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CHAPTER 1
ABOUT THIS MANUAL

The Intel Architectue Sdtware Develogr's Manuwal, \blume 2 Instruction Set Refance
(Order Number 243191) s pat of a three-wlume %t that desciibes the architecture and
programming ervironmert of all Intel Architecure pocesors. The ohertwo volumesin this
set are:

®* The Intel Architectue Sftware Develope€s Manual, \blume 1:Basic Architectue (Order
Number 243190).

* Thelntel Architectue Software Developes Manual, \Wblume 3 Sysem Programing Gude
(Order Nurber 24392).

Thelntel Architectue Softvare Develogr's Manud, Volume 1,describes tke besic architecture
andprogrammning ervironmen of an Intel Architecture pocessor; théntel Architecture Sft-
ware Develogr's Manud, Volume 2, describes the instructions set d the pracessr and the
opcale structue. These two elumes are aimedt applicationprogramnerswho are witing
programs to run uncer exiging operatingsysens or exectives. Thelntel Architecture Sdtware
Devebper's Manud, Volume 3 describesthe geratingsygem supprt ervironmert of an Intel
Architecureprocessr, including memay managenent, protecion, task managment interrupt
and excepion handing, and sysem maragemen mode. It also provides htel Architectue
procesa compatibility information. This volume is aimed at eratirg-system and BIOS
desgnes ard programmes.

1.1. P6 FAMILY PROCESSOR TERMINOLOGY

This manual includes information pertaining primarily to the 3-bit Intel Architecture groces-
sors, which include the Intel386™, Intel486™, ard Pentium® processors, ad the P6 émily
procesors. The P6 family procesors are thae Intel Architectue praesors based o the 6
family microarclitecture. This family includes the Petium® Pro, Pentium® II, Pentiunm® Ill
procesor, ard ary future gocessors basecdhohe F6 family microachitecture.

1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3. SYSTEM
PROGRAMMING GUIDE

The catents ofthis manual are as follows:

Chapter 1— About This Manual. Givesanoveniew of allthreevolumes of thelntel Archi-
tecure Sdtware Develogr's Manual. It also desribesthe ndational convertions in these
mantals andists rekted Intel manuas and ecunmentation ofinterestto programmes andhard
ware delgrers.
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Chapter 2 — System Architecture Overview. Desribesthe modesof operdion of an Intl
Architectue processr and the medmisns providedin the Irtel Architectuie to suprt oper
atingsystems ancdexectives, includng the s/stem-oriented regsters andlata stratures andhe
sysemorierted instructios. The stepsnecesary for switching betweenreal-addess ard
protected mdes are also &htified.

Chapter 3— Protected-Mode Memory ManagementDescibes the data stuctures,registers,
andinstructions that syppat segmenation and paging andexplains how they canbe wsed to
implemen a “flat” (unsegmeted) memory modd or a ®gmentedmemay model.

Chapter 4 — Protection. Describesthe support for page and sement pratection provided n
the Intel Architedure. This chaper also eyplains theimplemenation of privilege rules, stack
switching, pointer validaton, user ard supewisor mades

Chapter 5 — Interru pt and Exception Handling. Describeshe basic interupt mechaisms
definedin the Intel Architecture, shows haw interrugs and excepionsrelate to preection, and
describes tw the arclitecture handes each egeptiontype. Refererce information for each
Intel Architecture egeptionis given at tke endof this chapter

Chapter 6 — Task Managenment. Degribes the mechnismsthe Irtel Architecture provides to
support multitasking ard inter-task protection.

Chapter 7 — Multiple-Proces®r Managemert. Describes thénstructions anl flags that
support multiple procesors with shrared memar, memay ordeling, and he advancedprogram-
malbe interrypt cortroller (APIC).

Chapter 8 — Processr M anagemert and Initialization. Defines the state oainintel Archi-
tectue pocessr andits floating-point and SIMD floating-point units after ret initiali zation.
This chaper also exfainshow toset up anlintel Architecture processr for realaddress male
operatonand poteced made ogeraton, andhow © switch betveen males

Chapter 9 — Memory Cache Cmtrol. Describes the geral corcept of cacng ard the
cachirg mechanisms sumpted by the Intel Architectue. This chaper also ascribes the
memay typerarge redgsterstMTRRS) andhow they can be used to map memtypes of phys-
ical memory. MTRRs were irtroduced iro the Intel Architecture with the Petium® Pro
processr. It also presentdnformationon using the newcade contrd and memoy streamirg
instructions introducedwith the Petium® 11l processr.

Chapter 10 — MM X™ Technology System Programming. Describeshose apectsof the
Intel MMX™ tecmology thatmug be haxled ard corsidered athe system gogramming level,
including task swiching, exception fanding, andcomtibil ity with exsting system ewiron-
ments. The MMX™ techrology wasintroducedinto the Irtel Architecture with the Petium®
procesa.

Chapter 11 — Streaming SIMD Extensions System Programming. Describegshoseagects
of StreamingSIMD Extensiorsthat must ke hardled amd cansiderecht thesystem gogrammirg
level, including task switching, excepton handling, and conpatibility with existing system
environmerts. Streaning SIMD Extensionswere irtroducedinto the Intel Architecture withthe
Pertium® procesa.

Chapter 12 — System Management Mode (SMM) . Describes thentel Architectue’s system
maregementmode(SMM), which can k& used b implemen powermanagmentfunctions.
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Chapter 13 — Machine-Check Architecture. Describes the macime-creck architectis,
which was inroduced ino the Intel Architecture withthe Rentium® processor.

Chapter 14 — CodeOptimization. Discussesgereral optimizaion tecmiques for program
ming an Irtel Architectureprocesor

Chapter 15 — Debugging and Performance M onitoring. Desribesthe delugging regsters
andotherdelug mechaism providedin the Intel Architectue. This chapteralso descriles the
time-stanp cownter and the perbrmance-maitoring counters

Chapter 16— 8086 Emulation. Descrbes the real-addressard virtual8086modes of he Intel
Architecture.

Chapter 17— Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and32-bit code
moduleswithin the sane program or task

Chapter 18 — Intel Ar chitecture Compatibility. Describes the pogramming dfferences
betweenthe Inel 286, Intel386™, Inteld86™, Perium®, and P6family procesors. The differ-

ences amagthe 2-bit Intel Architecure processorsthe Intel386™, Intel486™, Pentium®, and
P6 family processes) are dexibedthroughout the three vdumes of the Intel Architectue Sd-

ware Developeis Manual, asrelevan to particularfeatues of the arclitectue. This chaer

provides a ctlection of all the relewant compatibility information for all Intel Architecture
processors ard also @scribes the basic difererceswith respect to the &-bit Intel Architectue

processors (the Intel 808 andintel 286 processrs).

Appendix A — Performance-Monitoring Events. Lists the evets that can be caded with
the performarce-moritoring counters a the cales usedo select these events. Bth Pentiun®
processorandP6 family procesorevents are escribed.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available inthe Petium®
andP6 family procesors ad theirfunctions.

Appendix C — Dual-Proces®sr (DP) Bootup Sequence Example (Specific to Pentium®
Processors).Givesan exampk of how to use the DPprotocol to boot two Pertium® processaos
(a pimary procesoranda canday processor)n a DP gstemandinitialize theirAPICs.

Appendix D — Multip le-Processor (MP) Bootup Sequence Example (Specific to P6 Family
Procesors).Givesan examfe of how to use of the MP protocd to bod two P6 family proces
sors inaMP systemard initialize their APIG.

Appendix E — Programming the LINTO and LINT1 Inputs. Gives an exanmp of how to
programthe LINTOandLINTL1 pins fa specific irterrupt vectors.

1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 1: BASIC
ARCHITECTURE

The cantents ofthelntel Architecture Softvare Devebper's Manual, Volume1l are asfollows:

Chapter 1— About This Manual. Givesanoveniew of allthreevolumes of thelntel Archi-
tecure Sdtware Develogr's Manual. It also degribesthe ndational convertions in these
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manualsandlistsrelated Irtel manualsand documertation of interestto programmers andhard-
ware asigners.

Chapter 2— Introduction to the Intel Ar chitecture. Introducesthe Intel Architectuzard the
families of Intel pracesseos that ae basedon this architecture. It alsogives anoverview dof the
cormmon features fandin these processors anbrief historyof the Intel Architecture.

Chapter 3 — Basic Execution Environment. Introducesthe mode$ of memay orgarization
anddesribesthe register sd¢ usal by appicaions.

Chapter 4 — Procedure Calls, Interrupts, and Exceptions. Describes the pr@edue stack
and the mechanisms qvided for making procedire calls am for senicing interrupts aml
excefpions.

Chapter 5 — Data Types ard Addressng Modes. Descibesthe dita typesamnd addresing
modesrecogqized ty the pracesor

Chapter 6 — Instruction Set Summary. Gives an oerview of all the Intel Architecture
instructiors excep those exected by the processors floating-point unit. The instructiomare
presemedin funcionally related groups

Chapter 7 — Floating-Paint Unit. Descrites the Intel Architectue floating-point unit,
including the floaing-point regsters anddata types gives an oerview of he floating-point
instruction st; anddegribesthe pocesa’s floating-point excegion canditions.

Chapter 8— Programming with the Intel MM X™ Techrology. Desaibesthe Intel MMX™
techrology, including MMX ™ regstersand dta types andgivesan oerview ofthe MMX™
instruction st.

Chapter 9 — Programming with the Sreaming SMD Extensions. Descibes the Intel
Streaming SIMD Extendgons, including the registers ard datatypes

Chapter 10— Input/Output. Describesthe procesor's I/0 architecture,including 1/0 port
addessng, the YO instructions, adl thel/O pratecion meckanism.

Chapter 11 — Processor Identification and Feature Determination. Describes how to deer-
minethe CPU type andthe featues that are ailable in tke pracesor

Appendix A — EFLAGS Cross-Refelence. Summarizes hav the Intel Architectue instruc-
tions afect theflags in theEFLAGS regster.

Appendix B— EFL AGS Condition Codes Summarizeshow the canditional jump, move, and
byte seton conditi on code instructions use the candition code flags (OF, CF, ZF, SF, ard PF) in
the EFLAGS regiter.

Appendix C — Floating-Point Exceptions Summary. Sunmmarizeshe exceptiosthat canbe
raised ly floating-point ingructions.

Appendix D — SIMD Floating-Point Exceptions Sunmary. Provides the StreaminSIMD
Extersions mnemaics, andthe exeptions that eadstructioncan case.

Appendix E — Guidelines fa Writing FPU Exception Handlers. Desaibes how to design
and write MS-DOS* compatible exception handling facilitiesfor FPU and SIMD floating-point
excepions, includng bah software ad hardvare regiremeris and asemlby-language cae
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exampes. Ths appendx also descibesgereral techiques for writing rotust FPU excepiton
handers.

Appendix F — Guidelinesfor Writing SIM D-FP Exception Handlers. Provides gudelines
for the Sreaning SIMD Extersions instructions that can generate nmeric (floating-point)
exceptims, andgives arovewiew of the necssary support for hardling such excegions.

1.4. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’'S MANUAL, VOLUME 2: INSTRUCTION SET
REFERENCE

The cantents ofthelntel Architecture Softvare Devebper's Manual, Volume2, are as follows:

Chapter 1— About This Manual. Givesanoveniew of allthreevolumes of thelntel Archi-
tecure Sdtware Develogr's Manual. It also desribesthe ndational convertions in these
mantals andists rekted Intel manuas and ecunmentation ofinterestto programmes andhard
ware delgrers.

Chapter 2 — Instruction Form at. Describes the achine-lee instructionformatused fo all
Intel Architectureinstructions aml gves theallowable ewwodings of prefixes, the ogerandiden
tifier byte (ModR/M byte),the addessng-mode specifietbyte (SIB byte),andthe dsplacenent
and immedate bytes.

Chapter 3 — Instruction SetReference.De<ribes eacluf the Intel Architectue instructions
in detail, ircluding an algrithmic descriptionof operatiors, the efect an flags, the efect o
opernd-and adresssize attribtes, andhe exceptioathat maybe geerated. Tle instructions
are aranged inalphabetical order The FPY MMX™ Techology instructions and Sreaming
SIMD Extersions are included in this chaper.

Appendix A — Opcode Map. Givesan gcode map for the Irtel Architecture irstrucion set.

Appendix B — I nstru ction Formats and Encodings. Gives the dnaryencodingof eachform
of eachintel Architecture mstruction.

