT n� instruc-
t

½
ion) while in virtual-8086 mode, it can use any of six different methods to handle the interrupt.
The method selected depends on the settings of the VME flag in control register CR4, the IOPL
field

¿
 in the EFLAGS register, and the software interrupt redirection bit map in the TSS. Table

16-2 lists the six methods of handling software interrupts in virtual-8086 mode and the respec-
ti

½
ve settings of the VME flag, IOPL field, and the bits in the interrupt redirection bit map for

each � method. The table also summarizes the various actions the processor takes for each
metì hod.

The VME flag enables the virtual mode extensions for the Pentium®
ê
 and P6-family processors.

W
®

hen this flag is clear, the processor responds to interrupts and exceptions in virtual-8086 mode
in th
»

e same manner as an Intel386™ or Intel486™ processor does. When this flag is set, the
viå rtual mode extension provides the following enhancements to virtual-8086 mode:

• S
°

peeds up the handling of software-generated interrupts in virtual-8086 mode by allowing
t

½
he processor to bypass the virtual-8086 monitor and redirect software interrupts back to
th

½
e interrupt handlers that are part of the currently running 8086 program.

• Su
°

pports virtual interrupts for software written to run on the 8086 processor.

Th
¡

e IOPL value interacts with the VME flag and the bits in the interrupt redirection bit map to
det

§
ermine how specific software interrupts should be handled.

The s
¡

oftware interrupt redirection bit map (refer to Figure 16-5) is a 32-byte field in the TSS.
Th

¡
is map is located directly below the I/O permission bit map in the TSS. Each bit in the inter-

rupt redirection bit map is mapped to an interrupt vector. Bit 0 in the interrupt redirection bit
map (ì which maps to vector zero in the interrupt table) is located at the I/O base map address in
th

½
e TSS minus 32 bytes. When a bit in this bit map is set, it indicates that the associated software

interrupt (interrupt generated with an INT n� instruction) should be handled through the
pro­ tected-mode IDT and interrupt and exception handlers. When a bit in this bit map is clear,
the

½
processor redirects the associated software interrupt back to the interrupt table in the 8086

pro­ gram (located at li near address 0 in the program’s address space).

16-24

8086 EMULATION

NOTE

The software interrupt redirection bit map does not affect hardware generated
i

»
nterrupts and exceptions. Hardware generated interrupts and exceptions are
always « handled by the protected-mode interrupt and exception handlers.

NOTE:

* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1,
interrupt is directed to protected-mode handler.

T
(
able 16-2. Softw are Interrupt Ha ndlin g Method s While in Virtual -8086 Mode

Method VME IOPL

Bi t in
Redir.

Bi tmap* Processor Act ion

1 0 3 X Interrupt dir ected to a pro tected-mode interrupt handl er:
- Clears VM and TF flags
- If serviced through interrupt gate, clears IF flag
- Switches to privilege-level 0 stack
- Pushes GS, FS, DS and ES onto privilege-level 0 stack
- Clears GS, FS, DS and ES to 0
- Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto
 privilege-level 0 stack
- Sets CS and EIP from interrupt gate

2 0 < 3 X Interrupt dir ected to protected-mode general-p rotect ion
exceptio n (#GP) handl er.

3 1 < 3 1 Interrupt dir ected to a pro tected-mod e general -protectio n
exceptio n (#GP) handl er; VIF and V IP flag supp ort for hand ling
class 2 maskabl e hard ware i nterrup ts.

4 1 3 1 Interrupt dir ected to protected-mode interrup t handler: (refer to
method 1 processor action).

5 1 3 0 Interrupt redir ected to 8 086 prog ram interrupt handl er:
- Pushes EFLAGS with NT cleared and IOPL set to 0
- Pushes CS and EIP (lower 16 bits only)
- Clears IF flag
- Clears TF flag
- Loads CS and EIP (lower 16 bits only) from selected entry in
 the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redir ected to 8 086 prog ram interrupt handl er; VIF and
VIP flag sup port for handl ing class 2 maskabl e hard ware
interrupts:
- Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
- Pushes CS and EIP (lower 16 bits only)
- Clears the VIF flag
- Clears TF flag
- Loads CS and EIP (lower 16 bits only) from selected entry in
 the interrupt vector table of the current virtual-8086 task

16-25

8086 EMULATION

Redirecting software interrupts back to the 8086 program potentially speeds up interrupt
hand

	
ling because a switch back and forth between virtual-8086 mode and protected mode is not

req¦ uired. This latter interrupt-handling technique is particularly useful for 8086 operating
s¾ ystems (such as MS-DOS) that use the INT n� instruction to call operating system procedures.

The C
¡

PUID instruction can be used to verify that the virtual mode extension is implemented on
th

½
e processor. Bit 1 of the feature flags register (EDX) indicates the availability of the virtual

mode extension (refer to “CPUID—CPU Identification” in Chapter 3 of the Intel Architecture
Softw

é
are Developer’s Manual, Volume 2).

£

Th
¡

e following sections describe the six methods (or mechanisms) for handling software inter-
rupts in virtual-8086 mode. Refer to S

°
ection 16.3.2., “Class 2—Maskable Hardware Interrupt

Handl
!

ing in Virtual-8086 Mode Using the Virtual Interrupt Mechanism” for a description of the
us� e of the VIF and VIP flags in the EFLAGS register for handling maskable hardware interrupts.

16.3.3.1. METHOD 1: SOFTWARE INTERRUPT HANDLING

W
®

hen the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium®
ê
, o� r P6-

family p
¿

rocessor handles software interrupts in the same manner as they are handled by an
In
Ñ

tel386™ or Intel486™ processor. It executes an implicit call to the interrupt handler in the
p­ rotected-mode IDT pointed to by the interrupt vector. Refer to Section 16.3.1., “Class
1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode” for a complete descrip-
ti
½

on of this mechanism and its possible uses.

Figu
þ

re 16-5. Softw are Interrup t Redirectio n Bit M ap in TSS

I/O Map Base

T
�

ask-State Segment (TSS)

64
ð

H

31
Ò

24 23 0
Ô

1 1111111

I/O Permission Bit Map

0
Õ

)

Software Interrupt Redirection Bit Map (32 Bytes)

16-26

8086 EMULATION

16.3.3.2. METHODS 2 AND 3: SOFTWARE INTERRUPT HANDLING

W
®

hen a software interrupt occurs in virtual-8086 mode and the method 2 or 3 conditions are
pr­ esent, the processor generates a general-protection exception (#GP). Method 2 is enabled
whenÌ the VME flag is set to 0 and the IOPL value is less than 3. Here the IOPL value is used to
by
Ë

pass the protected-mode interrupt handlers and cause any software interrupt that occurs in
virtuå al-8086 mode to be treated as a protected-mode general-protection exception (#GP). The
genÉ eral-protection exception handler calls the virtual-8086 monitor, which can then emulate an
80
Á

86-program interrupt handler or pass control back to the 8086 program’s handler, as described
i
»
n Section 16.3.1.2., “Handling an Interrupt or Exception With an 8086 Program Interrupt or
E
Æ

xception Handler” .

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the corre-
sp¾ onding bit for the software interrupt in the software interrupt redirection bit map is set to 1.
Here, the pr
!

ocessor performs the same operation as it does for method 2 software interrupt
handling. If the corresponding bit for the software interrupt in the software interrupt redirection
bi
Ë

t map is set to 0, the interrupt is handled using method 6 (refer to Section 16.3.3.5., “Method
6
â
: Software Interrupt Handling”).

16.3.3.3. METHOD 4: SOFTWARE INTERRUPT HANDLING

Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for
th
½

e interrupt vector in the redirection bit map is set to 1. Method 4 software interrupt handling
allo« ws method 1 style handling when the virtual mode extension is enabled; that is, the interrupt
is directed to a protected-mode handler (refer to Section 16.3.3.1., “Method 1: Software Inter-
ru¦ pt Handling”).

16.3.3.4. METHOD 5: SOFTWARE INTERRUPT HANDLING

Met
¢

hod 5 software interrupt handling provides a streamlined method of redirecting software
interrupts (invoked with the INT n� instruction) that occur in virtual 8086 mode back to the 8086
pr­ ogram’s interrupt vector table and its interrupt handlers. Method 5 handling is enabled when
th
½

e VME flag is set to 1, the IOPL value is 3, and the bit for the interrupt vector in the redirection
b
Ë
it map is set to 0. The processor performs the following actions to make an implicit call to the

s¾ elected 8086 program interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack with the NT and IOPL
b

Ë
its cleared.

2.
²

Pushes the current values of the CS and EIP registers onto the current stack. (Only the 16
least-s

Ê
ignificant bits of the EIP register are pushed and no stack switch occurs.)

3.
±

Clears the IF flag in the EFLAGS register to disable interrupts.

4.
�

Clears the TF flag, in the EFLAGS register.

5.
è

Locates the 8086 program interrupt vector table at linear address 0 for the 8086-mode task.

6.
â

Loads the CS and EIP registers with values from the interrupt vector table entry pointed to
b

Ë
y the interrupt vector number. Only the 16 low-order bits of the EIP are loaded and the 16

16-27

8086 EMULATION

high-order bits are set to 0. The interrupt vector table is assumed to be at linear address 0 of
t

½
he current virtual-8986 task.

7.
%

Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to return program
contº rol to the interrupted 8086 program.

Not
¶

e that with method 5 handling, a mode switch from virtual-8086 mode to protected mode
does

§
 not occur. The processor remains in virtual-8086 mode throughout the interrupt-handling

oper¥ ation.

The meth
¡

od 5 handling actions are virtually identical to the actions the processor takes when
handling software interrupts in real-address mode. The benefit of using method 5 handling to
acces« s the 8086 program handlers is that it avoids the overhead of methods 2 and 3 handling,
whiÌ ch requires first going to the virtual-8086 monitor, then to the 8086 program handler, then
back agai

Ë
n to the virtual-8086 monitor, before returning to the interrupted 8086 program (refer

to
½

 S
°

ection 16.3.1.2., “Handling an Interrupt or Exception With an 8086 Program Interrupt or
Excep

Æ
tion Handler”).

NO
'

TE

Methods 1 and 4 handling can handle a software interrupt in a virtual-8086
task with a r

½
egular protected-mode handler, but this approach requires all

vå irtual-8086 tasks to use the same software interrupt handlers, which
gÉ enerally does not give sufficient latitude to the programs running in the
viå rtual-8086 tasks, particularly MS-DOS programs.

16.3.3.5. METHOD 6: SOFTWARE INTERRUPT HANDLING

Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less than 3, and
th

½
e bit for the interrupt or exception vector in the redirection bit map is set to 0. With method 6

i
»
nterrupt handling, software interrupts are handled in the same manner as was described for
method 5 handling (refer to Section 16.3.3.4., “Method 5: Software Interrupt Handling”).

Meth
¢

od 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF and VIP
flag

¿
s in the EFLAGS register are enabled, providing virtual interrupt support for handling

classº 2 maskable hardware interrupts (refer to Section 16.3.2., “Class 2—Maskable Hardware
In

Ñ
terrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism”). These flags

p­ rovide the virtual-8086 monitor with an efficient means of handling maskable hardware inter-
rupts that occur during a virtual-8086 mode task. Also, because the IOPL value is less than 3
and « the VIF flag is enabled, the information pushed on the stack by the processor when invoking
t

½
he interrupt handler is slightly different between methods 5 and 6 (refer to Table 16-2).

16.4. PROTECTED-MODE VIRTUAL INTERRUPTS

The Intel Architecture processors (beginning with the Pentium®
ê
 processor) also support the VIF

an« d VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-mode

16-28

8086 EMULATION

vå irtual interrupt) flag in the CR4 register. Setting the PVI flag allows applications running at
p­ rivilege level 3 to execute the CLI and STI instructions without causing a general-protection
excep� tion (#GP) or affecting hardware interrupts.

W
®

hen the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and CLI instruc-
tions s
½

et and clear the VIF flag in the EFLAGS register, leaving IF unaffected. In this mode of
op¥ eration, an application running in protected mode and at a CPL of 3 can inhibit interrupts in
t
½
he same manner as is described in Section

°
 16.3.2., “Class 2—Maskable Hardware Interrupt

Hand
!

ling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism” for a virtual-8086
moì de task. When the application executes the CLI instruction, the processor clears the VIF flag.
If the processor receives a maskable hardware interrupt when the VIF flag is clear, the processor
inv
»

okes the protected-mode interrupt handler. This handler checks the state of the VIF flag in
the
½

EFLAGS register. If the VIF flag is clear (indicating that the active task does not want to
have interrupts handled now), the handler sets the VIP flag in the EFLAGS image on the stack
an« d returns to the privi lege-level 3 application, which continues program execution. When the
app« lication executes a STI instruction to set the VIF flag, the processor automatically invokes
th
½

e general-protection exception handler, which can then handle the pending interrupt. After
han
	

ding the pending interrupt, the handler typically sets the VIF flag and clears the VIP flag in
the
½

EFLAGS image on the stack and executes a return to the application program. The next time
the p
½

rocessor receives a maskable hardware interrupt, the processor wil l handle it in the normal
manì ner for interrupts received while the processor is operating at a CPL of 3.

As
Å

 with the virtual mode extension (enabled with the VME flag in the CR4 register), the
pr­ otected-mode virtual interrupt extension only affects maskable hardware interrupts (interrupt
vectå ors 32 through 255). NMI interrupts and exceptions are handled in the normal manner.

W
®

hen protected-mode virtual interrupts are disabled (that is, when the PVI flag in control
register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then the CLI and STI
in
»

structions execute in a manner compatible with the Intel486™ processor. That is, if the CPL
is
»

 greater (less privileged) than the I/O privilege level (IOPL), a general-protection exception
occu¥ rs. If the IOPL value is 3, CLI and STI clear or set the IF flag, respectively.

PUS
¼

HF, POPF, and IRET are executed like in the Intel486™ processor, regardless of whether
pr­ otected-mode virtual interrupts are enabled.

It is only possible to enter virtual-8086 mode through a task switch or the execution of an IRET
in
»

struction, and it is only possible to leave virtual-8086 mode by faulting to a protected-mode
in
»

terrupt handler (typically the general-protection exception handler, which in turn calls the
viå rtual 8086-mode monitor). In both cases, the EFLAGS register is saved and restored. This is
no³ t true, however, in protected mode when the PVI flag is set and the processor is not in virtual-
80
Á

86 mode. Here, it is possible to call a procedure at a different privilege level, in which case
the EFLAGS
½

 register is not saved or modified. However, the states of VIF and VIP flags are
nev³ er examined by the processor when the CPL is not 3.

17
Mixing 16-Bit and
32-Bit Code

17-1

MIXING 16-BIT AND 32-BIT CODE

CHAPTER 17
MIXING 16-BIT AND 32-BIT CODE

P
¼

rogram modules written to run on Intel Architecture processors can be either 16-bit modules
or ¥ 32-bit modules. Table 17-1 shows the characteristic of 16-bit and 32-bit modules.

The Intel Architecture processors function most efficiently when executing 32-bit program
modì ules. They can, however, also execute 16-bit program modules, in any of the following
ways:Ì

• In real-address mode.

• In virtual-8086 mode.

• S
°

ystem management mode (SMM).

• As a protected-mode task, when the code, data, and stack segments for the task are all
conº figured as a 16-bit segments.

• By
ë

 integrating 16-bit and 32-bit segments into a single protected-mode task.

• By integrating 16-bit operations into 32-bit code segments.

Real
õ

-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy program
ass« embled and/or compiled to run on an Intel 8086 or Intel 286 processor should run in real-
addr« ess mode or virtual-8086 mode without modification. Sixteen-bit program modules can also
b

Ë
e written to run in real-address mode for handling system initiali zation or to run in SMM for

hand
	

ling system management functions. Refer to Chapter 16, 8086 Emulation for detailed infor-
mation on real-address mode and virtual-8086 mode; refer to Chapter 12, System

é
 Management

Mo
À

de (SMM) for information on SMM.

Th
¡

is chapter describes how to integrate 16-bit program modules with 32-bit program modules
whÌ en operating in protected mode and how to mix 16-bit and 32-bit code within 32-bit code
se¾ gments.

Table 17-1. Characteristic s of 16-Bit and 32-Bi t Program Modul es

Characteristi c 16-Bit Program Modules 32-Bit Progr am Modul es

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address Size) 16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to Code
Segments of This Size

16 Bits 32 Bits

17-2

MIXING 16-BIT AND 32-BIT CODE

17.1. DEFINING 16-BIT AND 32-BIT PROGRAM MODULES

The following Intel Architecture mechanisms are used to distinguish between and support 16-
b
Ë
it and 32-bit segments and operations:

• The D (default operand and address size) flag in code-segment descriptors.

• The B (default stack size) flag in stack-segment descriptors.

• 16-bit and 32-bit call gates, interrupt gates, and trap gates.

• Ope

rand-size and address-size instruction prefixes.

• 16-bit and 32-bit general-purpose registers.

The D flag in a
¡

code-segment descriptor determines the default operand-size and address-size
for the instructions of a code segment. (In real-address mode and virtual-8086 mode, which do
no³ t use segment descriptors, the default is 16 bits.) A code segment with its D flag set is a 32-bit
segment; a ¾ code segment with its D flag clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the 32-bit ESP
reg¦ ister or the 16-bit SP register) used by the processor for implicit stack references. The B flag
fo
¿

r all data descriptors also controls upper address range for expand down segments.

Wh
®

en transferring program control to another code segment through a call gate, interrupt gate,
or¥ trap gate, the operand size used during the transfer is determined by the type of gate used (16-
b
Ë
it or 32-bit), (not by the D-flag or prefix of the transfer instruction). The gate type determines

how return information is saved on the stack (or stacks).

F
�

or most efficient and trouble-free operation of the processor, 32-bit programs or tasks should
hav
	

e the D flag in the code-segment descriptor and the B flag in the stack-segment descriptor
set¾ , and 16-bit programs or tasks should have these flags clear. Program control transfers from
16-bit segments to 32-bit segments (and vice versa) are handled most efficiently through call,
in
»

terrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size of a code
segment.¾ These prefixes can be used in real-address mode as well as in protected mode and
viå rtual-8086 mode. An operand-size or address-size prefix only changes the size for the duration
o¥ f the instruction.

17.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE
SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations within one
seg¾ ment:

• Th
¡

e operand-size prefix (66H)

• The address-size prefix (67H)

These prefixes reverse the default size selected by the D flag in the code-segment descriptor. For
exam� ple, the processor can interpret the (MOV me� m, � re� g) in

£
struction in any of four ways:

17-3

MIXING 16-BIT AND 32-BIT CODE

• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to memory
u� sing a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to memory
u� sing a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits
f
¿
rom a 16-bit register to memory using a 16-bit effective address.

• In
Ñ

 a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to memory
u� sing a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to memory
u� sing a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits
from a 32-bit register to memory using a 32-bit effective address.

The pr
¡

evious examples show that any instruction can generate any combination of operand size
and « address size regardless of whether the instruction is in a 16- or 32-bit segment. The choice
of ¥ the 16- or 32-bit default for a code segment is normally based on the following criteria:

• Performance—Always use 32-bit code segments when possible. They run much faster
than

½
 16-bit code segments on P6 family processors, and somewhat faster on earlier Intel

Architecture processors.

• The operating system the code segment will be runni ng on—If the operating system is a
16-bit operating system, it may not support 32-bit program modules.

• Mode of operation—If the code segment is being designed to run in real-address mode,
virå tual-8086 mode, or SMM, it must be a 16-bit code segment.

• B
Í

ackward compatibility to earlier In tel Ar chitecture processors—If a code segment
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit code
seg¾ ment.

17.3. SHARING DATA AM ONG MIXED-SIZE CODE SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a data segment
t

½
hat is larger than 64 KBytes is to be shared among 16- and 32-bit code segments, the data that
is

»
 to be accessed from the 16-bit code segments must be located within the first 64 KBytes of

t
½
he data segment. The reason for this is that 16-bit pointers by definition can only point to the
fi

¿
rst 64 KBytes of a segment.

17-4

MIXING 16-BIT AND 32-BIT CODE

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code segments. This
clasº s of stacks includes:

• Stacks i
°

n expand-up segments with the G (granularity) and B (big) flags in the stack-
segmen¾ t descriptor clear.

• Stacks in ex
°

pand-down segments with the G and B flags clear.

• Stacks i
°

n expand-up segments with the G flag set and the B flag clear and where the stack
is contained completely within the lower 64 KBytes. (Offsets greater than FFFFH can be
u� sed for data, other than the stack, which is not shared.)

Ref
õ

er to Section 3.4.3., “Segment Descriptors” in Chapter 3, Pr
ö

otected-Mode Memory Manage-
ment� for a description of the G and B flags and the expand-down stack type.

The
¡

B flag cannot, in general, be used to change the size of stack used by a 16-bit code segment.
This flag contr
¡

ols the size of the stack pointer only for implicit stack references such as those
causº ed by interrupts, exceptions, and the PUSH, POP, CALL, and RET instructions. It does not
conº trol explici t stack references, such as accesses to parameters or local variables. A 16-bit code
segment c¾ an use a 32-bit stack only if the code is modified so that all explicit references to the
st¾ ack are preceded by the 32-bit address-size prefix, causing those references to use 32-bit
add« ressing and explici t writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In
Ñ

 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; therefore, 16-bit
codº e cannot use this kind of stack segment unless the code segment is modified to use 32-bit
add« ressing.

17.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call to a 32-bit
cº ode segment:

• Make the call through a 32-bit call gate.

• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then makes a
32

±
-bit call to the intended destination.

• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it
to

½
 a 32-bit call.

Likewise, there ar
ï

e three ways for procedure in a 32-bit code segment to safely make a call to a
16-bit code segment:

• Make the call through a 16-bit call gate. Here, the EIP value at the CALL instruction
canº not exceed FFFFH.

• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then makes a
16-bit call to the intended destination.

• Mo
¢

dify the 32-bit procedure, inserting an operand-size prefix before the call, changing it to
a 1« 6-bit call. Be certain that the return offset does not exceed FFFFH.

17-5

MIXING 16-BIT AND 32-BIT CODE

These methods of transferring program control overcome the following architectural limitations
i

»
mposed on calls between 16-bit and 32-bit code segments:

• P
¼

ointers from 16-bit code segments (which by default can only be 16-bits) cannot be used
t

½
o address data or code located beyond FFFFH in a 32-bit segment.

• The operand-size attributes for a CALL and its companion RETURN instruction must be
th

½
e same to maintain stack coherency. This is also true for implicit calls to interrupt and

excep� tion handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH cannot be
squeezed¾ into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit and
32

±
-bit code segments.

Th
¡

ese limitations are discussed in greater detail in the following sections.

17.4.1. Code-Segment Pointer Size

For control-transfer instructions that use a pointer to identify the next instruction (that is, those
that

½
do not use gates), the operand-size attribute determines the size of the offset portion of the

p­ ointer. The implications of this rule are as follows:

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always
po­ ssible using a 32-bit operand size, providing the 32-bit pointer does not exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment cannot
add« ress a destination greater than FFFFH, unless the instruction is given an operand-size
pr­ efix.

Refer to Section 17.4.5., “Writing Interface Procedures” f or an interface procedure that can
tran

½
sfer program control from 16-bit segments to destinations in 32-bit segments beyond

F
�

FFFH.

17.4.2. Stack Management for Control T ransfer

Because the stack is managed differently for 16-bit procedure calls than for 32-bit calls, the
oper¥ and-size attribute of the RET instruction must match that of the CALL instruction (refer to
Figure 17-1). On a 16-bit call, the processor pushes the contents of the 16-bit IP register and (for
callº s between privilege levels) the 16-bit SP register. The matching RET instruction must also
use a 16� -bit operand size to pop these 16-bit values from the stack into the 16-bit registers.

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for inter-privilege-
lev

Ê
el calls) the 32-bit ESP register. Here, the matching RET instruction must use a 32-bit

oper¥ and size to pop these 32-bit values from the stack into the 32-bit registers. If the two parts
of a ¥ CALL/RET instruction pair do not have matching operand sizes, the stack will not be
managì ed correctly and the values of the instruction pointer and stack pointer will not be restored
to cor

½
rect values.

17-6

MIXING 16-BIT AND 32-BIT CODE

W
®

hile executing 32-bit code, if a call is made to a 16-bit code segment which is at the same or
a m« ore privi leged level (that is, the DPL of the called code segment is less than or equal to the
CP
ª

L of the calling code segment) through a 16-bit call gate, then the upper 16-bits of the ESP
regi¦ ster may be unreliable upon returning to the 32-bit code segment (that is, after executing a
RET in the 16-bit code segment).

W
®

hen the CALL instruction and its matching RET instruction are in code segments that have D
flag
¿

s with the same values (that is, both are 32-bit code segments or both are 16-bit code
seg¾ ments), the default settings may be used. When the CALL instruction and its matching RET
in
»

struction are in segments which have different D-flag settings, an operand-size prefix must be
us� ed.

Figure 17-1. Stack after Fa r 16- and 32-Bi t Calls

SP

After 16-bi t Call

PARM 1

IP SP

SS

PARM 2

CS

0
Õ

31
Û

SS

EIP

Af ter 32-bit Call

CS

ESP

ESP

PARM 2

PARM 1

0
Õ

31
Û

With Privileg e Transi tion

Stack
Growth

After 16-bi t Call

PARM 1

IP SP

PARM 2

CS

0
Õ

31
Û

Witho ut Privi lege Transi tion

Stack
Growth

After 32-bi t Call

PARM 1

ESP

PARM 2

CS

0
Õ

31
Û

EIP

Undefined

17-7

MIXING 16-BIT AND 32-BIT CODE

17.4.2.1. CONTROLLING THE OPERAND-SIZE ATTRIBUTE FOR A CALL

Three things can determine the operand-size of a call:

• The D flag in the segment descriptor for the calling code segment.

• An o
Å

perand-size instruction prefix.

• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

W
®

hen a call is made with a pointer (rather than a call gate), the D flag for the calling code
s¾ egment determines the operand-size for the CALL instruction. This operand-size attribute can
be ov

Ë
erridden by prepending an operand-size prefix to the CALL i nstruction. So, for example,

if t
»

he D flag for a code segment is set for 16 bits and the operand-size prefix is used with a CALL
in

»
struction, the processor will cause the information stored on the stack to be stored in 32-bit

format. If the call is to a 32-bit code segment, the instructions in that code segment will be able
to

½
 read the stack coherently. Also, a RET instruction from the 32-bit code segment without an

o¥ perand-size prefix wil l maintain stack coherency with the 16-bit code segment being returned
to

½
.

W
®

hen a CALL instruction references a call-gate descriptor, the type of call is determined by the
ty

½
pe of call gate (16-bit or 32-bit). The offset to the destination in the code segment being called

is taken from the gate descriptor; therefore, if a 32-bit call gate is used, a procedure in a 16-bit
code º segment can call a procedure located more than 64 Kbytes from the base of a 32-bit code
s¾ egment, because a 32-bit call gate uses a 32-bit offset.

No
¶

te that regardless of the operand size of the call and how it is determined, the size of the stack
poin­ ter used (SP or ESP) is always controlled by the B flag in the stack-segment descriptor
currº ently in use (that is, when B is clear, SP is used, and when B is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor or in
real-m¦ ode on a P6-family processor will have its D flag clear and will not use operand-size over-
rid¦ e prefixes. As a result, all CALL instructions in this code segment will use the 16-bit operand-
s¾ ize attribute. Procedures in these code segments can be modified to safely call procedures to
3

±
2-bit code segments in either of two ways:

• Rel
õ

ink the CALL instruction to point to 32-bit call gates (refer to Section 17.4.2.2.,
“Passing Parameters With a Gate”).

• Add a 32-bit operand-size prefix to each CALL instruction.

17.4.2.2. PASSING PARAMETERS WITH A GATE

W
®

hen referencing 32-bit gates with 16-bit procedures, it is important to consider the number of
param­ eters passed in each procedure call. The count field of the gate descriptor specifies the size
of the param¥ eter string to copy from the current stack to the stack of a more privileged (numer-
ical

»
ly lower privilege level) procedure. The count field of a 16-bit gate specifies the number of

16-bit words to be copied, whereas the count field of a 32-bit gate specifies the number of 32-bit
dou

§
blewords to be copied. The count field for a 32-bit gate must thus be half the size of the

num³ ber of words being placed on the stack by a 16-bit procedure. Also, the 16-bit procedure
must use an even number of words as parameters.

17-8

MIXING 16-BIT AND 32-BIT CODE

17.4.3. Interrupt Control T ransfers

A program-control transfer caused by an exception or interrupt is always carried out through an
in
»

terrupt or trap gate (located in the IDT). Here, the type of the gate (16-bit or 32-bit) determines
th
½

e operand-size attribute used in the implicit call to the exception or interrupt handler procedure
i
»
n another code segment.

A 3
Å

2-bit interrupt or trap gate provides a safe interface to a 32-bit exception or interrupt handler
whenÌ the exception or interrupt occurs in either a 32-bit or a 16-bit code segment. It is sometimes
impr
»

actical, however, to place exception or interrupt handlers in 16-bit code segments, because
on¥ ly 16-bit return addresses are saved on the stack. If an exception or interrupt occurs in a 32-bit
codº e segment when the EIP was greater than FFFFH, the 16-bit handler procedure cannot
pr­ ovide the correct return address.

17.4.4. Parameter Translation

W
®

hen segment offsets or pointers (which contain segment offsets) are passed as parameters
bet
Ë

ween 16-bit and 32-bit procedures, some translation is required. If a 32-bit procedure passes
a p« ointer to data located beyond 64 KBytes to a 16-bit procedure, the 16-bit procedure cannot
use � it. Except for this limitation, interface code can perform any format conversion between
3
±
2-bit and 16-bit pointers that may be needed.

Parameters pass
¼

ed by value between 32-bit and 16-bit code also may require translation between
3
±
2-bit and 16-bit formats. The form of the translation is application-dependent.

17.4.5. Wri ting Int erface Procedures

Pl
¼

acing interface code between 32-bit and 16-bit procedures can be the solution to the following
interface problems:

• Allowing procedures in 16-bit code segments to call procedures with offsets greater than
FFF

�
FH in 32-bit code segments.

• Matching operand-size attributes between companion CALL and RET instructions.

• Translating parameters (data), including managing parameter strings with a variable count
o¥ r an odd number of 16-bit words.

• The possible invalidation of the upper bits of the ESP register.

The
¡

interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the code-
s¾ egment descriptor is set).

2.
²

Al l procedures that may be called by 16-bit procedures must have offsets not greater than
FFF

�
FH.

3.
±

Al l return addresses saved by 16-bit procedures must have offsets not greater than FFFFH.

17-9

MIXING 16-BIT AND 32-BIT CODE

The interface procedure becomes more complex if any of these rules are violated. For example,
if a 16

»
-bit procedure calls a 32-bit procedure with an entry point beyond FFFFH, the interface

pro­ cedure will need to provide the offset to the entry point. The mapping between 16-and 32-bit
addr« esses is only performed automatically when a call gate is used, because the gate descriptor
for

¿
 a call gate contains a 32-bit address. When a call gate is not used, the interface code must

pro­ vide the 32-bit address.

The structure of the interface procedure depends on the types of calls it is going to support, as
fo

¿
llows:

• Calls
ý

from 16-bit procedures to 32-bit procedures. Calls to the interface procedure from
a 16« -bit code segment are made with 16-bit CALL instructions (by default, because the D
flag

¿
 for the calling code-segment descriptor is clear), and 16-bit operand-size prefixes are

u� sed with RET instructions to return from the interface procedure to the calling procedure.
C

ª
alls from the interface procedure to 32-bit procedures are performed with 32-bit CALL

instruction
»

s (by default, because the D flag for the interface procedure’s code segment is
set), and¾ returns from the called procedures to the interface procedure are performed with
3

±
2-bit RET instructions (also by default).

• Calls
ý

from 32-bit procedures to 16-bit procedures. Calls to the interface procedure from
a « 32-bit code segment are made with 32-bit CALL instructions (by default), and returns to
the calli

½
ng procedure from the interface procedure are made with 32-bit RET instructions

(also
à

 by default). Calls from the interface procedure to 16-bit procedures require the CALL
instruction

»
s to have the operand-size prefixes, and returns from the called procedures to the

interface procedure are performed with 16-bit RET instructions (by default).