Appendix C — Compiler Intrinsics and Functional Equivalents. Gives the Intel C/C++
compler intrinsics andfunctional equinalents for the MMX™ Techrology instructiors and
Streamng SIMD Extensons

1.5. NOTATIONAL CONVENTIONS

This manual uses special ndation for data-stucture formats, for symbolic represetation of
instructions, ard for hexadecimal numbers A review of this notation makesthe manual easier
to read
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1.5.1. Bitand Byte Order

In illustratins of data dructures inmemory, sialler adiresses apeartowardthe bdtom of the
figure; adiresgs inciea® toward the top Bit positions are mmbered fom right to left. The
numerical value d a setbit is equal to two raised to the power o the hkt position. Intel Archi-
tectue pocesas are “little endan’ machines this meansthe bytesof a wad are numbered
starting from the leas significart byte. Figure 1-1 illustrates tieseconventions.

1.5.2. Reserved Bits and Sof tware Compatibility

In manyregster al memory layout descriptiois, certainbits are marlked asreserved. When
bits aremarked as reserved is esgntial for compatibili ty with future procesars thatsoftware
treat theseils as hawng afuture, thaighurknown, efect Thebehavor of resered bits shold
be regrdedas ot only undeined, lut unpredictalde. Software should follow these guidelines
in dealing with reserved bits:

®* Do notdependon the satesof ary resened hts whenteging the valiesof registerswhich
contain such bits. Maskout the regrved bis before testing.

* Do not deperd onthe statesf ary resened bits whenstoring to memay or to a regster
® Do not depend on the abilty to retaininformation writteninto any reservedits.

® When loadng a registeralways bad the reservedits with the valuesindicated in the
documentation, if any or reload themwith values peviowsly readfrom the sameegister.

NOTE

Avoid any sftware depetience upn the state of resened bisin Intel Archi-
tecure regsters Dependng yon the values of resened iegister bits will
make sdtware d@encent upon te ungecfied manne in which the
processr handles these bit$rograms that deperd upon reserved \elues rik
incompatibility with future procesars.

Data Structure
31 24 23 16 15 8 7 0 -«€— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 ByteO | O

}

Byte Offset

Highest
Address

Lowest
Address

Figure 1-1. Bit and Byte O rder

1-6 I



Intel® ABOUT THIS MANUAL

1.5.3. Instruction O perands

When instructions are represented yambdically, a sutset of the Intel Achitecture asemlby
language is wsed In this sibset, an irstruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:

® A labelisanidentifier whichis followed by a cola.

* A mnemamic is a reserved rame fa a clas of ingruction gocodes which hawe the same
function.

® The operadsargumentl, argument2, andargument3 are opional. There may b from
zero to three @erards, dperding on the qpcode. When present,they take the form of
either literalsor identifiers for data itenms. Operard idertifiers are eiher resered namnes of
regsters orare assumedto be as$gned to data items declad in anothe pat of the
program (which maynotbe shownin the exampk).

Whentwo operndsare peseit in an aithmetic or logical instruction, the right opeiand is the
sourceand tte left operandis the destination.

For example
LOADREG: MOV EAX, SUBTOTAL

In this exanple, LOADREG isalabel, MOV isthe nmenonic idertifier of anopcode, EAX is
the desination gperard, andSUBTOTAL is the ource opeand. Some asembly languages put
the urce anddedination in revese order.

1.5.4. Hexadecimal and Binary Numbe rs

Bas 16 (rexadecimal) nunbersare repeseited by a &ring d hexalecimal digits followed by
the claracterH (for exampe, F8ZEH). A hexadecimaldigit is achamacter fom the following
set: 0,1,2,34,5,67,8,9, A,B, C D, E,andF

Bas 2 (binary) numbess are epreenied by a gring of 1sard 0s someimesfollowed Ly the
characteB (for exampe, 1010B). The “B’ designation isonly used in situations where rcfo-
sion as to thaype d numbermight arise.

1.5.5. Segmented Addres sing

The pocessr usesbyte addessing This means memagr is organized andaccesed as a
sequenceof bytes Whether one or nore bytes are beingaccesed, a byte address isused to
locatethe byte or bytes & memoly. The rarge of memoy that can be addssed iscalled an
address pace

The pocessor also supps segmentedddessing This isa form of adiressing whee a
programmay tave mary independent addessspaces, callesiegnents. For exampe, a pogram
can keefits cock (ingructions) and sack in separae segmernts. Code addesss wauld always
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refer to the codk space, andstack addesss woud always redr to the gackspace. Tk fdlowing
notation is used tepecify a byte adiresswithin a segmen

Segment-register:Byte-address

For exanple, thefollowing segmehaddressidertifiesthe byte aaddress=F79H in the egment
pointed by the DS register:

DS:FF79H

The fdlowing ssgment addess identifiesan instuction addessin the code £gment. The G
regster wints to thecodesegment aml the BEP register cotains the addessof theinstruction.

CS:EIP

1.5.6. Exceptions

An exceptionis anevert that typically occus when an instiction causean erro. Forexanple,
an attempt to diviedby zerogeneratesn exception However some exceptiog, suchas break
points, occur urder other comlitions Some types o excepions may provide eror codes An
error code reports additional information atout the eror. An exanple d the notation used to
show anexcepion ard eror cade is showrbelow

#PF(fault code)

This examfe refers to a pagéault excefion under cowlitions where arerror code naning a
type of fault isrepated. Uner some comitions excepions which praduce erro codesmay not
be able torepat anaccuete cocke. In this case, therrar code is zerpas showrbelow for a
gereral-protecion excepbn.

#GP(0)

Refer to Chapter 5, Interrupt and ExceptiorHandling, for a list of excepion mnenonics an
their degriptions.
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1.6. RELATED LITERATURE

The following books contain adlitional nmaterial relatedo Intel processos:

Intel Pertiune Il Proces®r Specification Update, Order NumbeR43337-010.
Intel Pertium® Pro Proces®r Joecificaion Update, Order Number 242689-031.
Intel Pertium® Processor $ecification Updatg OrderNumber242480.

AP-48b, Intel Procesar Identification and the CPUID Ingruction, Order Number 211618-
006.

AP-578, Sdtware and Hardware Considerations fa FPU ExceptionHandlers for Intel
Architectue Processrs, Order Number 243291.

Pertiun® Pro Procesa Data Book, OrderNumkber 22690.
Pertium®Pro BIOS Witer's Guide, http://www.intel.conprocdppra/info/index.htm.
Pertium® Procesor Data Bak, Order Nunber241428

82496 Cache Controller and 82491 Cache SRM Data Bodk For Use With the Peniun®
Processr, Order Number 241429,

Intel486™ Microproces®r Data Bod, Order Numbker 240440.

Intel486™ SXCPUAnteld87™ SX Math Coprocesa Data Bodk, Order Number 2409%50.
Intel486™ DX2 Microprocesor Data Book, OrderNumber241245.

Intel486™ Microprocessr Product Brief Baok, OrderNumkber 24459.

Intel386™ Procesa Hardware Reference Manud, OrderNumber 231732.

Intel386™ Processr System Sfiware Witer's Guide, Order Nunmber 231499,

Intel386™ High-Perfamance 2-Bit CHMOS Microprocesa with Integrated Memay
ManagementOrder Number231630.

376 EmleddedProcesa Programmers Retrence Manual, OrderNumber240314.
80387 DX User's Manual Programmer's Retrence Order Nunber231917.

376 High-Performance 2-Bit EmleddedProcesa, OrderNumkber 2018.
Intel386™ SXMicroprocessr, Order Number240187.

Intel Architectuie Optimizaion Manual, OrderNumker 24816-002.
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The 2-bit membess of thelntel Architectue familyof processors mvide extensive sypott for
opemrting-system ard system-dewelopment software. This support is part of the gocesor’s
system-le\el architectue andincludes fatures to asist in thefollowing operations:

* Memory maragemen

® Protecion of software modules

® Multitasking

® Excepion ard interrupt handing

® Multiprocesing

® Cacle mamgement

® Hardwae reurce andoowermanagment
®* Debugying andperformance maitoring

This chapter povidesa lrief overview ofthe pracesors gstemdevel architects; a cetailed
description ofead part of thisarchitecture gien in the following chapters. Thishapter als
describes theystemregisterghat ae usedo set p ard cantrd the pocessoat thesystemlevel
and gves a bief overview d the pocessois gystem-ievel (operatingsystem)instructions.

Many of the symtlevel architectural feates of the pocesor are used only by sysem
programmers Application programmeranayneedto read ths chapter ard the fdl owing chap-
ters which describe the se d the® featues, inorder to understard the hardware facilitiesused
by system pgrammes to create adlialle andsecue envronment fa application programs.

NOTE

This overview ard most of the sibseqient chagiers of this bodk focusonthe
“native” or protected-mode @eration of the 32-bit Intel Architecture
procesors. As desribedin Chapter 8, Processr Managemen and Initial-

ization, all Intel Architectue praesors enter real-alessmaode followinga
power-up or rest. Software must then iritiate a switch from realaddes
mode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The Intel Architectures system architecterconsists of a setof registers, data stuctures, and
instructions asignedto sugort basic system-levadpeaations suchas merory maragemer,

interrug ard excepton hardling, taskmanagenent, andcortrol of multiple pracessos (nmuilti-

processim). Figure 2-1 provides a gaeralized summary of the system registers ard data

structures.
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1. MXCSR is new control/status register in the Pentium® Il processor.

Figure 2-1. System-Level Registers and Data Structure s
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2.1.1. Global and Local Descriptor T ables

When operatirg in protected mde, all memaoy accesss passthrough either the gldoal
degriptor table (GDT) or the (optional) local desriptor table (LDT), shown in Figure 2-1.
These tablesontain entries calledegment descriptors. A ssgment descriptoprovides the base
addess of asegnentand acces rights, ype, andusage information. Each sgment descripto
has a segment selectassaciated with it. Th ssgment selector povides an indx into the GDT
or LDT (to its asscciatedsegnernt degriptor), a gbbal/local flag (thatdetermineswhether the
segment selector @ints to tte GDT orthe LDT), andacces rights information.

To acces abyte in asegnent, botha segmenselectr andan offset must be plied. The

segment seleatr provides accesto the segnent descriptorfor the ssgment (in the GDT b

LDT). Fromthe segrant descriptor, the pocessr obtains thebase adress 6thesegmenin the

linear addess space. The dfet then provides the location of the byte relativ® the base
addess. This mechanism cabeused toacces arty valid code data,or stacksegment inthe

GDT or LDT, providedthesegmenis accesible fromthecurrentprivilegelevel (CPL) at which

the pocessr is operating.(The CPL is defnedasthe prdection level of the curently executing
code sement)

In Figure 24 the solid arravs indicatea linear adoess the dashed linemdicate asegnent
selector, ard the atted arowsindicate a phsical adiress. Br simplicity, many d the segrant
selectors are showras direct pmtersto a segmen However the actial path from asegnent
selectorto its asociatedsegment is alvays through the GDT orLDT.

The linear addess of the base of e GDT is containedn the T regster (GDTR; thelinear
addessof the LDT is containedin the LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors , and Gates

Besdesthe cale,dat, ard sack £gmensthatmakeupthe executonenvironmern of a plogram
or procedire,the gystem achitecture also défes two system segmén the tak-stae segnent
(TSS andthe LDT. (The GDT is not corsidered asegment kecause its not accesed by means
of a segmen selecor and ssgment descriptor.) Each of thessegmentypes hasa segnent
degriptor defined for it.

The gstem arclitectue ako defnes a %t of speciadescriptors caled gates (the callgate, inter-
rupt gate,trap gate, andtask gte) that povide protectedgateways tesystem procedures and
handlers thatoperateat different privilege levek than application programs andprocedures.
For example, aCALL to a call gate pvidesacces toa praedue in acode segrnt that is at
the sane or numerically lower privilege lew (more privleged) than the curert code segnent.
To acces a pocedure through a callgate, the calling procecure! must supply the selector of the
call gate. Theprocesor than peforms anaccesgights check a the cél gate, commring the
CPL with the privilege levebf the call gate andhe desination coce segmert pointedto bythe
call gate.If access to th destinatiorcodesegmentis allowed the procesorgets the segant
selectorfor the destinatiortode segmehandanoffset intothat cale segrant fromthe call gte.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine). The term is not restricted to the definition of a
procedure in the Intel Architecture assembly language.
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If the call reqiresa chang in privilege level, the prcessr also swichesto the sackfor that
privilege level. (The sgment seadcta for the new sick is obtainedfrom the TSSfor the
curently running tak.) Gates alsdfacilitate trangions between 16-bit and 32-bit code
segments, ahviceversa.

2.1.3. Task-State Segments and Task Gates

The TSS (refeto Figure 241) defines he date ofthe execution envircmmen for a tak. It
includesthe gate ofthe gameral-purpose registerghe segmerregisers, the EFLAGSregister,
the EIP registerand ssgment seleatrs ard stick pointes for three shck sesgments(one stack
each forprivilege levels0, 1, and®). It also ncludesthe segmenselecor for the LDTassociated
with the task ad the pagetable base attess

All program exection in protected mde hajpens witin the comext of a tag, called the cuent
tak. The seqent selecta for the TSS for tle current task is stored in the taskregister. The
simpleg method of switching to ataskis to make a callor jump to the &sk. Here, the egment
sekctor fa theTSS d the rew taskis givenin the CALL or IMPinstruction. In switching tasks,
the pocessor grforms the éllowing acions:

1. Stores thetate ofthe curert taskin the curert TSS.

2. Loads the taskegisterwith the segmerselectorfor the rew tas.
3. Accesss thenew TSShrough a segmentebcriptorin the GDT
4

Loadsthe sate of the newask fran the new TSSnto the generalpurposeregisters, the
segmenregisers, the LDTR, cortrol regster (R3 (page-take base addesy, the ELLAGS
register, ard the BP register

5. Beginsexection d the new sk

A task caralso ke accesed though a tak gate. A task gite is similar to a call g&e, excep that
it provides acces@hrougha segmeinselector) to aTSS rather thana cale segmen

2.1.4. Interrupt and Exception Hand ling

Extemal interrugts, sdtware interrugs, and exceptons are landled through the interrug
degriptor table (IDT), refer to Figure 2-1. The IDT contins a collecion of gat desciiptors,
which povide accesdo interupt ard excepion handlers. Like tle GDT, the IDT isnot a
segmentThe linearaddess d the kase of the IDT is conained inthe IDT register (IDTR).

The gate descriptors in the IDT canbe of the interrgt-, trap, or task-gte type. To acces an
interrupt or exceptionhandler, the plocessr must first receivean interrupt vector (interrypt
number)from interral hardvare, an exernal interupt contrdler, or from software by mears o
an INT, INTO, INT 3, or BOUND instruction. The interrupt vecor providesan ndex nto the
IDT to a gpte degriptor. If theselectedyate desriptor is an irterrugt gate a a trap @te, the ass-
ciatedhandler procedure isaccesseth amamer very similar to calling a pocedure through a
call gate. If thedescriptor is a taskgate, tle hamller is acessedthrough atask switch.
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2.1.5. Memory Manage ment

The ystem architectwrsupprtseither direct phsicaladdressing of memoy or virtual memory
(through pagng). When physical addessing is used, a linear drkssis treated as physical
addess. Whenpagng isused, althe code, datatack and systemsegnentsandthe GDTand
IDT canbe aged,with only the mat recently accessediges beindheldin physical memoy.

The locatiorof pages (opage franes asthey are smetimescalled in the Intel Architecte) in
physical memay is contained n two typesof system daé structures(a page diedory anda set
of page Bbles) both of which resde n physicalmemay (refer b Figure 2-1). Anenty in a pag
directoly contains the plgical addess of the base of a pa@ table,accesgights, andmemory
managmentinformaiton. An enty in a pag@talde conainsthe physcal address of a age frang,
acces rights, and menmmg managment nformation. The base plical addressof the page
direcbry is cortained in contol regster CR3.

To use this paging mechanism, alinear adressis broken into three frts, providing sparate
offsetsinto the mge drectory the pagdable, andhe @ge frame.

A system can &ve a sigle pag directol or seved. For exanple, each task carabe itsown
page diecory.

2.1.6. System Registers

To assis in initializing the praces®r andcontrolling systemoperations, the systemarchiecture
provides systmflags in the EFLAGSregister andseveral sysemregisters:

® The systemlfigsandIOPL field in the EFLAGSregster cortrol taskandmaode switching,
interrupt handling, instructiontracing andaccessights. Refer to Section2.3, “System
Flags and-ields inthe EFLAGSRegister” far a description of these flag.

® Thecontrd registers (R0, CR2, CR3, andCR4) cortain a veriety of flags ard data fields
for cortrolling systemlevel operatims With the intoduction of the Petium® Il
procesa, CR4 now catains bits indicaing support Pentium® 1l processr specific
capbilities within the OS Referto Secion 25., “Control Regsters' for a desciiption o
these flag.

® The debg redgsters(na shavn in Figure 2-1) allow the setting of breakmints for use in
dehuggng programs ard systems sdtware. Rfer to Chaper 15, Debugjing and
Performance Monitoring, for adesciption of these egisters.

® The GDTR, LDTR, ard IDTR regsters comain the linear addessesard dzes (limit9 of
their respective tables Refer to Secibn 24., “Memay-Managenent Registers” for a
degription of these regsters

®* The tak regster contains thdinearaddess andsize ofthe TSS for the curent task Refer
to Section 24., “Memory-Management Registers” for a description of this registe.
® Model-specific regsters(not shownin Figure 2-1).

The malel-specific egisters (MSRs) are a goup of registers available primaily to operating
system or executive pocedires (tlat is, cade wnning at pivilege lewvel 0). These reigters
contol itemssuchasthe delug exensons, the prformancemonitaing cauntess, the machire-
check archiectue, and the menmy type rangs(MTRRS). The number andunctiors of these
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regstersvaries amang the diferen menbers of the Intel Architecture proessor families.
Sectbn 8.4, “Model-Specfific Registers (MSRs)” in Chapter 8,Procesa Managementand
Initialization for more information abait the MSRs ard Appertix B, Model-Specific Regsters
for a conplete lig of the MSRs.

Most g/stens restrict accesdo all sysemregisters (otér thanthe EFLAGS register)ybapli-
cationprograms. Sgtems carbe designed,however, where all pograms andprocedues run at
the nost privileged level (rivilege le 0), in which case aplication prograns areallowed to
modify the g/stemregisters

2.1.7. Other System Resource s

Besides thesystemregistersanddata stratures describeih the gevious sectiors, the system
architectue piovides the following addtional resouces

® Opeating system hstructions (referto Secion 2.6, “System Instruction Summary”).
® Performarce-manitoring cownters (not shownin Figure 2-1).
® Internal cacksandbuffers (not shavn in Figure 2-1).

The performarce-maitoring counters ag evem cownters that carbe progranmed to count
processr evers suchasthe nunber d instructiors decoed, the nunber d interupts received
or the numberof cacle load. Refer to Secton 15.6., “PerfomanceMonitoring Courters”, in
Chapter 15 Debuggng and Performarce Monitoring, for more information abou thes
couwnters.

The pocessr providesseveral interal caches and Iifers. The caclesare used tstore bath
data andnstrwctions. The bufers are used totsre things ke decoded addessesto sysemard
application segnerts and write gperations waiting to be perforned. Refer toChapter9, Memory
Cache ntrol, for a detailed tbcussion btheprocesor's caches ahbufers.

2.2. MODES OF OPERATION

Thelntel Architecure supports threeopemeting modesandonequas-operating mode;

® Protected node. This is the natve qgoeratig mode of the pracessr. In this mode all
instructions andarchitectural éatures are ailable, poviding thehighest peiormance ad
capalility. This is the recanmended mode for all new apgications ard operatirg systens.

®* Realaddress mode. This operaing node povides he prgrammning ervironment of the
Intel 8086 processo, with a fewextersions (such asthe ahlity to switch to proteded or
system mamgemen mode).

® System management mode (SMM ). Thesystemmanagemethmode (SMM) s astandad
architectural featre in all Intel Architecture praesors, beginning with the htel386™ SL
processr. This moe provides an perating system or executive with a trasparent
medanism fa implementingpover marmgemen andOEM dfferentiation features. SMM
is enteed through activation of an exernal system iterrupt pin (SMI#), which gererates a
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systemmaregemen interrupt (SMI). In SMM, the procesor switchesto aseparateaddess
spacewhile savingthe cortext d the curertly runnng program or task. SMM-specific
coce may thenbe excuted tansparetty. Upon returring from SMM, the pocessor is
placedbackinto its date pior to the SMI.

® Virtual-8086 mode. In protected mod, the processr supports a quasi-ogerating moe
known asvirt ual-8086 mode. This mode allowshe pro@ssor to execte 8086 software in
a prdected multitasking environmert.

Figure 22 showshow the processr mowves anongthese ogeratng nodes

> Real-Address
Mode
J
A
Reset or
_ PE=1
PE=0 Y
N
- System
Reset Protected Mode | _ | Management
- Mode
J
A
VM=0 VM=1
Y
~
Virtual-8086
Mode
RSM

Figure 2-2. Transitions Among the Processor’s Operating Modes

The pocessr is placed in eataddress mock following power-up or a reset. There@f, the PE
flag in control register QRO cortrols whetherthe processor is opesting in realaddress a
protected moce (refer to Secion 25., “Control Regsters'). Refer to Secton 8.8, “Mode
Switching” in Chapter 8,Proces®sr Managementand Initialization for detiled information on
switching betveenreataddes modeand poteced mode.

The VM flagin theEFLAGS regster determines whetér the pocessor is ograting inpratected
mock or virtual8086 mode. Transtions between proteced mode ard virtuak8086 mode are
genedlly caried ou aspart of a &sk switch or a retun from an interrpt or excepion hander
(refer to Secton 162.5, “Entering Virtual-808 Mode” in Chapter 16, 8086 Emuétion).

The pocessorswitches to SMM wheaverit receives an SMhile the pocessr is in real-
addess protected, or \irtualk8086 modss. Upon exection of the RSM instruction, the
processor always returrs to the male it was in whe the SMloccured.
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2.3.

SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The systém flags andIOPL field of the EFLAGSregster corirol I/O, maskable hardvare inter-
rupts, debuging, task switching, and he virtual8086 maode (rder to Figure 2-3). Only privi-
legedcode (typically ograting sysgtm or executive coé) should be allowedto malify these

bits.

Thefunctions ofthe sysemflags andOPL areasfollows:

TF

Trap (bit 8). Setto erable single-stepmode for delugging; clear todisable shgle-step
moce. In dnge-gep mode, theprocessor genates a debug exception after each
instruction which allows the exection stateof a piogramto be inspected after each
instruction. If anapgication program setsthe TF flagusng a POR, PORD, or IRET
instruction, a atbug exception is gererated after the struction that fdlows the POHF,
POPFD, orIRET ingruction

VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag

IOPL— /O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

D Reserved

ID — Identification Flag4
VIP — Virtual Interrupt Pending

31 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

vlv
Reserved (setto 0) |}f1[1]|A|vIBloY OIo[LITIS|2l0(A 0| E|2|C
P|F

=
—vO-—
l

I0PL

2-8

Figure 2-3. System Flags in the EFLAGS Register

Interru pt enable (bit 9) Contrals the respnse d the praessoto maskade hardware
interrupt requeds (refer to Section 5.11.2., “Maskable Hardvare Interupts in
Chapter 5, Interrupt and Exception Hadling). Set to respond to maslable hardvare
interrupts; cleared tinhibit maskable hadware irterrupts. The IF flagdoesnot affect
the gereration of excepions or nonmaskable interrupts (NMI interupts). The CR.,
IOPL, ard the state ofthe VME flagin cortrol regster CR4 deternine whethetthe IF
flag can e modfied bythe @I, STI, PO, POHD, andIRET instructiors.

IO privilege kvel field (bits 12 and 13). Indicates the I/O jvilege level (IOPL) &
the curenty running program or task The @L of the curenty running program or
task must be lessthan o ecual tothe IOPL to accesshe 1/0 adiress space.his field
canonly bemodfied ty the PO ard IRET instructions wlen geratingat aCPL of
0. Refer to Chapter 10, Input/Output, of thelntel Architecture Sdtware Develger's
Manual, \Wblume1, for mare information on the relationstip of the IOPL to 1/0O opek-
tions
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The IOPL is also me d the nechanisms that ctmols the nodification of the IF fag
andthe handling o interrupts in virtual-808 modewhenthe virtual mode exensons
are ineffect (the VME fag in ontrd register QR4 is set).

NT Nested task (bit 14). Contols the chaning of interupted and caled tasks. The
procesa sets this flag an calls toa tak initiated with a GALL instrucion, aninterrupt,
or an exegion. It examnesandmodifies this flag on returnsfrom a taskinitiated with
the IRET instruction. The flag can be exlicitly set or cleaed with the PORF/POR-D
instructions; havever chargingto the shteof thisflagcangeneste urexpectedexcep
tions inapplication prograns. Refer toSectim 6.4, “Task Linking” in Chapter 6 Task
Managementfor mare informationon neged taks.

RF Reaume (it 16). Controls the procesa’s respnse to instruction-breakpoint condi-
tions. When t, this flag tenporarily disabes delug excegtions (#DE) from being
generated for instruction breakpoints; although, othe exception corditions can
cause an exception to be generated. Whenclear instruction breakpants wil | gererate
debwy exceptons.