17-10

MIXING 16-BIT AND 32-BIT CODE

18
Intel Ar chitecture
Compatibility

18-1

CHAPTER 18
INTEL ARCHITECTURE COMPATIBIL ITY

Al
Å

l Intel Architecture processors are binary compatible. Compatibility means that, within
certainº limited constraints, programs that execute on previous generations of Intel Architecture
pro­ cessors wil l produce identical results when executed on later Intel Architecture processors.
Th

¡
e compatibility constraints and any implementation differences between the Intel Architec-

ture p
½

rocessors are described in this chapter.

Each n
Æ

ew Intel Architecture processor has enhanced the software visible architecture from that
fou

¿
nd in earlier Intel Architecture processors. Those enhancements have been defined with

considerº ation for compatibili ty with previous and future processors. This chapter also summa-
rizes¦ the compatibilit y considerations for those extensions.

18.1. INTEL ARCHITECTURE FAMILIES AN D CATEGORIES

Intel Architecture processors are referred to in several different ways in this chapter, depending
o¥ n the type of compatibility information being related, as described in the following:

• In
ü

tel Architecture Processors—All the Intel processors based on the Intel Architecture,
whiÌ ch include the 8086/88, Intel 286, Intel386™, Intel486™, Pentium®

ê
, an� d P6 family

pr­ ocessors.

• 32
*

-bit Processors—All the Intel Architecture processors that use a 32-bit architecture,
whiÌ ch include the Intel386™, Intel486™, Pentium®

ê
, an� d P6 family processors.

• 16-bit Processors—All the Intel Architecture processors that use a 16-bit architecture,
whiÌ ch include the 8086/88 and Intel 286 processors.

• P6 Family Processors—All the Intel Architecture processors that are based on the P6
fam

¿
i ly micro-architecture, which include the Pentium®

ê
 Pro, Pentium®

ê
 II, Pentium®

ê
 III and

fu
¿

ture P6 family processors.

18.2. RESERVED BITS

Throughout this manual, certain bits are marked as reserved in many register and memory layout
d

§
escriptions. When bits are marked as undefined or reserved, it is essential for compatibilit y

wiÌ th future processors that software treat these bits as having a future, though unknown effect.
S

°
oftware should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers or
memoì ry locations that contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing them to memory or to a
reg¦ ister.

18-2

INTEL ARCHITECTURE COMPATIBILITY

• Do not depend on the ability to retain information written into any reserved bits.

• W
®

hen loading a register, always load the reserved bits with the values indicated in the
d

§
ocumentation, if any, or reload them with values previously read from the same register.

So
°

ftware written for existing Intel Architecture processor that handles reserved bits correctly
willÌ port to future Intel Architecture processors without generating protection exceptions.

18.3. ENABLING NEW FUNCTIONS AND MODES

Mos
¢

t of the new control functions defined for the P6 family and Pentium®
ê
 processors are

enab� led by new mode flags in the control registers (primarily register CR4). This register is
un� defined for Intel Architecture processors earlier than the Pentium®

ê
 processor. Attempting to

access« this register with an Intel486™ or earlier Intel Architecture processor results in an
invalid-opcode exception (#UD). Consequently, programs that execute correctly on the
In
Ñ

tel486™ or earlier Intel Architecture processor cannot erroneously enable these functions.
Attem
Å

pting to set a reserved bit in register CR4 to a value other than its original value results in
a gener« al-protection exception (#GP). So, programs that execute on the P6 family and Pentium®

ê

pr­ ocessors cannot erroneously enable functions that may be implemented in future Intel Archi-
tecture p
½

rocessors.

The P6 family and Pentium®
ê
 processors do not check for attempts to set reserved bits in model-

specific reg¾ isters. It is the obligation of the software writer to enforce this discipline. These
res¦ erved bits may be used in future Intel processors.

18.4. DETECTING THE PRESENCE OF NEW FEATURES
THROUGH SOFTWARE

+

Software
°

can check for the presence of new architectural features and extensions in either of two
ways:Ì

• Test for the presence of the feature or extension — Software can test for the presence of
n³ ew flags in the EFLAGS register and control registers. If these flags are reserved
(

à
meaning not present in the processor executing the test), an exception is generated.

Likew
ï

ise, software can attempt to execute a new instruction, which results in an invalid-
o¥ pcode exception (#UD) being generated if it is not supported.

• Execute the CPUID instruction — The CPUID instruction (added to the Intel Architecture
in

»
 the Pentium®

ê
 processor) indicates the presence of new features directly.

R
õ

efer to Chapter 10, Pr
ö

ocessor Identification and Feature Determination, in� the In
�

tel Architec-
tur� e Software Developer’s Manual, Volume 1, � for detailed information on detecting new
pr­ ocessor features and extensions.

18-3

INTEL ARCHITECTURE COMPATIBILI TY

18.5. MMX™ TECHNOLOGY

The Pentium® processor with MMX™ technology introduced the MMX ™ technology and a set
of M¥ MX™ instructions to the Intel Architecture. The MMX™ instructions are summarized in
Ch

ª
apter 6, Instruction Set Summary, in� the Intel Architecture Software Developer’s Manual,

Volume 1 and are described in detail in Chapter 3 in the In
�

tel Architecture Software Developer’s
M

À
anual, Volume 2. The MMX™ technology and MMX™ instructions are also included in the

Pentium®
ê
 II and Pentium®

ê
 III processors.

18.6. STREAMING SIMD EXTENSIONS

Th
¡

e Pentium®
ê
 III processor introduced the Streaming SIMD Extensions. This is a set of new

instructions added to enhance perfomance of several classes of applications. The Streaming
S

°
IMD Extensions are summarized in Chapter 6, Ins

�
truction Set Summary, in th� e Intel

�
 Architec-

tur� e Software Developer’s Manual, Volume 1 and are described in detail in Chapter 3 in the In
�

tel
Architecture Software Developer’s Manual, Volume 2. Several of these new instructions operate
in the same reg

»
ister space as the MMX™ instructions. When using these instructions, the rules

th
½

at apply to MMX™ technology programming apply to this subset of the new instructions as
welÌ l.

18.7. NEW INSTRUCTIONS IN THE PENTIUM®

 AND LATER INTEL

ARCHITECTURE PROCESSORS

Table 18-1 identifies the instructions introduced into the Intel Architecture in the Pentium®
ê
 and

lat
Ê

er Intel Architecture processors.

Table 18-1. New Instructio ns in the Penti um® and L ater Intel Architec ture Processors

Instruction CPUID Identifi cat ion Bits Introd uced In

Streaming SIMD Extensions EDX, Bit 25 Pentium® III processor

SYSENTER/SYSEXIT(fast system call) EDX, Bit 11 Pentium® II processor

FXSAVE/FXRSTOR(fast save/restore) EDX, Bit 24 Pentium® II processor

CMOVcc, (conditional move) EDX, Bit 15 Pentium® Pro processor

FCMOVcc, (floating-point conditional move) EDX, Bits 0 and 15

FCOMI (floating-point compare and set
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring
counters)

EAX, Bits 8-11, set to 6H;
refer to Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

18-4

INTEL ARCHITECTURE COMPATIBILITY

NOTES:

1. The RDPMC instruction was introduced in the P6 family of processors and added to later model Pentium®

processors. This instruction is model specific in nature and not architectural.

2. The CPUID instruction is available in all Pentium® and P6 family processors and in later models of the
Intel486™ processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register indicates the
availability of the CPUID instruction.

CMPXCHG8B (compare and exchange 8
bytes)

EDX, Bit 8 Pentium® processor

CPUID (CPU identification) None; refer to Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

W
-

RMSR (write model-specific register) EDX, Bit 5

MMX™ Instructions EDX, Bit 23

Table 18-1. New Instructi ons in the Pen
.

tium ® and L ater Intel Archite cture Proce sso rs

Instructio n CPUID Identi fication Bits Introd uced In

18-5

INTEL ARCHITECTURE COMPATIBILI TY

18.7.1. Instructions A dded Prior to the Pent ium®

 Proc essor

The following instructions were added in the Intel486™ processor:

• B
ë

SWAP (byte swap) instruction.

• XADD (exchange and add) instruction.

• C
ª

MPXCHG (compare and exchange) instruction.

• ΙNVD (in
¶

validate cache) instruction.

• W
®

BINVD (write-back and invalidate cache) instruction.

• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386™ processor:

• LSS, LFS, and LGS (load SS, FS, and GS registers).

• Lo
ï

ng-displacement conditional jumps.

• S
°

ingle-bit instructions.

• Bit scan instructions.

• Do
ç

uble-shift instructions.

• Byte set on condition instruction.

• Move with sign/zero extension.

• Gen
Ï

eralized multiply instruction.

• MOV to and from control registers.

• MOV to and from test registers (now obsolete).

• MOV t
¢

o and from debug registers.

• RSM (resume from SMM). This instruction was introduced in the Intel386™ SL and
In

Ñ
tel486™ SL processors.

The following instructions were added in the Intel 387 math coprocessor:

• FPREM1.

• FUCOM, FUCOMP
�

, and FUCOMPP.

18.8. OBSOLETE INSTRUCTIONS

The MOV to and from test registers instructions were removed from the Pentium®
ê
 and future

Intel Arch
Ñ

itecture processors. Execution of these instructions generates an invalid-opcode
exceptio� n (#UD).

18-6

INTEL ARCHITECTURE COMPATIBILITY

18.9. UNDEFINED OPCODES

All new instructions defined for Intel Architecture processors use binary encodings that were
reserved¦ on earlier-generation processors. Attempting to execute a reserved opcode always
results in an invalid-opcode (#UD) exception being generated. Consequently, programs that
execu� te correctly on earlier-generation processors cannot erroneously execute these instructions
and« thereby produce unexpected results when executed on later Intel Architecture processors.

18.10.NEW FLAGS IN THE EFLAGS REGISTER

The section titled “EFLAGS Register” in Chapter 3 of the Intel Architecture Software Devel-
op� er’s Manual, Volume 1, sho� ws the configuration of flags in the EFLAGS register for the P6
family processors. No new flags have been added to this register in the P6 family processors.
Th
¡

e flags added to this register in the Pentium®
ê
 and Intel486™ processors are described in the

fo
¿

llowing sections.

The following flags were added to the EFLAGS register in the Pentium®
ê
 processor:

• VIF (
�

virtual interrupt flag), bit 19.

• VIP (
�

virtual interrupt pending), bit 20.

• ID (identification flag), bit 21.

Th
¡

e AC flag (bit 18) was added to the EFLAGS register in the Intel486™ processor.

18.10.1. Using EFLAGS Flags to Distinguish Between 32-Bit Intel
Archit ectur e Proces sors

The fo
¡

ll owing bits in the EFLAGS register that can be used to differentiate between the 32-bit
Intel Architecture processors:

• Bit 18 (the AC flag) can be used to distinguish an Intel386™ processor from the P6 family,
Pen

¼
tium®

ê
, a� nd Intel486™ processors. Since it is not implemented on the Intel386™

p­ rocessor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction.
The ab

¡
ility to set and clear this bit indicates that the processor is a P6 family or Pentium®

ê

p­ rocessor. The CPUID instruction can then be used to determine which processor.

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not
s¾ upport virtual mode extensions, which includes all 32-bit processors prior to the Pentium®

ê

p­ rocessor.

Refer to Chapter 10, Processor Identification and Feature Determination, in� the Intel Architec-
tur� e Software Developer’s Manual, Volume 1,� for more information on identifyi ng processors.

18-7

INTEL ARCHITECTURE COMPATIBILI TY

18.11.STACK OPERATIONS

This section identifies the differences in stack implementation between the various Intel Archi-
tect

½
ure processors.

18.11.1. PUSH SP

The P6 family, Pentium®
ê
, In� tel486™, Intel386™, and Intel 286 processors push a different value

on th¥ e stack for a PUSH SP instruction than the 8086 processor. The 32-bit processors push the
valå ue of the SP register before it is decremented as part of the push operation; the 8086 processor
pushes the v­ alue of the SP register after it is decremented. If the value pushed is important,
replace PUSH S¦ P instructions with the following three instructions:

PUSH BP

MOV BP, SP

XCHG BP, [BP]

Th
¡

is code functions as the 8086 processor PUSH SP instruction on the P6 family, Pentium®
ê
,�

Intel486™, Intel386™, and Intel 286 processors.

18.11.2. EFLAGS Pushed on t he Stack

The setti
¡

ng of the stored values of bits 12 through 15 (which includes the IOPL field and the NT
flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and by exceptions is
dif

§
ferent with the 32-bit Intel Architecture processors than with the 8086 and Intel 286 proces-

s¾ ors. The differences are as follows:

• 80
Á

86 processor—bits 12 through 15 are always set.

• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.

• 32
±

-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12
th

½
rough 14 have the last value loaded into them.

18.12.FPU

This s
¡

ection addresses the issues that must be faced when porting floating-point software
designed

§
 to run on earlier Intel Architecture processors and math coprocessors to a Pentium®

ê
 or

P
¼

6 family processor with integrated FPU. To software, a P6 family processor looks very much
li
Ê

ke a Pentium®
ê
 processor. Floating-point software which runs on a Pentium®

ê
 or Intel486™ DX

pro­ cessor, or on an Intel486™ SX processor/Intel 487 SX math coprocessor system or an
Intel38
Ñ

6™ processor/Intel 387 math coprocessor system, will run with at most minor modifica-
t
½
ions on a P6 family processor. To port code directly from an Intel 286 processor/Intel 287
math coprocessor system or an Intel 8086 processor/8087 math coprocessor system to the
Pe
¼

ntium®
ê
 and P6 family processors, certain additional issues must be addressed.

18-8

INTEL ARCHITECTURE COMPATIBILITY

In the following sections, the term “32-bit Intel Architecture FPUs” refers to the P6 family,
Pen
¼

tium®
ê
, � and Intel486™ DX processors, and to the Intel 487 SX and Intel 387 math coproces-

sors; ¾ the term “16-bit Intel Architecture math coprocessors” refers to the Intel 287 and 8087
math coprocessors.

18.12.1. Contr ol Register CR0 Flags

The ET
¡

, NE, and MP flags in control register CR0 control the interface between the integer unit
of¥ an Intel Architecture processor and either its internal FPU or an external math coprocessor.
The ef
¡

fect of these flags in the various Intel Architecture processors are described in the
fo
¿

llowing paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386™ processor to
ind
»

icate whether the math coprocessor in the system is an Intel287 math coprocessor (flag is
clear) oº r an Intel 387 DX math coprocessor (flag is set). This bit is hardwired to 1 in the P6
family, Pentium®

ê
, an� d Intel486™ processors.

Th
¡

e NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, Pentium®
ê
,�

and« Intel486™ processors to determine whether unmasked floating-point exceptions are
reported internally through interrupt vector 16 (flag is set) or externally through an external
in
»

terrupt (flag is clear). On a hardware reset, the NE flag is initialized to 0, so software using the
au« tomatic internal error-reporting mechanism must set this flag to 1. This flag is nonexistent on
th
½

e Intel386™ processor.

As
Å

 on the Intel 286 and Intel386™ processors, the MP (monitor coprocessor) flag (bit 1 of
reg¦ ister CR0) determines whether the WAIT/FWAIT instructions or waiting-type floating-point
instructions trap when the context of the FPU is different from that of the currently-executing
tas
½

k. If the MP and TS flag are set, then a WAIT/FWAIT instruction and waiting instructions
willÌ cause a device-not-available exception (interrupt vector 7). The MP flag is used on the Intel
286 and Intel386™ processors to support the use of a WAIT/FWAIT instruction to wait on a
dev
§

ice other than a math coprocessor. The device reports its status through the BUSY# pin.
Si
°

nce the P6 family, Pentium®
ê
, an� d Intel486™ processors do not have such a pin, the MP flag

has no relevant use and should be set to 1 for normal operation.

18.12.2. FPU Status Word

This s
¡

ection identifies differences to the FPU status word for the different Intel Architecture
pr­ ocessors and math coprocessors, the reason for the differences, and their impact on software.

18.12.2.1. CONDITION CODE FLAGS (C0 THROUGH C3)

The following information pertains to differences in the use of the condition code flags (C0
thro
½

ugh C3) located in bits 8, 9, 10, and 14 of the FPU status word.

After
Å

execution of an FINIT instruction or a hardware reset on a 32-bit Intel Architecture FPU,
the co
½

ndition code flags are set to 0. The same operations on a 16-bit Intel Architecture math

18-9

INTEL ARCHITECTURE COMPATIBILI TY

coprº ocessor leave these flags intact (they contain their prior value). This difference in operation
has no

	
 impact on software and provides a consistent state after reset.

T
¡

ranscendental instruction results in the core range of the P6 family and Pentium®
ê
 processors

may differ from the Intel486™ DX processor and Intel 487 SX math coprocessor by 2 to 3 units
in the
»

last place (ulps)—(refer to “Transcendental Instruction Accuracy” in Chapter 7 of the In
�

tel
Ar

/
chitecture Software Developer’s Manual, Volume 1). As a

£
result, the value saved in the C1 flag

may also differ.

After
Å

an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the
32-
±

bit Intel Architecture FPUs. After the same operation on a 16-bit Intel Architecture math
coprº ocessor, these flags are left intact.

On the

32-bit Intel Architecture FPUs, the C2 flag serves as an incomplete flag for the FTAN
in
»

struction. On the 16-bit Intel Architecture math coprocessors, the C2 flag is undefined for the
FPTAN instruction. This difference has no impact on software, because Intel 287 or 8087
pro­ grams do not check C2 after an FPTAN instruction. The use of this flag on later processors
al« lows fast checking of operand range.

18.12.2.2. STACK FAULT FLAG

W
®

hen unmasked stack overflow or underflow occurs on a 32-bit Intel Architecture FPU, the IE
flag (b
¿

it 0) and the SF flag (bit 6) of the FPU status word are set to indicate a stack fault and
condº iti on code flag C1 is set or cleared to indicate overflow or underflow, respectively. When
unm� asked stack overflow or underflow occurs on a 16-bit Intel Architecture math coprocessor,
only¥ the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-
b
Ë
it Intel Architecture FPU has no impact on software. Existing exception handlers need not

changº e, but may be upgraded to take advantage of the additional information.

18.12.3. FPU Control W ord

Only af

fine closure is supported for infinity control on a 32-bit Intel Architecture FPU. The
infinity control flag (bit 12 of the FPU control word) remains programmable on these proces-
so¾ rs, but has no effect. This change was made to conform to IEEE Standard 754. On a 16-bit
Intel Arch

Ñ
itecture math coprocessor, both affine and projective closures are supported, as deter-

mined by the setting of bit 12. After a hardware reset, the default value of bit 12 is projective.
S

°
oftware that requires projective infinity arithmetic may give different results.

18.12.4. FPU Tag Word

W
®

hen loading the tag word of a 32-bit Intel Architecture FPU, using an FLDENV, FRSTOR, or
F

�
XRSTOR (Pentium® III processor only) instruction, the processor examines the incoming tag

and cl« assifies the location only as empty or nonempty. Thus, tag values of 00, 01, and 10 are
interpreted by the processor to indicate a nonempty location. The tag value of 11 is interpreted
by t

Ë
he processor to indicate an empty location. Subsequent operations on a nonempty register

alw« ays examine the value in the register, not the value in its tag. The FSTENV, FSAVE, and

18-10

INTEL ARCHITECTURE COMPATIBILITY

FXSAVE (Pentium® III processor only) instructions examine the nonempty registers and put the
coº rrect values in the tags before storing the tag word.

The
¡

corresponding tag for a 16-bit Intel Architecture math coprocessor is checked before each
register access to determine the class of operand in the register; the tag is updated after every
chanº ge to a register so that the tag always reflects the most recent status of the register. Software
can º load a tag with a value that disagrees with the contents of a register (for example, the register
conº tains a valid value, but the tag says special). Here, the 16-bit Intel Architecture math copro-
cessº ors honor the tag and do not examine the register.

Software
°

written to run on a 16-bit Intel Architecture math coprocessor may not operate
coº rrectly on a 16-bit Intel Architecture FPU, if it uses FLDENV, FRSTOR, or FXRSTOR
(Pen
à

tium® III processor only) to change tags to values (other than to empty) that are different
fro
¿

m actual register contents.

The encoding in the tag word for the 32-bit Intel Architecture FPUs for unsupported data
fo
¿

rmats (including pseudo-zero and unnormal) is special (10B), to comply with the IEEE Stan-
dar
§

d 754. The encoding in the 16-bit Intel Architecture math coprocessors for pseudo-zero and
un� normal is valid (00B) and the encoding for other unsupported data formats is special (10B).
C
ª

ode that recognizes the pseudo-zero or unnormal format as valid must therefore be changed if
it is
»

 ported to a 32-bit Intel Architecture FPU.

18.12.5. Data Types

This section discusses the differences of data types for the various Intel Architecture FPUs and
matì h coprocessors.

18.12.5.1. NaNs

The 32-bit Intel Architecture FPUs distinguish between signaling NaNs (SNaNs) and quiet
NaNs (
¶

QNaNs). These FPUs only generate QNaNs and normally do not generate an exception
up� on encountering a QNaN. An invalid operation exception (#I) is generated only upon encoun-
tering
½

 a SNaN, except for the FCOM, FIST, and FBSTP instructions, which also generates an
inv
»

alid operation exceptions for a QNaNs. This behavior matches the IEEE Standard 754.

The 16
¡

-bit Intel Architecture math coprocessors only generate one kind of NaN (the equivalent
of¥ a QNaN), but the raise an invalid operation exception upon encountering any kind of NaN.

W
®

hen porting software written to run on a 16-bit Intel Architecture math coprocessor to a 32-bit
Int
Ñ

el Architecture FPU, uninitiali zed memory locations that contain QNaNs should be changed
to S
½

NaNs to cause the FPU or math coprocessor to fault when uninitialized memory locations
are r« eferenced.

18.12.5.2. PSEUDO-ZERO, PSEUDO-NaN, PSEUDO-INFINITY, AND
UNNORMAL FORMATS

The 3
¡

2-bit Intel Architecture FPUs neither generate nor support the pseudo-zero, pseudo-NaN,
pseud­ o-infinity, and unnormal formats. Whenever they encounter them in an arithmetic opera-

18-11

INTEL ARCHITECTURE COMPATIBILI TY

ti
½

on, they raise an invalid operation exception. The 16-bit Intel Architecture math coprocessors
defin

§
e and support special handling for these formats. Support for these formats was dropped to

confº orm with the IEEE Standard 754.

This change should not impact software ported from 16-bit Intel Architecture math coprocessors
to

½
 32-bit Intel Architecture FPUs. The 32-bit Intel Architecture FPUs do not generate these

fo
¿

rmats, and therefore will not encounter them unless software explicitly loads them in the data
registers. The only affect may be in how software handles the tags in the tag word (refer to
Sect

°
ion 18.12.4., “FPU Tag Word”).

18.12.6. Floating- Point Exceptions

This section identifies the implementation differences in exception handling for floating-point
inst

»
ructions in the various Intel Architecture FPUs and math coprocessors.

18.12.6.1. DENORMAL OPERAND EXCEPTION (#D)

W
®

hen the denormal operand exception is masked, the 32-bit Intel Architecture FPUs automati-
callº y normalize denormalized numbers when possible; whereas, the 16-bit Intel Architecture
mì ath coprocessors return a denormal result. A program written to run on a 16-bit Intel Architec-
ture math

½
 coprocessor that uses the denormal exception solely to normalize denormalized

oper¥ ands is redundant when run on the 32-bit Intel Architecture FPUs. If such a program is run
on 3¥ 2-bit Intel Architecture FPUs, performance can be improved by masking the denormal
except� ion. Floating-point programs run faster when the FPU performs normalization of denor-
malized operands.

The den
¡

ormal operand exception is not raised for transcendental instructions and the FXTRACT
inst

»
ruction on the 16-bit Intel Architecture math coprocessors. This exception is raised for these

instructions on the 32-bit Intel Architecture FPUs. The exception handlers ported to these latter
pro­ cessors need to be changed only if the handlers gives special treatment to different opcodes.

18.12.6.2. NUMERIC OVERFLOW EXCEPTION (#O)

On

the 32-bit Intel Architecture FPUs, when the numeric overflow exception is masked and the
rounding mode is set to chop (toward 0), the result is the largest positi ve or smallest negative
num³ ber. The 16-bit Intel Architecture math coprocessors do not signal the overflow exception
when the maskedÌ response is not ∞; that is, they signal overflow only when the rounding control
is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞.
Under

Ã
 the most common rounding modes, this difference has no impact on existing software.

If ro
Ñ

unding is toward 0 (chop), a program on a 32-bit Intel Architecture FPU produces, under
o¥ verflow conditions, a result that is different in the least significant bit of the significand,
compº ared to the result on a 16-bit Intel Architecture math coprocessor. The reason for this differ-
en� ce is IEEE Standard 754 compatibilit y.

W
®

hen the overflow exception is not masked, the precision exception is flagged on the 32-bit
Intel Architecture FP

Ñ
Us. When the result is stored in the stack, the significand is rounded

accord« ing to the precision control (PC) field of the FPU control word or according to the opcode.

18-12

INTEL ARCHITECTURE COMPATIBILITY

On th

e 16-bit Intel Architecture math coprocessors, the precision exception is not flagged and
th
½

e significand is not rounded. The impact on existing software is that if the result is stored on
the s
½

tack, a program running on a 32-bit Intel Architecture FPU produces a different result under
ov¥ erflow conditions than on a 16-bit Intel Architecture math coprocessor. The difference is
app« arent only to the exceptionhandler. This difference is for IEEE Standard 754 compatibil ity.

18.12.6.3. NUMERIC UNDERFLOW EXCEPTION (#U)

W
®

hen the underflow exception is masked on the 32-bit Intel Architecture FPUs, the underflow
excep� tion is signaled when both the result is tiny and denormalization results in a loss of accu-
racy¦ . When the underflow exception is unmasked and the instruction is supposed to store the
result o¦ n the stack, the significand is rounded to the appropriate precision (according to the PC
flag in the FPU control word, for those instructions controlled by PC, otherwise to extended
pr­ ecision), after adjusting the exponent.

W
®

hen the underflow exception is masked on the 16-bit Intel Architecture math coprocessors and
rounding is toward 0, the underflow exception flag is raised on a tiny result, regardless of loss
of¥ accuracy. When the underflow exception is not masked and the destination is the stack, the
s¾ ignificand is not rounded, but instead is left as is.

W
®

hen the underflow exception is masked, this difference has no impact on existing software.
The
¡

underflow exception occurs less often when rounding is toward 0.

W
®

hen the underflow exception not masked. A program running on a 32-bit Intel Architecture
FPU produces a different result during underflow conditions than on a 16-bit Intel Architecture
math ì coprocessor if the result is stored on the stack. The difference is only in the least significant
bi
Ë

t of the signif icand and is apparent only to the exception handler.

18.12.6.4. EXCEPTION PRECEDENCE

There is no difference in the precedence of the denormal operand exception on the 32-bit Intel
Architectur
Å

e FPUs, whether it be masked or not. When the denormal operand exception is not
masked onì the 16-bit Intel Architecture math coprocessors, it takes precedence over all
oth¥ er exceptions. This difference causes no impact on existing software, but some unneeded
no³ rmalization of denormalized operands is prevented on the Intel486™ processor and Intel 387
matì h coprocessor.

18.12.6.5. CS AND EIP FOR FPU EXCEPTIONS

On

 the Intel 32-bit Intel Architecture FPUs, the values from the CS and EIP registers saved for
flo
¿

ating-point exceptions point to any prefixes that come before the floating-point instruction.
On t

he 8087 math coprocessor, the saved CS and IP registers points to the floating-point
instruction.

18.12.6.6. FPU ERROR SIGNALS

The
¡

floating-point error signals to the P6 family, Pentium®
ê
, a� nd Intel486™ processors do not

pas­ s through an interrupt controller; an INT# signal from an Intel 387, Intel 287 or 8087 math

18-13

INTEL ARCHITECTURE COMPATIBILI TY

coprº ocessors does. If an 8086 processor uses another exception for the 8087 interrupt, both
ex� ception vectors should call the floating-point-error exception handler. Some instructions in a
flo

¿
ating-point-error exception handler may need to be deleted if they use the interrupt controller.

The P6 family, Pentium®
ê
, and� Intel486™ processors have signals that, with the addition of

extern� al logic, support reporting for emulation of the interrupt mechanism used in many
pers­ onal computers.

On

 the P6 family, Pentium®
ê
, and� Intel486™ processors, an undefined floating-point opcode will

causº e an invalid-opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes,
li

Ê
ke legal floating-point opcodes, cause a device not available exception (#NM, interrupt vector

7
%
) when either the TS or EM flag in control register CR0 is set. The P6 family, Pentium®

ê
, and�

Intel48
Ñ

6™ processors do not check for floating-point error conditions on encountering an unde-
fi
¿

ned floating-point opcode.

18.12.6.7. ASSERTION OF THE FERR# PIN

W
®

hen using the MS-DOS compatibility mode for handing floating-point exceptions, the FERR#
pin ­ must be connected to an input to an external interrupt controller. An external interrupt is then
gÉ enerated when the FERR# output drives the input to the interrupt controller and the interrupt
contº roller in turn drives the INTR pin on the processor. For the P6 family and Intel386™ proces-
so¾ rs, an unmasked floating-point exception always causes the FERR# pin to be asserted upon
compº letion of the instruction that caused the exception. For the Pentium®

ê
 and Intel486™ proces-

s¾ ors, an unmasked floating-point exception may cause the FERR# pin to be asserted either at the
end o� f the instruction causing the exception or immediately before execution of the next
fl
¿

oating-point instruction. (Note that the next floating-point instruction would not be executed
u� ntil the pending unmasked exception has been handled.) Refer to Appendix D in the Intel
Ar

/
chitecture Software Developer’s Manual, Volume 1, � for a complete description of the required

mì echanism for handling floating-point exceptions using the MS-DOS compatibili ty mode.

18.12.6.8. INVALID OPERATION EXCEPTION ON DENORMALS

An invalid operation exception is not generated on the 32-bit Intel Architecture FPUs upon
encou� ntering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon
convº ersion to BCD or to integer. The operation proceeds by first normalizing the value. On the
16-bit Intel Architecture math coprocessors, upon encountering this situation, the invalid
o¥ peration exception is generated. This difference has no impact on existing software. Software
run¦ ning on the 32-bit Intel Architecture FPUs continues to execute in cases where the 16-bit
Intel Architecture math coprocessors trap. The reason for this change was to eliminate an excep-
t
½
ion from being raised.

18.12.6.9. ALIGNMENT CHECK EXCEPTIONS (#AC)

If alig
Ñ

nment checking is enabled, a misaligned data operand on the P6 family, Pentium®
ê
, and�

Intel486™ processors causes an alignment check exception (#AC) when a program or proce-
dur
§

e is running at privilege-level 3, except for the stack portion of the
F
�

SAVE/FNSAVE/FXSAVE and FRSTOR/FXRSTOR instructions.

18-14

INTEL ARCHITECTURE COMPATIBILITY

18.12.6.10. SEGMENT NOT PRESENT EXCEPTION DURING FLDENV

On th

e Intel486™ processor, when a segment not present exception (#NP) occurs in the middle
of¥ an FLDENV instruction, it can happen that part of the environment is loaded and part not. In
such cases¾ , the FPU control word is left with a value of 007FH. The P6 family and Pentium®

ê

pr­ ocessors ensure the internal state is correct at all times by attempting to read the first and last
by
Ë

tes of the environment before updating the internal state.

18.12.6.11. DEVICE NOT AVAILABLE EXCEPTION (#NM)

The
¡

device-not-available exception (#NM, interrupt 7) will occur in the P6 family, Pentium®
ê
,�

and« Intel486™ processors as described in Section 2.5., “Control Registers” in Chapter 2, Sy
é

stem
Ar

/
chitecture Overview, an� d Section 5.12., “Exception and Interrupt Reference” in Chapter 5,

In
�

terrupt and Exception Handling.