The primary furction of the R=flag isto allow therestarting of an irstruction following
a delug excepgion that was caugd by an instruction breakpoint cordition. Hee,
debwgger softwaremust &t this flag in the EFLAGS imag®n the stack jst prior to
returning to theinterruptedprogramwith theIRETD instruction, to prevert theinstruc-
tion breakmint from causingandher debug exception.The processor thenautanati-
cally clears this flagafterthe instructionretunedto has been successfullgxecuted
eralding instruction breakpoint fauts again.

Referto Secion 15.3.11., “Ingruction-Breakpoint Excepton Condtion”, in Chapter
15,Debuggng ard Performance Monitoring, for more information on the wse d this
flag.

VM Virtual-8086 mode (bit 17). Setto enalde virtual-8086 mode; clear toretun to
protected mode Refer to Section 16.2.1., “Enabling Virtud-8086 Mode’ in Chapter
16,8086 Emudtion for a detiled description of the e of this flag to switchto virtual-
808 mode.

AC Alignment check (bit 18). Set this flag aml theAM flag in the CRO regsterto erable
alignmen checkig of memay refererces clearthe ACflag ard/or the AM flag to
disable algnmen checking An alignment-checkexceptionis gererated wherrefer
ence ismade to an unaliged operand suchasa wod at an odl byte addess or a
doubleward at anaddesswhich is not anintegral multiple of four. Alignmert-check
excepionsaregeneatedonly in usermode(privilege level 3). Memay referercesthat
defadt to privilege level 0, suich as sgmern desriptor loads do not geneate this
exceptim evenwhencaused ¥ instructimsexecutedn user-mode.

The alignnent-checkexceptioncan be used to cheakignment ofdata. This is useful

when exclnging data with other processrs, which requre alldatto be aigned The

alignmen-checkexceptioncanalso be usedby intempreters toflag somepainters as
special by misaligning the pointer. This eliminatesoverhead of cleckingeach poirer

andonly handes the special pointer whenused.

I 2-9
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VIF Virtual | nterrupt (bit 19) . Contains a virtual image othe IF flag. Thsflag isused in
conjunctian with theVIP flag. The pocessopnly recoquizes the VIF fagwheneither
the VME flagor the PM flag in contral register QR4 is set anl the IOPL islessthan3.
(The VME flag embles be virtual-808 male extesions; the PVI fag enalbes the
proteced-mode virtual interrupts.) Refer to Secton 163.35., “Method 6: Software
Interrypt Handling andSecton 164.,“Protected-Male Mirtual Interrypts” in Chapter
16, 8086 Emuhtion for detiled information alout the ue ofthisflag.

VIP Virtual interrupt pending (bit 20). Set ly sdtware toindicate tlat aninterrupt is
perding; cleared tandicate ttat nointerrupt is pending. This flagis used in conjunc-
tion with the VIF flag. The pocessor eads this flagout never modfies it. The
processr only recoquizesthe VIPflag when eitherthe VME flag or the PVI fagin
control register @4 is setandthe lOPL is lessthan3. (The VME flag embles the
virtual-8086 node exersions the PVI flag enabés the pioteced-node vrtual inter-
rupts) Refer to Section 16.3.3.5, “Method 6: Software Interrypt Handling and
Section 1&4., “ProtectedMode Virtual Interupts’ in Chapter 16, 8086 Emuation for
detiled information about the wse of ths flag.

ID Identification (bit 21). The ablity of aprogram or procedire to set oclear thisflag
indicates suport for the CPUID instruction.

2.4. MEMORY-MANAGEMENT REGISTERS

The praesor provides fou menory-managment egisters (GDTR LDTR, IDTR, and TR)
that pecify the locatiors of thedata structueswhich contrd segmentednenory managment
(refer toFigure 2-4). Special instructiomare povided for loadng and storirg these reigters.

System Table Registers

47 16 15 0
GDTR 32-bit Linear Base Address 16-Bit Table Limit
IDTR 32-bit Linear Base Address 16-Bit Table Limit

System Segment ~ Segment Descri ptor Registers (Auto matically Load ed)

15 Registers g Attributes
Reg-iljsat?els Seg. Sel. 32-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32-bit Linear Base Address Segment Limit

Figure 2-4. Memory Management Regi sters

2.4.1. Global Descriptor Table Register (GDTR)

The GDTR regster hdds the 32bit baseaddressand16-bit table limitfor the GDT. The base
addressspecifies the linear adessof byte 0 of the GDT; the table limitspecifes the omberof
bytesin thetable. The LGDTandSGDT instructions loadandstore tle GDTRregisterrespec-
tively. On power wp or resetof theprocessr, the baseaddessis set to the defalt value d 0 ard
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the limit is st to FFFFH. A rew base adiress nust be loaded into the GDTR as art of the
processorinitializationproces for protectedmode opeation. Referto Secton 35.1, “Segnent
Degriptor Tables” in Chapter 3, Proteced-Mode Memoy Managementfor more information
onthe bag addres and Imit fields.

2.4.2. Local Descriptor T able Regist er (LDTR)

The LDTR register holds the 16bit segment selectar, 32-bit base addess 16-bit segnent limit,
and abscriptor attribuesfor the LDT. The base adéss ecifiesthe linear addess of byte 0 d
the LDT segment; the segnidimit specifies he nunber d bytes in the segmenRefer to
Secton 3.51., “Segnent Desciptor Tables' in Chapter 3, Protected-Mode Memory Manage-
mentfor more information on the bag addess ad limit fields.

The LLDT andSLDT instructiosload anl storethe segmersekcta part of the LDTRregster,
respectively The segrant that cotains the LDT must hag a ssgment descriptor in the GDT.
Whenthe LLDT instructionoadsa segrent €lectorin the LDTR, the lase address limit, and
descriptor attributes fom the LDT descriptor are atomatically loadedinto the LDTR.

When a tak switch occus, the LDTRis automatically loaded with the £gment selecbr ard
descriptor for the LDT for the new task The conterts of the LDTR are ot autanatically saved
prior to writing the new LDT irformation into the regster

On pwer p or reset othe pocessarthe segrant seleatr ard base address are set tthe dedult
value of 0 ard the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descri ptor Table Register

The IDTRregster hdds the 32bit base addes and 1ébit table limit for the IDT. The base
addess specifieshie linear adressof byte 0 ofthe IDT; the table limit pecifiesthe nunber d
bytes in the table. ThelDT and SIDT instructiosiload and store the IDTRegister respec-
tively. Onpower up orreset of the procesar, the basaddress is set to tadefault value d 0 ard
the imit is setto FAH-FH. The baseaddressand limit in the register carhén be chaged agart
of the processr initiali zation process Refer to Sectia 5.8., “Interrug De<criptor Table (IDT)”
in Chapter 5, Interrupt and ExceptionHandling for mare information on the bae aldress and
limit fields

2.4.4. Task Register (TR)

The taskregister folds the 16-bit segmert selecor, 32-bit ba® addess, B-bit segmert limit,
and aescriptor attribues forthe TSS of the currert task. It reérences a TS descriptotin the
GDT. The base addss gecifiesthe linearaddressof byte 0 of the TSSthe segmetrlimit spec-
ifies the rumberof bytesin theTSS. (Refer toSecton 6.2.3,, “TaskRegister” in Chapter6, Task
Managementfor more information alout the task register.)

The LTR ard STR instructions load ad gore the sgment seécta part ofthe task regster,
respectivelyWhenthe LTR instruction loads asegnent selector in the tésregister, the base
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addess limit, and descriptoratiributesfrom the TSS descripor are atomatically loadedinto
the task reigter On paver upor reset of the pracessor, the tase addresss setto the defalt value
of 0 andthelimit is setto FFH-FH.

When atak switch occus, thetask register is atomatically loaded withthe segmetnselecor
anddescriptor for the TSSfor the newtak. The catents ¢ the taskregister ag rot automati-
cally saved prior to writing the new TSSnformation into the register.

2.5. CONTROL REGISTERS

The cortrol regiters (CRO, CR1 CR2, CR3, andCR4) determine operaing male of he
processr andthe claracterisics ofthe curently executig task (efer toFigure 25).

31 10 98 7 65 43210
PIPIM|P|P| ITIP|V
Reserved (set to 0) C|G|C|A|S|E2|8|VIM| CR4
E|E|E|E|E||D|I|E
OSXMMEXCPTJ
OSFXSR
31 12 11 5432 0
PlP
. CR3
Page-Directory Base clw
9 y o|T (PDBR)
31 0
Page-Fault Linear Address CR2
31 0
CR1
313029 30 191817 16 15 6543210
PlC|N Al |w N|E|T|E|M|P
G|D|W M| |P E|T|s|m|p|e| CRO
D Reserved

Figure 2-5. Control Re gisters
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The cantrd registers

® CRO—Contains gstem corrol flags hat contrd operating mode anddates of the
procesa.

®* CRl1—Resaved.
®* CR2—Contains the pge-fault linear adress (the liar addessthat caused agge fault).

® CR3—Containsthe physical addessof the bag of the pag direcory and two flags(PCD
and PWT). This regster & also krown asthe pagedirectoly base regster (PDBR). Only
the 20most-significant bitsof the pag-directay base addrs are specifed the lower 12
bits of the addess ae assmed to be 0. The mge drecbry mug thusbealignedto a pa@
(4-KByte) boundary. The FCD andPWT flags contrd cachingof the pag directoy in the
processr’s internal data cachs (they do not contrd TLB cachirg of page-drectory
information).

Whenusing the physical adiressextersion, the CR3 register catains tlke base ddress o
the pag-directory-pointer tade (refer to Sectin 3.8, “Physical AddressExtersion” in
Chapter 3, Proteced-Mode Memory Managemen.

® CR4—Contains agroup of flagstha erable veral architectural extesions, as well as
indicatingthe level ¢ OS support for the Strearing SMD Extersions.

In praectedmode, the mowto-or-from-cantrol-registers forms of the MQY/ instruction allow
the cantrol registers tobe read(at givilege level 0 only) or loaded (at privilege level 0 only).
Thes restrictions mean hat appicaion piograms (unnng atprivilege kevels 1, 2,0r 3) are
prevenied from readng orloadng the contol regsters

A program ruming atprivilege kevel 1, 2, or 3 Boud not attempt to reador write the conbl
regsters. Anattempt to read o write these regsters will result in a general pratection fault
(GP(0)) The furctions ofthe flags in the corrol registers are asfollows:

PG Paging (bit 31 of CR0). Enabes pagng whenset; disablespaging when clearWhen
pagirg is dsabled all linear adresgs are treateds plysical addes®s. The PG fag
hasno effectif the FE flag (kit O of redgster QRO) is nat alsoset;in fact, seting the PG
flag whenthe PE flag isclear cases a general-potectionexception(#GP) to be gener
ated.Refer to Sectbn 3.6, “Pagirg (Virtual Menory)” in Chapter3, Protected-Moé
Memay Managemenfor a desiled degription of the procesa’s pagng meclanism.

CD Cache Disable (bit 30 of CR0). When the © andNW flags are clearcaching 6
memoy locations fa the wholeof physical memory in the gocessals interral (and
exterral) caches igmbled.Whenthe D flag is t, cachingis restricted as described
in Table 94, in Chaper 9, Memay Cache Control. To preven the pracesor from
accesing and updatingits cachesthe D flag must be set and the caclesmust e
invalidated so that no cache hits canazur fefer to Section 9.52., “Preventing
Cachng”, in Chapter 9, Memory Gche Control). Refer to Secton 95., “Cache
Control”, Chepter 9, Memory Gche Control, for a detailed description of the addi-
tional restrictons hat canbe placedn the cachig of selected pas or regiors of
memoy.

NW Not Write-through (bit 29 of CR0O). When the NWard CD flags are cleaywrite-back
(for Pentiun® and P6 family procesars) or write-throuch (for Intel4d86™ procesars)
is enalbed for writes that hit be cacke and invéidation cyclesare enbled. Refer to
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AM

WP

NE

ET

TS
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Table 94, in Chapter 9, Memory Gache Control, for detailed information about the
affect d the NWflag on caching for other settirgs of the CD am NW flags.

Alignment Mask (bit 18 of CRO0). Enables autoatic alignment checlhg whenset;
disablesalignment clecking when clear Alignment clecking is perdrmedonly when
the AM flag is set the AC flag in the EFLAGSregiger isset, the CPL is 3, ard the
procesa isopekting in either pioteced a virtual-8086 node.

Write Proted (bit 16 of CRO). Inhibits supervisor-level procediresfrom writing into
userlevel readenly pages whenset allows supenisor-level procedires b write into
user-level readonly pageswhenclear This flag faciitatesimplementaton of the cqy-
onwrite method of creaing a newproces (forking) used by oraing systtmssiwchas
UNIX*,

Numeric Error (bit 5 of CR0). Enallesthe native(interral) mechanism fa reporting

FPU erraswhenset;erablesthe PGstyle FPU errorreporting mechamsm when clear
When the NE 1ag is cleamndthe IGNNE# inputis assertedi-PU erors are igrored

When theNE flag is clear andhe IGNNE#input is deasertedan umimmasked FPU erro
causeghe praesorto asert he FERR# pin to genate an exteral interupt and to
stop instructionexecuion immedately kefore exectding the rext waiting floating

point instruction or WAIT/FWAIT instruction. The FERR# pin is intendedto drive an
inpu to an exérnal interrupt conroller (the FERR# pin ermulates he ERROR# pin of

the Irtel 287 and htel 387 DX math copocessors). Tén NE flag, GNNE# pin, ard

FERR# pin areusedwith exterral logic to implemen PGstyle erra reporting. (Refer
to “SoftwareExcepgion Hardling” in Chapter 7, anl Appendix D in the Intel Architec-
ture Software Develger’'s Manual, \Wblume 1 for moreinformation abait FPU erra

reporting ard for detailed information onwhen he FERR# pin is aserted which is
implemertation dependent)

Extension Type (it 4 of CR0). Re®rvedin the P6family ard Pentium® procesors.
(In the P6 family processrs, this flag is hardodedto 1.) In the Intel386™ ard
Intel486™ pracesors, this flag indicatessupport of Intel 387 DX math coprocessr
instructions whenset.

Task Switched (bit 3 of CRO). Allows the saing of FPU context on ataskswitch to
be ctlayed urtil the FPUis actually access by the mw task. Tle pracesorsetsthis
flag on ewery task switch ard tesk it when interpretng floating-point arithmetic
instructions.

* |If the TSflag i set, a device-nt-available exception (#IM) is raised prior to the
exection of a floating-point instruction.

¢ If the TSflag and the NP flag (al® in the CRO regster) are botlset an #NM
excepton is raised prior to the execuion of floating-point instruction or a
WAIT/FWAIT instruction.

Table 241 shows the actons taken for floaing-point, WAIT/FWAIT, MMX™, and
StreamingSIMD Extensonsbasd onthe gttingsof the TS, EM, ad MP flags.
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Table 2-1. Action Taken for Com binations of EM, MP, TS, CR4.0SFXSR, and CPUID.XMM

CRO Flags CR4 CPUID Instructio n Type
EM | MP | TS | OSEXSR | XMM | Floating-Point | WAIT/FWAIT MMX™ Streamin g
Technol ogy SIMD
Extensions
0 0 0 - - Execute Execute Execute -
0 0 1 - - #NM Exception | Execute #NM -
Exception
0 1 0 - - Execute Execute Execute -
0 1 1 - - #NM Exception | #NM Exception | #NM -
Exception
1 0 0 - - #NM Exception | Execute #UD Exception -
1 0 1 - - #NM Exception | Execute #UD Exception -
1 1 0 - - #NM Exception | Execute #UD Exception -
EM | MP | TS | OSFXSR | XMM | Floating-Point | WAIT/FWAIT MMX™ Streamin g
Technol ogy SIMD
Extensions
1 1 - - #NM Exception | #NM Exception | #UD Exception -
1 - - - - - - #UD Interrupt
6
0 1 1 1 - - - #NM Interrupt
7
- - 0 - - - - #UD Interrupt
6
- - - 0 - - - #UD Interrupt
6
The procesor does ot auomatically savehe cantext d the FRJ on a tak switch.
Insteadt setsthe TSflag, whichcawsesthe praessorto raie an #NMexceptionwhen
ever it ecourters a loatingpoint instruction in the instruction streamdr thenew tas.
The faut hander for the #NM excefion can tlen be gedto clear the TS flagwith the
CLTS instructiop and save the amtext d the FPU. If the task mver ercounters a
floaing-point instruction, the FPU coniext is never sved
EM Emulation (bit 2 of CR0). Indicatesthat theprocesor doesnot have an intenal o

exterral FPU whenset;indicatesan FRJ is present whenclear When he EM flag is
set exection ofa floaing-pdnt instruction gererates a deice-not-available excepbn
(#NM). This flag must be seten the pocessor desnot hawe an interal FPU or is
not connected to a mah coprocessorlf the processordoes have an intemal FPU,
setting this flagwould force all 1oating-paint instructiors to be handled by softwae
emulation. Table 8-2in Chaper 8, Procesa Managementndlnitialization showsthe
reconmended seting of this flag, depending on the Irtel Architecure pocessr and
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FPU or math copocessr presert in thesystem. &ble 21 shows the interaction bthe
EM, MP, and TSlags

Note that the EM flaglso afects he exection of the MMX™ instructions (refer to
Table 21). When thisflag is ®t, execution d an MMX™ instructioncausesn irvalid
opcode exeption (#UD) to ke geneated. Thus, if an Inel Architecture pocessr
incorporatesMMX ™ tecology, the EMflagmust be t to 0 to enable exedion of
MMX ™ instrucions.

Similarly for the Sreaning SMD Extensions, whenthis flag is set, exection of a Streamiig
SIMD Extensonsinstruction caugs aninvalid opcodeexcepion (#UD) to be generaed. Thus
if an Intel Architectue praesorincorporates SeamingSIMD Extensions, the EMi&dg must
be set to 0 to enalte exection of Streaning SIMD Extensons. The excepton to ths is the
PREFETCH and SFENE instructions. Tkese instructions are ot affectedby the EM flag

MP Monitor Coprocesor (bit 1 of CR0). Controls the irteractin of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO0). If the MP flag is set, a WAIT
instruction gererates alevice-nd-availabe exception (#NM) if the TS flagis set. If the
MP flag is clear the WAIT instruction ignoresthe stting of the TSflag. Table 8-2in
Chapter 8, Processo Managemert and Initialization shows the recanmended seting
of this flag, depemling on the Intel Architecture piocessr ard FPU ormath cero-
cesor preent in the system. Table 2-1shows the interaction ofthe MP, EM, andTS
flags

PE Protection Enable (bit O of CR0). Enablesprotected mde whenset; enables real-
addessmoce when clear This flag does not endé paging directly. It orly enabes
segmentevel protection To enalbe paging, both the PE and PG flagsust be set.
Refer to Section8.8., “Mode Switching in Chapter8, Procesor Managementand
Initialization for informationusing the PE flag to swich between realand potected
mock.

PCD  Pagelevel Cache Dsable (bit 4 of CR3) Controls caching d the curent page aec-
tory. When theP(D flagis set, cadimg of the page-drectoryis preventedwhenthe
flag is clear the @ge-drectory can ke cached This flagaffectsonly the pracesors
interral cacles (both L1 and L2 when pesent). Tk pracesor igrores this flag if
pagng isnot used (the P@ag in register B0 is clear)or the M (cacte disable) flag
in CRO is set.Refer toChapter 9,Memory Cade Cortrol, for mare information abait
the wse d this flag.Refer to Secton 3.6.4., “Pagebirecory and PageFable Entres”
in Chapter3, ProtectedMode Memory Maagemenhfor a description of acompanin
PCD flag in thepagedirectoly andpage-table efries

PWT  Pagelevel Writes Transparent (bit 3 of CR3). Contrals the write-through or write-
backcading policy of the curent pag directoy. When the PW flag is s, write-
through cachig isenabled; whn the fag isclear write-back cacing is enaked. This
flag affects orly the intenal caches (@th L1 and L2, whenpresent).The pocessr
ignaesthis flagif paging isnotused the PG flagin register CRO is cleay) or the CD
(cacte disable¥lag in CRO is set. Rfer to Secton 95., “Cache Gntrd”, in Chapter
9, Memory Gche Control, for mare information alout the ue of thisflag. Regr to
Sectbn 36.4., “Pagebirecory andPage-Table Etries’ in Chapter 3 ProtectedMode
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VME

PVI

TSD

DE

PE

PAE

MCE

PGE

Memory Management for adescriptionof acompmnionPCD flagin the pge-drectory
andpagetable enties.

Virtual-8086 Mode Extensions (bit 0 of CR4). Enables inteupt- ard exception
handing extensionsin virtual-8086 male when &t; disablesthe extensonswhen ckar
Use d thevirtual mode exensdonscanimprove the perfamarce ofvirtual808 appi-
catonsby eliminatingthe overheacbf caling the virtuaF8086 maitor to hardle inter-
rupts ard excepions that occu while execting an 886 program and, instead
redireding the interrupts and eceptons back b the 886 program’s handers. It also
provides haravare support for avirtual interrug flag (VIF) to improve reliahlity of
running 8086 prograns in multitaskng ard multiple-pracesso environments. Referto
Section 163, “Interrupt ard Excepion Hardling in Virtual-8086 Mode” in Chapter 16,
808 Emuation for detaikd iformation atout the us of this feature.

Protected-Mode Virtual | nterrupts (bit 1 of CR4). Enables hasware sppat for a
virtual interrupt flag (VIF) in proteced male whenset; disables he VIF flag in
proteced mock when clear Refer to Section 164., “PraecedMode Mrtual Inter
rupts’ in Chapter 16, 8086 Emulation for detailed information about the use o this
feature

Time Stamp Disable (bit 2 of CR4). Restricts the exection of the RDTSCinstruction
to procediresruming at privilege level 0 when set; allows RDTSC instruction to be
executedat anyprivilege level wherclear

Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an ndefned @code (#UD) excepion to be gererated whenset when clear
procesa aliases refeances toregiders DRI ard DR5 for compatibility with software
writtento run an eatier Intel Architectue piocessrs. Refer to Sectiorll5.22., “Debug
RegstersDR4and DR, in Chapter 15, Debugying and Peformance Monitoring, for
more informaton onthe function d thisflag

Page Size Extensions (bit 4 of CR4). Enalles4-MByte pagswhenset;restricts pages
to 4 KBytes wten clear Refer to Section3.6.1., “Pagng Options” in Chaper 3
Proteced-Mode Memoy Managemenfor more information atout the ug ofthis flag

Physical AddressExtension (bit 5 of CR4). Emables pagingnechaism torefereme
36-bit physicaladdressesvhen setrestrictsphysical addessesto 32bits when clear
Referto Secion 38., “Physical Addres Extenson” in Chaper 3, Protected-Moéd
Memay Managemenhfor more informaion abou the ptysical addessextension.

Machine-CheckEnable (bit 6 of CR4). Enaltes the machine-cteck exceptiorwhen
set; disables the mchineeheckexceptionwhenclear Refer to Chapter 13, Machire-
Check Achitectue, for more information abaitt the machme-check excepon and
machire- checlkarchtectue.

Page Global Enable (bit 7 of CR4). (Introducedin the P6 family processrs.)Enables
the global page featurevhen set disables the global page featerwhenclear The
global page featue allows frequently used or shared @gesto be markedasglobal to
all users (dore with the glofal flag, bit 8, in a @ge-drectory or page-tale entry)
Global pages are nao flushed from the tarslationdookaside buffer (TLB) on a task
switch or a wrteto regster CR3. In addtion, the bt mustnat be enaled befae pagng
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is enatbed via CRO.PG. Rogram correctnessmay be afected by revesing this
seqience, anl procesar performance will be impaced. Refer to Section 3., “Trans-
lation Lookadde Buffers(TLBs)” in Chapter 3Protecied-Mode Memory Management
for more information on the u® of this hit.

PCE  Performance-Monitoring Counter Enable (bit 8 of CR4). Enablesexecution ¢ the
RDPMC instruction for prograns or procediresrunring at ary protecion level when
set RDPMC instructioncan ke exectied ory at protectionlevel 0 wten clear

OSFXSR

Operating Sytsem FXSAVE/FXRSTOR Support (bit 9 of CR4). The opesting
system will set this bit if both the CGPU and the OS support the wse of
FXSAVE/FXRSTOR for use during cantext swithes

OSXMMEXCPT

Operating System Ummasked Exception Sipport (bit 10 of CR4). The opesting
systemwill set this bit if it providessupport for unmasked SIMD floating-point excep-
tions

2.5.1. CPUID Qualification of Cont rol Regist er Flags

TheVME, PVI, TSD, DE, P, PAE, MCE, PGE, PCE, OSFXSR, ard OSXMMCEH flagsin
cortrol regster (R4 are malel specific. All ofthese flags (excepPCE) canbe qualified with
the QPUID instruction to detemine if they ae implemered on the pocessor &ore theyare
used.