18.12.6.12. COPROCESSOR SEGMENT OVERRUN EXCEPTION

The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 family,
Pen
¼

tium®
ê
, an� d Intel486™ processors. In situations where the Intel387 math coprocessor would

cause an iº nterrupt 9, the P6 family, Pentium®
ê
, � and Intel486™ processors simply abort the

instruction. To avoid undetected segment overruns, it is recommended that the floating-point
sav¾ e area be placed in the same page as the TSS. This placement will prevent the FPU environ-
mì ent from being lost if a page fault occurs during the execution of an FLDENV, FRSTOR, or
FXRSTOR instructions while the operating system is performing a task switch.

18.12.6.13. GENERAL PROTECTION EXCEPTION (#GP)

A g
Å

eneral-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-
po­ int operand falls outside a segment’s size. An exception handler should be included to report
t
½
hese programming errors.

18.12.6.14. FLOATING-POINT ERROR EXCEPTION (#MF)

In
Ñ

 real mode and protected mode (not including virtual-8086 mode), interrupt vector 16 must
po­ int to the floating-point exception handler. In virtual 8086 mode, the virtual-8086 monitor can
be pr
Ë

ogrammed to accommodate a different location of the interrupt vector for floating-point
excep� tions.

18.12.7. Changes t o Floating-Point Inst ruct ions

This section identifies the differences in floating-point instructions for the various Intel FPU and
math ì coprocessor architectures, the reason for the differences, and their impact on software.

18-15

INTEL ARCHITECTURE COMPATIBILI TY

18.12.7.1. FDIV, FPREM, AND FSQRT INSTRUCTIONS

The 32-bit Intel Architecture FPUs support operations on denormalized operands and, when
detected, an

§
underflow exception can occur, for compatibil ity with the IEEE Standard 754. The

16-bit Intel Architecture math coprocessors do not operate on denormalized operands or return
und� erflow results. Instead, they generate an invalid operation exception when they detect an
u� nderflow condition. An existing underflow exception handler will require change only if it
gives difÉ ferent treatment to different opcodes. Also, it is possible that fewer invalid operation
exceptio� ns will occur.

18.12.7.2. FSCALE INSTRUCTION

W
®

ith the 32-bit Intel Architecture FPUs, the range of the scaling operand is not restricted. If (0
< | ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the rounded result
is not exact or if there was a loss of accuracy (masked underflow), the precision exception is
s¾ ignaled. With the 16-bit Intel Architecture math coprocessors, the range of the scaling operand
is

»
 restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The

impact of this difference on exiting software is that different results are delivered on the 32-bit
and « 16-bit FPUs and math coprocessors when (0< | ST(1) | < 1).

18.12.7.3. FPREM1 INSTRUCTION

The 3
¡

2-bit Intel Architecture FPUs compute a partial remainder according to the IEEE Standard
754

%
. This instruction does not exist on the 16-bit Intel Architecture math coprocessors. The

av« ailability of the FPREM1 instruction has is no impact on existing software.

18.12.7.4. FPREM INSTRUCTION

On

 the 32-bit Intel Architecture FPUs, the condition code flags C0, C3, C1 in the status word
corrº ectly reflect the three low-order bits of the quotient following execution of the FPREM
in

»
struction. On the 16-bit Intel Architecture math coprocessors, the quotient bits are incorrect

when perfÌ orming a reduction of (64N + M)0 when (N ≥ 1) and M is 1 or 2. This difference does
not affect existing software; software that works around the bug should not be affected.

18.12.7.5. FUCOM, FUCOMP, AND FUCOMPP INSTRUCTIONS

W
®

hen executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit Intel Archi-
tect

½
ure FPUs perform unordered compare according to IEEE Standard 754. These instructions

d
§
o not exist on the 16-bit Intel Architecture math coprocessors. The availability of these new

in
»

structions has no impact on existing software.

18.12.7.6. FPTAN INSTRUCTION

On

 the 32-bit Intel Architecture FPUs, the range of the operand for the FPTAN instruction is
much less restricted (| ST(0) | < 263) than on

£
 earlier math coprocessors. The instruction reduces

th
½

e operand internally using an internal π/4 con
1

stant that is more accurate. The range of the

18-16

INTEL ARCHITECTURE COMPATIBILITY

op¥ erand is restricted to (| ST(0) | < π/4
1

) on the 16-bit Intel Architecture math coprocessors; the
op¥ erand must be reduced to this range using FPREM. This change has no impact on existing
s¾ oftware.

18.12.7.7. STACK OVERFLOW

On the 32-b

it Intel Architecture FPUs, if an FPU stack overflow occurs when the invalid oper-
atio« n exception is masked, the FPU returns the real, integer, or BCD-integer indefinite value to
t
½
he destination operand, depending on the instruction being executed. On the 16-bit Intel Archi-
tecture math cop
½

rocessors, the original operand remains unchanged following a stack overflow,
b
Ë
ut it is loaded into register ST(1). This difference has no impact on existing software.

18.12.7.8. FSIN, FCOS, AND FSINCOS INSTRUCTIONS

On

 the 32-bit Intel Architecture FPUs, these instructions perform three common trigonometric
functions. These instructions do not exist on the 16-bit Intel Architecture math coprocessors.
Th
¡

e availability of these instructions has no impact on existing software, but using them
pr­ ovides a performance upgrade.

18.12.7.9. FPATAN INSTRUCTION

On the

32-bit Intel Architecture FPUs, the range of operands for the FPATAN instruction is unre-
st¾ ricted. On the 16-bit Intel Architecture math coprocessors, the absolute value of the operand
in register
»

ST(0) must be smaller than the absolute value of the operand in register ST(1). This
dif
§

ference has impact on existing software.

18.12.7.10. F2XM1 INSTRUCTION

The 32-
¡

bit Intel Architecture FPUs support a wider range of operands (–1 < ST(0) < + 1) for
the F2XM1 instru
½

ction. The supported operand range for the 16-bit Intel Architecture math
copº rocessors is (0 ≤ ST

°
(0) ≤ 0.

¹
5). This difference has no impact on existing software.

18.12.7.11. FLD INSTRUCTION

On the 3

2-bit Intel Architecture FPUs, when using the FLD instruction to load an extended-real
valuå e, a denormal operand exception is not generated because the instruction is not arithmetic.
The 16-bit Intel Architecture math coprocessors do report a denormal operand exception in this
si¾ tuation. This difference does not affect existing software.

On

 the 32-bit Intel Architecture FPUs, loading a denormal value that is in single- or double-real
format causes the value to be converted to extended-real format. Loading a denormal value on
the 16
½

-bit Intel Architecture math coprocessors causes the value to be converted to an unnormal.
If
Ñ

the next instruction is FXTRACT or FXAM, the 32-bit Intel Architecture FPUs will give a
dif
§

ferent result than the 16-bit Intel Architecture math coprocessors. This change was made for
IEEE
Ñ

 Standard 754 compatibilit y.

18-17

INTEL ARCHITECTURE COMPATIBILI TY

On

the 32-bit Intel Architecture FPUs, loading an SNaN that is in single- or double-real format
causesº the FPU to generate an invalid operation exception. The 16-bit Intel Architecture math
coprº ocessors do not raise an exception when loading a signaling NaN. The invalid operation
ex� ception handler for 16-bit math coprocessor software needs to be updated to handle this condi-
t

½
ion when porting software to 32-bit FPUs. This change was made for IEEE Standard 754
coº mpatibil ity.

18.12.7.12. FXTRACT INSTRUCTION

On

 the 32-bit Intel Architecture FPUs, if the operand is 0 for the FXTRACT instruction, the
di

§
vide-by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is +∞,�

no excep³ tion is reported. If the operand is 0 on the 16-bit Intel Architecture math coprocessors,
0 is deliver

¹
ed to register ST(1) and no exception is reported. If the operand is +∞,� the invalid

oper¥ ation exception is reported. These differences have no impact on existing software. Soft-
ware usÌ ually bypasses 0 and ∞. This change is due to the IEEE 754 recommendation to full y
su¾ pport the “logb” function.

18.12.7.13. LOAD CONSTANT INSTRUCTIONS

On

 32-bit Intel Architecture FPUs, rounding control is in effect for the load constant instruc-
ti

½
ons. Rounding control is not in effect for the 16-bit Intel Architecture math coprocessors.

Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the
16-bit Intel Architecture math coprocessors when rounding control is set to round to nearest or
rou¦ nd to +∞. They are the same for the FLDL2T instruction when rounding control is set to
round to nearest, round to –∞, or� round to zero. Results are different from the 16-bit Intel Archi-
tect

½
ure math coprocessors in the least significant bit of the mantissa if rounding control is set to

rou¦ nd to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions; they
are d« ifferent for the FLDL2T instruction if round to +∞ is specified. These changes were imple-
mentedì for compatibil ity with IEEE 754 recommendations.

18.12.7.14. FSETPM INSTRUCTION

W
®

ith the 32-bit Intel Architecture FPUs, the FSETPM instruction is treated as NOP (no opera-
ti

½
on). This instruction informs the Intel 287 math coprocessor that the processor is in protected

modì e. This change has no impact on existing software. The 32-bit Intel Architecture FPUs
hand

	
le all addressing and exception-pointer information, whether in protected mode or not.

18.12.7.15. FXAM INSTRUCTION

W
®

ith the 32-bit Intel Architecture FPUs, if the FPU encounters an empty register when
ex� ecuting the FXAM instruction, it will generate combinations of C0 through C3 equal to 1101
or 1¥ 111. The 16-bit Intel Architecture math coprocessors may generate these combinations,
amon« g others. This difference has no impact on existing software; it provides a performance
upg� rade to provide repeatable results.

18-18

INTEL ARCHITECTURE COMPATIBILITY

18.12.7.16. FSAVE AND FSTENV INSTRUCTIONS

W
®

ith the 32-bit Intel Architecture FPUs, the address of a memory operand pointer stored by
F
�

SAVE or FSTENV is undefined if the previous floating-point instruction did not refer to
memoì ry

18.12.8. Transcendent al Inst ruct ions

The floating-point results of the P6 family and Pentium®
ê
 processors for transcendental instruc-

t
½
ions in the core range may differ from the Intel486™ processors by about 2 or 3 ulps (refer to
“Transcendental Instruction Accuracy” in Chapter 7 of the Intel Architecture Software Devel-
op� er’s Manual, Volume 1)

£
. Condition code flag C1 of the status word may differ as a result. The

ex� act threshold for underflow and overflow will vary by a few ulps. The P6 family and Pentium®
ê

pr­ ocessors’ results will have a worst case error of less than 1 ulp when rounding to the nearest-
even� and less than 1.5 ulps when rounding in other modes. The transcendental instructions are
guÉ aranteed to be monotonic, with respect to the input operands, throughout the domain
s¾ upported by the instruction.

T
¡

ranscendental instructions may generate different results in the round-up flag (C1) on the
32
±

-bit Intel Architecture FPUs. The round-up flag is undefined for these instructions on the
16-bit Intel Architecture math coprocessors. This difference has no impact on existing software.

18.12.9. Obsole te Instructions

The 8
¡

087 math coprocessor instructions FENI and FDISI and the Intel287 math coprocessor
instruction FSETPM are treated as integer NOP instructions in the 32-bit Intel Architecture
FP
�

Us. If these opcodes are detected in the instruction stream, no specific operation is performed
and« no internal states are affected.

18.12.10.WAIT/FWAIT Prefix Differences

On the

Intel486™ processor, when a WAIT/FWAIT instruction precedes a floating-point
in
»

struction (one which itself automatically synchronizes with the previous floating-point
instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending floating-point excep-
t
½
ions from a previous floating-point instruction are processed not on the WAIT/FWAIT instruc-
tio
½

n but on the floating-point instruction following the WAIT/FWAIT instruction. In such a case,
t
½
he report of a floating-point exception may appear one instruction later on the Intel486™
pr­ ocessor than on a P6 family or Pentium®

ê
 FPU, or on Intel 387 math coprocessor.

18.12.11.Operands S plit Acros s Segments and/or Pages

On

 the P6 family, Pentium®
ê
, � and Intel486™ processor FPUs, when the first half of an operand

to
½

 be written is inside a page or segment and the second half is outside, a memory fault can cause
th
½

e first half to be stored but not the second half. In this situation, the Intel 387 math coprocessor
s¾ tores nothing.

18-19

INTEL ARCHITECTURE COMPATIBILI TY

18.12.12.FPU Instruction Synchronizat ion

On

 the 32-bit Intel Architecture FPUs, all floating-point instructions are automatically synchro-
n³ ized; that is, the processor automatically waits until the previous floating-point instruction has
coº mpleted before completing the next floating-point instruction. No explicit WAIT/FWAIT
in

»
structions are required to assure this synchronization. For the 8087 math coprocessors, explicit

waiÌ ts are required before each floating-point instruction to ensure synchronization. Although
8

Á
087 programs having explicit WAIT instructions execute perfectly on the 32-bit Intel Architec-

ture p
½

rocessors without reassembly, these WAIT instructions are unnecessary.

18.13. SERIALIZING INSTRUCTIONS

C
ª

ertain instructions have been defined to serialize instruction execution to ensure that modifi-
catiº ons to flags, registers and memory are completed before the next instruction is executed (or
in

»
 P6 family processor terminology “committed to machine state”). Because the P6 family

pro­ cessors use branch-prediction and out-of-order execution techniques to improve perfor-
mì ance, instruction execution is not generall y serialized until the results of an executed instruc-
ti

½
on are committed to machine state (refer to Chapter 2, In

�
troduction to the Intel Architecture,�

in the Intel Architecture Software Developer’s Manual, Volume 1). As a result, at p
£

laces in a
pro­ gram or task where it is critical to have execution completed for all previous instructions
befo

Ë
re executing the next instruction (for example, at a branch, at the end of a procedure, or in

multiprocessor dependent code), it is useful to add a serializing instruction. Refer to Section 7.4.,
“Serializing Instructions” in Chapter 7, M

À
ultiple-Processor Management for more information

o¥ n serializing instructions.

18.14. FPU AND MATH COPROCESSOR INITIALIZATION

Table 8-1 in Chapter 8, Processor Management and Initialization shows the states of the FPUs
in

»
 the P6 family, Pentium®

ê
,� Intel486™ processors and of the Intel 387 math coprocessor and

Intel 287 coprocessor following a power-up, reset, or INIT, or following the execution of an
F

�
INIT/FNINIT instruction. The following is some additional compatibil ity information

coº ncerning the initialization of Intel Architecture FPUs and math coprocessors.

18.14.1. Intel 387 and Intel 287 Math Coprocessor I niti alization

Following an Intel386™ processor reset, the processor identifies its coprocessor type (Intel287
o¥ r Intel 387 DX math coprocessor) by sampling its ERROR# input some time after the falling
edge of� RESET# signal and before execution of the first floating-point instruction. The Intel 287
coº processor keeps its ERROR# output in inactive state after hardware reset; the Intel 387 copro-
cesº sor keeps its ERROR# output in active state after hardware reset.

Up
Ã

on hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 math copro-
cesº sor signals an error condition. The P6 family, Pentium®

ê
, and� Intel486™ processors, like the

Int
Ñ

el 287 coprocessor, do not.

18-20

INTEL ARCHITECTURE COMPATIBILITY

18.14.2. Intel486™ SX Proc essor a nd Int el 487 SX Math
Coprocessor Initial ization

W
®

hen initializing an Intel486™ SX processor and an Intel 487 SX math coprocessor, the initial-
ization routine should check the presence of the math coprocessor and should set the FPU related
flags
¿

 (EM, MP, and NE) in control register CR0 accordingly (refer to Section 2.5., “Control
Re
õ

gisters” in Chapter 2, System Ar
é

chitecture Overview for a complete description of these
flags). Table 18-1 gives the recommended settings for these flags when the math coprocessor is
p­ resent. The FSTCW instruction will give a value of FFFFH for the Intel486™ SX micropro-
cessº or and 037FH for the Intel 487SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 18-2.

Fo
�

llowing is an example code sequence to initialize the system and check for the presence of
Intel486™ SX processor/Intel 487 SX math coprocessor.

fninit

fstcw mem_loc

mov ax, mem_loc

cmp ax, 037fh

jz Intel487_SX_Math_CoProcessor_present;ax=037fh

jmp Intel486_SX_microprocessor_present;ax=ffffh

If the Intel487 SX math coprocessor is not present, the following code can be run to set the CR0
reg¦ ister for the Intel486™ SX processor.

T
(
able 18-1. Recom mended Values of the FP Related Bits for Int el486™ SX

Mic
2

roproce ssor/Inte l 487 SX Math Coproc essor Sy stem

CR0 Flags Intel 486™ SX Processor Only Intel 487 SX Math Coprocesso r Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 18-2. EM and MP Flag Interpreta tion

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and
other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and
other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions test TS.

18-21

INTEL ARCHITECTURE COMPATIBILI TY

mov eax, cr0

and eax, fffffffdh ;make MP=0

or eax, 0024h ;make EM=1, NE=1

mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available
ex� ception (#NH), interrupt 7. The software emulation will then take control to execute these
instructions. This code is not required if an Intel 487 SX math coprocessor is present in the
s¾ ystem. In that case, the typical initialization routine for the Intel486™ SX microprocessor will
be ad

Ë
equate.

Also, when designing an Intel486™ SX processor based system with an Intel 487SX math
coprº ocessor, timing loops should be independent of clock speed and clocks per instruction. One
wayÌ to attain this is to implement these loops in hardware and not in software (for example,
BIOS).

18.15. CONTROL REGISTERS

The f
¡

ollowing sections identify the new control registers and control register flags and fields that
were inÌ troduced to the 32-bit Intel Architecture in various processor families. Refer to Figure
2-5

²
 in Chapter 2, System Ar

é
chitecture Overview for the location of these flags and fields in the

coº ntrol registers.

The Pentium®
ê
 III processor introduced one new control flag in control register CR4:

• OSX

MMEXCPT (bit 10)—The OS will set this bit if it supports unmasked SIMD floating-
p­ oint exceptions.

The Pentium®
ê
 II processor introduced one new control flag in control register CR4:

• OS

FXSR (bit 9)—The OS supports saving and restoring the Pentium®
ê
 III processor state

du
§

ring context switches.

Th
¡

e Pentium®
ê
 Pro processor introduced three new control flags in control register CR4:

• PAE (bit 5)—Physical address extension. Enables paging mechanism to reference 36-bit
ph­ ysical addresses when set; restricts physical addresses to 32 bits when clear (refer to
S

°
ection 18.16.1.1., “Physical Memory Addressing Extension” in Chapter 18, In

�
tel Archi-

tectu� re Compatibility).
£

• PGE (bit 7)—Page global enable. Inhibits flushing of frequently-used or shared pages on
t

½
ask switches (refer to Section 18.16.1.2., “Global Pages” in Chapter 18, In

�
tel Architecture

Compatibility).
£

• PCE (bit 8)—Performance-monitoring counter enable. Enables execution of the RDPMC
instruction

»
 at any protection level.

The co
¡

ntent of CR4 is 0H following a hardware reset.

18-22

INTEL ARCHITECTURE COMPATIBILITY

C
ª

ontrol register CR4 was introduced in the Pentium®
ê
 processor. This register contains flags that

en� able certain new extensions provided in the Pentium®
ê
 processor:

• VME—
�

Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in
vå irtual-8086 mode (refer to Section 16.3., “Interrupt and Exception Handling in Virtual-
8

Á
086 Mode” in Chapter 16, 8086 Emulation).

£

• PVI—Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in
p­ rotected mode (refer to Section 16.4., “Protected-Mode Virtual Interrupts” in Chapter 16,
8086 Emulation).

£

• TSD—Time-stamp disable. Restricts the execution of the RDTSC instruction to
p­ rocedures running at privileged level 0.

• DE—Debugging extensions. Causes an undefined opcode (#UD) exception to be
gÉ enerated when debug registers DR4 and DR5 are references for improved performance
(

à
refer to Section 15.2.2., “Debug Registers DR4 and DR5” in Chapter 15, Debu

3
gging and

Performance Monitoring).
£

• PSE—Page size extensions. Enables 4-MByte pages when set (refer to Section 3.6.1.,
“Paging Options” in Chapter 3, Pr

ö
otected-Mode Memory Management).

£

• MCE—Machine-check enable. Enables the machine-check exception, allowing exception
han

	
dling for certain hardware error conditions (refer to Chapter 13, Machine

À
-Check Archi-

tectur� e).
£

The
¡

Intel486™ processor introduced five new flags in control register CR0:

• NE—Numer
¶

ic error. Enables the normal mechanism for reporting floating-point numeric
er� rors.

• W
®

P—Write protect. Write-protects user-level pages against supervisor-mode accesses.

• AM—Ali
Å

gnment mask. Controls whether alignment checking is performed. Operates in
coº njunction with the AC (Alignment Check) flag.

• NW
¶

—Not write-through. Enables write-throughs and cache invalidation cycles when clear
an« d disables invalidation cycles and write-throughs that hit in the cache when set.

• C
ª

D—Cache disable. Enables the internal cache when clear and disables the cache when
set.¾

The Intel486™ processor introduced two new flags in control register CR3:

• PCD—Page-level cache disable. The state of this flag is driven on the PCD# pin during
b

Ë
us cycles that are not paged, such as interrupt acknowledge cycles, when paging is

en� abled. The PCD# pin is used to control caching in an external cache on a cycle-by-cycle
ba

Ë
sis.

• P
¼

WT—Page-level write-through. The state of this flag is driven on the PWT# pin during
b

Ë
us cycles that are not paged, such as interrupt acknowledge cycles, when paging is

en� abled. The PWT# pin is used to control write through in an external cache on a cycle-by-
cyº cle basis.

18-23

INTEL ARCHITECTURE COMPATIBILI TY

18.16. MEMORY MANAGEMENT FACILITIES

The following sections describe the new memory management facilities available in the various
In

Ñ
tel Architecture processors and some compatibilit y differences.

18.16.1. New Memory Ma nageme nt Con trol Flags

The Pentium®
ê
 Pro processor introduced three new memory management features: physical

memoì ry addressing extension, the global bit in page-table entries, and general support for larger
page ­ sizes. These features are only available when operating in protected mode.

18.16.1.1. PHYSICAL MEMORY ADDRESSING EXTENSION

The n
¡

ew PAE (physical address extension) flag in control register CR4, bit 5, enables 4 addi-
ti

½
onal address lines on the processor, allowing 36-bit physical addresses. This option can only

be u
Ë

sed when paging is enabled, using a new page-table mechanism provided to support the
lar

Ê
ger physical address range (refer to Section 3.8., “Physical Address Extension” in Chapter 3,

Pr
ö

otected-Mode Memory Management).
£

18.16.1.2. GLOBAL PAGES

The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for
prev­ enting frequently used pages from being flushed from the translation lookaside buffer
(TLB

à
). When this flag is set, frequently used pages (such as pages containing kernel procedures

or co¥ mmon data tables) can be marked global by setting the global flag in a page-directory or
page-­ table entry. On a task switch or a write to control register CR3 (which normally causes the
TLBs

¡
 to be flushed), the entries in the TLB marked global are not flushed. Marking pages global

in this manner prevents unnecessary reloading of the TLB due to TLB misses on frequently used
pages­ . Refer to Section 3.7., “Translation Lookaside Buffers (TLBs)” in Chapter 3, Pr

ö
otected-

Mo
À

de Memory Management for a detailed description of this mechanism.

18.16.1.3. LARGER PAGE SIZES

The P6 family processors support large page sizes. This facility is enabled with the PSE (page
s¾ ize extension) flag in control register CR4, bit 4. When this flag is set, the processor supports
ei� ther 4-KByte or 4-MByte page sizes when normal paging is used and 4-KByte and 2-MByte
page ­ sizes when the physical address extension is used. Refer to Section 3.6.1., “Paging
Op

tions” in Chapter 3, Pr

ö
otected-Mode Memory Management for more information about large

page si­ zes.

18.16.2. CD and NW Cach e Cont rol Flag s

The CD and NW flags in control register CR0 were introduced in the Intel486™ processor. In
th

½
e P6 family and Pentium®

ê
 processors, these flags are used to implement a writeback strategy

for the data cache; in the Intel486™ processor, they implement a write-through strategy. Refer

18-24

INTEL ARCHITECTURE COMPATIBILITY

t
½
o Table 9-4, in Chapter 9, Memory Cache Control for a comparison of these bits on the P6
fam
¿

ily, Pentium®
ê
, and� Intel486™ processors. For complete information on caching, refer to

Ch
ª

apter 9, Memory C
À

ache Control.

18.16.3. Descriptor T ypes and Contents

Operatin

g-system code that manages space in descriptor tables often contains an invalid value
in th
»

e access-rights field of descriptor-table entries to identify unused entries. Access rights
vå alues of 80H and 00H remain invalid for the P6 family, Pentium®

ê
, In� tel486™, Intel386™, and

In
Ñ

tel 286 processors. Other values that were invalid on the Intel 286 processor may be valid on
the 3
½

2-bit processors because uses for these bits have been defined.

18.16.4. Changes in S egment Descriptor Loads

On th

e Intel386™ processor, loading a segment descriptor always causes a locked read and write
to s
½

et the accessed bit of the descriptor. On the P6 family, Pentium®
ê
, and In� tel486™ processors,

the lo
½

cked read and write occur only if the bit is not already set.

18.17. DEBUG FACILITIES

Th
¡

e P6 family and Pentium®
ê
 processors include extensions to the Intel486™ processor debug-

giÉ ng support for breakpoints. To use the new breakpoint features, it is necessary to set the DE
flag i
¿

n control register CR4.

18.17.1. Diff erences in Debug Register DR6

It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the P6 family
an« d Pentium®

ê
 processors; however, it is possible to write a 1 in this bit on the Intel486™

pr­ ocessor. Refer to Table 8-1 in Chapter 8, Pr
ö

ocessor Management and Initialization for the
d
§
ifferent setting of this register following a power-up or hardware reset.

18.17.2. Diff erences in Debug Register DR7

Th
¡

e P6 family and Pentium®
ê
 processors determines the type of breakpoint access by the R/W0

t
½
hrough R/W3 fields in debug control register DR7 as follows:

00
¹

Break on instruction execution only.

01
¹

Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes
bu
Ë

t not instruction fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

18-25

INTEL ARCHITECTURE COMPATIBILI TY

On

 the P6 family and Pentium®
ê
 processors, reserved bits 11, 12, 14 and 15 are hard-wired to 0.

On

 the Intel486™ processor, however, bit 12 can be set. Refer to Table 8-1 in Chapter 8,
Pr

ö
ocessor Management and Initialization for the different settings of this register following a

power­ -up or hardware reset.

18.17.3. Debug Registers DR 4 and DR5

Alt
Å

hough the DR4 and DR5 registers are documented as reserved, previous generations of
pro­ cessors aliased references to these registers to debug registers DR6 and DR7, respectively.
W

®
hen debug extensions are not enabled (the DE flag in control register CR4 is cleared), the P6

fam
¿

ily and Pentium®
ê
 processors remain compatible with existing software by allowing these

ali« ased references. When debug extensions are enabled (the DE flag is set), attempts to reference
reg¦ isters DR4 or DR5 will result in an invalid-opcode exception (#UD).

18.17.4. Recognition of Breakp oints

For the Pentium®
ê
 processor, it is recommended that debuggers execute the LGDT instruction

befo
Ë

re returning to the program being debugged to ensure that breakpoints are detected. This
oper¥ ation does not need to be performed on the P6 family, Intel486™, or Intel386™ processors.

18.18. TEST REGISTERS

The implementation of test registers on the Intel486™ processor used for testing the cache and
TLB

¡
has been redesigned using MSRs on the P6 family and Pentium®

ê
 processors. (Note that

MSRs used for this function are different on the P6 family and Pentium®
ê
 processors.) The MOV

t
½
o and from test register instructions generate invalid-opcode exceptions (#UD) on the P6 family
pro­ cessors.

18.19. Exceptions and/or E xception Conditions

This section describes the new exceptions and exception conditions added to the 32-bit Intel
Architecture pro

Å
cessors and implementation differences in existing exception handling. Refer to

Ch
ª

apter 5, Interrupt and Exception Handling for a detailed description of the Intel Architecture
exceptio� ns.

The Pen
¡

tium®
ê
 III processor introduced new state with the SIMD floating-point registers.

Co
ª

mputations involving data in these registers can produce exceptions. A new control/status
register ¦ is used to determine which exception or exceptions have occurred. When an exception
as« sociated with the SIMD floating-point registers occurs, an interrupt is generated.

• Streaming
°

 SIMD Extensions exception (#XF, interrupt 19)—New exceptions associated
wiÌ th the SIMD floating-point registers and resulting computations.

18-26

INTEL ARCHITECTURE COMPATIBILITY

No
¶

new exceptions were added to the Pentium®
ê
 II and Pentium®

ê
 Pro processors. The set of avail-

able ex« ceptions is the same as for the Pentium®
ê
 processor. However, the following exception

coº ndition was added to the Intel Architecture with the Pentium®
ê
 Pro processor:

• Machine-check exception (#MC, interrupt 18)—New exception conditions. Many
excep� tion conditions have been added to the machine-check exception and a new archi-
t

½
ecture has been added for handling and reporting on hardware errors. Refer to Chapter 13,
Machine-Check Architecture for a detailed description of the new conditions.

The
¡

following exceptions and/or exception conditions were added to the Intel Architecture with
th
½

e Pentium®
ê
 processor:

• Machine-check exception (#MC, interrupt 18)—New exception. This exception reports
p­ arity and other hardware errors. It is a model-specific exception and may not be
implemented or implemented differently in future processors. The MCE flag in control
r¦ egister CR4 enables the machine-check exception. When this bit is clear (which it is at
r¦ eset), the processor inhibits generation of the machine-check exception.

• Gen
Ï

eral-protection exception (#GP, interrupt 13)—New exception condition added. An
attem« pt to write a 1 to a reserved bit position of a special register causes a general-
pro­ tection exception to be generated.

• Page-fault exception (#PF, interrupt 14)—New exception condition added. When a 1 is
d

§
etected in any of the reserved bit positions of a page-table entry, page-directory entry, or

p­ age-directory pointer during address translation, a page-fault exception is generated.

The
¡

following exception was added to the Intel486™ processor:

• Alig
Å

nment-check exception (#AC, interrupt 17)—New exception. Reports unaligned
memory references when alignment checking is being performed.

The
¡

following exceptions and/or exception conditions were added to the Intel386™ processor:

• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386™ processors
al« ways leave the saved CS:IP value pointing to the instruction that failed. On the 8086
p­ rocessor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386™ processors can generate the largest
negat³ ive number as a quotient for the IDIV instruction (80H and 8000H). The 8086
pro­ cessor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6)—New exception condition added. Improper
u� se of the LOCK instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14)—New exception condition added. If paging is
en� abled in a 16-bit program, a page-fault exception can be generated as follows. Paging
canº be used in a system with 16-bit tasks if all tasks use the same page directory. Because
ther

½
e is no place in a 16-bit TSS to store the PDBR register, switching to a 16-bit task does

n³ ot change the value of the PDBR register. Tasks ported from the Intel 286 processor
s¾ hould be given 32-bit TSSs so they can make full use of paging.

18-27

INTEL ARCHITECTURE COMPATIBILI TY

• Gener
Ï

al-protection exception (#GP, interrupt 13)—New exception condition added. The
In

Ñ
tel386™ processor sets a limit of 15 bytes on instruction length. The only way to violate

th
½

is limit is by putting redundant prefixes before an instruction. A general-protection
ex� ception is generated if the limit on instruction length is violated. The 8086 processor has
n³ o instruction length limit.

18.19.1. Machine -Check Archit ecture

The Pentium®
ê
 Pro processor introduced a new architecture to the Intel Architecture for handling

and repo« rting on machine-check exceptions. This machine-check architecture (described in
d

§
etail in Chapter 13, M

À
achine-Check Architecture) g

£
reatly expands the ability of the processor

to rep
½

ort on internal hardware errors.