2.6. SYSTEM INSTRUCTION SUMMARY

The system instructienhardle sysemlevel furctions sich asloading system retgters,
mareging the cacle, managing interruypts, or setting up the debug regsters.Many of these
instructiors can be exeded onlyby opegting-systemor exective procedires(thatis, prace-
duresrunring atprivilege level 0). Otherscan ke executd atary privilege level andare hus
available to aplication programs Table 2-2lists the system irtsuctions andndicateswhether
theyareavailable ad useful for applicationprograms.These instructiomare akscribed in detail
in Chapter 3 Instruction Set Refeence of thelntel Architecure Software Devebper's Manual,
Volume 2.
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Table 2-2. Summary of Sys tem Instructio ns

SYSTEM ARCHITECTURE OVERVIEW

Useful to Protected from
Instructio n Descrip tion Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers Yes Yes (load only)
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes! No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR?® Read Model-Specific Registers No Yes
WRMSR?® Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC® Read Time-Stamp Counter Yes Yes?
LDMXCSR® Load MXCSR Register Yes No
STMXCSR® Store MXCSR Resister Yes No
NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the Intel Architecture with the Pentium® processor.

4. This instruction was introduced into the Intel Architecture with the Pentium® Pro processor and the Pen-
tium processor with MMX™ technology.

5. This instruction was introduced into the Intel Architecture with the Pentium® Il processor.

2-19



SYSTEM ARCHITECTURE OVERVIEW Intel ®

2.6.1. Loading and Storing S ystem Registers

The GDTR LDTR, IDTR, and TRregisters each haa load ad store instration for loadirg
datinto andstoring dat from the regster:

LGDT (Load GDTR Regster) Loadsthe GDT base addessard limit from menory into the
GDTR regstet

SGDT (Store GDTR Register) Stores the GDT base addss and limit fran the GDTR register

into memay.

LIDT (LoadIDTR Regster) Loadsthe IDT ba® addres and Imit from memoy into the
IDTR register.

SIDT (Load IDTR Register  Storesthe IDT baseaddessandlimit from the IDTR register
into memay.

LLDT (LoadLDT Regster) Loadsthe LDT segmert sekecbr and segment deriptor from
memoryintothe LDTR (The segrant selector gerard can also
be locatedin a general-purpose registey

SLDT (StoreLDT Register) Stores the LDT segnent selecor from the LDTR regster into
memory or a gemral-purpaose regiger.

LTR (Load Task Registe) Loads segment sdector and segment desaiptor for a TSS from
memory into the tak register (The segment selector perard
canal® belocated ina geneal-purpose register.)

STR (Store Task Register) Stores the segmenselectr for the curren task TSS rfom the
task register into memory or a gemral-purpose register.

The LMSW (load machine status @ard) and SMSW(storemachine status ovd) instructions
operate on bits 0 theayh15 of contrd register CRO. Theseinstructionsare provided for conpat-
ibility with the 16-bit Intel 286 processo. Programwritten to un on 32-bit Intel Architecture
processrs shaild not use thesenstructions. Irstead they shalld accesshe contréregiser CRO
using the MOV instruction.

The A_TS (clearTS flagin CRO) instruction is povidedfor use inhanding a devce-nd-avail-
able exceptim #NM) that accurs wlen the piocessr attemps to executea floating-point
instruction when the TS fag is st. This instruction allows the TS fag tobe cleared aftethe
FPU cortext haseen saved,npventing further #NM excepons. Refer to Section2.5., “Corntrol
Regsters for mare informaion abait the TS flag.

The cortrol registers CRO, CR1, CR2, CR3, andCR4) areloadedwith the MOV instruction
This instructioncan lad a catrol register from a gneral-purpose regster @ store thecontents
of the cantrol registerin a general-purpose regstet

2.6.2. Verifying of Access Privileges

The processr provides severainstructiors for examining segmen selecbrs ard segment
descriptos to determire if accesgo their asociatedsegments & allowed. These instictions
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dugicate some ofthe autonatic acces rights and type cleckingdore bythe pocessr, thus
allowing gperatingsysem or executivesoftware to pevert excepions fram beirg generated.

The ARA. (adug RPL) instruction adusts the RPL (regesta privilege level) of a segnert
selectorto match thaof the program o procedirethat suppied the segment selectorRefer to
Section4.10.4., “Checking Caller Access Priileges (ARRL Instruction)” in Chapter 4, Protec-
tion for adetailed explamation of the function anduse of this instruction.

The LAR (loadacces righs) instruction veifiesthe acessibility of a specifiedsegment and
loads theaccessrights information from the segmet’'s segrent descriptor into a geneal-
purmpose registeiSotware canthen examinghe accessights to deternne if the segmetrtype
is campatible withits interded se. Refer to Sectiond.10.1., “Checkirg AccessRights (LAR
Instruction)” in Chapter4, Protection for a detaiéd expanation of the function and use d this
instruction.

The LSL (load segnert limit) instruction verifies the accessility of a specified segment ard
loads the sementlimit from the segient’s segnent desriptor into ageneral-purpose regster
Software canthen compag the segmenlimit with an offset into the segmehto deternine
whether the déetlies within the #gment. Referto Secton 4.10.3., “Checking That he Poirter
Offset Is Within Limits (LSL Ingruction)” in Chapter 4, Protection for a cetailed explaration of
the furction ard use d this instruction.

The VERR(verify for readirg) andVERW (verify for writing) instructions \erify if a selected
segment is readble orwritable, especively, at the ®L. Refer to Sectiord.10.2., “Checking
ReadWWrite Rights (VERR ard VERW Instructions)” in Chapter4, Protection for a detaiéd
explanation of the funcion anduse ofthis instruction.

2.6.3. Loading and Storing Debug Register s

The irternal delugging facilities in theprocessorare cotrolled by a set of8 debug regsters
(DRO through DRY). The MOV instructian allows setup dta to be loadedinto andstoredfrom
these registers.

2.6.4. Invalidat ing Caches and TLB s

The pocessr provides gveral instuctions forusein explicitly invalidatingits caches and TLB
entries. The INVD (invalidate caetwith no writeback) instructio invalidates dldata and
instruction erriesin the internal caches antl.Bs andsend a signal to th external caasindi-
cating thatthey shaild be invaidated al.

The WBINVD (invdidate cache wih writeback instructian performsthe ame furction asthe
INVD instruction, except that it writegack ary madified lines in itanternal cacksto memory
befare it invalidates the caches. After imalidatingthe interral caches, it ghals the extaral
caches to writedck malified data andnvalidate their cantents.

TheINVLPG (invalidateTLB ently) instructioninvalidateg(flusheg the TLB entryfor aspec-
ified page.
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2.6.5. Controlling the P rocesso r

The HLT (haltprocessr) instrucion stops the procesar until an erabledinterrug (suwch as NMI
or SMI, which are nomally enablegl, the BINIT# signal,the INIT# sigral, or the RESET#
signal isreceived.The pocessr gererates agecial bus cycle to inétate hat the halt mde has
beenenered Hardvare mayrespnd to this sgnalin a nunberof ways. An indicabor light on
thefront parel may beturnedon. An NMI interrugt for recordng dagngstic information may
be geneated. Resetinitializaion may be nvoked. (Note that the BINIT# pin wasintroduced
with the Petium® Pro procesor)

The LOCK prefix invokes alocked (atomic) readmodify-write operationwhenmodfying a
memay operard. This mechaism isusedto allow reliable conmuricatiinsbetweenprocesors
in multiprocessr systernrs. In the Petium® andearlier Inel Architectue piocessrs, the LOCK
prefix causeghe pocessr to assertthe LOCK# dgnal during the nstruction, whichalways
causes arexgicit bus lock to accu. In the B family processas, the locking operationis handled
with either acache loclor bus lock If a memoy access i€acleable ad affects onlya sihgle
cache line, @ache lock isnvoked andhe gstem busand the actutal memay location insystem
memay arenot lockedduring the operaton. Here, otherP6 family processrs onthe buswrite-
back any modfied data andinvalidate tleir caches asetesaryto maintainsystem memoy
cobterency If the memay acces is not cachedle andor it crossesa cacheihe bourdary, the
procesa’s LOCK# dgnal is asgrted and he praessr doesna repond to requess for bus
cortrol during the locled geration

The RSM (returnfrom SMM) instruction restores the poesor (from a contekdump) to the
state it wadn prior to ansystem managenent mocde (SMM) interrupt.

2.6.6. Reading Perf ormance-Monitoring and T ime-Stamp
Counters

The RDPMC (read mrformancemoritoring counter) ard RDTSC (read time-stamgourter)
instructiors allow an applicaton pragram to read the poesors perfomarce-manitoring ard
time-stamp contess, respectively.

The F6 family procesors have wo 40-bit performance coutersthatrecad either the occur
rerce of events or the dation ofevents. The eventdiat canbe moiitored incluek the number
of instructions decodd, numberof interupts receivedof numberof cache loasl Each couter
can ke setup tomonita a diferent eveh using the system irstruction WRMSR to set upralues
in the model-specific regsters PerfEvt80 and PerfEvt®l1. The ROPMC instruction loadsthe
curentcountin courter 0 or 1into the EDXEAX registers.

The timestamp counter is a moa-specific 64bit cowunter that isreset to zeroeach time the
processor is reset.If not reset the counterwill increment ~6.3 x 10*°times per year when
the proces®r is opeating at aclock rate of 200 MHz. At this dock frequency, it would take
over 2000 years for the munter to wrap around. The RDTSC instuction loads thecurrent
court of the time-stamp cownter into the EDXEAX registers.
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Refer to Section 5.5., “Time-Stamp Counter”, and Section 15.6., “Performance-Maitoring
Counters', in Chapter 15, Debugying and PerformanceMonitoring, for more information abait
the peformance nonitoring ard time-stamgourters

The RDTSC instruction wasintroducedinto the Intel Architecture vith the Rentium® processr.
The RDRMC instruction wasintroduced into the Intel Architectue with the Penum® Pro
processor and the Pentiurh procesor with MMX ™ teciology. Earlier Pentium® processos
have wo peformance-nonitoring counters, butthey canberead oty with the RDMSR instruc-
tion, and only atprivilege level Q.

2.6.7. Reading and Writing Model-Specific Regist ers

The RDMSR (rea madel-specific regster) andWRMSR (write malel-specific rgister) allow
the processo's 64-bit model-specific regigers (MIRS) to be readand written to, respectively.
The MSRto be reador written to is specified by the value in the ECX register. The RDMSR
instruction read the value fran the specifiedMSR into the EDXEAX registersthe WRMSR
writes the valie in the EDX:EAX registers intathe specifiedMSR. Refer to Section8.4,
“Model-Specific Registers(MSRs)” i n Chapter 8,Processo Managenent and Initialization for
more information about the MSRs.

The RDMSR ard WRMSR instructions were irtroduced into the Intel Architecture with the
Pentium® procesor

2.6.8. Loading and Storing the S treaming SIMD E xtensi ons
Control/ Status W ord

The LDMXCSR (load Steanming SMD Extensons contol/status word from memoy) and
STMXCSR (stae Streanmng SIMD Extersions control/status wad to memory) dlow the
Pentium® Il procesa’s 32-bit contral/status word to beread and written to, repectively. The
MXCSR contrd/status reggter is used toenalle maskeflinmaskedexcepion handing, to set
rounding modes to set flush-to-zero male, aml to view excepion statusflags For more nfor-
mation on the LDMX CSRand STMXCSR ingructions, referto the Intel Architectue Sdtware
Devebper's Manud, Vol 2, for a conplete desription of these irstructions
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel Architecture’s protectedmode memory management facilities,
including the physical memory requiremernts, the segmetation mectanian, and the paging
mechaism. Refer to Chapter4, Protecton for a description bthe pr@esor's prdection mech
anism. Refer to Chapter 16, 8086 Emudtion for a desription of memey addessing pratecion
in reataddressandvirtual-808 males

3.1. MEMORY MANAGEMENT OVERVIEW

The memoy managment faciltiesof the Intel Architectue are divided into two partssegmen
tation andpaging Segmetetion provides a mechasm o isolating individual coce, data, and
stackmodules sothat multiple prograns (or tasks) canrunon thesane processr without inter-
fering with one anotler. Pagirg provides amechanism forimplementinga corvertional
demanl-paged,virtual-memory system wtere sedbns of a pogram’s executioremvironment
are mappd into plysical menory as needd. Pagingcan also beused to provide iolation
betweenmultiple taks. When geratirg in protectedmode, some form of segnentaton must be
used.There is nomode bit to disable segnentation. The u® d pagng, howe\er, is optional

Theg two mechaisms (segnenttion andpagng) can be confjuredto syppat simple single-
program(or single-task) systens, multitasking systens, or multiple-procesa systensthatused
shared memar.