18.19.2. Priori ty OF Exceptions

Th
¡

e priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2.
²

External interrupts

3.
±

Faults on fetching the next instruction

4. Faults in decoding the next instruction

5
è
. Faults on executing an instruction

There
¡

are no changes in the priority of these major categories between the different processors,
however, exceptions within these categories are implementation dependent and may change
fro

¿
m processor to processor.

18.20. INTERRUPTS

The following differences in handling interrupts are found among the Intel Architecture
pr­ ocessors.

18.20.1. Interrupt Propagation Del ay

External hardware interrupts may be recognized on different instruction boundaries on the P6
fam

¿
ily, Pentium®

ê
,� Intel486™, and Intel386™ processors, due to the superscaler designs of the

P
¼

6 family and Pentium®
ê
 processors. Therefore, the EIP pushed onto the stack when servicing an

interrupt may be different for the P6 family, Pentium®
ê
, � Intel486™, and Intel386™ processors.

18-28

INTEL ARCHITECTURE COMPATIBILITY

18.20.2. NMI Interrupts

After an NMI interrupt is recognized by the P6 family, Pentium®
ê
, Int� el486™, Intel386™, and

Int
Ñ

el 286 processors, the NMI interrupt is masked until the first IRET instruction is executed,
un� like the 8086 processor.

18.20.3. IDT Limit

The
¡

LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception
(#D
à

F) is generated if an interrupt or exception attempts to read a vector beyond the limit. Shut-
do
§

wn then occurs on the 32-bit Intel Architecture processors if the double-fault handler vector
i
»
s beyond the limit. (The 8086 processor does not have a shutdown mode nor a limit.)

18.21. TASK SWITCHING AND TSS

This section identifies the implementation differences of task switching, additions to the TSS
a« nd the handling of TSSs and TSS segment selectors.

18.21.1. P6 Fami ly and Pent ium®

 Proc essor TS S

W
®

hen the virtual mode extensions are enabled (by setting the VME flag in control register CR4),
th
½

e TSS in the P6 family and Pentium®
ê
 processors contain an interrupt redirection bit map,

whiÌ ch is used in virtual-8086 mode to redirect interrupts back to an 8086 program.

18.21.2. TSS Selector Writes

Durin
ç

g task state saves, the Intel486™ processor writes 2-byte segment selectors into a 32-bit
TSS, leaving the upper 16 bits undefined. For performance reasons, the P6 family and Pentium®

ê

p­ rocessors write 4-byte segment selectors into the TSS, with the upper 2 bytes being 0. For
comº patibility reasons, code should not depend on the value of the upper 16 bits of the selector
in the TSS.

18.21.3. Order of Reads/Writes to the TSS

The o
¡

rder of reads and writes into the TSS is processor dependent. The P6 family and Pentium®
ê

pr­ ocessors may generate different page-fault addresses in control register CR2 in the same TSS
area th« an the Intel486™ and Intel386™ processors, if a TSS crosses a page boundary (which is
no³ t recommended).

18-29

INTEL ARCHITECTURE COMPATIBILI TY

18.21.4. Using A 1 6-Bit TSS with 32 -Bit Cons tructs

Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new code written
us� ing 32-bit constructs (operands, addressing, or the upper word of the EFLAGS register)
s¾ hould use only 32-bit TSSs. This is due to the fact that the 32-bit processors do not save the
u� pper 16 bits of EFLAGS to a 16-bit TSS. A task switch back to a 16-bit task that was executing
in

»
 virtual mode will never re-enable the virtual mode, as this flag was not saved in the upper half

of ¥ the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using
3

±
2-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

18.21.5. Differences in I/O Map Base Addr esses

The Intel486™ processor considers the TSS segment to be a 16-bit segment and wraps around
the 6

½
4K boundary. Any I/O accesses check for permission to access this I/O address at the I/O

base addr
Ë

ess plus the I/O offset. If the I/O map base address exceeds the specified limit of
0

¹
DFFFH, an I/O access will wr ap around and obtain the permission for the I/O address at an

i
»
ncorrect location within the TSS. A TSS limit violation does not occur in this situation on the

In
Ñ

tel486™ processor. However, the P6 family and Pentium®
ê
 processors consider the TSS to be

a « 32-bit segment and a limit violation occurs when the I/O base address plus the I/O offset is
greaterÉ than the TSS limit. By following the recommended specification for the I/O base address
to be l
½

ess than 0DFFFH, the Intel486™ processor will not wrap around and access incorrect
locations within the TSS for I/O port validation and the P6 family and Pentium®

ê
 processors will

not³ experience general-protection exceptions (#GP). Figure 18-1 demonstrates the different
areas access« ed by the Intel486™ and the P6 family and Pentium®

ê
 processors.

18-30

INTEL ARCHITECTURE COMPATIBILITY

18.22. CACHE MANAGEMENT

The
¡

P6 family processors include two levels of internal caches: L1 (level 1) and L2 (level 2).
The
¡

L1 cache is divided into an instruction cache and a data cache; the L2 cache is a general-
pu­ rpose cache. Refer to Section 9.1., “Internal Caches, TLBs, and Buffers”, in Chapter 9,
Mem

À
ory Cache Control, f� or a description of these caches. (Note that although the Pentium®

ê
 II

pr­ ocessor L2 cache is physically located on a separate chip in the cassette, it is considered an
internal cache.)

Th
¡

e Pentium®
ê
 processor includes separate level 1 instruction and data caches. The data cache

supp¾ orts a writeback (or alternatively write-through, on a line by line basis) policy for memory
up� dates. Refer to the Pentium® Processor Data Book for more information about the organiza-
tio
½

n and operation of the Pentium®
ê
 processor caches.

The
¡

Intel486™ processor includes a single level 1 cache for both instructions and data.

The meaning of the CD and NW flags in control register CR0 have been redefined for the P6
fam
¿

ily and Pentium®
ê
 processors. For these processors, the recommended value (00B) enables

writebackÌ for the data cache of the Pentium®
ê
 processor and for the L1 data cache and L2 cache

o¥ f the P6 family processors. In the Intel486™ processor, setting these flags to (00B) enables
write-thrÌ ough for the cache.

Exter
Æ

nal system hardware can force the Pentium®
ê
 processor to disable caching or to use the

write-thrÌ ough cache policy should that be required. Refer to the Pentium® Processor Data Book

Figu re 18-1. I/O Map Base Addres s Diffe rence s

Intel486™ Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Of

4
fset FH from beginning of

TS
Ü

S segment results because

P6 family and Pentium® Processors

I/O Map
Base Addres

o5 ccurs. wraparound occurs.

18-31

INTEL ARCHITECTURE COMPATIBILI TY

for more information about hardware control of the Pentium®
ê
 processor caches. In the P6 family

pro­ cessors, the MTRRs can be used to override the CD and NW flags (refer to Table 9-6, in
Ch
ª

apter 9, Mem
À

ory Cache Control).
£

The P6 family and Pentium®
ê
 processors support page-level cache management in the same

mannì er as the Intel486™ processor by using the PCD and PWT flags in control register CR3,
the pag

½
e-directory entries, and the page-table entries. The Intel486™ processor, however, is not

af« fected by the state of the PWT flag since the internal cache of the Intel486™ processor is a
write-throÌ ugh cache.

18.22.1. Self-Modifying Code with Cache E nabled

On t

he Intel486™ processor, a write to an instruction in the cache will modify it in both the
cache andº memory. If the instruction was prefetched before the write, however, the old version
of ¥ the instruction could be the one executed. To prevent this problem, it is necessary to flush the
instruction prefetch unit of the Intel486™ processor by coding a jump instruction immediately
after an« y write that modifies an instruction. The P6 family and Pentium®

ê
 processors, however,

check º whether a write may modify an instruction that has been prefetched for execution. This
check is based oº n the linear address of the instruction. If the linear address of an instruction is
fou
¿

nd to be present in the prefetch queue, the P6 family and Pentium®
ê
 processors flush the

pref­ etch queue, eliminating the need to code a jump instruction after any writes that modify an
instruction.

B
ë

ecause the linear address of the write is checked against the linear address of the instructions
that hav
½

e been prefetched, special care must be taken for self-modifying code to work correctly
whÌ en the physical addresses of the instruction and the written data are the same, but the linear
addr« esses differ. In such cases, it is necessary to execute a serializing operation to flush the
pref­ etch queue after the write and before executing the modified instruction. Refer to Section
7
%
.4., “Serializing Instructions” in Chapter 7, Multiple-Processor Management for more infor-

matì ion on serializing instructions.

NO
'

TE

The check on linear addresses described above is not in practice a concern for
coº mpatibilit y. Applications that include self-modifyi ng code use the same
linear

Ê
address for modifying and fetching the instruction. System software,

s¾ uch as a debugger, that might possibly modify an instruction using a
dif

§
ferent linear address than that used to fetch the instruction must execute a

seriali¾ zing operation, such as IRET, before the modified instruction is
execu� ted.

18.23. PAGING

This s
¡

ection identifies enhancements made to the paging mechanism and implementation differ-
ences in the� paging mechanism for various Intel Architecture processors.

18-32

INTEL ARCHITECTURE COMPATIBILITY

18.23.1. Large Pages

The Pentium®
ê
 processor extended the memory management/paging facilities of the Intel Archi-

tecture
½

to allow large (4Mbytes) pages sizes (refer to Section 3.6.1., “Paging Options” in
Ch
ª

apter 3, Protected-Mode Memory Management). The in
£

itial P6 family processor (the
Pen
¼

tium®
ê
 Pro processor) added a 2MByte page size to the Intel Architecture in conjunction with

the ph
½

ysical address extension (PAE) feature (refer to Section 3.8., “Physical Address Exten-
si¾ on” in Chapter 3, Protected-Mode Memory Management).

£

The av
¡

ailability of large pages on any Intel Architecture processor can be determined via feature
bit 3 (PSE) of reg
Ë

ister EDX after the CPUID instruction has been execution with an argument
of¥ 1. Intel processors that do not support the CPUID instruction do not support page size
enh� ancements. (Refer to “CPUID—CPU Identification” in Chapter 3, Ins

�
truction Set Reference,�

of¥ the Intel Ar
�

chitecture Software Developer’s Manual, Volume 2,� and AP-485, In
�

tel Processor
Identification and the CPUID Instruction, for more information on the CPUID instruction.)

18.23.2. PCD and PWT Flags

The PC
¡

D and PWT flags were introduced to the Intel Architecture in the Intel486™ processor
to co
½

ntrol the caching of pages:

• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.

• PWT (page-level write-through) flag—Controls the write-through/writeback caching
p­ olicy on a page-by-page basis. Since the internal cache of the Intel486™ processor is a
write-thÌ rough cache, it is not affected by the state of the PWT flag.

18.23.3. Enabling and Disabl ing Paging

Paging
¼

 is enabled and disabled by loading a value into control register CR0 that modifies the PG
flag. For backward and forward compatibility with all Intel Architecture processors, Intel
reco¦ mmends that the following operations be performed when enabling or disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear (disable
p­ aging) the PG flag.

2. Execute a near JMP instruction.

The s
¡

equence bounded by the MOV and JMP instructions should be identity mapped (that is,
the in
½

structions should reside on a page whose linear and physical addresses are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the jump oper-
atio« n is not required. However, for backwards compatibility, the JMP instruction should still be
includ
»

ed.

18-33

INTEL ARCHITECTURE COMPATIBILI TY

18.24. STACK OPERAT IONS

This section identifies the differences in the stack mechanism for the various Intel Architecture
pro­ cessors.

18.24.1. Selector Pushes and Pops

When
®

 pushing a segment selector onto the stack, the Intel486™ processor writes 2 bytes onto
4-b

�
yte stacks and decrements ESP by 4. The P6 family and Pentium®

ê
 processors write 4 bytes,

witÌ h the upper 2 bytes being zeros.

W
®

hen popping a segment selector from the stack, the Intel486™ processor reads only 2 bytes.
The
¡

P6 family and Pentium®
ê
 processors read 4 bytes and discard the upper 2 bytes. This opera-

ti
½

on may have an effect if the ESP is close to the stack-segment limit. On the P6 family and
Pe

¼
ntium®

ê
 processors, stack location at ESP plus 4 may be above the stack limit, in which case a

s¾ tack fault exception (#SS) will be generated. On the Intel486™ processor, stack location at ESP
p­ lus 2 may be less than the stack limit and no exception is generated.

F
�

or a POP-to-memory instruction that meets the following conditions:

• Th
¡

e stack segment size is 16-bit

• Any 32-bit addressing form with the SIB byte specifying ESP as the base register

• The initial stack pointer is FFFCh (32-bit operand) or FFFEh (16-bit operand) and will
wrapÌ around to 0h as a result of the POP operation

the result o
½

f the memory write is specific to the processor-family. For example, in Pentium®
ê
 II

and P« entium®
ê
 Pro processors, the result of the memory write is SS:0h plus any scaled index and

displacement. I
§

n Pentium®
ê
 and Pentium®

ê
 Pro processors, the result of the memory write may be

eit� her a stack fault (real mode or protected mode with stack segment size of 64Kbyte), or write
to SS:

½
10000h plus any scaled index and displacement (protected mode and stack segment size

exceed� s 64Kbyte).

18.24.2. Error Code Pushes

The Intel486™ processor implements the error code pushed on the stack as a 16-bit value. When
pus­ hed onto a 32-bit stack, the Intel486™ processor only pushes 2 bytes and updates ESP by 4.
The P6 family and Pentium®

ê
 processors’ error code is a full 32 bits with the upper 16 bits set to

zero.Â The P6 family and Pentium®
ê
 processors, therefore, push 4 bytes and update ESP by 4. Any

code º that relies on the state of the upper 16 bits may produce inconsistent results.

18.24.3. Fault Handli ng Effects on th e Stack

During the handling of certain instructions, such as CALL and PUSHA, faults may occur in
dif

§
ferent sequences for the different processors. For example, during far calls, the Intel486™

pro­ cessor pushes the old CS and EIP before a possible branch fault is resolved. A branch fault

18-34

INTEL ARCHITECTURE COMPATIBILITY

is a fault from a branch instruction occurring from a segment limit or access rights violation. If
a br« anch fault is taken, the Intel486™ and P6 family processors will have corrupted memory
belo
Ë

w the stack pointer. However, the ESP register is backed up to make the instruction restart-
able. « The P6 family processors issue the branch before the pushes. Therefore, if a branch fault
do
§

es occur, these processors do not corrupt memory below the stack pointer. This implementa-
tio
½

n difference, however, does not constitute a compatibility problem, as only values at or above
the stack p
½

ointer are considered to be valid.

18.24.4. Interl evel RET/IRET From a 16-Bit Interrupt or Ca ll Gate

If
Ñ

a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16 bits
of¥ the old ESP can be pushed onto the stack. On the subsequent RET/IRET, the 16-bit ESP is
po­ pped but the full 32-bit ESP is updated since control is being resumed in a 32-bit stack envi-
ron¦ ment. The Intel486™ processor writes the SS selector into the upper 16 bits of ESP. The P6
family and Pentium®

ê
 processors write zeros into the upper 16 bits.

18.25. MIXING 16- AND 32-BIT SEGMENTS

The featur
¡

es of the 16-bit Intel 286 processor are an object-code compatible subset of those of
the 3
½

2-bit Intel Architecture processors. The D (default operation size) flag in segment descrip-
tors in
½

dicates whether the processor treats a code or data segment as a 16-bit or 32-bit segment;
the B
½

(default stack size) flag in segment descriptors indicates whether the processor treats a
st¾ ack segment as a 16-bit or 32-bit segment.

The
¡

segment descriptors used by the Intel 286 processor are supported by the 32-bit Intel Archi-
tecture
½

processors if the Intel-reserved word (highest word) of the descriptor is clear. On the
32
±

-bit Intel Architecture processors, this word includes the upper bits of the base address and
th
½

e segment limit.

The
¡

segment descriptors for data segments, code segments, local descriptor tables (there are no
des
§

criptors for global descriptor tables), and task gates are the same for the 16- and 32-bit
pr­ ocessors. Other 16-bit descriptors (TSS segment, call gate, interrupt gate, and trap gate) are
s¾ upported by the 32-bit processors. The 32-bit processors also have descriptors for TSS
seg¾ ments, call gates, interrupt gates, and trap gates that support the 32-bit architecture. Both
ki
6

nds of descriptors can be used in the same system.

F
�

or those segment descriptors common to both 16- and 32-bit processors, clear bits in the
reserved word cause the 32-bit processors to interpret these descriptors exactly as an Intel 286
pr­ ocessor does, that is:

• Base Address—The upper 8 bits of the 32-bit base address are clear, which limits base
ad« dresses to 24 bits.

• Limit—The upper 4 bits of the limit field are clear, restricting the value of the limit field to
64

â
 Kbytes.

• Granu
Ï

larity bit—The G (granularity) flag is clear, indicating the value of the 16-bit limit is
interpreted in units of 1 byte.

18-35

INTEL ARCHITECTURE COMPATIBILI TY

• Big bit—In a data-segment descriptor, the B flag is clear in the segment descriptor used by
th

½
e 32-bit processors, indicating the segment is no larger than 64 Kbytes.

• Defau
ç

lt bit—In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing
and« operands are the default. In a stack-segment descriptor, the D flag is clear, indicating
us� e of the SP register (instead of the ESP register) and a 64-Kbyte maximum segment
lim

Ê
it.

For information on mixing 16- and 32-bit code in applications, refer to Chapter 17, Mixing 16-
Bi

�
t and 32-Bit Code.

18.26. SEGMENT AND ADDRESS WRAPAROUND

This section discusses differences in segment and address wraparound between the P6 family,
Pe

¼
ntium®

ê
, In� tel486™, Intel386™, Intel 286, and 8086 processors.

18.26.1. Segment Wraparound

On th

e 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or
0F

¹
FFFH or offset 0 (for example, moving a word to offset 65,535 or pushing a word when the

st¾ ack pointer is set to 1) causes the offset to wrap around modulo 65,536 or 010000H. With the
Intel 286 processor, any base and offset combination that addresses beyond 16 MBytes wraps
arou« nd to the 1 MByte of the address space. The P6 family, Pentium®

ê
,� Intel486™, and

Intel38
Ñ

6™ processors in real-address mode generate an exception in these cases:

• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS,
DS

ç
, ES, FS, or GS register is being used to address the segment).

• A s
Å

tack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is
bei

Ë
ng used).

An exce
Å

ption to this behavior occurs when a stack access is data aligned, and the stack pointer
is

»
 pointing to the last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH).

W
®

hen this data is popped, no segment limit violation occurs and the stack pointer will wrap
arou« nd to 0.

The add
¡

ress space of the P6 family, Pentium®
ê
,� and Intel486™ processors may wraparound at 1

MByte in real-address mode. An external A20M# pin forces wraparound if enabled. On Intel
808

Á
6 processors, it is possible to specify addresses greater than 1 MByte. For example, with a

s¾ elector value FFFFH and an offset of FFFFH, the effective address would be 10FFEFH (1
MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20 bits long,
trun

½
cates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family,

Pe
¼

ntium®
ê
, an� d Intel486™ processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does
not³ have a shutdown mode nor a limit.)

18-36

INTEL ARCHITECTURE COMPATIBILITY

18.27. WRITE BUFFERS AND MEMORY ORDERING

The Pentium®
ê
 Pro and Pentium®

ê
 II processors provide a write buffer for temporary storage of

writes (sÌ tores) to memory (refer to Section 9.11., “Write Buffer”, in Chapter 9, Mem
À

ory Cache
Control). The

£
Pentium®

ê
 III processor has 4 write buffers. Writes stored in the write buffer(s) are

alway« s written to memory in program order, with the exception of “fast string” store operations
(ref
à

er to Section 7.2.3., “Out of Order Stores From String Operations in P6 Family Processors”
in Chapter 7, Multiple-Processor Management).

£

The Pen
¡

tium®
ê
 processor has two write buffers, one corresponding to each of the pipelines.

W
®

rites in these buffers are always written to memory in the order they were generated by the
pr­ ocessor core.

It shou
Ñ

ld be noted that only memory writes are buffered and I/O writes are not. The P6 family,
Pen
¼

tium®
ê
, � and Intel486™ processors do not synchronize the completion of memory writes on

the b
½

us and instruction execution after a write. An I/O, locked, or serializing instruction needs
to
½

 be executed to synchronize writes with the next instruction (refer to Section 7.4., “Serializing
In
Ñ

structions” in Chapter 7, Mu
À

ltiple-Processor Management).
£

The P6 family processors use processor ordering to maintain consistency in the order that data
is
»

 read (loaded) and written (stored) in a program and the order the processor actually carries out
the r
½

eads and writes. With this type of ordering, reads can be carried out speculatively and in any
or¥ der, reads can pass buffered writes, and writes to memory are always carried out in program
or¥ der. (Refer to Section 7.2., “Memory Ordering” in Chapter 7, Mu

À
ltiple-Processor Manage-

ment� for more information about processor ordering.) The Pentium®
ê
 III processor introduced a

new instruction to serialize writes and make them globally visible. Memory ordering issues can
arise between« a producer and a consumer of data. The SFENCE instruction provides a perfor-
manì ce-efficient way of ensuring ordering between routines that produce weakly-ordered results
an« d routines that consume this data.

No re-o
¶

rdering of reads occurs on the Pentium®
ê
 processor, except under the condition noted in

S
°

ection 7.2.1., “Memory Ordering in the Pentium® and Intel486™ Processors” in Chapter 7,
Multiple-Processor Management, an� d in the following paragraph describing the Intel486™
pr­ ocessor. Specifically, the write buffers are flushed before the IN instruction is executed. No
read¦ s (as a result of cache miss) are reordered around previously generated writes sitting in the
write Ì buffers. The implication of this is that the write buffers will be flushed or emptied before
a subsequ« ent bus cycle is run on the external bus.

On

 both the Intel486™ and Pentium®
ê
 processors, under certain conditions, a memory read will

goÉ onto the external bus before the pending memory writes in the buffer even though the writes
occu¥ rred earlier in the program execution. A memory read will only be reordered in front of all
writesÌ pending in the buffers if all writes pending in the buffers are cache hits and the read is a
cache missº . Under these conditions, the Intel486™ and Pentium®

ê
 processors will not read from

an e« xternal memory location that needs to be updated by one of the pending writes.

Durin
ç

g a locked bus cycle, the Intel486™ processor will always access external memory, it will
never look for the location in the on-chip cache. All data pending in the Intel486™ processor's
write bÌ uffers will be written to memory before a locked cycle is allowed to proceed to the
extern� al bus. Thus, the locked bus cycle can be used for eliminating the possibility of reordering
read cycles on the Intel486™ processor. The Pentium®

ê
 processor does check its cache on a read-

18-37

INTEL ARCHITECTURE COMPATIBILI TY

modify-write access and, if the cache line has been modified, writes the contents back to
memoì ry before locking the bus. The P6 family processors write to their cache on a read-modify-
write oÌ peration (if the access does not split across a cache line) and does not write back to system
memory. If the access does split across a cache line, it locks the bus and accesses system
memoì ry.

I/
Ñ

O reads are never reordered in front of buffered memory writes on an Intel Architecture
pro­ cessor. This ensures an update of all memory locations before reading the status from an I/O
devi

§
ce.

18.28. BUS LOCKING

The Intel 286 processor performs the bus locking differently than the Intel P6 family, Pentium®
ê
,�

Intel48
Ñ

6™, and Intel386™ processors. Programs that use forms of memory locking specific to
t
½
he Intel 286 processor may not run properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
oper¥ and, but may lock a larger memory area. For example, typical 8086 and Intel 286 configu-
rations lock¦ the entire physical memory space. Programmers should not depend on this.

On

 the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the
IOPL, a gen
Ñ

eral-protection exception (#GP) is generated. On the Intel386™ DX, Intel486™,
and Pen« tium®

ê
,� and P6 family processors, no check against IOPL is performed.

The Pentium®
ê
 processor automatically asserts the LOCK# signal when acknowledging external

in
»

terrupts. After signaling an interrupt request, an external interrupt controller may use the data
bus t

Ë
o send the interrupt vector to the processor. After receiving the interrupt request signal, the

p­ rocessor asserts LOCK# to insure that no other data appears on the data bus until the interrupt
vectorå is received. This bus locking does not occur on the P6 family processors.

18.29. BUS HOLD

Un
Ã

like the 8086 and Intel 286 processors, but like the Intel386™ and Intel486™ processors, the
P

¼
6 family and Pentium®

ê
 processors respond to requests for control of the bus from other poten-

ti
½

al bus masters, such as DMA controllers, between transfers of parts of an unaligned operand,
s¾ uch as two words which form a doubleword. Unlike the Intel386™ processor, the P6 family,
Pe

¼
ntium®

ê
 and Intel486™ processors respond to bus hold during reset initialization.

18.30. TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS

W
®

hen porting 16-bit programs to run on 32-bit Intel Architecture processors, there are two
appr« oaches toconsider:

• Po
¼

rting an entire 16-bit software system to a 32-bit processor, complete with the old
op¥ erating system, loader, and system builder. Here, all tasks will have 16-bit TSSs. The 32-
bit p

Ë
rocessor is being used as if it were a faster version of the 16-bit processor.

18-38

INTEL ARCHITECTURE COMPATIBILITY

• Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit
o¥ perating system, loader, and system builder. Here, the TSSs used to represent 286 tasks
sh¾ ould be changed to 32-bit TSSs. It is possible to mix 16 and 32-bit TSSs, but the benefits
ar« e small and the problems are great. All tasks in a 32-bit software system should have 32-
b

Ë
it TSSs. It is not necessary to change the 16-bit object modules themselves; TSSs are

u� sually constructed by the operating system, by the loader, or by the system builder. Refer
t

½
o Chapter 17, Mixing 16-Bit and 32-Bit Code for more detailed information about mixing
16-bit and 32-bit code.

B
ë

ecause the 32-bit processors use the contents of the reserved word of 16-bit segment descrip-
tors, 16
½

-bit programs that place values in this word may not run correctly on the 32-bit
pr­ ocessors.

18.31. MODEL-SPECIFIC EXTENSIONS TO THE INTEL
ARCHITECTURE

C
ª

ertain extensions to the Intel Architecture are specific to a processor or family of Intel Archi-
tecture pr
½

ocessors and may not be implemented or implemented in the same way in future
pr­ ocessors. The following sections describe these model-specific extensions. The CPUID
instruction
»

 indicates the availability of some of the model-specific features.

18.31.1. Model-Specific Registers

The Pentium®
ê
 processor introduced a set of model-specific registers (MSRs) for use in control-

ling
Ê

hardware functions and performance monitoring. To access these MSRs, two new instruc-
tions w
½

ere added to the Intel Architecture: read MSR (RDMSR) and write MSR (WRMSR). The
MSRs in the Pentium®

ê
 processor are not guaranteed to be duplicated or provided in the next

genÉ eration Intel Architecture processors.

The P6 family pr
¡

ocessors greatly increased the number of MSRs available to software. Refer to
Appendix B, Model-Specific Registers for a complete list of the available MSRs. The new regis-
ters co
½

ntrol the debug extensions, the performance counters, the machine-check exception capa-
b
Ë
ility , the machine-check architecture, and the MTRRs. These registers are accessible using the

RDMSR and WRMSR instructions. Specific information on some of these new MSRs is
p­ rovided in the following sections. As with the Pentium®

ê
 processor MSR, the P6 family

pr­ ocessor MSRs are not guaranteed to be duplicated or provided in the next generation Intel
Architecture processors.

18.31.2. RDMSR and WRMSR Instruct ions

The
¡

RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions recognize a much larger number of model-specific registers in the P6 family proces-
sors. ¾ (Refer to “RDMSR—Read from Model Specific Register” and “WRMSR—Write to
Mod
¢

el Specific Register” in Chapter 3 of the In
�

tel Architecture Software Developer’s Manual,
Volume 2, � for more information about these instructions.)

18-39

INTEL ARCHITECTURE COMPATIBILI TY

18.31.3. Memory T ype Range Regist ers

Memory type range registers (MTRRs) are a new feature introduced into the Intel Architecture
in

»
 the Pentium®

ê
 Pro processor. MTRRs allow the processor to optimize memory operations for

dif
§

ferent types of memory, such as RAM, ROM, frame buffer memory, and memory-mapped
I/O.

Ñ

MTR
¢

Rs are MSRs that contain an internal map of how physical address ranges are mapped to
varioå us types of memory. The processor uses this internal memory map to determine the cache-
ab« ilit y of various physical memory locations and the optimal method of accessing memory loca-
ti

½
ons. For example, if a memory location is specified in an MTRR as write-through memory, the

pro­ cessor handles accesses to this location as follows. It reads data from that location in lines
and caches « the read data or maps all writes to that location to the bus and updates the cache to
maintain cachì e coherency. In mapping the physical address space with MTRRs, the processor
recognizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combº ining (USWC), write-through (WT), write-protected (WP), and writeback (WB).

Earlier
Æ

Intel Architecture processors (such as the Intel486™ and Pentium®
ê
 processors) used the

KEN# (cache enable) pin and external logic to maintain an external memory map and signal
cacheabº le accesses to the processor. The MTRR mechanism simplifies hardware designs by
eli� minating the KEN# pin and the external logic required to drive it.

Refer to Chapter 8, Processor Management and Initiali zation and Appendix B, Model-Specific
Registers for more information on the MTRRs.

18.31.4. Machine -Check Except ion and A rchit ecture

The Pentium®
ê
 processor introduced a new exception called the machine-check exception (#MC,

in
»

terrupt 18). This exception is used to detect hardware-related errors, such as a parity error on
a read« cycle.

The P6 family processors extend the types of errors that can be detected and that generate a
machinì e-check exception. It also provides a new machine-check architecture for recording
in

»
formation about a machine-check error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording
machinì e-check errors. Each bank of registers is associated with a specific hardware unit in the
pro­ cessor. The primary focus of the machine checks is on bus and interconnect operations;
however, checks are also made of translation lookaside buffer (TLB) and cache operations.

The mach
¡

ine-check architecture can correct some errors automatically and allow for reliable
rest¦ art of instruction execution. It also collects sufficient information for software to use in
corrº ecting other machine errors not corrected by hardware.

Re
õ

fer to Chapter 13, M
À

achine-Check Architecture for more information on the machine-check
exceptio� n and the machine-check architecture.

18-40

INTEL ARCHITECTURE COMPATIBILITY

18.31.5. Perfo rmance-M onitoring C ounters

The P6 family and Pentium®
ê
 processors provide two performance-monitoring counters for use

in m
»

onitoring internal hardware operations. These counters are event counters that can be
pr­ ogrammed to count a variety of different types of events, such as the number of instructions
deco
§

ded, number of interrupts received, or number of cache loads. Appendix A, P
ö

erformance-
M

À
onitoring Events lists all the events that can be counted (Table A-1 for the P6 family proces-

s¾ ors and Table A-2 for the Pentium®
ê
 processors). The counters are set up, started, and stopped

u� sing two MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the
curº rent count for a particular counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code,
di
§

agnosing system failures, or refining hardware designs. Refer to Chapter 15, Deb
3

ugging and
Per
ö

formance Monitoring for more information on these counters.

A
Performance-
Monitoring Events

A-1
·

PERFORM
.

ANCE-MONITORING EVENTS

APPENDIX A
7

PERFORMANCE-MONITORING EVENTS

This
¡

appendix contains list of the performance-monitoring events that can be monitored with the
Intel Architecture processors. In the Intel Architecture processors, the abil ity to monitor perfor-
mance evì ents and the events that can be monitored are model specific. Section A.1., “P6 Family
P

¼
rocessor Performance-Monitoring Events” lists and describes the events that can be monitored

wiÌ th the P6 family of processors. Section A.2., “Pentium® Processor Performance-Monitoring
Ev

Æ
ents” lists and describes the events that can be monitored with Pentium® processors.

A.1. P6 FAMILY PROCESSOR PERFORMANCE-MONITORING
EVENTS

Table A-1 lists the events that can be counted with the performance-monitoring counters and
read¦ with the RDPMC instruction for the P6 family of processors. The unit column gives the
microarchitecture or bus unit that produces the event; the event number column gives the hexa-
decimal n

§
umber identifying the event; the mnemonic event name column gives the name of the

ev� ent; the unit mask column gives the unit mask required (if any); the description column de-
s¾ cribes the event; and the comments column gives additional information about the event.

These perf
¡

ormance-monitoring events are intended to be used as guides for performance tuning.
The coun

¡
ter values reported are not guaranteed to be absolutely accurate and should be used as

a relative g« uide for tuning. Known discrepancies are documented where applicable.

S
°

ome performance events are model specific. Those added in later generations of the P6 family
pro­ cessors are listed in this table. Performance events are not architecturally guaranteed in fu-
tu

½
re versions of the P6 family processors. All performance event encodings not listed in Table

A-1
Å

 are reserved and their use will result in undefined counter results.

R
õ

efer to the end of the table for notes related to certain entries in the table.

A-2

PERFORMANCE-MONITORING EVENTS

T
(
able A-1. Events That Can Be Cou nted with the P6 Family Performa nce-

Monitorin g Coun ters

Unit
Event
Num.

Mnemoni c Event
Name

Unit
Mask Descripti on Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any memory type.
All stores to any memory type.
Each part of a split is counted
sepÝ arately. The internal logic
cou8 nts not only memory loads
and9 stores, but also internal
retries.

Note: 80-bit floating-point
acce9 sses are double counted,
siÝ nce they are decomposed into
a 19 6-bit exponent load and a 64-
bit mantissa load. Memory
acce9 sses are only counted
when they are actually
performed (such as a load that
gets squashed because a
previous cache miss is
out5 standing to the same
add9 ress, and which finally gets
performed, is only counted
onc5 e).

Does not include I/O accesses,
or oth5 er nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in the DCU.

4
�

6H DCU_M_LINES_IN 00H Number of M state lines
a9 llocated in the DCU.

47H DCU_M_LINES_OUT 00H Number of M state lines evicted
from the DCU. This includes
evi: ctions via snoop HITM,
intervention or replacement.

4
�

8H DCU_MISS_
OUT

4
STANDING

00
Õ

H Weighted number of cycles
while a DCU miss is
out5 standing, incremented by the
number of outstanding cache
misses at any particular time.

C
�

acheable read requests only
a9 re considered.

Uncacheable requests are
excl: uded.

Read-for-ownerships are
co8 unted, as well as line fills,
invalidates, and stores.

A
;

n access that also
misses the L2 is short-
cha8 nged by 2 cycles
(i.e., if counts N cycles,
shoÝ uld be N+2 cycles).

Subsequent loads to the
saÝ me cache line will not
result in any additional
cou8 nts.

C
�

ount value not precise,
but still useful.

Instruction
Fetch Unit
(IFU)

80H
ÿ

IFU_IFETCH 00H Number of instruction fetches,
both cacheable and
noncacheable, including UC
fetches.

8
ÿ

1H IFU_IFETCH_MISS 00H Number of instruction fetch
misses.

A
;

ll instruction fetches that do not
hit the IFU (i.e., that produce
memory requests).

Includes UC accesses.

85H
ÿ

ITLB_MISS 00H Number of ITLB misses.

A-3
·

PERFORM
.

ANCE-MONITORING EVENTS

86
ÿ

H IFU_MEM_STALL 00H Number of cycles instruction
fetch is stalled, for any reason.

Includes IFU cache misses,
ITLB misses, ITLB faults, and
o5 ther minor stalls.

87
ÿ

H ILD_STALL 00H Number of cycles that the
instruction length decoder is
staÝ lled.

L2 Cache1 2
Ú

8H L2_IFETCH MESI
0F

Õ
H

Number of L2 instruction
fetches.

T
Ü

his event indicates that a
normal instruction fetch was
received by the L2.

T
Ü

he count includes only L2
cac8 heable instruction fetches; it
do

ß
es not include UC instruction

fetches.

It does not include ITLB miss
acc9 esses.

29H L2_LD MESI
0F

Õ
H

Number of L2 data loads.

T
Ü

his event indicates that a
normal, unlocked, load memory
acc9 ess was received by the L2.

It includes only L2 cacheable
memory accesses; it does not
include I/O accesses, other
nonmemory accesses, or
memory accesses such as
UC/WT memory accesses.

It does include L2 cacheable
T

Ü
LB miss memory accesses.

2AH L2_ST MESI
0F

Õ
H

Number of L2 data stores.

T
Ü

his event indicates that a
normal, unlocked, store memory
acc9 ess was received by the L2.

Specifically, it indicates that the
DCU sent a read-for-ownership
request to the L2.

It also includes Invalid to
Modified requests sent by the
DCU to the L2.

It includes only L2 cacheable
memory accesses; it does not
include I/O accesses, other
nonmemory accesses, or
memory accesses such as
UC/WT memory accesses.

It includes TLB miss memory
acc9 esses.

24
Ú

H L2_LINES_IN 00H Number of lines allocated in the
L2.

Table A-1. Events That Can Be Coun ted w ith the P6 Famil y Performance-
Monitorin g Cou nters (Contd.)

Unit
Event
Num.

Mnemoni c Event
Name

Uni t
Mask Descri ptio n Comm ents

A-4

PERFORMANCE-MONITORING EVENTS

26H
Ú

L2_LINES_OUT 00H Number of lines removed from
the

<
 L2 for any reason.

25H L2_M_LINES_INM 00H Number of modified lines
al9 located in the L2.

27H
Ú

L2_M_LINES_OUTM 00H Number of modified lines
removed from the L2 for any
reason.

2
Ú

EH L2_RQSTS MESI
0F

Õ
H

T
Ü
otal number of L2 requests.

21H
Ú

L2_ADS 00H Number of L2 address strobes.

22H
Ú

L2_DBUS_BUSY 00H Number of cycles during which
the

<
 L2 cache data bus was busy.

23H
Ú

L2_DBUS_BUSY_RD 00H Number of cycles during which
the

<
 data bus was busy

t
<
ransferring read data from L2 to
the

<
 processor.

External Bus
Logic (EBL)2

6
ð

2H BUS_DRDY_
CL

�
OCKS

00
Õ

H
(Self)
20

Ú
H

(Any)

Number of clocks during which
DRDY# is asserted.

Utilization of the external system
d

ß
ata bus during data transfers.

Unit Mask = 00H counts
bus clocks when the
processor is driving
DRDY#.

Unit Mask = 20H counts
in processor clocks
when any agent is
d

ß
riving DRDY#.

63H
ð

BUS_LOCK_
CL

�
OCKS

00
Õ

H
(Self)
20

Ú
H

(Any)

Number of clocks during which
LOCK# is asserted on the
exte: rnal system bus.3

�
Always counts in
processor clocks.

60H
ð

BUS_REQ_
OUT

4
STANDING

00
Õ

H
(Self)

Number of bus requests
out5 standing.

This counter is incremented by
the

<
 number of cacheable read

bus requests outstanding in any
given cycle.

Co
�

unts only DCU full-
line cacheable reads, not
RFOs, writes, instruction
fetches, or anything else.
C

�
ounts “waiting for bus

to
<

 complete” (last data
chu8 nk received).

65H
ð

BUS_TRAN_BRD 00H
(Self)
20H
(Any)

Number of burst read
tra

<
nsactions.

66H
ð

BUS_TRAN_RFO 00H
(Self)
20

Ú
H

(Any)

Number of completed read for
ow5 nership transactions.

6
ð

7H BUS_TRANS_WB 00H
(Self)
20

Ú
H

(Any)

Number of completed write back
tra

<
nsactions.

6
ð

8H BUS_TRAN_
IFETCH

00
Õ

H
(Self)
20H
(Any)

Number of completed instruction
fetch transactions.

T
(
able A-1. Events That Can Be Cou nted with the P6 Family Performa nce-

Monito ring Cou nters (Contd .)

Unit
Event
Num.

Mnemoni c Event
Name

Unit
Mask Descripti on Comments

A-5
·

PERFORM
.

ANCE-MONITORING EVENTS

69
ð

H BUS_TRAN_INVAL 00H
(Self)
20H

(Any)

Number of completed invalidate
tr

<
ansactions.

6A
ð

H BUS_TRAN_PWR 00H
(Self)
20

Ú
H

(Any)

Number of completed partial
write transactions.

6
ð

BH BUS_TRANS_P 00H
(Self)
20

Ú
H

(Any)

Number of completed partial
tr

<
ansactions.

6C
ð

H BUS_TRANS_IO 00H
(Self)
20H

(Any)

Number of completed I/O
tr

<
ansactions.

6
ð

DH BUS_TRAN_DEF 00H
(Self)
20

Ú
H

(Any)

Number of completed deferred
tr

<
ansactions.

6
ð

EH BUS_TRAN_BURST 00H
(Self)
20

Ú
H

(Any)

Number of completed burst
tr

<
ansactions.

70
�

H BUS_TRAN_ANY 00H
(Self)
20H

(Any)

Number of all completed bus
tr

<
ansactions.

Ad
;

dress bus utilization can be
cal8 culated knowing the minimum
ad9 dress bus occupancy.

Includes special cycles, etc.

6
ð

FH BUS_TRAN_MEM 00H
(Self)
20

Ú
H

(Any)

Number of completed memory
tr

<
ansactions.

6
ð

4H BUS_DATA_RCV 00H
(Self)

Number of bus clock cycles
du

ß
ring which this processor is

receiving data.

6
ð

1H BUS_BNR_DRV 00H
(Self)

Number of bus clock cycles
du

ß
ring which this processor is

dr
ß

iving the BNR# pin.

Table A-1. Events That Can Be Coun ted w ith the P6 Famil y Performance-
Monitorin g Cou nters (Contd.)

Unit
Event
Num.

Mnemoni c Event
Name

Uni t
Mask Descri ptio n Comm ents

A-6

PERFORMANCE-MONITORING EVENTS

7A
�

H BUS_HIT_DRV 00H
(Self)

Number of bus clock cycles
d

ß
uring which this processor is

dri
ß

ving the HIT# pin.

Includes cycles due to
sÝ noop stalls.

T
Ü

he event counts
cor8 rectly, but the BPMi
pins function as follows
based on the setting of
th

<
e PC bits (bit 19 in the

PerfEvtSel0 and
PerfEvtSel1 registers):

If the core-clock-to- bus-
cl8 ock ratio is 2:1 or 3:1,
an9 d a PC bit is set, the
BPMipins will be
ass9 erted for a single
cl8 ock when the counters
o5 verflow.

If the PC bit is clear, the
processor toggles the
BPMipins when the
c8 ounter overflows.

If the clock ratio is not
2:

Ú
1 or 3:1, the BPMi

pins will not function for
th

<
ese performance-

monitoring counter
eve: nts.

7B
�

H BUS_HITM_DRV 00H
(Self)

Number of bus clock cycles
d

ß
uring which this processor is

dri
ß

ving the HITM# pin.

Includes cycles due to
sÝ noop stalls.

T
Ü

he event counts
cor8 rectly, but the BPMi
pins function as follows
based on the setting of
th

<
e PC bits (bit 19 in the

PerfEvtSel0 and
PerfEvtSel1 registers):

If the core-clock-to- bus-
cl8 ock ratio is 2:1 or 3:1,
an9 d a PC bit is set, the
BPMipins will be
ass9 erted for a single
cl8 ock when the counters
o5 verflow.

If the PC bit is clear, the
processor toggles the
BPMipins when the
c8 ounter overflows.

If the clock ratio is not
2:

Ú
1 or 3:1, the BPMi

pins will not function for
th

<
ese performance-

monitoring counter
eve: nts.

7E
�

H BUS_SNOOP_STALL 00H
(Self)

Number of clock cycles during
which the bus is snoop stalled.

T
(
able A-1. Events That Can Be Cou nted with the P6 Family Performa nce-

Monito ring Cou nters (Contd .)

Unit
Event
Num.

Mnemoni c Event
Name

Unit
Mask Descripti on Comments

A-7
·

PERFORM
.

ANCE-MONITORING EVENTS

Floating-
Point Unit

C
�

1H FLOPS 00H Number of computational
floating-point operations retired.

Excludes floating-point
com8 putational operations that
cau8 se traps or assists.

Includes floating-point
com8 putational operations
exe: cuted by the assist handler.

Includes internal sub-operations
for complex floating-point
instructions like
tr

<
anscendentals.

Excludes floating-point loads
an9 d stores.

C
�

ounter 0 only.

10H FP_COMP_OPS_
EXE

0
Õ

0H Number of computational
floating-point operations
exe: cuted.

T
Ü

he number of FADD, FSUB,
FCOM, FMULs, integer MULs
an9 d IMULs, FDIVs, FPREMs,
FSQRTS, integer DIVs, and
IDIVs.

Note not the number of cycles,
but the number of operations.

T
Ü

his event does not distinguish
a9 n FADD used in the middle of a
tr

<
anscendental flow from a

seÝ parate FADD instruction.

C
�

ounter 0 only.

11H FP_ASSIST 00H Number of floating-point
exc: eption cases handled by
microcode.

C
�

ounter 1 only.

Th
Ü

is event includes
co8 unts due to
spÝ eculative execution.

12H MUL 00H Number of multiplies.

Note: Includes integer as well as
FP multiplies and is speculative.

C
�

ounter 1 only.

13H DIV 00H Number of divides.

Note: Includes integer as well as
FP divides and is speculative.

C
�

ounter 1 only.

14H CYCLES_DIV_BUSY 00H Number of cycles during which
the

<
 divider is busy, and cannot

acc9 ept new divides.

Note: Includes integer and FP
divid

ß
es, FPREM, FPSQRT, etc.,

an9 d is speculative.

C
�

ounter 0 only.

Table A-1. Events That Can Be Coun ted w ith the P6 Famil y Performance-
Monitorin g Cou nters (Contd.)

Unit
Event
Num.

Mnemoni c Event
Name

Uni t
Mask Descri ptio n Comm ents

A-8

PERFORMANCE-MONITORING EVENTS

Memory
Or

4
dering

03H
Õ

LD_BLOCKS 00H Number of store buffer blocks.

Includes counts caused by
preceding stores whose
add9 resses are unknown,
preceding stores whose
add9 resses are known but whose
dat

ß
a is unknown, and preceding

storÝ es that conflicts with the load
but which incompletely overlap
t

<
he load.

04H
Õ

SB_DRAINS 00H Number of store buffer drain
cycles.8

Incremented every cycle the
storÝ e buffer is draining.

Draining is caused by serializing
o5 perations like CPUID,
synchÝ ronizing operations like
XCHG, interrupt
a9 cknowledgment, as well as
oth5 er conditions (such as cache
flushing).

05H
Õ

MISALIGN_
MEM_REF

00
Õ

H Number of misaligned data
memory references.

Incremented by 1 every cycle,
dur

ß
ing which either the proc load

or 5 store pipeline dispatches a
misaligned uop.

Co
�

unting is performed if it is the
first or second half, or if it is
blocked, squashed, or missed.

Note: In this context, misaligned
means crossing a 64-bit
boundary.

It should be noted that
MISALIGN_MEM_REF
is only an approximation
to

<
 the true number of

misaligned memory
references.

T
Ü

he value returned is
roughly proportional to
th

<
e number of

misaligned memory
acc9 esses, i.e., the size
of5 the problem.

07H
Õ

EMON_KNI_PREF_
DISPATCHED

00
Õ

H
01

Õ
H

02
Õ

H
03

Õ
H

Number of Streaming SIMD
exte: nsions prefetch/weakly-
ord5 ered instructions dispatched
(speculative prefetches are
included in counting)
0

Õ
: prefetch NTA

1: prefetch T1
2

Ú
: prefetch T2

3:
Û

weakly ordered stores

C
�

ounters 0 and 1.
Pentium® III processor
on5 ly.

4
�

BH EMON_KNI_PREF_
MISS

00
Õ

H
01

Õ
H

02
Õ

H
03

Õ
H

Number of prefetch/weakly-
ord5 ered instructions that miss all
cach8 es.
0

Õ
: prefetch NTA

1: prefetch T1
2: prefetch T2
3:

Û
weakly ordered stores

C
�

ounters 0 and 1.
Pentium® III processor
on5 ly.

T
(
able A-1. Events That Can Be Cou nted with the P6 Family Performa nce-

Monito ring Cou nters (Contd .)

Unit
Event
Num.

Mnemoni c Event
Name

Unit
Mask Descripti on Comments

A-9
·

PERFORM
.

ANCE-MONITORING EVENTS

Instruction
Decoding
and9
Retirement

C0
�

H INST_RETIRED OOH Number of instructions retired. A hardware interrupt
received during/after the
last iteration of the REP
STOS flow causes the
co8 unter to undercount by
1 instruction.

C2
�

H UOPS_RETIRED 00H Number of UOPs retired.

D0H INST_DECODED 00H Number of instructions decoded.

D8H EMON_KNI_INST_
RETIRED

00
Õ

H
01

Õ
H

Number of Streaming SIMD
ext: ensions retired
0: pac

Õ
ked & scalar

1: scalar

C
�

ounters 0 and 1.
Pentium® III processor
on5 ly.

D9H EMON_KNI_COMP_
INST_RET

00
Õ

H
01

Õ
H

Number of Streaming SIMD
ext: ensions computation
instructions retired.
0: pac

Õ
ked and scalar

1: scalar

C
�

ounters 0 and 1.
Pentium® III processor
on5 ly.

Interrupts C8H HW_INT_RX 00H Number of hardware interrupts
received.

C6
�

H CYCLES_INT_
MASKED

0
Õ

0H Number of processor cycles for
which interrupts are disabled.

C7
�

H CYCLES_INT_
PENDING_
AND_

;
MASKED

0
Õ

0H Number of processor cycles for
which interrupts are disabled
an9 d interrupts are pending.

Branches C4H BR_INST_RETIRED 00H Number of branch instructions
retired.

C5
�

H BR_MISS_PRED_
RETIRED

0
Õ

0H Number of mispredicted
branches retired.

C9
�

H BR_TAKEN_
RETIRED

0
Õ

0H Number of taken branches
retired.

CAH
�

BR_MISS_PRED_
T

Ü
AKEN_RET

00
Õ

H Number of taken mispredictions
branches retired.

E0H BR_INST_DECODED 00H Number of branch instructions
de

ß
coded.

E2H BTB_MISSES 00H Number of branches for which
the

<
 BTB did not produce a

prediction.

E4H BR_BOGUS 00H Number of bogus branches.

E6H BACLEARS 00H Number of times BACLEAR is
ass9 erted.

T
Ü

his is the number of times that
a s9 tatic branch prediction was
made, in which the branch
de

ß
coder decided to make a

branch prediction because the
BTB did not.

Table A-1. Events That Can Be Coun ted w ith the P6 Famil y Performance-
Monitorin g Cou nters (Contd.)

Unit
Event
Num.

Mnemoni c Event
Name

Uni t
Mask Descri ptio n Comm ents

A-10

PERFORMANCE-MONITORING EVENTS

Stalls A2H RESOURCE_STALLS 00H Incremented by 1 during every
cycle 8 for which there is a
resource related stall.

Includes register renaming
buffer entries, memory buffer
ent: ries.

Does not include stalls due to
bus queue full, too many cache
misses, etc.

In addition to resource related
stalls,Ý this event counts some
oth5 er events.

Includes stalls arising during
branch misprediction recovery,
suchÝ as if retirement of the
mispredicted branch is delayed
and9 stalls arising while store
buffer is draining from
synchÝ ronizing operations.

D2H PARTIAL_RAT_
STALLS

00
Õ

H Number of cycles or events for
partial stalls.

Note: Includes flag partial stalls.

Segment
Register
Loads

0
Õ

6H SEGMENT_REG_
LOADS

00
Õ

H Number of segment register
loads.

Clo
�

cks 79H CPU_CLK_
UNHALTED

00
Õ

H Number of cycles during which
the

<
 processor is not halted.

MMX™ Unit B0H MMX_INSTR_EXEC 00H Number of MMX™ Instructions
Executed.

Available in Intel®
Ce

�
leron, Pentium® II

an9 d Pentium® II Xeon
processors only.

Does not account for
MOVQ and MOVD
stoÝ res from register to
memory.

B1H MMX_SAT_
INSTR_EXEC

00
Õ

H Number of MMX™ Saturating
Instructions Executed.

Available in Pentium® II
& Pentium® III
processors only.

B2H MMX_UOPS_EXEC 0FH Number of MMX™ UOPS
Executed.

A
;

vailable in Pentium® II
& Pentium® III
processors only.

B3H MMX_INSTR_
T

Ü
YPE_EXEC

01
Õ

H

02
Õ

H

04
Õ

H

08
Õ

H

10H

20
Ú

H

MMX™ packed multiply
instructions executed.
MMX™ packed shift instructions
exe: cuted.
MMX™ pack operation
instructions executed.
MMX™ unpack operation
instructions executed.
MMX™ packed logical
instructions executed.
MMX™ packed arithmetic
instructions executed.

A
;

vailable in Pentium® II
& Pentium® III
processors only.

T
(
able A-1. Events That Can Be Cou nted with the P6 Family Performa nce-

Monito ring Cou nters (Contd .)

Unit
Event
Num.

Mnemoni c Event
Name

Unit
Mask Descripti on Comments

A-
·

11

PERFORM
.

ANCE-MONITORING EVENTS

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the

PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction
with L2 = events to indicate the cache state or cache states involved. The P6 family processors identify
cache states using the “MESI” protocol and consequently each bit in the Unit Mask field represents one of
the f

>
our states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[0]

= I (1H) state. UMSK[3:0] = MESI” (FH) should be used to collect data for all states; UMSK = 0H, for the
applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit
Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in con-
junction wit

?
h the EBL events to indicate whether the processor should count transactions that are self-

generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).
3. L2 cache locks, so it is possible to have a zero count.

CCH
�

FP_MMX_TRANS 00H

01
Õ

H

T
Ü

ransitions from MMX™
instruction to floating-point
instructions.
Transitions from floating-point
instructions to MMX™
instructions.

A
;

vailable in Pentium® II
& Pentium® III
processors only.

CDH
�

MMX_ASSIST 00H Number of MMX™ Assists (that
is, the number of EMMS
instructions executed).

Available in Pentium® II
& Pentium® III
processors only.

C
�

EH MMX_INSTR_RET 00H Number of MMX™ Instructions
Retired.

Available in Pentium® II
processor only.

Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

01
Õ

H
02

Õ
H

04
Õ

H
08

Õ
H

0F
Õ

H

Number of Segment Register
Renaming Stalls:
Segment register ES
Segment register DS
Segment register FS
Segment register FS
Segment registers ES + DS +
FS + GS

A
;

vailable in Pentium® II
& Pentium® III
processors only.

D5H SEG_REG_
RENAMES

01
Õ

H
02

Õ
H

04
Õ

H
08

Õ
H

0F
Õ

H

Number of Segment Register
Renames:
Segment register ES
Segment register DS
Segment register FS
Segment register FS
Segment registers ES + DS +
FS + GS

A
;

vailable in Pentium® II
& Pentium® III
processors only.

D6H RET_SEG_
RENAMES

00
Õ

H Number of segment register
rename events retired.

A
;

vailable in Pentium® II
& Pentium® III
processors only.

Table A-1. Events That Can Be Coun ted w ith the P6 Famil y Performance-
Monitorin g Cou nters (Contd.)

Unit
Event
Num.

Mnemoni c Event
Name

Uni t
Mask Descri ptio n Comm ents

A-12

PERFORMANCE-MONITORING EVENTS

A.2. PENTIUM® PROCESSOR PERFORMANCE-MONITORING
EVENTS

T
¡
able A-2 lists the events that can be counted with the performance-monitoring counters for the

Pentium® processor. The Event Number column gives the hexadecimal code that identifies the
even� t and that is entered in the ES0 or ES1 (event select) fields of the CESR MSR. The Mne-
moì nic Event Name column gives the name of the event, and the Description and Comments col-
um� ns give detailed descriptions of the events. Most events can be counted with either counter 0
or¥ counter 1; however, some events can only be counted with only counter 0 or only counter 1
(as
à

 noted).

NOTE

The events in the table that are shaded are implemented only in the Pentium®

p­ rocessor with MMX technology.

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monit oring Co unte rs

Event
Num.

Mnemonic Event
Name Descri pti on Comments

00H DATA_READ Number of memory data
reads (internal data cache
hit and miss combined).

Split cycle reads are counted
individually. Data Memory Reads that
are part of TLB miss processing are not
included. These events may occur at a
maximum of two per clock. I/O is not
included.

01H DATA_WRITE Number of memory data
writes (internal data cache
hit and miss combined),
I/O is not included.

Split cycle writes are counted
individually. These events may occur at
a maximum of two per clock. I/O is not
included.

0H2 DATA_TLB_MISS Number of misses to the
data cache translation
look-aside buffer.

03H DATA_READ_MISS Number of memory read
accesses that miss the
internal data cache
whether or not the access
is cacheable or
noncacheable.

Additional reads to the same cache line
after the first BRDY# of the burst line fill
is returned but before the final (fourth)
BRDY# has been returned, will not
cause the counter to be incremented
additional times. Data accesses that
are part of TLB miss processing are not
included. Accesses directed to I/O
space are not included.

04H DATA WRITE MISS Number of memory write
accesses that miss the
internal data cache
whether or not the access
is cacheable or
noncacheable.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are not
included.

A-
·

13

PERFORM
.

ANCE-MONITORING EVENTS

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to
exclusive or modified lines
in the data cache.

These are the writes that may be held
up if EWBE# is inactive. These events
may occur a maximum of two per clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines (all)
that

>
 are written back,

regardless of the cause.

Replacements and internal and external
snoops can all cause writeback and are
counted.

07H EXTERNAL_
SNOOPS

Number of accepted
external snoops whether
they hit

>
 in the code cache

or data cache or neither.

Assertions of EADS# outside of the
sampling interval are not counted, and
no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external
snoops to the data cache.

Snoop hits to a valid line in either the
data cache, the data line fill buffer, or
one of the write back buffers are all
counted as hits.

09H MEMORY
ACCESSES IN
BOTH PIPES

Number of data memory
reads or writes that are
paired in both pipes of the
pipeline.

These accesses are not necessarily run
in parallel due to cache misses, bank
conflicts, etc.

0AH BANK CONFLICTS Number of actual bank
conflicts.

0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or I/O
reads or writes that are
misaligned.

A 2- or 4-byte access is misaligned
when it crosses a 4-byte boundary; an
8-byte access is misaligned when it
crosses an 8-byte boundary. Ten byte
accesses are treated as two separate
accesses of 8 and 2 bytes each.

0CH CODE READ Number of instruction
reads whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0DH CODE TLB MISS Number of instruction
reads that miss the code
TLB whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction
reads that miss the
internal code cache
whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

T
(
able A-2. Events That Can Be Coun ted with the Penti um® Proc essor Perfo rmance-

Moni toring Counte rs (Contd.)

Event
Num.

Mnemonic E vent
Name Descri ptio n Comm ents

A-14

PERFORMANCE-MONITORING EVENTS

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into any
segment register in real or
protected mode including
the LDTR, GDTR, IDT

>
R,

and TR.

Segment loads are caused by explicit
segment register load instructions, far
control transfers, and task switches. Far
control transfers and task switches
causing a privilege level change will
signal this event twice. Note that
interrupts and exceptions may initiate a
far control transfer.

10H Reserved

11H Reserved

12H Branches Number of taken and not
taken branches

>
, including

conditional branches,
jumps

?
, calls, returns,

software interrupts, and
interrupt returns.

 Also counted as taken branches are
serializing instructions, VERR and
VERW instructions, some segment
descriptor loads, hardware interrupts
(including FLUSH#), and programmatic
exceptions that invoke a trap or fault
handler. The pipe is not necessarily
flushed. The number of branches
actually executed is measured, not the
number of predicted branches.

13H BTB_HITS Number of BTB hits that
occur.

Hits are counted only for those
instructions that are actually executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken
branches or BTB hits that
occur.

This event type is a logical OR of taken
branches and BTB hits. It represents an
event that may cause a hit in the BTB.
Specifically, it is either a candidate for a
space in the BTB or it is already in the
BTB.

15H PIPELINE FLUSHES Number of pipeline
flushes that occur.
Pipeline flushes are
caused by BTB misses on
taken branches

>
,

mispredictions,
exceptions, interrupts,
and some segment
descriptor loads.

The counter will not be incremented for
serializing instructions (serializing
instructions cause the prefetch queue
t

>
o be flushed but will not trigger the
Pipeline Flushed event counter) and
software interrupts (software interrupts
do not flush the pipeline).

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monitoring Counte rs (Contd.)

Event
Num.

Mnemonic Event
Name Descri pti on Comments

A-
·

15

PERFORM
.

ANCE-MONITORING EVENTS

16H INSTRUCTIONS_
EXECUTED

Number of instructions
executed (up to two per
clock).

Invocations of a fault handler are
considered instructions. All hardware
and software interrupts and exceptions
will also cause the count to be
incremented. Repeat prefixed string
instructions will only increment this
counter once despite the fact that the
repeat loop executes the same
instruction multiple times until the loop
criteria is satisfied. This applies to all
the

>
Repeat string instruction prefixes

(i.e., REP, REPE, REPZ, REPNE, and
REPNZ). This counter will also only
increment once per each HLT
instruction executed regardless of how
many cycles the processor remains in
the HA

>
LT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions
executed in the V_pipe. It
indicates the number of
instructions that were
paired.

This event is the same as the 16H
event except it only counts the number
of instructions actually executed in the
V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while a
bus cycle is in progress.
This event measures bus
use.

The count includes HLDA, AHOLD, and
BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while
the p

>
ipeline is stalled due

to full write buf
>

fers.

Full write buffers stall data memory
read misses, data memory write
misses, and data memory write hits to
S-state lines. Stalls on I/O accesses are
not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while
the p

>
ipeline is stalled

while waiting for data
memory reads.

Data TLB Miss processing is also
included in the count. The pipeline stalls
while a data memory read is in progress
including attempts to read that are not
bypassed while a line is being filled.

1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on writes
to E

>
- or M-state lines

1CH LOCKED BUS
CYCLE

Number of locked bus
cycles that occur as the
result of the LOCK prefix
or LOCK instruction,
page-table updates, and
descriptor table updates.

Only the read portion of the locked
read-modify-write is counted. Split
locked cycles (SCYC active) count as
two

>
separate accesses. Cycles

restarted due to BOFF# are not re-
counted.

T
(
able A-2. Events That Can Be Coun ted with the Penti um® Proc essor Perfo rmance-

Moni toring Counte rs (Contd.)

Event
Num.

Mnemonic E vent
Name Descri ptio n Comm ents

A-16

PERFORMANCE-MONITORING EVENTS

1DH I/O READ OR
WRITE CYCLE

Number of bus cycles
directed to I/O space.

Misaligned I/O accesses will generate
t

>
wo bus cycles. Bus cycles restarted
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of noncacheable
instruction or data
memory read bus cycles.
Count includes read
cycles caused by TLB
misses, but does not
include read cycles to I/O
space.

Cycles restarted due to BOFF# are not
re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address
generation interlock (AGI)
stalls. An AGI occurring in
both the U- and V-
pipelines in the same
clock signals this event
twice.

>

An AGI occurs when the instruction in
t

>
he execute stage of either of U- or V-
pipelines is writing to either the index or
base address register of an instruction
in the D2 (address generation) stage of
either the U- or V- pipelines.

20H Reserved

21H Reserved

22H FLOPS Number of floating-point
operations that occur.

Number of floating-point adds,
subtracts, multiplies, divides,
remainders, and square roots are
counted. The transcendental
instructions consist of multiple adds and
multiplies and will signal this event
multiple times. Instructions generating
t

>
he divide-by-zero, negative square
root, special operand, or stack
exceptions will not be counted.
Instructions generating all other
floating-point exceptions will be
counted. The integer multiply
instructions and other instructions
which use the FPU will be counted.

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monitoring Counte rs (Contd.)

Event
Num.

Mnemonic Event
Name Descri pti on Comments

A-
·

17

PERFORM
.

ANCE-MONITORING EVENTS

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on
register DR0 breakpoint.