As dhown in Figure 3-1, segnenttion provides a meclanism for dividing the praessr’'s
addessable memxy space (called thknear address spae) into smaller proteced address
spacescalledsegnents. Segments can bused to hlal the cale, déa, and stack foa pogram
or to hdd system datatsuctures(such asa TSS or LDT).If more thanone praram (o task)is
running on a processareach prgram canbe assgned itsown set of segments. Theqaessr
then efforces the bondariesbetween thesesegnentsard insures that onprogram dees not
interfere with the exection of arotherprogram by writing into the oher program'’s segnent.
The segmetation mechaism also allowdyping d segmentsso that the peratiors that maybe
performedon a paticular type of segment carbe estricted.

All of the segmes within asystem ae containedn the pocessois linear addessspaceTo
locate a byte i@ particular segmet) alogical address (sometimes cadtl a far pinter) must be
provided A logical addresscongsts of a segmehselector andn ofset. The ssgment &lecta
isaunique icenifier for asegmert. Among other tingsit providesan ofset into a desriptor
table (suchas e globd desciiptor table, GDT) b a dita stucture caled a segnentdescriptor.
Each segmdrhas a egment descriptor, which specifies the aé d the segrant, the access rights
ard privilege level for the segnent, the segnenttype, aml the location of the first byte of the
segment in the linear addessspace ¢alled the base attessof the segrant). Tte of'set part &
the logical adressis addéd to the lase addressfor the segrant to locate a lig within the
segment. The baseddresslus the ofsetthus formsalinear addressin the preesorslinear
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addessspace.

Logical Address
(or Far Painter)

Segment l

Selector Offset Linear Address

| | | | Space
il o Dir Tln?rzgléd(ﬁreéifset | Physical
Table (GDT) Physical
Space
Segment b Tab
Segment age Table Page
Descripor— | | [ (| || 1| [~~~
> I Page Directory Phy. Addr.
ﬂr Lin. Addr.
Entry S —
* Entry >

Segment_J

Base Address

|~— Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Pagin g

If pagirg is nd usedthe linearaddess space fotheprocesoris mapped diecty into the plys-
ical adiressspace @ processarThe physical adiressspace is @fined as therange of addresgs
that theprocesorcan gnerate o its addess bis.

Because multitaskng computing systems canmonly define a linearaddress pace muwh larger

thanit is econmically feasble to cortain all at orce in plysical menory, some nmathod o

“virtualizing” the linear addessspace ieead. Ths virtualizationof the linear adakssspace
ishanded through the processor’s pagng mechansm.

Pagingsupports a “virtual menory’ environmert where afrgelinear addess gace ssimulated
with asmall amout of physical memoy (RAM and ROM) andsome disk storage. Whenusing
pagng, each segmeis divided into pags (ordinaiily 4 KByteseachin size), which are sored
eitherin physical merory or onthedisk. The geratingsysem or executive naintains a page
directay ard a set of pge tables to &ep traclof thepages. Wen a pogram (o task) attemys
to accesan addess location in the linear adessspace, the proesor useshe page directoy
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and pge Bblesto translatehe linear addressinto a plysical addessandthen perfoms he
requeged operation(read @ write) on the menory location If the page beingaccesed is not
currently in physical memaoy, the processr interryptsexecution ofthe program (bygenerating
a pag-fault exception) The geratingsystem a executive therreads the g@e into ysical
memay fromthe disk ard cantinuesexecuting te pragram

When pagng is implemented poperly in the geratingsystm or executive the swappig of
pages between phcal memoy andthe disk istranspaent b the correct executio of a
program Evenprogramswritten for 16-bit Intel Architecure pocesors canbe @pged(tranpar
ently) when they arerunin virtual-8086 mode.

3.2. USING SEGMENTS

The segmentationmechaism supprtedby the Intel Architecturecan ke used to implemen a
wide variety of systeam designs. These designs range from flat models that make only minimal
use of segnenttion 1 pratect programsto mutisegmened moded that emdoy ssgmenation
to create @aobustopeiting ervironment inwhich mutiple pragrams ad tasks candexected
reliady.

Thefollowing sections tye seveal exanplesof how segmetetion canbe emgoyedin a system
to improve memory management performance am reliahlity .

3.2.1. Basic Flat Model

The simplest memory model for a system is the basc “flat model,” in which the ogeratirg
system and aplication programshawe accesgo a continwus, unsegmeed addressspace. ©
the geaest extent pssble, thisbasic flat modl hides the egmentationmechaism o the arclr
tectue from both the systemdesgnerandthe appication programmer

To implement abasic flat nemory model with the Intel Architecture at least two segemt
degriptors must be ceatal, ore for eferercing a co@ segnentandone fa referencing a daa
segment (refe to Figure 3-2). Both of thesesegmets, however are magped to the entirdinear
addess space: that jsoth segnent descripta have the same base addsvalue of 0 andthe
same segnert limit of 4 GBytes. By setting the segnent limit to 4 GBytes, tle segnentation
mechaism is ke from geneating excepions forout of limit memowy references, een if no
physical menory reddes at a paticular addess ROM (EPROM) is geneally located at the top
of the plysical addessspace, becaa the pocessr begins exedion at FFAH-_FFFOH. RAM
(DRAM) is placedat the bottom of the adiressspace lecaise treinitial base adress for the DS
data segnent after eset initialization is Q.
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Linear Address Space
(or Physical Memory)
Sggggr‘; Code | FFFFFFFFH
Code- and Data-Segment
Descriptors Not Present
| Access | Limit o Data and
Base Address L - Stack 0

Figure 3-2. Flat Model

3.2.2. Protected Flat Model

The potectedflat model is #milar to the basic flat mod, except the segemt limits are set to
include only the range ofaddes®s for which physical memoy acually exsts (refer toFigure
3-3). A gereral-protection excepion (#GB is then gemrated onary attenpt to acess naex-
istent menory. Thismodel provides a mhimum lewvel of hardvare prdection agang sane kinds
of programbuggs.

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imi
Registers Access Limt > Code FFFFFFFFH
Base Address —>

Not Present

S — Memory I/O
Access Limit

m

S Base Address
Data and
FS Stack
S > 0

Figure 3-3. Protected Flat Model

More compexity can k@ added to this protected ffat nodel toprovide mae grotection. For
exanple, fa the @ging mechaism to provide isolationbetween ser and sugrvisor cale aml
data,four segmets need tobe defned: cale aml data segments at priege level 3for the ser,
ard cock anddata segnentsat rivilege level Ofor the supervisor. Ustally these segmerts all
overlay each otheard sart ataddressO in the inear addess space.This flat segmetation
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mockl along with a sinple pagimy structure carprated the geratingsystem from applications,
andby adling a separategging structure br eachtak or process, it can also tect apfica-
tions fron eachother. Similar designs are sed by several popular multitasking operatirg
systems.

3.2.3. Multisegme nt Model

A multisegment model (such as tle ore stown in Figure 34) uses tre full capaliiti es d the

segmentationmechaism to providedhardvare effiorcedprotecton of code, datastructures, and
programs andtaks. Here, eaclprogram ©r tak) is given its owntable d segnent descriptors

andits own segrants The segmets canbe canpletely pivate to theirasignedprograns or

shared amog pragrams. Acces<go all segmetsand to the exection envirommerts of individual

programs runring on the system & cortrolled by hardware.

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
cs | Access \dd Limit
Base Address Stack

\i

II Access \ Limit
Base Address

II Access \ Limit
Base Address

\i

Code
IE > Access \ Limit
Base Address
— Data
Access \ Limit
[ Fs b add
ase ress Data
Access \ Limit
GS > >
: Base Address
— Data
Access \ Limit
Base Address
Access \ Limit
Base Address
Data

Access \ Limit
Base Address

Access \ Limit

Base Address T

Figure 3-4. Multisegment Model
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Acces clecks carbe wsedto protect nd only agairst referercing anaddessoutside the limit
of a segmen but also against perfming disalowed opegtions in certain sgments. er
exanple, sincecodesegments aralesignatedas reaebnly segnents hadware @n be usedto
prevent wries into code sgments. The accesights informationcreatd for ssgmentscanalso
beusedto set up protecion rings or levels. Protecion levels canbeusedto protect operaing-
sysemproceduesfrom unauthoiized accesby aplication pograms.

3.2.4. Paging and S egment ation

Paging canbe ugd with ary of the segmentation mocdels degribed in Figures3-2,3-3,and 3-4
The processor's paging mectanism dvides thdinear adiress spacérito which segmats are
mayped)intopages (as shnin Figure 31). Thexlinearaddess-spacgages a thermapped
to pages in the pysical addess space. fie pagng mechanism dérs seveal pagetevel potec-
tion facilities that canbe used with or instead d the segnentprotectionfacilities. For exarmple,
it lets readwrite protecion be erforced on a pagby-page bass. Thepagng meclanism also
providestwo-level user-supervisor protecion that canalso be pecifiedon a pa@-by-page basis.

3.3. PHYSICAL AD DRESS SPACE

In protected mod, the Intel Achitecture povides anormal physicaladdessspace of 4 Giges
(232bytes. This is the addressspace that the pcesor canaddresson its addessbus. This
addess space is flat (unsegmeted), with addreses ranging continuously from 0 to
FFFFA-FFH. This plysical addess space aabe mapged to readwrite memay, readonly
memory, ard memory mapped|/O. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into ssgments and/or pages.

(Introducedin the RFentium® Pro processr.) The Irtel Architecturealso suppatsan exenson of
the phyical addess spaceto 2° bytes (64 GBytes, with a maximum physical addess of
FFFFH-FH-H. This extenson is invoked with the physical address extenson (PAE) flag,
located inbit 5 of contol regster CR4. (Referto Sectbn 3.8, “Physical AddressExtersion” for
more informationabaut exterded hysical addessng.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-archtiecture levelin protected mde, the proesor uses o stages of adeés
translation to aive at a phgical addess logical-address translabn andlinear addess space

pagng.
Evenwith the mininum use of segments, eerybytein the piocessr’'saddes spacésaccessed
with a logical addess. A logical addess consiss of a 16bit segment seleat anda 2-bit offset

(refer to Figure 35). The segrant seéctor idertifiesthe ssgment thebyte is locatedn andthe
offset specifieshe locatiorof the bytein the segmetrelative to tie base adéss d the segmit.

The pocessr translate®very logca addressinto alinearaddess. A linear addess isa 32bit
addessin the praesors linear adress pace. Like the pysical addessspace, ta linear
addessspace is flat (unsegmeted), 22-byte adiressspace, with adfes®s raming from 0 to
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FFFR-FFH. The linearaddress spacecontains all the segmerts ard systemtahles afined for a
system.

To trarslate a lgical addess intoa linearaddess, the pocessor tes the éllowing:

1. Usesthe dfset in the segmnt €lectorto locate the segmewdescriptor for the segmenin

the GDTor LDT ard readsti into the preesor (This stepis neededonly when a new
segmenselectoris loadedinto a segmetiregister)

2. Examinesthe segmat descriptor to cleck the accesrights and ange ofthe segnent b
insurethat the segm is accesible ancthat theoffsetis within the limits o the segrant.

3. Addsthe tese adres d the sgmert from the segment deriptor to the ofset to form a
linear addess.

15 0 31 0
| Offset |

Descriptor Table

Segment

Base Address
! —
Descriptor

31 0
| Linear Address |

Figure 3-5. Logic al Address to Linear Addres s Translation

If paging is nat used, the cessor magpthelinear addess directy to a plysical adiress(that
is, the linear adessgoesout on the processors addressbus). If the linear addes aceis
pagedasecadlevel d addresgranslaion is wsedto trarslatethe linearaddess into a physical
addess Pagetrangdation is degribedin Secion 36., “Paging (Virtual Memay)”

3.4.1. Segment Selectors

A segren selecto is a 16-bit idertifier for a egment (refer to Figure 3-6). It does ot point
directly to the segnent, but insteadpoints to the egment descriptor thatdefinesthe egment. A
segment selector attains the dllowing itens:

Index (Bits 3 through 15). Sekct ore of 8192 de<riptors in the GDTor LDT. The
procesor mutipliesthe indexvalue by 8 (the number of bytes in a ssgment
descripto) ard add the result to the dse address of te GDT or LDT (from
the GDTRor LDTR register, regectivdy).
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TI (table indicator) flag
(Bit 2). Specifiesthe descriptotable touse: clearinghisflag selectghe GDT;
seting this flag selects tte curren LDT.

15 3210
‘ Index ‘”RPL‘
+ A
Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPLy}——

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and1). Specifiesthe privilege level d the selectorThe privilege level
canrange from 0 to 3, with 0 being the most privileged level. Refer to Secton
4.5, “Privilege Leels” in Chapter 4,Protection for a desription of the rela-
tionship of the RPL to the CPL of the eecuting program (or tak) ard the
descriptor privilege level (DPL) of the desaiptor the segment sdector points
to.