The counters is incremented regardless
if the breakpoints are enabled or not.
However, if breakpoints are not
enabled, code breakpoint matches will
not be checked for instructions
executed in the V-pipe and will not
cause this counter to be incremented.
(They are checked on instruction
executed in the U-pipe only when
breakpoints are not enabled.) These
events correspond to the signals driven
on the BP[3:0] pins. Refer to Chapter
15, Debugging and Performance
Monitoring, for more information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on
register DR1 breakpoint.

Refer to comment for 23H event.

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on
register DR2 breakpoint.

Refer to comment for 23H event.

26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on
register DR3 breakpoint.

Refer to comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data
reads and/or writes
(internal data cache hit
and miss combined).

Split cycle reads and writes are counted
individually. Data Memory Reads that
are part of TLB miss processing are not
included. These events may occur at a
maximum of two per clock. I/O is not
included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read
and/or write accesses that
miss the internal data
cache whether or not the
access is cacheable or
noncacheable.

Additional reads to the same cache line
after the first BRDY# of the burst line fill
is returned but before the final (fourth)
BRDY# has been returned, will not
cause the counter to be incremented
additional times. Data accesses that
are part of TLB miss processing are not
included. Accesses directed to I/O
space are not included.

T
(
able A-2. Events That Can Be Coun ted with the Penti um® Proc essor Perfo rmance-

Moni toring Counte rs (Contd.)

Event
Num.

Mnemonic E vent
Name Descri ptio n Comm ents

A-18

PERFORMANCE-MONITORING EVENTS

2AH BUS_OWNERSHIP_
LATENCY (Counter
0)

The time from LRM bus
ownership request to bus
ownership granted (that
is, the time from the
earlier of a PBREQ (0),
PHITM# or HITM#
assertion to a PBGNT
assertion).

The ratio of the 2AH events counted on
counter 0 and counter 1 is the average
stall time due to bus ownership conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss
ownership transfers (that
is, the number of PBREQ
(0) assertions.

The ratio of the 2AH events counted on
counter 0 and counter 1 is the average
stall time due to bus ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX™
instructions executed in
the U-

>
pipe.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX™
instructions executed in
the V

>
-pipe.

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a
processor identified a hit
to a

>
modified line due to a

memory access in the
other processor (PHITM
(O)).

If the average memory latencies of the
system are known, this event enables
t

>
he user to count the Write Backs on
PHITM(O) penalty and the Latency on
Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data
lines in the L1 cache
(PHIT (O)).

2DH EMMS_
INSTRUCTIONS_
EXECUTED
(Counter 0)

Number of EMMS
instructions executed.

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions
between MMX™ and
floating-point instructions
or vice versa. An even
count indicates the
processor is in MMX™
state. an odd count
indicates it is in FP state.

This event counts the first floating-point
instruction following an MMX™
instruction or first MMX™ instruction
following a floating-point instruction.
The count may be used to estimate the
penalty in transitions between floating-
point state and MMX™ state.

2DH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the bus
is busy due to the
processor’s own activity,
i.e., the bus activity that is
caused by the processor.

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monitoring Counte rs (Contd.)

Event
Num.

Mnemonic Event
Name Descri pti on Comments

A-
·

19

PERFORM
.

ANCE-MONITORING EVENTS

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write accesses
to noncac

>
heable memory.

The count includes write cycles caused
by TLB misses and I/O write cycles.
Cycles restarted due to BOFF# are not
re-counted.

2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED
(Counter 0)

Number of saturating
MMX™ instructions
executed, independently
of whether they actually
saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX™
instructions that used
saturating arithmetic and
that

>
 at least one of its

results actually saturated.

If an MMX™ instruction operating on 4
doublewords saturated in three out of
the

>
four results, the counter will be

incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the
processor is not idle due
to

>
HLT instruction.

This event will enable the user to
calculate “net CPI”. Note that during the
ti

>
me that the processor is executing the

HLT instruction, the Time-Stamp
Counter is not disabled. Since this
event is controlled by the Counter
Controls CC0, CC1 it can be used to
calculate the CPI at CPL=3, which the
TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the
pipeline is stalled due to a
data cache translation
look-aside buffer (TLB)
miss.

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX™
instruction data reads.

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX™
instruction data read
misses.

32H FLOATING_POINT_
STALLS_DURATION
(Counter 0)

Number of clocks while
pipe is stalled due to a
floating-point freeze.

32H TAKEN_BRANCHES
(Counter 1)

Number of taken
branches.

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1 stage
cannot issue ANY
instructions since the
FIFO buffer is empty.

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO buffer.

T
(
able A-2. Events That Can Be Coun ted with the Penti um® Proc essor Perfo rmance-

Moni toring Counte rs (Contd.)

Event
Num.

Mnemonic E vent
Name Descri ptio n Comm ents

A-20

PERFORMANCE-MONITORING EVENTS

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1
stage issues just a single
instruction since the FIFO
buffer had just one
instruction ready.

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO buffer.
When combined with the previously
defined events, Instruction Executed
(16H) and Instruction Executed in the V-
pipe (17H), this event enables the user
t

>
o calculate the numbers of time pairing
rules prevented issuing of two
instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes
caused by MMX™
instructions.

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write
misses caused by MMX™
instructions.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline
flushes due to wrong
branch predictions
resolved in either the E-
stage or the WB-stage.

The count includes any pipeline flush
due to a branch that the pipeline did not
follow correctly. It includes cases where
a branch was not in the BTB, cases
where a branch was in the BTB but was
mispredicted, and cases where a
branch was correctly predicted but to
t

>
he wrong address. Branches are
resolved in either the Execute stage (E-
stage) or the Writeback stage (WB-
stage). In the later case, the
misprediction penalty is larger by one
clock. The difference between the 35H
event count in counter 0 and counter 1
is the number of E-stage resolved
branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE (Counter
1)

Number of pipeline
flushes due to wrong
branch predictions
resolved in the WB-stage.

Refer to note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned
data memory references
when executing MMX™
instructions.

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monitoring Counte rs (Contd.)

Event
Num.

Mnemonic Event
Name Descri pti on Comments

A-
·

21

PERFORM
.

ANCE-MONITORING EVENTS

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during
pipeline stalls caused by
waits form MMX™
instruction data memory
reads.

37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns
predicted incorrectly or
not predicted at all.

The count is the difference between the
tot

>
al number of executed returns and

the
>

number of returns that were
correctly predicted. Only RET
instructions are counted (for example,
IRET instructions are not counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted
returns (whether they are
predicted correctly and
incorrectly.

Only RET instructions are counted (for
example, IRET instructions are not
counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the pipe
is stalled since the
destination of previous
MMX™ multiply
instruction is not ready
ye@ t.

The counter will not be incremented if
there is

>
 another cause for a stall. For

each occurrence of a multiply interlock
thi

>
s event will be counted twice (if the

stalled instruction comes on the next
clock after the multiply) or by one (if the
stalled instruction comes two clocks
after the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a
MOVD/MOVQ instruction
store is stalled in D2 stage
due to a previous MMX™
operation with a
destination to be used in
the s

>
tore instruction.

39H RETURNS
(Counter 0)

Number or returns
executed.

Only RET instructions are counted;
IRET instructions are not counted. Any
exception taken on a RET instruction
and any interrupt recognized by the
processor on the instruction boundary
prior to the execution of the RET
instruction will also cause this counter
to

>
be incremented.

39H Reserved

3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries in
the B

>
ranch Target Buffer.

False entries are causes for
misprediction other than a wrong
prediction.

T
(
able A-2. Events That Can Be Coun ted with the Penti um® Proc essor Perfo rmance-

Moni toring Counte rs (Contd.)

Event
Num.

Mnemonic E vent
Name Descri ptio n Comm ents

A-22

PERFORMANCE-MONITORING EVENTS

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the BTB
predicted a not-taken
branch as taken.

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_
INSTRUCTIONS
(Counter 0)

Number of clocks while
the pipeline is

>
stalled due

to full
>

 write buffers while
executing MMX™
instructions.

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during
stalls on MMX™
instructions writing to E-
or M-state lines.

T
(
able A-2. Event s That Can Be Cou nted with the Pentium ® Processor Performance-

Monitoring Counte rs (Contd.)

Event
Num.

Mnemonic Event
Name Descri pti on Comments

B
Model-Specific
Registers

B-1

APPENDIX B
7

MODEL-SPECIFIC REGISTERS

T
¡
able B-1 lists the model-specific registers (MSRs) that can be read with the RDMSR and writ-

ten with the W
½

RMSR instructions. Register addresses are given in both hexadecimal and deci-
mì al; the register name is the mnemonic register name; the bit description describes individual
b

Ë
its in registers.

NO
'

TE

The registers with addresses 0H, 1H, 10H, 11H, 12H, and 13H in Table B-1
are available only in « the Pentium® processor. Code code that accesses
r¦ egisters 0H, 1H, and 10H will run on a P6 family processor without
genÉ erating exceptions; however, code that accesses registers 11H, 12H, and
13H will generate exceptions on a P6 family processor. The MSRs in this
table that ar

½
e shaded are available only in the Pentium® II and later processors

in
»

 the P6 family.

Table B-1. Model-Specific Regis ters (M SRs)

Register Address

 Hex Dec Register Name Bi t Descripti on

0H 0 P5_MC_ADDR
(Pentium® Processor Only)

1H 1 P5_MC_TYPE
(Pentium® Processor Only)

10H 16 TSC

11H 17 CESR
(Pentium® Processor Only)

12H 18 CTR0
(Pentium® Processor Only)

13H 19 CTR1
(Pentium® Processor Only)

1BH 27 APICBASE

7:0 Reserved

8 Boot Strap Processor indicator Bit. BSP= 1

10:9 Reserved

11 APIC Global Enable Bit - Permanent til reset
Enabled = 1, Disabled = 0

31:12 APIC Base Address

B-2

MODEL-SPECIFIC REGISTERS

63:32 Reserved

2AH 42 EBL_CR_POWERON

0 Reserved1

1 Data Error Checking Enable
1 = Enabled
0 = Disabled
Read/Write

2 Response Error Checking Enable
FRCERR Observation Enable
1 = Enabled
0 = Disabled
Read/Write

3 AERR# Drive Enable
1 = Enabled
0 = Disabled
Read/Write

4 BERR# Enable for initiator bus requests
1 = Enabled
0 = Disabled
Read/Write

5 Reserved

6 BERR# Driver Enable for initiator internal errors
1 = Enabled
0 = Disabled
Read/Write

7 BINIT# Driver Enable
1 = Enabled
0 = Disabled
Read/Write

8 Output Tri-state Enabled
1 = Enabled
0 = Disabled
Read

9 Execute BIST
1 = Enabled
0 = Disabled
Read

10 AERR# Observation Enabled
1 = Enabled
0 = Disabled
Read

11 Reserved

Table B-1. Model-Specifi c Registers (MSRs) (Contd.)

Register Add ress

 Hex Dec Register Name Bit Descrip tion

B-3

M
2

ODEL-SPECIFIC REGISTERS

12 BINIT# Observation Enabled
1 = Enabled
0 = Disabled
Read

13 In Order Queue Depth
1 = 1
0 = 8
Read

14 1Mbyte Power on Reset Vector
1 = 1Mbyte
0 = 4Gbytes
Read Only

 15 FRC Mode Enable
1 = Enabled
0 = Disabled
Read Only

 17:16 APIC Cluster ID
Read

19:18 Reserved

21: 20 Symmetric Arbitration ID
Read

24:22 Clock Frequency Ratio
Read

25 Reserved

26 Low Power Mode Enable
Read/Write

 63:27 Reserved1

33H 51 TEST_CTL Test Control Register

29:0 Reserved

30 Streaming Buffer Disable

31 Disable LOCK# assertion for split locked access

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register

 88 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and
read from the L2

 89 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and
read from the L2

 8A 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and
read from the L2

Table B-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

 Hex Dec Register Name Bi t Descripti on

B-4

MODEL-SPECIFIC REGISTERS

8BH 139 BIOS_SIGN/BBL_CR_D3[
63:0]

BIOS Update Signature Register or Chunk 3 data
register D[63:0]: used to write to and read from the L2
depending on the usage model

C1H 193 PERFCTR0

C2H 194 PERFCTR1

FEH 254 MTRRcap

 116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]
BBL_CR_ADDR [31:3]
BBL_CR_ADDR [2:0]

A
·

ddress register: used to send specified address (A31-
A

·
3) to L2 during cache initialization accesses.

Reserved,
A

·
ddress bits [35:3]

Reserved Set to 0.

 118 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read
ECC to/from L2

 119 281 BBL_CR_CTL

BL_CR_CTL[63:22]
BBL_CR_CTL[21]

BBL_CR_CTL[20:19]
BBL_CR_CTL[18]
BBL_CR_CTL[17]
BBL_CR_CTL[16]
BBL_CR_CTL[15:14]
BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]
BBL_CR_CTL[7]
BBL_CR_CTL[6:5]
BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

Control register: used to program L2 commands to be
issued via cache configuration accesses mechanism.
A

·
lso receives L2 lookup response

Reserved
Processor number2

Disable = 1
Enable = 0

Reserved
User supplied ECC
Reserved
L2 Hit
Reserved
State from L2
Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00
W

-
ay from L2

W
-

ay 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11
W

-
ay to L2

Reserved
State to L2
L2 Command

Data Read w/ LRU update (RLU)
T

�
ag Read w/ Data Read (TRR)

T
�

ag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
T

�
ag Write w/ Data Read (TWR)

T
�

ag Write w/ Data Write (TWW)
T

�
ag Write (TW)

 11A 282 BBL_CR_TRIG T
�

rigger register: used to initiate a cache configuration
accesses access, Write only with Data=0.

 11B 283 BBL_CR_BUSY Busy register: indicates when a cache configuration
accesses L2 command is in progress. D[0] = 1 = BUSY

Table B-1. Model-Specifi c Registers (MSRs) (Contd.)

Register Add ress

 Hex Dec Register Name Bit Descrip tion

B-5

M
2

ODEL-SPECIFIC REGISTERS

 11E 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]
BBL_CR_CTL3[25]
BBL_CR_CTL3[24]
BBL_CR_CTL3[23]
BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]
BBL_CR_CTL3[18]
BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]
BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]
BBL_CR_CTL3[7]
BBL_CR_CTL3[6]
BBL_CR_CTL3[5]
BBL_CR_CTL3[4:1]
BBL_CR_CTL3[0]

Control register 3: used to configure the L2 Cache

Reserved
Cache bus fraction (read only)
Reserved
L2 Hardware Disable (read only)
L2 Physical Address Range support

64Gbytes
32Gbytes
16Gbytes
8Gbytes
4Gbytes
2Gbytes
1Gbytes
512Mbytes

Reserved
Cache State error checking enable (read/write)
Cache size per bank (read/write)

256Kbytes
512Kbytes
1Mbyte
2Mbyte
4Mbytes

Number of L2 banks (read only)
L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)
CRTN Parity Check Enable (read/write)
A

·
ddress Parity Check Enable (read/write)

ECC Check Enable (read/write)
L2 Cache Latency (read/write)
L2 Configured (read/write)

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 EVNTSEL0

7:0 Event Select
(Refer to Performance Counter section for a list of
event encodings)

15:8 UMASK:
Unit Mask Register Set to 0 to enable all count options

16 USER:
Controls the counting of events at Privilege levels of 1,
2, and 3

Table B-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

 Hex Dec Register Name Bi t Descripti on

B-6

MODEL-SPECIFIC REGISTERS

17 OS:
Controls the counting of events at Privilege level of 0

18 E:
Occurrence/Duration Mode Select
1 = Occurrence
0 = Duration

19 PC:
Enabled the signaling of performance counter overflow
via BP� 0 pin

20 INT:
Enables the signaling of counter overflow via input to
AP

·
IC

1 = Enable
0 = Disable

22 ENABLE:
Enables the counting of performance events in both
counters
1 = Enable
0 = Disable

23 INV:
Inverts the result of the CMASK condition
1 = Inverted
0 = Non-Inverted

31:24 CMASK:
Counter Mask

187H 391 EVNTSEL1

7:0 Event Select
(Refer to Performance Counter section for a list of
event encodings)

15:8 UMASK:
Unit Mask Register Set to Zero to enable all count
options

16 USER:
Controls the counting of events at Privilege levels of 1,
2, and 3

17 OS:
Controls the counting of events at Privilege level of 0

18 E:
Occurrence/Duration Mode Select
1 = Occurrence
0 = Duration

19 PC:
Enabled the signaling of performance counter overflow
via BP0 pin.

Table B-1. Model-Specifi c Registers (MSRs) (Contd.)

Register Add ress

 Hex Dec Register Name Bit Descrip tion

B-7

M
2

ODEL-SPECIFIC REGISTERS

20 INT:
Enables the signaling of counter overflow via input to
AP

·
IC

1 = Enable
0 = Disable

23 INV:
Inverts the result of the CMASK condition
1 = Inverted
0 = Non-Inverted

31:24 CMASK:
Counter Mask

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

13:7 Reserved

14 Enable/Disable Execution Trace Messages

15 Enable/Disable Execution Trace Messages

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

Table B-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

 Hex Dec Register Name Bi t Descripti on

B-8

MODEL-SPECIFIC REGISTERS

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

63 MC_STATUS_V

62 MC_STATUS_O

61 MC_STATUS_UC

60 MC_STATUS_EN

59 MC_STATUS_MISCV

Table B-1. Model-Specifi c Registers (MSRs) (Contd.)

Register Add ress

 Hex Dec Register Name Bit Descrip tion

B-9

M
2

ODEL-SPECIFIC REGISTERS

NOTES:
1. Bit 0 of this register has been redefined several times, and is no longer used in Pentium® Pro processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-spe-

cific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is
wr= ite-once. The processor number feature will be disabled until the processor is reset.

3. The Pentium® III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If
the F

>
SB frequency selected is greater than the internal FSB frequency the processor will shutdown. If the

FSB selected is less than the internal FSB frequency the BIOS may choose to use bit 11 to implement its
own shutdown policy.

58 MC_STATUS_ADDRV

57 MC_STATUS_DAM

31:16 MC_STATUS_MCACOD

15:0 MC_STATUS_MSCOD

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in
the

>
P6 family processors

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in
the

>
P6 family processors

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in
the

>
P6 family processors

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6
Family processors

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in
the

>
P6 family processors

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in
the

>
P6 family processors

Table B-1. Model-Specific Registers (MSRs) (Contd.)

Register Address

 Hex Dec Register Name Bi t Descripti on

C
Dual-Processor
Bootup Sequence
Example
(Specific to Pentium® Processors)

C-1

APPENDIX C
7

DUAL-PROCESSOR (DP) BOOTUP SEQUENCE
EXAMPLE (SPECIFIC TO PENTIUM ®

PROCESSORS)

The following example shows the DP protocol for booting two Pentium® processors (a primary
pro­ cessor and a secondary processor) in a DP system and initializing their APICs. For dual-pro-
cº essor systems based on Pentium® processors, the APIC ID of the primary processor is always0.

The fo
¡

l lowing constants and data definitions are used in the accompanying code examples. They
are b« ased on the addresses of the APIC registers as defined in Table 7-1 in Chapter 7.

ICR_LOW EQU 0FEE00300H

IC
Ñ

R_HI EQU 0FEE00310H

S
°

VR EQU 0FEE000F0H

APIC_ID EQU 0FEE00020H

L
ï
VT3 EQU 0FEE00370H

AP
Å

IC_ENABLED EQU 100H

BOOT_ID DW ?

UP
Ã

GRD_ID DW ?

C.1. PRIMARY PROCESSOR’S SEQUENCE OF EVENTS

1. The primary processor boots at the Intel Architecture address and executes until it is ready
to activ

½
ate the secondary processor.

2
²
. Initialization software should execute the CPUID instruction to determine if the primary

pr­ ocessor is a “GenuineIntel.” The values of EAX and EDX should be saved into a config-
ur� ation RAM space for use later.

If
Ñ

 the type field (in the EAX register following CPUID instruction execution) is 01B in bits
13 and 14, respectively, the processor is a future Pentium® OverDrive® processor and the
Pen

¼
tium® processor (735/90, 815/100, 1000,120, 1110/133) has been put to sleep. This

meanì s the system is a uniprocessor system and normal AT system configuration can
conº tinue. Go to step 14 to configure the APIC.

If
Ñ

 the type field is 00B, the processor is the primary processor and detection of the
s¾ econdary processor is required. Continue with steps 3 through 13.

C-2

DUAL-PROCESSOR (DP) BOOTUP SEQUENCE EXAMPLE (SPECIFIC

3.
±

The following operation can be used to detect the secondary processor:

Set a ti
°

mer before sending the start-up IPI to the secondary processor. In the secondary
pro­ cessor’s initialization routine, it should write a value into memory indicating its
p­ resence. The primary processor can then use the timer expiration to check if something
has

	
 been written into memory. If the timer expires and nothing has been written into

memì ory, the secondary processor is not present or some error has occurred.

4. Load start-up code for the secondary processor to execute into a 4-KByte page in the lower
1 MByte of memory.

5.
è

Switch to protected mode (to access APIC address space above 1 MByte).

6
â
. Determine the Pentium® processor’s APIC ID from the local APIC ID register (default is

0)
¹

:
MOV ESI, APIC_ID; address of local APIC ID register

MOV EAX, [ESI]

AND EAX, 0F000000H; zero out all other bits except APIC ID

MOV BOOT_ID, EAX; save in memory

Sav
°

e the ID in the configuration RAM (optional).

7.
%

Determine APIC ID of the secondary processor and save it in the configuration RAM
(

à
optional).

MOV EAX, BOOT_ID

XOR EAX, 100000H; toggle lower bit of ID field (bit 24)

MOV SECOND_ID, EAX

8.
Á

Convert the base address of the 4-KByte page for the secondary processor’s bootup code
into

»
 8-bit vector. The 8-bit vector defines the address of a 4-KByte page in the real-address

mode address space (1-MByte space). For example, a vector of 0BDH specifies a start-up
memì ory address of 000BD000H.

Use
Ã

steps 9 and 10 to use the LVT APIC error handling entry to deal with unsuccessful
de

§
l ivery of the start-up IPI.

9.
A

Enable the local APIC by writing to spurious vector register (SVR). This is required to do
APIC

Å
 error handling via the local vector table.

MOV ESI, SVR ; address of SVR

MOV EAX, [ESI]

OR EAX, APIC_ENABLED; set bit 8 to enable (0 on reset)

MOV [ESI], EAX

C-3

DUAL-PROCESSOR (DP) BOOTUP SEQUENCE EXAMPLE (SPECIFIC

10. Program LVT3 (APIC error interrupt vector) of the local vector table with an 8-bit vector
fo

¿
r handling APIC errors.

MOV ESI, LVT3

MOV EAX, [ESI]

AND EAX, FFFFFF00H; clear out previous vector

OR EAX, 000000xxH; xx is the 8-bit vector for APIC error

; handling.

MOV [ESI], EAX

11. W
®

rite APIC ICRH with address of the secondary processor’s APIC.

MOV ESI, ICR_HI ; address of ICR high dword

MOV EAX, [ESI] ; get high word of ICR

AND EAX, 0F0FFFFFFH; zero out ID Bits

OR EAX, SECOND_ID; write ID into appropriate bits - don’t

; affect reserved bits

MOV [ESI], SECOND_ID; write upgrade ID to destination field

12. Set the timer with an appropriate value (~100 milliseconds).

13. Write APIC ICRL to send a start-up IPI message to the secondary processor via the APIC.

MOV ESI, ICR_LOW; write address of ICR low dword

MOV EAX, [ESI] ; get low dword of ICR

AND EAX, 0FFF0F800H; zero out delivery mode and vector fields

OR EAX, 000006xxH; 6 selects delivery mode 110 (StartUp IPI)

; xx should be vector of 4kb page as

; computed in Step 8.

MOV [ESI], EAX

14. Configure the APIC as appropriate.

C.2. SECONDARY PROCESSOR’S SEQUENCE OF EVENTS
FOLLOWING RECEIPT OF START-UP IPI

If
Ñ

the secondary processor’s APIC is to be used for symmetric multiprocessing, the secondary
pr­ ocessor must undertake the following steps:

1. Switch to protected mode to access the APIC addresses.

2
²
. Initi alize its local APIC by writing to bit 8 of the SVR register and programming its LVT3

for error handling.

3.
±

Configure the APIC as appropriate.

4
�
. Enable interrupts.

5
è
. (Optional.) Execute the CPUID instruction and write the results into the configuration

RAM
õ

.

6.
â

Do either of the following:

— Execute a HALT instruction and wait for an IPI from the operating system.

— Continue execution.

D
Multiple-Pr ocessor
(MP) Bootup
Sequence Example
(Specific to P6 Family Processors)

D-1

APPENDIX D
7

MULTIPLE-PROCESSOR (MP) BOOTUP
SEQUENCE EXAMPLE (SPECIFIC TO P6 FAMILY

PROCESSORS)

The following example illustrates the use of the MP protocol to boot two P6 family processors
in

»
 a multiple-processor (MP) system and initiali ze their APICs. The primary processor (the pro-

cesº sor that won the “race for the flag”) is called the boot strap processor (BSP) and the second-
ary « processor is called the application processor (AP).

The fo
¡

llowing constants and data definitions are used in the accompanying code examples. They
are b« ased on the addresses of the APIC registers as defined in Table 7-1 in Chapter 7.

ICR
Ñ

_LOW EQU 0FEE00300H

IC
Ñ

R_HI EQU 0FEE00310H

S
°

VR EQU 0FEE000F0H

API
Å

C_ID EQU 0FEE00020H

L
ï
VT3 EQU 0FEE00370H

APIC_ENABLED EQU 100H

B
ë

OOT_ID DW ?

S
°

ECOND_ID DW ?

D.1. BSP’S SEQUENCE OF EVENTS

1. The BSP boots at the Intel Architecture address and executes until it is ready to activate the
AP

Å
.

2. Initialization software should execute the CPUID instruction to determine if the BSP is a
“GenuineIntel.” The values of EAX and EDX should be saved into a configuration RAM
space f¾ or use later.

3.
±

The following operation can be used to detect the AP:

Set a tim
°

er before sending the start-up IPI to the AP. In the AP’s initialization routine, it
shou¾ ld write a value into memory indicating its presence. The BSP can then use the timer
ex� piration to check if something has been written into memory. If the timer expires and
n³ othing has been written into memory, the AP is not present or some error has occurred.

4.
�

Load start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of
memory.

D-2

MULTIPLE-PROCESSOR (MP) BOOTUP SEQUENCE EXAMPLE

5.
è

Switch to protected mode (to access APIC address space above 1 MByte) or change the
APIC

Å
 base to less than 1 MByte and insure it is mapped to an uncached (UC) memory

ty
½

pe.

6.
â

Determine the BSP’s APIC ID from the local APIC ID register (default is 0):
MOV ESI, APIC_ID; address of local APIC ID register

MOV EAX, [ESI]

AND EAX, 0F000000H; zero out all other bits except APIC ID

MOV BOOT_ID, EAX; save in memory

Sav
°

e the ID in the configuration RAM (optional).

7.
%

Determine APIC ID of the AP and save it in the configuration RAM (optional).

MOV EAX, BOOT_ID

XOR EAX, 100000H; toggle lower bit of ID field (bit 24)

MOV SECOND_ID, EAX

8.
Á

Convert the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector.
The 8-bit vector defines the address of a 4-KByte page in the real-address mode address
space (1¾ -MByte space). For example, a vector of 0BDH specifies a start-up memory
a« ddress of 000BD000H.

Use
Ã

steps 9 and 10 to use the LVT APIC error handling entry to deal with unsuccessful
de

§
l ivery of the start-up IPI.

9.
A

Enable the local APIC by writing to spurious vector register (SVR). This is required to do
APIC error handling via the local vector table.

MOV ESI, SVR ; address of SVR

MOV EAX, [ESI]

OR EAX, APIC_ENABLED; set bit 8 to enable (0 on reset)

MOV [ESI], EAX

10. Program LVT3 (APIC error interrupt vector) of the local vector table with an 8-bit vector
for handling APIC errors.
MOV ESI, LVT3

MOV EAX, [ESI]

AND EAX, FFFFFF00H; clear out previous vector

OR EAX, 000000xxH; xx is the 8-bit vector for APIC error

; handling.

MOV [ESI], EAX

11. Write APIC ICRH with address of the AP’s APIC.

MOV ESI, ICR_HI ; address of ICR high dword

MOV EAX, [ESI] ; get high word of ICR

AND EAX, 0F0FFFFFFH; zero out ID Bits

OR EAX, SECOND_ID; write ID into appropriate bits - don’t

; affect reserved bits

MOV [ESI], SECOND_ID; write upgrade ID to destination field

D-3

MULTIPLE-PROCESSOR (MP) BOOTUP SEQUENCE EXAMPLE

12. Initialize the memory location into which the AP will write to signal it’ s presence.

13. Set the timer with an appropriate value (~100 milliseconds).

14. Write APIC ICRL to send a start-up IPI message to the AP via the APIC.

MOV ESI, ICR_LOW; write address of ICR low dword

MOV EAX, [ESI] ; get low dword of ICR

AND EAX, 0FFF0F800H; zero out delivery mode and vector fields

OR EAX, 000006xxH; 6 selects delivery mode 110 (StartUp IPI)

; xx should be vector of 4kb page as

; computed in Step 8.

MOV [ESI], EAX

15. Wait for the timer interrupt or an AP signal appearing in memory.

16. If necessary, reconfigure the APIC and continue with the remaining system diagnostics as
app« ropriate.

D.2. AP’S SEQUENCE OF EVENTS FOLLOWING RECEIPT OF
START-UP IPI

If the AP’s APIC is to be used for symmetric multiprocessing, the AP must undertake the fol-
l

Ê
owing steps:

1. Switch to protected mode to access the APIC addresses.

2
²
. Initialize its local APIC by writing to bit 8 of the SVR register and programming its LVT3

fo
¿

r error handling.

3.
±

Configure the APIC as appropriate.

4
�
. Enable interrupts.

5
è
. (Optional) Execute the CPUID instruction and write the results into the configuration

RAM.

6
â
. Write into the memory location that is being used to signal to the BSP that the AP is

execu� ting.

7
%
. Do either of the following:

— Continue execution (that is, self-configuration, MP Specification Configuration table
comº pletion).

— Execute a HLT instruction and wait for an IPI from the operating system.

E
Programming the
LINT0 and LINT1
Inputs

E-1

APPENDIX E
7

PROGRAMMING THE LINT0 AND LINT1 INPUTS

The
¡

following procedure describes how to program the LINT0 and LINT1 local APIC pins on
a p« rocessor after multiple processors have been booted and initialized (as described in Appendix
C

ª
 and Appendix D). In this example, LINT0 is programmed to be the ExtINT pin and LINT1 is

pro­ grammed to be the NMI pin.

E.1. CONSTANTS

The following constants are defined:

L
ï
VT1 EQU 0FEE00350H

LVT2 EQU 0FEE00360H

L
ï
VT3 EQU 0FEE00370H

SVR
°

 EQU 0FEE000F0H

E.2. LINT[0:1] PINS PROGRAMMING PROCEDURE

Us
Ã

e the following to program the LINT[1:0] pins:

1. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR

MOV EAX, [ESI]

OR EAX, APIC_ENABLED; set bit 8 to enable (0 on reset)

MOV [ESI], EAX

3
±
. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all processors

corº es listed in the destination as an interrupt that originated in an externally connected
i

»
nterrupt controller.

MOV ESI, LVT1

MOV EAX, [ESI]

AND EAX, 0FFFE58FFH; mask off bits 8-10, 12, 14 and 16

OR EAX, 700H ; Bit 16=0 for not masked, Bit 15=0 for edge

; triggered, Bit 13=0 for high active input

; polarity, Bits 8-10 are 111b for ExtINT

MOV [ESI], EAX ; Write to LVT1

E-2

PROGRAMMING THE LINT0 AND LINT1 INPUTS

4. Program LVT2 as NMI, which delivers the signal on the NMI signal of all processor cores
list

Ê
ed in the destination.

MOV ESI, LVT2

MOV EAX, [ESI]

AND EAX, 0FFFE58FFH; mask off bits 8-10 and 15

OR EAX, 000000400H; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input

; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX ; Write to LVT2

;Unmask 8259 interrupts and allow NMI.

INDEX-1

INDEX

Numer ics
16-bit code, mixing with 32-bit code.17-1
32-bit code, mixing with 16-bit code.17-1
8086

emulation, support for16-1
processor, exceptions and interrupts16-8

8086/8088 processor .18-7
8087 math coprocessor18-7
82489DX, software visible differences between the

local APIC on a Pentium Pro processor
and the 82489DX.7-44

A
A

·
 (accessed) flag, page-table entry3-27

A
·

20M# signal . 16-3, 18-35
A

·
borts

description of .5-5
restarting a program or task after5-7

A
·

C (alignment check) flag,
EFLAGS register 2-9, 5-50, 18-6

A
·

ccess rights
checking .2-20
checking caller privileges4-28
description of .4-26
invalid values .18-24

ADC
·

instruction .7-4
ADD

·
instruction .7-4

A
·

ddress
size prefix .17-2
space, of task .6-17

A
·

ddress translation
2-MByte pages .3-32
4-KByte pages 3-20, 3-30
4-MByte pages .3-21
in real-address mode16-3
logical to linear .3-7
overview .3-6

A
·

ddressing, segments .1-7
A

·
dvanced programmable interrupt controller

(see APIC, I/O APIC, or Loal APIC)
A

·
lignment

alignment check exception5-50
checking .4-30
exception .18-13

A
·

lignment check exception (#AC) . . . 5-50, 18-13,
18-26

A
·

M (alignment mask) flag,
CR0 control register 2-14, 18-22

AND
·

instruction .7-4
A

·
PIC Base field, APIC_BASE_MSR 7-19

A
·

PIC bus
arbitration mechanism and protocol7-36
bus arbitration .7-15

bus message format 7-37
description of. 7-13
diagram of . 7-14
EOI message format 7-37
nonfocused lowest priority message 7-38
short message format 7-37
SMI message . 12-2
status cycles . 7-40
structure of . 7-14

AP
·

IC (see also I/O APIC or Loal APIC)
A

·
PIC_BASE_MSR . 7-19

AP
·

R (arbitration priority register), local APIC . 7-32
Ar

·
bitration
A

·
PIC bus . 7-36

priority, local APIC. 7-22
A

·
RPL instruction.2-20, 4-30

Atomic operations
automatic bus locking 7-3
effects of a locked operation on internal

processor caches. 7-6
guaranteed, description of. 7-2
overview of .7-2, 7-3
software-controlled bus locking. 7-4

Auto HALT restart
field, SMM . 12-13
SMM . 12-13

Automatic bus locking. 7-3

B
B (busy) flag, TSS descriptor . 6-7, 6-12, 6-16, 7-3
B (default stack size) flag, segment descriptor . . .

17-2, 18-34
B0-B3 (breakpoint condition detected) flags,

DR6 register 15-4
Backlink (see Previous task link)
Base address fields, segment descriptor 3-11
BD (debug register access detected) flag,

DR6 register15-4, 15-10
Binary numbers . 1-7
BINIT# signal . 2-22
Bit order . 1-6
BOUND instruction5-3, 5-27
BOUND range exceeded exception (#BR) . . . 5-27
BP0#, BP1#, BP2#, and BP3# pins 15-12
Breakpoint exception (#BP) 5-3, 5-25, 15-1, 15-11
Breakpoints

breakpoint exception (#BP). 15-1
data breakpoint . 15-7
data breakpoint exception conditions 15-9
description of. 15-1
DR0-DR3 debug registers. 15-4
example. 15-7

INDEX

INDEX-2

exception .5-25
fi

�
eld recognition. .15-6

general-detect exception condition15-10
instruction breakpoint15-7
instruction breakpoint exception condition .15-8
I/O breakpoint exception conditions15-9
LEN0 - LEN3 (Length) fields, DR7 register.15-6
R/W0-R/W3 (read/write) fields,

DR7 register .15-6
single-step exception condition.15-10
t

>
ask-switch exception condition 15-11

BS (single step) flag, DR6 register.15-5
BSP (bootstrap processor) flag,

A
·

PIC_BASE_MSR7-19
BSWAP instruction. .18-5
BT (task switch) flag, DR6 register. . . . 15-5, 15-11
BTC instruction. .7-4
BTF (single-step on branches) flag,

DebugCtlMSR register 15-12, 15-14
BTR instruction. .7-4
BTS instruction. .7-4
Built-in self-test (BIST)

description of .8-1
performing. .8-2

Bus
arbitration, APIC bus.7-15
errors, detected with machine-check

architecture .13-11
hold .18-37
locking. 7-3, 18-37

Byte order. .1-6

C
�

C (conforming) flag, segment descriptor 4-13
C1 flag, FPU status word 18-9, 18-18
C2 flag, FPU status word18-9
Cache control .9-18

cache management instructions9-15
cache mechanisms in Intel Architecture

processors. .18-30
caching terminology9-4
CD flag, CR0 control register 9-9, 18-23
choosing a memory type.9-8
fi

�
xed-range MTRRs.9-22

fl
�

ags and fields .9-9
fl

�
ushing TLBs .9-17

G (global) flag, page-directory entries . . . 9-12,
9-17

G (global) flag, page-table entries . . 9-12, 9-17
internal caches .9-1
MemTypeGet() function 9-28
MemTypeSet() function 9-29
MESI protocol . 9-4, 9-9
methods of caching available9-5
MTRR initialization9-27
MTRR precedences9-26
MTRRs, description of 9-18

multiple-processor considerations. 9-31
NW flag, CR0 control register9-12, 18-23
operating modes . 9-11
overview of . 9-1
PCD flag, CR3 control register 9-12
PCD flag, page-directory entries . . . 9-12, 9-13,

9-32
PCD flag, page-table entries . . 9-12, 9-13, 9-32
precedence of controls 9-13
preventing caching 9-14
protocol . 9-9
PWT flag, CR3 control register 9-12
PWT flag, page-directory entries. . . .9-12, 9-32
PWT flag, page-table entries.9-12, 9-32
remapping memory types 9-27
setting up memory ranges with MTRRs . . 9-21
variable-r� ange MTRRs 9-23

Caches . 2-6
cache hit . 9-5
cache line . 9-4
cache line fill . 9-5
cache write hit . 9-5
description of. 9-1
effects of a locked operation on internal

processor caches. 7-6
enabling. 8-8
management, instructions 2-21

Caching
cache control protocol 9-9
cache line . 9-4
cache mechanisms in Intel Architecture

processors . 18-30
caching terminology 9-4
choosing a memory type 9-8
f

�
lushing TLBs . 9-17
implicit caching . 9-16
internal caches . 9-1
L1 (level 1) cache . 9-2
L2 (level 2) cache . 9-2
methods of caching available 9-5
MTRRs, description of. 9-18
operating modes . 9-11
overview of . 9-1
self-modifying code, effect on9-15, 18-31
snooping . 9-5
TLB

�
s . 9-4

UC (uncacheable) memory type 9-5
W

-
B (write back) memory type 9-6

W
-

C (write combining) memory type 9-6
WP

-
 (write protected) memory type 9-7

wr= ite buffer .9-4, 9-17
write-back cac= hing 9-5
W

-
T (write through) memory type. 9-6

Call gates
16-bit, interlevel return from 18-34
accessing a code segment through 4-17
description of. 4-16
f

�
or 16-bit and 32-bit code modules 17-2

INDEX-3

INDEX
B

introduction to .2-3
mechanism .4-18
privilege level checking rules 4-19

CALL instruction. 3-9, 4-12, 4-13, 4-17, 4-23, 6-3,
6-10, 6-12, 17-7

Caller access privileges, checking4-28
Calls

between 16- and 32-bit code segments . . .17-4
controlling the operand-size attribute

for
�

 a call. .17-7
returning from .4-23

CC0 and CC1 (counter control) fields, CESR MSR
(Pentium processor).15-20

CD (cache disable) flag, CR0 control register 2-13,
8-8, 9-9, 9-11, 9-13, 9-14, 9-31, 9-32,
18-22, 18-23, 18-30

CESR (control and event select) MSR (Pentium
processor) 15-20

CLI instruction .5-9
CLTS instruction. 2-20, 4-25
Cluster model, local APIC 7-21
CMOVcc instructions .18-3
CMPXCHG instruction 7-4, 18-5
CMPXCHG8B instruction 7-4, 18-4
Code modules

16 bit vs. 32 bit .17-2
mixing 16-bit and 32-bit code17-1
sharing data among mixed-size code

segments. .17-3
transferring

>
control among mixed-size code

segments. .17-4
Code optimization

8/16 bit operands 14-33
accessing memory14-24
accessing memory, using MMX

instructions 14-24, 14-25
accessing memory, write allocation

effects .14-27
address calculations14-34
addressing modes and register usage . . .14-29
alignment, code .14-9
alignment, data .14-9
alignment, data structures and arrays . . .14-10
alignment, dynamic allocation using

malloc .14-11
alignment, memory and stack.14-10
alignment, of static variables 14-10
alignment, penalties14-9
alignment, rules and guidelines 14-9
alignment, using in-line assembly code . .14-11
branch prediction, eliminating and reducing

number of branches 14-5
branch prediction, optimization 14-4, 14-5
branch prediction, rules 14-4
clearing a register14-34
compares with immediate zero14-35
complex instructions14-32
epilog sequence .14-35

guidelines, floating-point code. 14-2
guidelines, general 14-1
guidelines, MMX code.14-2, 14-3
instruction length 14-30
instruction pairing, general integer-instruction

pairability rules. 14-14
instruction pairing, general rules 14-12
instruction pairing, guidelines 14-12
instruction pairing, integer pairing rules . 14-13
instruction pairing, MMX instruction pairing

guidelines. 14-17
instruction pairing, pairing MMX and integer

instructions.14-17, 14-18
instruction pairing, pairing two MMX

instructions. 14-17
instruction pairing, restrictions on pair execution

14-16
instruction pairing, special pairs 14-16
instruction pairing, unpairability due to

register dependencies 14-15
instruction scheduling, overview 14-12
integer divide. 14-34
integer instruction selection and

optimizations 14-32
LEA instruction . 14-32
partial register stalls, reducing 14-7
pipelining, floating-point instructions 14-18
pipelining, floating-point operations with integer

operands . 14-21
pipelining, FSTSW instruction 14-21
pipelining, FXCH guidelines 14-22
pipelining, guidelines. 14-18
pipelining, hiding the one-clock latency of a

f
�
loating-point store 14-20

pipelining, integer and floating-point
multiply. 14-21

pipelining, MMX instructions 14-18
pipelining, pairing of floating-point

instructions. 14-19
pipelining, transcendental instructions . . 14-22
pipelining, using integer instructions to hide

latencies and schedule floating-point
instructions. 14-19

prefixed opcodes. 14-31
prolog sequences 14-34
PUSH mem instruction 14-33
scheduling, rules for Pentium II and Pentium Pro

processors . 14-22
short opcodes . 14-33
zero-extension of short integers 14-32

Code optimizations
compares . 14-34

Code segments
accessing data in 4-12
accessing through a call gate 4-17
description of. 3-13
descriptor format . 4-3
descriptor layout . 4-3

INDEX

INDEX-4

direct calls or jumps to 4-13
executable (defined)3-12
pointer size .17-5
privilege level checking when transferring

program control between code
segments. .4-12

Compatibility
Intel Architecture. .18-1
software .1-6

Condition code flags, FPU status word
compatibility information18-8

Conforming code segments
accessing .4-15
C (conforming) flag4-13
description of .3-14

Context, task (see Task state)
Control registers

CR0. .2-12
CR1 (reserved) .2-12
CR2. .2-12
CR3 (PDBR) . 2-5, 2-12
CR4. .2-12
description of .2-12
introduction to .2-5
qualification of flags with CPUID

instruction .2-18
Coprocessor segment overrun exception . . . 5-34,

18-14
Counter mask field, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors) 15-17
CPL

description of .4-8
fi

�
eld, CS segment selector4-3

CPUID instruction. . 2-18, 7-12, 9-20, 13-7, 15-14,
15-19, 18-2, 18-4, 18-38

CR0 control register .18-8
description of .2-12
introduction to .2-5
state following processor reset8-2

CR1 control register (reserved)2-12
CR2 control register

description of .2-12
introduction to .2-5

CR3 control register (PDBR)
associated with a task. 6-1, 6-3
description of 2-12, 3-23
in TSS. 6-6, 6-17
introduction to .2-5
loading during initialization8-13
memory management.2-5

CR4 control register .18-2
description of .2-12
inclusion in Intel Architecture 18-21
introduction to .2-5

CS register .18-12
saving on call to exception or interrupt

handler .5-15
state following initialization8-6

CS segment selector, CPL field 4-3
CTR0 and CTR1 (performance counters) MSRs

(Pentium processor)15-20, 15-22
Current privilege level (see CPL)
Current-count register, local APIC 7-44

D
D (default operation size) flag,

segment descriptor.17-2, 18-34
D (dirty) flag, page-table entry 3-27
Data breakpoint exception conditions. 15-9
Data segments

description of. 3-13
descriptor layout . 4-3
expand-down type. 3-12
privilege level checking when accessing. . . 4-9

DB0-DB3 breakpoint-address registers 15-1
DB6 debug status register 15-1
DB7 debug control register. 15-1
DE (debugging extensions) flag, CR4 control

register 2-17, 18-22, 18-24, 18-25
DE (denormal operand exception) flag, FPU

status word11-17, 11-19
Debug exception (#DB) 5-9, 5-23, 6-6, 15-1, 15-8,

15-13
Debug registers

description of. 15-2
introduction to . 2-5
loading. 2-21

DebugCtlMSR register15-1, 15-11
Debugging facilities

debug registers . 15-2
exceptions . 15-7
last branch, interrupt, and exception

recording . 15-11
masking debug exceptions 5-9
overview of . 15-1
performance-monitoring counters 15-15
t

>
ime-stamp counter 15-14

DEC instruction. 7-4
Denormal operand exception (#D) . . .11-19, 18-11
Denormalized operand 18-15
Device-not-available exception (#NM) . . 5-30, 8-8,

18-13, 18-14
DFR (destination format register), local APIC 7-21
DIV instruction . 5-22
Divide configuration register, local APIC 7-43
Divide-error exception (#DE) 5-22, 18-26
Division-by-zero exception (#Z) 11-18
Double-fault exception (#DF)5-32, 18-28
DPL (descriptor privilege level) field, segment

descriptor 3-12, 4-2, 4-8
DR0-DR3 breakpoint-address registers 15-4,

15-12, 15-13
DR4-DR5 debug registers 15-4, 18-25
DR6 debug status register 15-4

INDEX-5

INDEX
B

B0-B3 (breakpoint condition detected)
f

�
lags. .15-4

BD (debug register access detected) flag. .15-4
BS (single step) flag15-5
BT (task switch) flag15-5
debug exception (#DB)5-23
reserved bits .18-24

DR7 debug control register 15-5
G0-G3 (global breakpoint enable) flags . . .15-5
GD (general detect enable) flag15-5
GE (global exact breakpoint enable) flag . .15-5
L0-L3 (local breakpoint enable) flags15-5
LE local exact breakpoint enable) flag15-5
LEN0-LEN3 (Length) fields.15-6
R/W0-R/W3 (read/write) fields 15-6, 18-24

D/B (default operation size/default stack pointer
size and/or upper bound) flag, segment
descriptor 3-12, 4-5

E
E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors) 15-17
E (enable/disable APIC) flag,

A
·

PIC_BASE_MSR7-19
E (expansion direction) flag, segment

descriptor 4-2, 4-5
E (MTRRs enabled) flag, MTRRdefType

register 7-19, 9-22
EFLAGS register

introduction to .2-5
new flags. .18-6
saved in TSS .6-4
saving on call to exception or interrupt

handler .5-15
using flags to distinguish between 32-bit Intel

A
·

rchitecture processors.18-6
EIP register .18-12

saved in TSS .6-4
saving on call to exception or interrupt

handler .5-15
state following initialization8-6

EM (emulation) flag, CR0 control register . . . 2-15,
5-30, 8-6, 8-8

EOI (end-of-interrupt register), local APIC7-33
Error code

exception, description of5-20
pushing on stack.18-33

Error signals . 18-12, 18-13
ERROR# input .18-19
ERROR# output .18-19
ES0 and ES1 (event select) fields, CESR MSR

(Pentium processor).15-20, A-12
ESP register, saving on call to exception or interrupt

handler .5-15
ESR (error status register), local APIC 7-42
ET (extension type) flag, CR0 control register .2-14
ET (extension type) flag, CR0 register18-8

Event select field, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors) 15-16

Exception handler
calling . 5-15
defined . 5-1
f

�
lag usage by handler procedure. 5-18
machine-check exceptions (#MC). 13-14
procedures . 5-15
protection of handler procedures 5-17
ta

>
sk .5-18, 6-3

Exception priority, FPU exceptions. . .11-13, 18-12
Exceptions

alignment check 18-13
classifications . 5-4
conditions checked during a task switch . . 6-13
coprocessor segment overrun. 18-14
description of. .2-4, 5-1
device not available. 18-14
double fault . 5-32
error code . 5-20
f

�
loating-point error 18-14
general protection 18-14
handler mechanism. 5-15
handler procedures 5-15
handling. 5-15
handling in real-address mode 16-6
handling in SMM 12-10
handling in virtual-8086 mode 16-15
handling through a task gate in virtual-8086

mode . 16-20
handling through a trap or interrupt gate in

virtual-8086 mode� 16-17
IDT . 5-11
initializing for protected-mode operation . . 8-12
invalid opcode . 18-6
masking debug exceptions 5-9
masking when switching stack segments . 5-10
notation . 1-8
overview of . 5-1
priorities among simultaneous exceptions and

interrupts . 5-10
priority of . 18-27
reference information on all exceptions . . 5-21
restarting a task or program 5-7
segment not present 18-14
sources of . 5-3
summary of . 5-6
v� ectors. 5-4

Executable code segment, size 3-12
Expand-down data segment type 3-12
External bus errors, detected with machine-check

architecture. 13-11

F
F2XM1 instruction. 18-16
Fast string operations . 7-9

INDEX

INDEX-6

Faults
description of .5-4
restarting a program or task after5-7

FCMOVcc instructions18-3
FCOMI instruction .18-3
FCOMIP instruction .18-3
FCOS instruction .18-16
FDISI instruction (obsolete)18-18
FDIV instruction 18-13, 18-15
FE (fixed MTRRs enabled) flag, MTRRdefType

register .9-22
Feature determination, of processor 18-2
Feature information, processor 18-2
FENI instruction (obsolete).18-18
FINIT/FNINIT instructions 18-8, 18-19
FIX (fixed range registers supported) flag,

MTRRcap register9-21
Fixed-range MTRRs

description of .9-22
mapping to physical memory 9-23

Flat model, local APIC7-21
Flat segmentation model 3-3, 3-4
FLD instruction .18-16
FLDENV instruction .18-14
FLDL2E instruction. .18-17
FLDL2T instruction. .18-17
FLDLG2 instruction .18-17
FLDLN2 instruction .18-17
FLDPI instruction .18-17
Floating-point error exception (#MF) . . 5-48, 5-53,

18-14
Floating-point exceptions

denormal operand exception 11-19, 18-11
division-by-zero. .11-18
exception conditions11-16
exception priority.11-13
inexact result (precision).11-21
invalid arithmetic operand.11-17
invalid operation .18-17
numeric overflow. 11-19, 18-11
numeric underflow 11-20, 18-12
saved CS and EIP values18-12
software handling11-15
stack underflow. .11-17

FLUSH# pin .5-2
Focus processor, local APIC7-22
FPATAN instruction .18-16
FPREM instruction 18-9, 18-13, 18-15
FPREM1 instruction 18-9, 18-15
FPTAN instruction 18-9, 18-15
FPU

compatibility with Intel Architecture FPUs and
math coprocessors 18-7

configuring the FPU environment8-6
device-not-available exception5-30
error signals 18-12, 18-13
fl

�
oating-point error exception 5-48

initialization .8-6

instruction synchronization 18-19
setting up for software emulation of FPU

f
�
unctions . 8-8

using in SMM . 12-11
FPU control word

compatibility, Intel Architecture processors 18-9
RC field .11-3, 11-4

FPU status word
condition code flags 18-8
OE flag . 11-19

FPU tag word . 18-9
FRSTOR instruction18-13, 18-14
FSAVE/FNSAVE instructions18-13, 18-18
FSCALE instruction 18-15
FSIN instruction . 18-16
FSINCOS instruction 18-16
FSQRT instruction 18-13, 18-15
FSTENV/FNSTENV instructions 18-18
FTAN instruction. 18-9
FUCOM instruction . 18-15
FUCOMI instruction . 18-3
FUCOMIP instruction 18-3
FUCOMP instruction. 18-15
FUCOMPP instruction 18-15
FWAIT instruction . 5-30
FXAM instruction 18-16, 18-17
FXTRACT instruction 18-11, 18-16, 18-17

G
&

G (global) flag
page-directory entries9-12, 9-17
page-table entries9-12, 9-17
page-table entry . 3-27

G (granularity) flag, segment descriptor 3-10, 3-12,
4-2, 4-5

G0-G3 (global breakpoint enable) flags,
DR7 register 15-5

Gate descriptors
call gates . 4-16
description of. 4-16

Gates . 2-3
GD (general detect enable) flag,

DR7 register15-5, 15-10
GDT

description of.2-3, 3-17
index into with index field of segment

selector . 3-7
initializing. 8-12
pointers to exception and interrupt

handlers . 5-15
segment descriptors in 3-9
selecting with TI (table indicator) flag of segment

selector . 3-8
t

>
ask switching . 6-10
ta

>
sk-gate descriptor. 6-8

TS
�

S descriptors. 6-6

INDEX-7

INDEX
B

use in address translation.3-7
GDTR register

description of 2-3, 2-10, 3-17
introduction to .2-5
limit .4-5
loading during initialization8-12
storing .3-18

GE (global exact breakpoint enable) flag,
DR7 register. 15-5, 15-10

General-detect exception condition15-10
General-protection exception (#GP) 3-14, 4-7, 4-8,

4-14, 4-15, 5-17, 5-41, 6-7, 15-2, 18-14,
18-26, 18-27, 18-35, 18-37

General-purpose registers
saved in TSS .6-4

Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state .12-13

relationship to SMI interrupt12-3
Hardware reset

description of .8-1
processor state after reset 8-2
state of MTRRs following9-18
value of� SMBASE following 12-4

Hexadecimal numbers .1-7
HITM# line .9-5
HLT instruction . . . 2-22, 4-25, 5-33, 12-13, 12-14,

15-15

I
ID (identification) flag, EFLAGS register 2-10, 18-6
IDIV instruction. 5-22, 18-26
IDT

calling interrupt- and exception-handlers
from .5-15

changing base and limit in real-address
mode .16-6

description of .5-11
handling NMI interrrupts during

initialization .8-11
initializing, for protected-mode operation . .8-12
initializing, for real-address mode

operation .8-10
introduction to .2-4
limit .18-28
structure in real-address mode.16-7
task switching

>
. .6-10

t
>
ask-gate descriptor 6-8

types of
>

 descriptors allowed5-13
use in real-address mode16-6

IDTR register
description of 2-11, 5-13
introduction to .2-4
limit .4-5
loading in real-address mode16-6
storing .3-18

IE (invalid operation exception) flag, FPU
status word 18-9

IEEE 754 and 854 standards for floating-point
arithmetic18-9, 18-10

IF (interrupt enable) flag, EFLAGS register . . . 2-8,
5-8, 5-15, 5-18, 12-10, 16-6, 16-26

IN instruction. .7-10, 18-36
INC instruction . 7-4
Index field, segment selector 3-7
Inexact Result (Precision) Exception 11-21
Inexact result (precision) exception (#P) . . . 11-21
Inexact result, FPU . 11-4
INIT interrupt. 7-13
Initial-count register, local APIC 7-44
Initialization

built-in self-test (BIST).8-1, 8-2
CS register state following 8-6
dual-processor (DP) bootup sequence for

Pentium processors C-1
EIP register state following 8-6
example. 8-16
fi

�
rst instruction executed 8-6

FPU . 8-6
hardware reset . 8-1
IDT, protected mode 8-12
IDT, real-address mode 8-10
Intel486 SX processor and Intel 487 SX math

 coprocessor 18-20
local APIC . 7-35
location of software-initialization code. 8-6
model and stepping information 8-5
multiple-processor (MP) bootup sequence for

P6 family processors D-1
multitasking environment 8-13
overview . 8-1
paging . 8-12
processor state after reset 8-2
protected mode . 8-11
real-address mode 8-10
RESET# pin . 8-1
setting up exception- and interrupt-handling

f
�
acilities . 8-12

INIT# pin .5-2, 8-2
INIT# signal . 2-22
INS instruction . 15-10
Instruction operands . 1-7
Instruction set

new instructions . 18-3
obsolete instructions 18-5

Instruction-breakpoint exception condition . . . 15-8
Instructions

privileged. 4-25
serializing . 18-19
supported in real-address mode 16-4
system. .2-6, 2-18

INT 3 instruction5-25, 15-2
INT instruction . 4-12
INT n instruction 3-9, 5-1, 5-3

INT (APIC interrupt enable) flag, PerfEvtSel0 and
PerfEvtSel1 MSRs (P6 family processors)
15-17

INT3 instruction . 3-9, 5-3
Intel 287 math coprocessor18-7
Intel 387 math coprocessor system18-7
Intel 487 SX math coprocessor 18-7, 18-20
Intel 8086 processor. .18-7
Intel Architecture

compatibility .18-1
processors .18-1

Intel286 processor .18-7
Intel386 DX processor18-7
Intel486 DX processor18-7
Intel486 SX processor 18-7, 18-20
Interprivilege level calls

call mechanism. .4-17
stack switching .4-21

Interrupt command register (ICR), local APIC .7-25
Interrupt gates

16-bit, interlevel return from18-34
clearing IF flag 5-9, 5-18
difference between interrupt and trap gates . .

5-18
for

�
16-bit and 32-bit code modules17-2

handling a virtual-8086 mode interrupt or
exception through16-17

in IDT .5-13
introduction to . 2-3, 2-4
layout of .5-13

Interrupt handler
calling .5-15
defined .5-1
fl

�
ag usage by handler procedure 5-18

procedures .5-15
protection of handler procedures 5-17
t

>
ask . 5-18, 6-3

Interrupt redirection bit map field (in TSS) . . .16-16
Interrupts

acceptance, local APIC.7-30
A

·
PIC priority levels7-15

automatic bus locking when
acknowledging.18-37

control transfers between 16- and 32-bit code
modules. .17-8

description of . 2-4, 5-1
distribution mechanism, local APIC 7-22
enabling and disabling 5-8
handler mechanism 5-15
handler procedures.5-15
handling .5-15
handling in real-address mode16-6
handling in SMM.12-10
handling in virtual-8086 mode.16-15
handling multiple NMIs5-8
handling through a task gate in virtual-8086

mode .16-20

handling through a trap or interrupt gate in
virtual-8086 mode� 16-17

IDT . 5-11
IDTR . 2-11
initializing for protected-mode operation . . 8-12
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
local APIC . 7-13
local APIC sources 7-15
maskable hardware interrupts.2-8, 7-23
masking maskable hardware interrupts . . . 5-8
masking when switching stack segments . 5-10
overview of . 5-1
priorities among simultaneous exceptions and

interrupts . 5-10
propagation delay 18-27
restarting a task or program 5-7
software. 5-55
summary of . 5-6
user defined .5-4, 5-55
valid � APIC interrupts 7-15
v� ectors. 5-4

INTn instruction . 15-10
INTO instruction 3-9, 5-3, 5-26, 15-10
INTR# pin .5-2, 5-8
Invalid arithmetic operand exception (#IA), FPU

description of. 11-17
Invalid opcode exception (#UD) . 5-28, 12-3, 15-4,

18-6, 18-13
Invalid operation exception. 11-17
Invalid operation exception, FPU18-13, 18-17
Invalid TSS exception (#TS).5-35, 6-7
Invalid-opcode exception (#UD)18-25, 18-26
INVD instruction 2-21, 4-25, 7-12, 9-15, 18-5
INVLPG instruction 2-21, 4-25, 7-12, 18-5
IOPL (I/O privilege level) field, EFLAGS register

description of. 2-8
restoring on return from exception or interrupt h

andler. 5-15
sensitive instructions in virtual-8086

mode . 16-14
IRET instruction . . 3-9, 5-8, 5-9, 5-15, 5-18, 6-10,

6-12, 7-12, 16-6, 16-27
IRETD instruction . 7-12
IRR (interrupt request register), local APIC . . 7-30
ISR (in-service register), local APIC 7-30
I/O

breakpoint exception conditions 15-9
in virtual-8086 mode 16-14
instruction restart flag, SMM revision indentifier

f
�
ield .12-15, 12-16

instructions, restarting following an SMI
interrupt . 12-15

I/O permission bit map, TSS 6-6
map base address field, TSS 6-6

I/O APIC
bus arbitration . 7-15
description of. 7-13

INDEX-9

INDEX
B

external interrupts .5-2
interrupt sources .7-15
relationship of local APIC to I/O APIC 7-14
valid i� nterrupts .7-15

J
JM

C
P instruction. . 3-9, 4-12, 4-13, 4-17, 6-3, 6-10,

6-12

K
KEN# pin .18-39

L
L0-L3 (local breakpoint enable) flags,

DR7 register.15-5
L1 (level 1) cache

description of .9-2
disabling 9-4, 9-5, 9-8, 9-9, 9-15, 9-19
introduction of .18-30
MESI cache protocol.9-9

L2 (level 2) cache
description of .9-2
disabling 9-4, 9-5, 9-8, 9-9, 9-15, 9-19
introduction of .18-30
MESI cache protocol.9-9

LAR instruction. 2-20, 4-26
Larger page sizes

introduction of .18-32
support for. .18-23

Last branch, interrupt, and exception recording
description of .15-11
initialization .15-14

LastBranchFromIP MSR 15-1, 15-13, 15-14
LastBranchToIP MSR 15-1, 15-13, 15-14
LastExceptionFromIP MSR . . . 15-2, 15-13, 15-14
LastExceptionToIP MSR 15-2, 15-13, 15-14
LBR (last branch/interrupt/exception) flag,

DebugCtlMSR register . . . 15-11, 15-13,
15-14

LDR (logical destination register), local APIC .7-20
LDS instruction. 3-9, 4-10
LDT

associated with a task.6-3
description of .3-18
index into with index field of segment

selector .3-7
introduction to .2-3
pointer to in TSS .6-5
pointers to exception and interrupt

handlers. .5-15
segment descriptors in3-9
segment selector field, TSS6-17
selecting with TI (table indicator) flag of segment

selector .3-8
setting up during initialization8-12
task switching

>
. .6-10

ta
>

sk-gate descriptor. 6-8
use in address translation 3-7

LDTR register
description of.2-11, 3-18
introduction to .2-3, 2-5
limit . 4-5
storing . 3-18

LE (local exact breakpoint enable) flag,
DR7 register15-5, 15-10

LEN0-LEN3 (Length) fields, DR7 register . . . 15-6
LES instruction 3-9, 4-10, 5-28
LFS instruction .3-9, 4-10
LGDT instruction. . . 2-20, 4-25, 7-12, 8-12, 18-25
LGS instruction .3-9, 4-10
LIDT instruction2-20, 4-25, 5-13, 7-12, 8-10, 16-6,

18-28
Limit checking

description of. 4-5
pointer offsets are within limits 4-28

Limit field, segment descriptor4-2, 4-5
Linear address

description of. 3-6
introduction to . 2-5

Linear address space . 3-6
defined . 3-1
of task . 6-17

Link (to previous task) field, TSS 5-19
Linking tasks

mechanism . 6-14
modifying task linkages 6-16

LINT pins
f

�
unction of . 5-2
programming . E-1

LLDT instruction 2-20, 4-25, 7-12
LMSW instruction2-20, 4-25
Local APIC

AP
·

IC_BASE_MSR 7-19
AP

·
R (arbitration priority register). 7-32

arbitration priority 7-22
block diagram . 7-16
bus arbitration . 7-15
cluster model. 7-21
current-count register 7-44
description of. 7-13
DFR (destination format register) 7-21
divide configuration register 7-43
enabling or disabling 7-19
EOI (end-of-interrupt register) 7-33
ESR (error status register) 7-42
external interrupts . 5-2
f

�
lat model. 7-21
fo

�
cus processor. 7-22

ID. 7-20
identifying BSP . 7-19
indicating performance-monitoring counter

overflow . 15-19
initial-count register 7-44
initialization . 7-35

INDEX

INDEX-10

interrupt acceptance7-30
interrupt acceptance decision flow chart. . .7-30
interrupt command register (ICR)7-25
interrupt destination 7-20
interrupt distribution mechanism.7-22
interrupt sources .7-15
IRR (interrupt request register)7-30
ISR (in-service register) 7-30
LDR (logical destination register)7-20
local vector table (LVT).7-23
logical destination mode7-20
LVT (local-APIC version register)7-36
MDA (message destination address)7-20
new features incorporated in the Pentium Pro

processor. .7-45
physical destination mode 7-20
PPR (processor priority register) 7-32
register address map7-18
relationship of local APIC to I/O APIC 7-14
relocating base address7-19
serial bus .5-2
SMI interrupt .12-2
software visible differences between the local

A
·

PIC on a Pentium Pro processor and the
82489DX .7-44

spurious interrupt .7-33
state after a software (INIT) reset7-35
state after INIT-deassert message7-35
state after power-up reset.7-35
state of .7-33
SVR (spurious-interrupt vector register) . . .7-34
t

>
imer .7-43

TMR (trigger
�

mode register)7-30
TPR (task priorit

�
y register)7-31

valid i� nterrupts .7-15
Local APIC version register7-36
Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT), local APIC 7-23
LOCK prefix . 2-22, 5-28, 7-2, 7-3, 7-4, 7-9, 18-37
Locked (atomic) operations

automatic bus locking7-3
bus locking .7-3
effects of a locked operation on internal

processor caches 7-6
loading a segment descriptor18-24
on Intel Architecture processors18-37
overview of .7-2
software-controlled bus locking 7-4

LOCK# signal2-22, 7-2, 7-3, 7-4, 7-6
Logical address space, of task.6-18
Logical address, description of.3-6
Logical destination mode, local APIC.7-20
LSL instruction . 2-20, 4-28
LSS instruction . 3-9, 4-10
LTR instruction2-20, 4-25, 6-8, 7-12, 8-13
LVT (local vector table), local APIC7-23

M
Machine-check architecture

availability of machine-check architecture and
exception . 13-7

compatibility with Pentium processor
implementation 13-1

error codes, compound 13-9
error codes, interpreting 13-8
error codes, simple 13-9
error-reporting MSRs 13-4
f

�
irst introduced. 18-27
global MSRs . 13-2
guidelines for writing machine-check

software . 13-14
initialization of . 13-7
introduction of in Intel Architecture

processors . 18-39
logging correctable machine-check errors13-16
machine-check error codes, external bus

errors . 13-11
machine-check exception handler. 13-14
MCG_CAP MSR . 13-2
MCG_CTL MSR . 13-4
MCi_ADDR MSRs. 13-6
MCi_CTL MSRs . 13-4
MCi_MISC MSRs 13-7
MCi_STATUS MSRs. 13-5
MSRs . 13-2
overview . 13-1
P5_MC_ADDR MSR 13-7
P5_MC_TYPE MSR 13-7
Pentium processor machine-check exception

handling . 13-16
Pentium processor style error reporting . . 13-7

Machine-check exception (#MC) 5-52, 13-1, 13-7,
13-14, 18-26, 18-39

Maskable hardware interrupts
delivered with local APIC 7-23
description of. 5-2
handling with virtual interrupt mechanism 16-20
masking. .2-8, 5-8

Masked responses
t

>
o denormal operand exception. 11-19
t

>
o FPU stack overflow or underflow

exception . 11-17
t

>
o inexact result (precision) exception. . . 11-21
t

>
o numeric overflow exception. 11-20

MCA (machine-check architecture) flag, CPUID
instruction . 13-7

MCE (machine-check enable) flag, CR4 control
register2-17, 18-22

MCE (machine-check exception) flag, CPUID
instruction . 13-7

MCG_CAP MSR.13-2, 13-15
MCG_CTL MSR . 13-4
MCG_STATUS MSR 13-15, 13-17
MCi_ADDR MSRs . 13-17
MCi_CTL MSRs . 13-4

INDEX-11

INDEX
B

MCi_MISC MSRs 13-7, 13-17
MCi_STATUS MSRs 13-5, 13-15, 13-17
MDA (message destination address), local

A
·

PIC. .7-20
Memory .9-1
Memory management

introduction to .2-5
overview .3-1
paging .3-1
segmentation .3-1

Memory ordering
in Intel Architecture processors 18-36
overview .7-6
processor ordering .7-6
snooping mechanism7-8
write forwarding= .7-8
wr= ite ordering .7-6

Memory type range registers (see MTRRs)
Memory types

caching methods, defined.9-5
choosing .9-8
MTRR types .9-19
UC (uncacheable). .9-5
WB

-
 (write back) .9-6

W
-

C (write combining)9-6
W

-
P (write protected)9-7

W
-

T (write through) .9-6
MemTypeGet() function9-28
MemTypeSet() function9-29
MESI cache protocol

described . 9-4, 9-9
Mixing 16-bit and 32-bit code

on Intel Architecture processors18-34
overview .17-1

MMX instructions
pairing guidelines14-17

Mode switching
between real-address and protected mode 8-13
example .8-16
t

>
o SMM .12-2

Model and stepping information, following
processor initialization or reset 8-5

Model-specific registers (see MSRs)
MOV instruction . 3-9, 4-10
MOV (control registers) instructions. . . 2-20, 4-25,

7-12, 8-14
MOV (debug registers) instructions . . . 2-21, 4-25,

7-12, 15-10
MP (monitor coprocessor) flag, CR0 control register

2-16, 5-30, 8-6, 8-8
MP (monitor coprocessor) flag, CR0 register. .18-8
MSRs

description of .8-8
introduction of in Intel Architecture processors

18-38
introduction to .2-5
machine-check architecture13-2
reading and writing2-23

MTRR flag, EDX feature information register . 9-20
MTRRcap register . 9-20
MTRRdefType register 9-21
MTRRfix16K_80000 and MTRRfix16K_A0000

(fixed range) MTRRs 9-23
MTRRfix4K_C0000. and MTRRfix4K_F8000 (fixed

range) MTRRs 9-23
MTRRfix64K_00000 (fixed range) MTRR. . . . 9-22
MTRRphysBasen (variable range) MTRRs . . 9-23
MTRRphysMaskn (variable range) MTRRs . . 9-23
MTRRs . 7-9

address mapping for fixed-range MTRRs . 9-23
cache control . 9-12
description of.8-9, 9-18
enabling caching . 8-8
example of base and mask calculations . . 9-25
f

�
eature identification 9-20
f

�
ixed-range registers 9-22
initialization of . 9-27
introduction of in Intel Architecture

 processors . 18-39
large page size considerations 9-32
mapping physical memory with 9-20
memory types and their properties 9-19
MemTypeGet() function 9-28
MemTypeSet() function. 9-29
MTRRcap register 9-20
MTRRdefType register 9-21
multiple-processor considerations. 9-31
precedence of cache controls 9-13
precedences . 9-26
programming interface 9-28
remapping memory types 9-27
setting memory ranges 9-21
state of following a hardware reset 9-18
variable-r� ange registers 9-23

Multiple-processor initialization
MP protocol .7-45, 7-46
procedure . 7-48

Multiple-processor management
bus locking . 7-3
guaranteed atomic operations. 7-2
interprocessor and self-interrupts 7-25
local APIC . 7-13
memory ordering . 7-6
MP protocol .7-45, 7-46
overview of . 7-1
SMM considerations 12-17

Multiple-processor system
MP protocol .7-45, 7-46
relationship of local and I/O APICs 7-14

Multisegment model . 3-5
Multitasking

initialization for . 8-13
linking tasks. 6-14
mechanism, description of 6-3
overview . 6-1
setting up TSS. 8-13

INDEX

INDEX-12

setting up TSS descriptor8-13

N
NaN

compatibility, Intel Architecture processors . . .
18-10

NE (numeric error) flag, CR0 control register. 2-14,
5-48, 8-6, 8-8, 18-22

NE (numeric error) flag, CR0 register 18-8
NEG instruction .7-4
NMI interrupt . 2-22, 7-13

description of .5-2
handling during initialization8-10
handling in SMM.12-10
handling multiple NMIs5-8
masking .18-28
receiving when processor is shutdown5-33
reference information5-24
ve� ctor .5-4

NMI# pin. 5-2, 5-24
Nonconforming code segments

accessing .4-14
C (conforming) flag4-13
description of .3-14

Nonmaskable interrupt (see NMI)
NOT instruction .7-4
Notation

bit and byte order .1-6
exceptions. .1-8
hexadecimal and binary numbers.1-7
instruction operands1-7
reserved bits .1-6
segmented addressing1-7

Notational conventions.1-5
NT (nested task) flag, EFLAGS register. 2-9, 6-10,

6-12, 6-14
Null segment selector, checking for4-7
Numeric overflow exception (#O). . . . 11-19, 18-11
Numeric underflow exception (#U). . . 11-20, 18-12
NV (invert) flag,

�
 PerfEvtSel0 MSR (P6 fam

�
ily processors)

15-17
NW (not writethrough) flag, CR0 control

register 2-13, 8-8, 9-11, 9-12,
9-14, 9-31, 9-32

NW (not write-through) flag, CR0 control
register 18-22, 18-23, 18-30

O
D

Obsolete instructions 18-5, 18-18
OE (numeric overflow exception) flag, FPU status

word 11-18, 11-19
OF flag, EFLAGS register 5-26
Opcodes

undefined .18-6
Operand

instruction .1-7

Operands
operand-size prefix 17-2

OR instruction. 7-4
OS (operating system mode) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family
processors). 15-16

OUT instruction. 7-10
OUTS instruction . 15-10
Overflow exception (#OF). 5-26
Overflow, FPU stack. 11-17

P
P (present) flag

page-directory entry 5-44
page-table entry 3-25, 5-44

P (segment-present) flag, segment descriptor 3-12
P5_MC_ADDR MSR 13-7, 13-16
P5_MC_TYPE MSR13-7, 13-16
P6 family processors

description of. 1-1
list of events counted with

performance-monitoring counters A-1
PAE (physical address extension) flag, CR4 control

register . 2-17, 3-19, 3-29, 18-21, 18-23
Page base address field, page-table entry . . . 3-25
Page directory

base address. 3-23
base address (PDBR) 6-6
description of. 3-20
introduction to . 2-5
overview . 3-2
setting up during initialization 8-13

Page frame (see Page)
Page tables

description of. 3-20
introduction to . 2-5
overview . 3-2
setting up during initialization 8-13

Page-directory entries
automatic bus locking while updating 7-4
caching in TLBs. 9-4
page-table base address field 3-25
R/W (read/write) flag 4-2, 4-3, 4-32
structure of . 3-23
U/S (user/supervisor) flag 4-2, 4-3, 4-31

Page-directory-pointer (PDPTR) table 3-30
Page-fault exception (#PF). 3-18, 5-44, 18-26
Pages

descripiton of. 3-20
disabling protection of 4-2
enabling protection of 4-2
introduction to . 2-5
overview . 3-2
PG flag, CR0 control register 4-2

Pages, split . 18-18
Page-table base address field, page-directory

entry . 3-25

INDEX-13

INDEX
B

Page-table entries
automatic bus locking while updating7-4
caching in TLBs .9-4
effect of implicit caching on.9-16
page base address field3-25
R/W (read/write) flag. 4-2, 4-3, 4-32
structure of .3-23
U/S (user/supervisor) flag 4-2, 4-3, 4-31

Paging
combining segment and page-level

protection. .4-33
combining with segmentation3-6
defined .3-1
initializing .8-12
introduction to .2-5
large page size MTRR considerations9-32
linear address translation (4-KByte pages).3-20
linear address translation (4-MByte pages) 3-21
mapping segments to pages.3-39
mixing 4-KByte and 4-MByte pages3-22
page boundaries regarding TSS.6-6
page-fault exception5-44
page-level protection 4-2, 4-30
page-level protection flags4-31
virtual-8086 t� asks16-10

Parameter
passing, between 16- and 32-bit call gates 17-7
translati

>
on, between 16- and 32-bit code

segments. .17-8
PBi (performance monitoring/breakpoint pins) flags,

DebugCtlMSR register15-12
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors) 15-17
PC0 and PC1 (pin control) fields, CESR MSR

(Pentium processor).15-21
PCD (page-level cache disable) flag

CR3 control register . 2-16, 9-12, 18-22, 18-31
page-directory entries . . . 8-8, 9-12, 9-13, 9-32
page-table entries . 3-26, 8-8, 9-12, 9-13, 9-32,

18-32
PCE (performance-monitoring counter enable) flag,

CR4 control register . . 2-18, 4-25, 18-21
PCE (performance-monitoring counter enable) flag,

CR4 control register (P6 family
processors) 15-18

PDBR (see CR3 control register)
PE (inexact result exception) flag, FPU status

wor= d 11-4, 11-21
PE (protection enable) flag, CR0 control

register2-16, 4-2, 8-13, 8-14, 12-8
Pentium Pro processor.1-1
Pentium processors .18-7

list of events counted with
performance-monitoring counters A-12

performance-monitoring counters.15-20
PerfCtr0 and PerfCtr1 MSRs (P6 family

processors) 15-16

PerfCtr0 MSR and PerfCtr1 MSRs (P6 family
processors). 15-18

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors). 15-16

Performance-monitoring counters
description of. 15-15
events that can be counted (P6 family

processors) . A-1
events that can be counted (Pentium

processors) 15-22, A-
·

12
introduction of in Intel Architecture

processors . 18-40
monitoring counter overflow (P6 family

processors) . 15-19
overflow, monitoring (P6 family

processors) . 15-19
overview of . 2-6
P6 family processors. 15-15
Pentium II processor 15-15
Pentium Pro processor 15-15
Pentium processor 15-20
reading .2-22, 15-18
setting up (P6 family processors) 15-16
software drivers for 15-18
starting and stopping. 15-18

Performance-monitoring events
list of events . A-1

PG (paging) flag, CR0 control register . 2-13, 3-19,
3-26, 4-2, 8-13, 8-14, 12-8, 18-32

PGE (page global enable) flag, CR4 control
register 2-17, 3-27, 18-21, 18-23

PhysBase field, MTRRphysBasen register. . . 9-24
Physical address extension

access full extended physical address
space . 3-32

description of. 3-29
page-directory entries 3-33
page-table entries 3-33

Physical address space
defined . 3-1
description of. 3-6
mapped to a task. 6-17

Physical addressing . 2-5
Physical destination mode, local APIC 7-20
Physical memory

mapping of with fixed-range MTRRs. 9-23
mapping of with variable-range MTRRs . . 9-23

PhysMask, MTRRphysMaskn register 9-24
PM0/BP0 and PM1/BP1 (performance-monitor)

pins (Pentium processor) . 15-20, 15-21,
15-22

Pointers
code-segment pointer size 17-5
limit checking. 4-28
validat� ion . 4-25

POP instruction. 3-9
POPF instruction 5-9, 15-10
PPR (processor priority register), local APIC . 7-32

INDEX

INDEX-14

Previous task link field, TSS. 6-4, 6-14, 6-16
Priority levels, APIC interrupts7-15
Privilege levels

checking when accessing data segments . .4-9
checking, for call gates4-17
checking, when transferring program control

between code segments4-12
description of .4-8
protection rings .4-9

Privileged instructions 4-25
Processor identification

earlier Intel architecture processors9-33
Processor management

initialization .8-1
local APIC .7-13
overview of .7-1
snooping mechanism7-8

processor number B-4, B-9
Processor ordering, description of7-7
Protected mode

IDT initialization .8-12
initialization for .8-11
mixing 16-bit and 32-bit code modules17-2
mode switching .8-13
PE flag, CR0 register 4-2
switching to . 4-2, 8-14
system data structures required during

initialization 8-11, 8-12
Protection

combining segment and page-level
protection. .4-33

disabling .4-2
enabling .4-2
fl

�
ags used for page-level protection4-2

fl
�

ags used for segment-level protection 4-2
of exception- and interrupt-handler procedures

5-17
overview of .4-1
page level . 4-2, 4-32
page level, overriding4-32
page level, overview4-30
page-level protection flags4-31
read/write, page level4-32
segment level .4-2
user/supervisor type4-31

Protection rings .4-9
PS (page size) flag, page-table entry.3-27
PSE (page size extension) flag, CR4 control

register . . . 2-17, 3-19, 3-21, 3-22, 9-17,
18-22, 18-23

Pseudo-infinity .18-10
Pseudo-NaN. .18-10
Pseudo-zero. .18-10
PUSH instruction .18-7
PUSHF instruction 5-9, 18-7
PVI (protected-mode virtual interrupts) flag, CR4

control register 2-17, 18-22
PWT (page-level write-through) flag

CR3 control register . 2-16, 9-12, 18-22, 18-31
page-directory entries 8-8, 9-12, 9-32
page-table entries 8-8, 9-12, 9-32, 18-32
page-table entry . 3-26

Q
QNaN

compatibility, Intel Architecture
processors . 18-10

R
RC (rounding control) field, FPU control

word .11-3, 11-4
RDMSR instruction2-23, 4-25, 9-20, 15-13, 15-15,

15-16, 15-18, 15-20, 18-4, 18-38
RDPMC instruction2-22, 4-25, 15-16, 15-18, 18-3,

18-21, 18-40
RDTSC instruction 2-22, 4-25, 15-15, 18-4
Read/write

protection, page level 4-32
rights, checking . 4-27

Real-address mode
8086 emulation . 16-1
address translation in 16-3
description of. 16-1
exceptions and interrupts 16-8
IDT initialization. 8-10
IDT, changing base and limit of. 16-6
IDT, structure of . 16-7
IDT, use of. 16-6
initialization . 8-10
instructions supported 16-4
interrupt and exception handling 16-6
mode switching . 8-13
native 16-bit mode. 17-1
overview of . 16-1
registers supported 16-4
switching to . 8-15

Related literature . 1-9
Requested privilege level (see RPL)
Reserved bits .1-6, 18-1
RESET# pin .5-2, 18-19
RESET# signal . 2-22
Reset, hardware

receiving when processor is shutdown . . . 5-33
Restarting program or task, following an exception

or interrupt . 5-7
Restricting addressable domain 4-31
RET instruction 4-12, 4-13, 4-23, 17-7
Returning

from a called procedure 4-23
from an interrupt or exception handler . . . 5-15

RF (resume) flag, EFLAGS register . 2-9, 5-9, 15-2
Rounding

control, RC field of FPU control word 11-3
modes, FPU 11-3, 11-4

INDEX-15

INDEX
B

results, FPU .11-5
RPL

description of . 3-8, 4-9
fi

�
eld, segment selector4-2

RSM instruction 2-22, 7-12, 12-1, 12-2, 12-3,
12-11, 12-16, 18-5

R/S# pin .5-2
R/W (read/write) flag

page-directory entry 4-2, 4-3, 4-32
page-table entry 3-26, 4-2, 4-3, 4-32

R/W0-R/W3 (read/write) fields, DR7 register . 15-6,
18-24

S
E

S (descriptor type) flag, segment descriptor . 3-11,
3-13, 4-2, 4-6

SBB instruction. .7-4
Segment descriptors

access rights. .4-26
access rights, invalid values18-24
automatic bus locking while updating7-3
base address fields.3-11
code type .4-3
data type .4-3
description of . 2-3, 3-9
DPL (descriptor privilege level) field . . 3-12, 4-2
D/B (default operation size/default stack pointer

size and/or upper bound) flag 3-12, 4-5
E (expansion direction) flag 4-2, 4-5
G (granularity) flag 3-12, 4-2, 4-5
limit field . 4-2, 4-5
loading .18-24
P (segment-present) flag 3-12
S (descriptor type) flag . . . 3-11, 3-13, 4-2, 4-6
segment limit field .3-10
system type. .4-3
t

>
ables .3-16

TS
�

S descriptor .6-6
type

>
field 3-11, 3-13, 4-2, 4-6

type f
>

ield, encoding. 3-14, 3-15
when P (segm= ent-present) flag is clear . . .3-13

Segment limit
checking .2-20
fi

�
eld, segment descriptor.3-10

Segment not present exception (#NP)3-12
Segment registers

description of .3-8
saved in TSS .6-4

Segment selectors
description of .3-7
index field .3-7
null .4-7
RPL field . 3-8, 4-2
TI

�
 (table indicator) flag 3-8

Segmented addressing 1-7
Segment-not-present exception (#NP).5-37
Segments

basic flat model . 3-3
code type. 3-13
combining segment and page-level

protection . 4-33
combining with paging. 3-6
data type . 3-13
defined . 3-1
disabling protection of 4-2
enabling protection of 4-2
mapping to pages 3-39
multisegment usage model 3-5
protected flat model. 3-4
segment-level protection 4-2
segment-not-present exception. 5-37
system. 2-3
t

>
ypes, checking access rights 4-26
t

>
yping. 4-6
using . 3-3
wrapar= ound . 18-35

Self-interrupts, local APIC 7-25
Self-modifying code, effect on caches 9-15
Serializing instructions7-11, 18-19
SF (stack fault) flag, FPU status word 18-9
SGDT instruction 2-20, 3-18
Shutdown

resulting from double fault. 5-33
resulting from out of IDT limit condition. . . 5-33

SIDT instruction 2-20, 3-18, 5-13
Single-stepping

breakpoint exception condition 15-10
on branches . 15-14
on exceptions . 15-14
on interrupts . 15-14
TF

�
 (trap) flag, EFLAGS register 15-10

SLDT instruction . 2-20
SLTR instruction . 3-18
SMBASE

default value . 12-4
relocation of. 12-14

SMI handler
description of. 12-1
execution environment for. 12-8
exiting from . 12-3
location in SMRAM 12-4

SMI interrupt .2-22, 7-13
description of.12-1, 12-2
priority . 12-2
switching to SMM 12-2

SMI# pin . 5-2, 12-2, 12-15
SMM

auto halt restart . 12-13
executing the HLT instruction in 12-14
exiting from . 12-3
handling exceptions and interrupts 12-10
I/O instruction restart. 12-15
native 16-bit mode. 17-1
overview of . 12-1
revision identifier 12-12

INDEX

INDEX-16

revision identifier field12-12
switching to .12-2
switching to from other operating modes . .12-2
using FPU in .12-11

SMRAM
caching .12-7
description of .12-1
state save map .12-5
structure of .12-4

SMSW instruction. .2-20
SNaN

compatibility, Intel Architecture
processors. 18-10, 18-17

Snooping mechanism. 7-8, 9-5
Software interrupts .5-3
Software-controlled bus locking7-4
Split pages .18-18
Spurious interrupt, local APIC 7-33
SS register, saving on call to exception or interrupt

handler .5-15
Stack fault exception (#SS)5-39
Stack fault, FPU 18-9, 18-16
Stack overflow exception, FPU 11-17
Stack pointers

privilege level 0, 1, and 2 stacks.6-6
size of .3-12

Stack segments
privilege level checks when loading the SS

register .4-12
size of stack pointer 3-12

Stack switching
inter-privilege level calls4-21
masking exceptions and interrupts when

switching stacks 5-10
on call to exception or interrupt handler . . .5-15

Stack underflow exception, FPU 11-17
Stack-fault exception (#SS)18-35
Stacks

error code pushes.18-33
f

�
aults .5-39

for
�

privilege levels 0, 1, and 24-21
interlevel RET/IRET from a 16-bit interrupt or

call gate .18-34
managment of control transfers for 16- and

32-bit procedure calls 17-5
operation on pushes and pops18-33
pointers to in TSS .6-6
stack switching .4-21
usage on call to exception or interrupt

handler .18-33
Stepping information, following processor

initialization or reset8-5
STI instruction .5-9
STPCLK# pin . 5-2, 15-15
STR instruction. 3-18, 6-8
STRT instruction .2-20
SUB instruction .7-4
Supervisor mode

description of. 4-31
U/S (user/supervisor) flag 4-31

SVR (spurious-interrupt vector register), local
A

·
PIC . 7-34

System
architecture . 2-1
instructions .2-6, 2-18
registers, introduction to 2-5
segment descriptor, layout of 4-3

System-management mode (see SMM)

T
F

T (debug trap) flag, TSS6-6, 15-2
Task gat

�
es

descriptor . 6-8
executing a task . 6-3
handling a virtual-8086 mode interrupt or

exception through 16-20
in IDT. 5-13
introduction to .2-3, 2-4
layout of. 5-13
referencing of TSS descriptor 5-19

Task manag
�

ement . 6-1
data structures . 6-4
mechanism, description of 6-3

Task register
�

. 3-18
description of. 2-11, 6-1, 6-8
initializing. 8-13
introduction to . 2-5

Task switching
�

description of. 6-3
exception condition 15-11
operation . 6-10
preventing recursive task switching 6-16
T

�
(debug trap) flag. 6-6

T
�

asks
address space. 6-17
description of. 6-1
exception-handler task 5-15
executing. 6-3
Intel 286 processor tasks 18-37
interrupt-handler task 5-15
interrupts and exceptions 5-18
linking . 6-14
logical address space 6-18
management . 6-1
mapping to linear and physical address

spaces . 6-17
restart following an exception or interrupt . . 5-7
state (context) .6-2, 6-3
structure . 6-1
switching . 6-3
t

>
ask management data structures. 6-4

T
�

ask-state segment (see TSS)
Test

�
 registers . 18-25

TF
�

 (trap) flag, EFLAGS register . 2-8, 5-18, 12-10,
15-2, 15-10, 15-12, 15-14, 16-6, 16-26

INDEX-17

INDEX
B

TI
�

 (table indicator) flag, segment selector 3-8
Tim

�
er, local APIC .7-43

Time-s
�

tamp counter
description of .15-14
reading .2-22
software drivers for15-18

TLB
�

s
description of 3-19, 9-1, 9-4
fl

�
ushing .9-17

invalidating (flushing) 2-21
relationship to PGE flag 3-27, 18-23
relationship to PSE flag 3-22, 9-17

TMR (Trigger Mode Register),
�

local APIC7-30
TPR (task priorit

�
y register), local APIC 7-31

TR (
�

trace message enable) flag, DebugCtlMSR
register .15-12

Transc
�

endental instruction accuracy . . 18-9, 18-18
Translation lookas

�
ide buffer (see TLB)

Trap gat
�

es
difference between interrupt and trap

gates .5-18
for

�
16-bit and 32-bit code modules17-2

handling a virtual-8086 mode interrupt or
exception through16-17

in IDT .5-13
introduction to . 2-3, 2-4
layout of .5-13

Traps
�

description of .5-5
restarting a program or task after5-7

TS (t
�

ask switched) flag, CR0 control
register 2-14, 5-30, 6-12

TSD
�

(time-stamp counter disable) flag, CR4 control
register .2-17, 4-25, 15-15, 15-18, 18-22

TS
�

S
16-bit TSS, structure of.6-19
32-bit TSS, structure of.6-4
CR3 control register (PDBR) 6-6, 6-17
description of 2-3, 2-4, 6-1, 6-4
EFLAGS register. .6-4
EIP .6-4
executing a task .6-3
fl

�
oating-point save area 18-14

general-purpose registers.6-4
initialization for multitasking 8-13
invalid TSS exception5-35
I/O map base address field. 6-6, 18-29
I/O permission bit map6-6
LDT segment selector field 6-5, 6-17
link field. .5-19
order of reads/writes to18-28
page-directory base address (PDBR).3-23
pointed to by task-gate descriptor.6-8
previous task link field. 6-4, 6-14, 6-16
privilege-level 0, 1, and 2 stacks.4-21
referenced by task gate 5-19
segment registers .6-4
T

�
(debug trap) flag .6-6

t
>
ask register. 6-8
using 16-bit TSSs in a 32-bit environment18-29
virtual-mode extensions� 18-28

TSS desc
�

riptor
B (busy) flag . 6-7
initialization for multitasking 8-13
structure of . 6-6

TSS segm
�

ent selector
f

�
ield, task-gate descriptor 6-8
w= rites. 18-28

Ty
�

pe
checking . 4-6
f

�
ield, MTRRdefType register 9-21
f

�
ield, MTRRphysBasen register 9-24
f

�
ield, segment descriptor .3-11, 3-13, 3-15, 4-2,

4-6
of segment . 4-6

U
UD2 instruction .5-28, 18-3
UE (numeric overflow exception) flag, FPU status

wor= d . 11-21
Uncached (UC) memory type

description of. 9-5
effect on memory ordering 7-10
use of .8-9, 9-8

Undefined
opcodes. 18-6

Underflow, FPU stack. 11-17
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors) 15-17
Un-normal number . 18-10
User mode

description of. 4-31
U/S (user/supervisor) flag 4-31

User-defined interrupts5-4, 5-55
USR (user mode) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family
processors). 15-16

U/S (user/supervisor) flag
page-directory entry 4-2, 4-3, 4-31
page-table entries 16-11
page-table entry 3-26, 4-2, 4-3, 4-31

V
V (valid) flag, MTRRphysMaskn register 9-24
Variable-range MTRRs, description of 9-23
VCNT (variable range registers count) field,

MTRRcap register 9-20
Vectors

exceptions . 5-4
interrupts . 5-4
reserved . 7-15

VERR instruction 2-20, 4-27
VERW instruction2-20, 4-27
VIF flag, EFLAGS register 18-6

INDEX

INDEX-18

VIF (virtual interrupt) flag, EFLAGS register . .2-10
VIP (virtual interrupt pending) flag, EFLAGS

register 2-10, 18-6
Virtual memory . 2-5, 3-1
Virtual-8086 mode

8086 emulation .16-1
description of .16-9
emulating 8086 operating system calls. . .16-25
enabling .16-9
entering. .16-11
exception and interrupt handling,

overview .16-15
exceptions and interrupts, handling through a

tas
>

k gate .16-19
exceptions and interrupts, handling through a

t
>
rap or interrupt gate16-17

handling exceptions and interrupts through a
tas

>
k gate .16-20

IOPL sensitive instructions16-14
I/O-port-mapped I/O16-15
leaving .16-13
memory mapped I/O16-15
native 16-bit mode 17-1
overview of .16-1
paging of virtual-8086 tasks16-10
protection within a virtual-8086 task16-11
special I/O buffers.16-15
structure of a virtual-8086 task16-9
virtual � I/O .16-14

Virtual-8086 tasks
paging of .16-10
protection within .16-11
structure of .16-9

VM (virtual-8086 mode) flag, EFLAGS register .2-9
VME (virtual-8086 mode extensions) flag, CR4

control register 2-17, 18-22

W
G

WAIT instruction. .5-30
W

-
AIT/FWAIT instructions. 18-8, 18-18, 18-19

W
-

B (write back) memory type 9-6, 9-8
W

-
BINVD instruction . .2-21, 4-25, 7-12, 9-15, 18-5

W
-

C (write combining)
fl

�
ag, MTRRcap register.9-21

memory type . 9-6, 9-8
W

-
P (write protected) memory type.9-7

W
-

P (write protect) flag, CR0 control register . 2-14,
4-32, 18-22

Wr
-

ite
forwarding

�
. .7-8

hit .9-5
W

-
rite back (WB) memory type7-10

W
-

rite buffer
description of .9-4
in Intel Architecture processors 18-36
operation of. .9-17

Wr
-

ite-back caching. .9-5

W
-

RMSR instruction 2-22, 2-23, 4-25, 7-12, 15-11,
15-15, 15-16, 15-18, 15-20, 18-4, 18-38

W
-

T (write through) memory type 9-6, 9-8

X
H

XADD instruction 7-4, 18-5
XCHG instruction 7-3, 7-4, 7-10
XOR instruction . 7-4

Z
ZF flag, EFLAGS register 4-27