The first entryof the GDT is not used by the pocessr. A segment sekcta that points to this
ertry of the GDT (that is, a segiert selecor with anindexof 0 ard the Tl flag st to 0) is used
asa “ndl segmenselector’ The pocessr does not gesrate an exceptiowhen a sgment
regster (dher thanthe CS or SS regsters) is loadedvith a null seécta. It does, however
gererate an excdpon whenasegnent register hiaing a ndl selector is used to acceremay.
A null selector can busedto initializeunused segrent regsters. Loathg the CS or SSregster
with a rull segment selectocauses genesl-pratection excepion #GP) to ke gererated.

Segmenhselectors are visble to aplication programs as partfa pintervariable but the values
of sekctas areusually asgined or modfied by link edtors orlinking loacers, ot application
programs.

3.4.2. Segment Registers

To reduce addesstrarslation time ad codirg conplexity, the praesor providesregisters for

hdding W to 6 segnentselectors (refer b Figure 3-7). Each ofthese sgmern registers sypport

a gecific kind of memory reference ¢ode,stack or dat). For virtualy any kind of program
exection to take place, ateag the @de-segrant (CS), data-segrent (DS), ard stack-segment
(SS) registersnust be loadedwith valid segment seéctas. The pocessr al provides tree
addtional data-segmenregsters (ESFS, and GS), which can be used to enatditional data
segments avkableto the curertly execding program (a task).

Fora piogram toacces asegment, tle segmetselectorfor thesegmentmust hae beenloaced
in ore of the ®gment regsters. B, although a ystem cardefine thausands of segmés) orly 6
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can be available fommediate use. @&r segmentscan be made availdb by loading their
segmentselectorsnto these registergluting programexecution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segmenregister las a“visible” partand a‘hidden” part. (The hiddenpart is sometimes
refered to asa “descriptorcacke” or a“shacw register’) Whena segmenselectr is loaded
into the vsible part of a £gment regster, the pocessr also load thehiddenpat of the segrant
register with tie base adress segmentimit, andacces catrol informationfrom the segrant
descriptorpointedto by the segnent ®lector The information cackd in the segménegister
(visible and hiddn) allowsthe piocessr to trandate addesseswithout taking extra b cycles
to read he bese adres ard limit from the ssgment degriptor. In gystems in which multiple
processars have access tthe same descriptor tables, it is tle responsibility of sdtware toreload
the segmet regsters wherthedescriptortables arenodfied. If thisis not done,an dd segnent
descriptorcacted in a sgment regster migh be used after itsnemay-resdent versiorhas been
modfied.

Two kinds ofload instrietions are povided for loadingthe segmetrregisters

1. Direct loadinstructions sich as the MOVPOPR, LDS, LES, LSS, LGS, and.FS instric-
tions. These instructions exdicitly reference the segnert regigers.

2. Implied loadinstructions such asthe far pointer versons of the CALL, JMP, ard RET
instructions andthe IRET, INTn, INTO and NT3 instructiors. These instructions chang
the catents of tle CS register (ad sometimes othesegment regsters) as an itidental
patt of their operaton.

The MOV instruction can also be used ttoee visile part of a £gment regdster in a genel-
purpose regster.

3.4.3. Segment Descriptors

A segmendescriptor isa data gucture in aGDT orLDT that provides he processor with he
size aml locationof a segmen aswell asaccess conttaand statusnformation. Segrent
descriptos are typically created byompilers,linkers, baders, or the opating system orexec-
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utive, but not application programs. Figure 3-8illustrates tle general desriptor format for all
types d segmen de<riptors.

Theflags andfields in a segmnt descriptoareasfollows:
Segnent limit field

3-10

Specifies the size dhe segmen Theprocessor pits togetler the twosegment
limit fields to form a 2-bit value. Theprocesso interpretsthe segnentlimit
in one of two ways depending on the seting of the G grandarity) flag:

» If the gandarity flagis clear the segrant size camange from1 byte tol
MByte, in byte incements.

» If the gandaiity flag is set,the segnent $ze can rage fram 4 KBytes to
4 GBytes, in 4KByteincremeitts.

The piocesor uses the gment limit in two different ways depending on
wheter the ssgment is an expard-up o an expanddovn sgment Refer to
Secion 3.43.1, “Code-andData-Segmem Desciptor Types for more nfor-
maion about ssgmernt types. For expand-up sgmerts, the offsetin a logical
addresscan rangfrom 0 b the segmenlimit. Offsets greater than thegment
limit gererate gereral-praection excepions (#GP). Fa expand-down
segmets, thesegnentlimit has the reversefunctior; theoffset can rangfrom
the segnent imit to FF-FFFR-FH or FF-FH, depending on the setting of the B
flag. Offsets les than the £gment limit generate general-protecion excep-
tions. Decreaing the value inthe sgment limit field for an eyanddown
segmenhallocatesnew memay atthe bdtom of the segmets address pace,
rather than at the f Intel Architecture sticks always gow dowvnwards,
making th's meclanism isconvenient br expardable stacks.
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31 242322212019 1615141312 11 8 7 0
D| |A|l Seg. D
Base 31:24 G(/|0|v| Limt |P| p [S| Type Base 23:16
B L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descript or

Base address fields

Typefield

Definesthe location ofbyte 0 ofthe segmentwithin the 4-GByte linear addess
space. Tie processr putstogetter thethree laseaddess fieldsto form asingle

32-bit value. Ssgmentbaseaddresses should bealignedto 16-byte baindaries

Although 16-byte aligimert is nat required, this alignment allows progranms to

maximize perfamarce byaligning coce anddat on 16-byte boundaries.

Indicatesthe gment orgate type ard ecifiesthe kirds of acces thatcanbe
made to the segnentandthe directia of growth. The inerpretaton of this field
dependson whether thedescriptor type flag pecifiesanapplication (coa or
dat) degriptor or a gystem degriptor. The encodng of the type field is
differen for cade, daa, ard systemdegriptors (refer b Figure 4-1in Chayter
4, Protection). Referto Secion3.4.3.1, “Code-andData-SegnentDe<riptor
Types” for a description of how this field is wsed to specify code and daa
segnert types.

S (descriptor type) flag

Specifies whetlr the segmendescriptor is for a system segment (S flag is
clear)or acode @ data segment (S fagis set).
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DPL (de<riptor privilege level) field
Specifies the privilege level of the segmert. The privilege level canrange from
0 to 3,with O beirg the mosprivilegedlevel. The DPL isused to cotmol acces
to the ®gmen. Refer toSectim 4.5, “Privilege Lewls” in Chapter 4,Protec-
tion for a description of the relationship bthe DPL to the €L of the execting
code segmerandthe RPL of a segrent seécta.

P (segment-present) flag
Indicateswhether the segnent is present in memagr(set)or not pe<snt (cleal).
If this flag is clear the pracesor geneates a segmemot-present excejon
(#NP) whena segmenhselectoithatpointsto the segnent descriptor is loaded
into a ssgment register. Memoly managment ftware canuse thisflag to
control which segmets areactwlly loaded into physical memay at a given
time. It offersa catrol in addtion to paging for mareging virtual memory.

Figure 3-9 showsthe famat of asegnentdescriptor when the segmeipiresent
flag is clear Whenthis flagis clear the operatingsysem or executiveis free
to use thdocations mated“Available” tostore its owndata,such as ifiorma-
tion regarding the whereatouts of the missing segnert.

D/B (default operation size/defwlt stack pointer size and/or upper bound) flag
Peforms different functions depending on whether the segment descriptor is
an executable abe segmet) an expnd-down data segmeén or a stack
segmert. (Thisflag $1oud always be set to 1 for 32-bit code ad dat segmeris
ard to O for 16-bit cade anddai segmens.)

» Execuable cae segmentThe fagiscalled the D flag anid indicates the
default lengh for effectiveaddesses andperand refererced ly instruc-
tionsin the segment. If the flag isset 32-bit addesss and32-bit or 8-bit
operand are assmed; if t is clear 16-bt addresgs and16-hit or 8-bit
operand are assmed.The instuction pefix 66H can be sedto select an
operandsize otler than the default, andthe pefix 67H canbeusedselect
an adiress ize otherthan thedefaut.

» Stack £gment (data segmen pointed to by the SS register). The flagis
called tle B (big) flag andit specifies thaize d the sackpainter wsedfor
implicit stack operatimns(suchas pwshes, mps, andcalls). F theflagis set,
a -bit stackpainter is wsed which is goredin the 2-bit ESP regster; if
theflag is cleara 16bit stackpointeris usedwhichis storedin the 16bit
SP regiter. If the sack ggmentis setup to be an expad-down daa
segment described inthe nex paragaph, the Bflag also specifies the
upper ound d the stacksegnent

« Expand-down data segment. The flag iscalled he B flag and itspecifes
the uper baind of the segnent If the flag is set the uper baind is
FFFFR-FFH (4 GBytes); if the flagis clear theupper bourd is FFA-H (64
KBytes).
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31 16 15 14 13 12 11 8 7 0
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descripto r When Segment-Present Flag Is Clear

G (granularity) flag

Determineghe scalingof the segmenlimit field. Whenthegranularty flagis

clear the segnent limit is interpreted in byte urits; when flag is set, the

segnent limit is interpretedin 4-KByte urits. (This flag desnot affect the

granularity d the tase address; f is always byte @ndar) When the ganu

larity flagis set the twelve leag significant bits of an ofset are nbtested when
checling the of'set agaist the segment limit. Forexampe, whenthe ganu

larity flag isset, alimit of O restts in valid offsets fromO to 4095.

Available and reserved bits
Bit 20 of the seconddouldeword of the segmentde<riptor is available for use
by systemsdtware;bit 21is resevedandshould always be set to 0.

3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

Whenthe S(de<criptor type) flag ina segment descriptor iset, thedescriptor isfor either acode
or a daasegnent The highes orderbit of the type feld (bit 11 of the £cord doulde word of
the segrant descriptor) thendetemines whetler the descripor is for a dita segmen(clear)or
a cotk segment @et).

For data ssgmens, the threelow-orderbits of the type field (bits 8, 9, and10) areinterpreted as
accesed (A), write-eable (W), andexpansiondirection(E). Refer to Table 3-1for adescrip
tion of the encaling of the bits inthe type field for coce anddatasegments. Data segmsican
be ead-mly or readwrite segments, depnding onthe setting bthewrite-enablebit.
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Table 3-1. Code- and Data-Segment Types

Type Field
) 1 10 9 8 Descri ptor
Decimal E w A Type Desctip tion
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Stack segnentsare datasegmets which mustbe readlvrite egments.Loadingthe SSregister
with a gment selectoror a ronwritable dta gment geeratesa generalprotectionexcepion

(#GP). If the sizeof astacksegmenhneeds tdoe changeddynamically, thestacksegnentcanbe
an epanddown dab segmert (expanson-direcion flag se). Here, dynamialy changing the

segment limit cawes stack space to be addedto the bottom ofthe gack. If the $ze ofa stack
segmentis intendedto reman datic, the stack €gmer may be ether anexpam-up or expand

down type.

The acces=l bit indicateswhetter the sgment haseen accessl since the lastime the oper
ating-system a executive clearethe bt. The pocessor sets thist wheneer it load asegment
sekector br the segnent into a segiert regiger. The bit renains set until explicitly cleared. Thé
bit canbe wsedbath for virtual memoy maregemen andfor debwgging.

For cale segrants the thee low-aderbits of the typefield areinterpreaed as accesed(A), read
enalte (R), andcorforming(C). Code segmets can beexecuteenly or execute/readdepending
onthe setihg of the reaeenalbe bit. An execute/readegment migh be isedwhen canstants or
other staticdata hae been placed wi instruction code in aROM. Here, data can be readiino
the co@ segnent ether by usingan instruction with a CS override prefix or by loadng a
segment seleot for the code £gment in a data-segmeregister (the DS, ES, FS, or GS regis-
ters). h protected node,codesegments are at writable.

Code segmets can I either corforming a noncorforming. A transfer ofexecutioninto a moe-
privilegedconforming segnent allows execufon to continue at the currentprivilege level. A
transferinto a nonconforming segnert ata differert privilege level results in ageneral-protec-
tion exception#GP),unlessa callgate ortak gate is usedéferto Secton 4.8.1, “Direct Calls
or Jumpsto Code Segnens’ in Chapter 4,Protecion for more informaion on canforming ard
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nonconforming code segmerts). System utiliti es tlat do not accessprotected facilities ard
handers for same typesof exceptons (such as divide erro or oveflow) may be daded in
conforming coce segnens. Utilities that reed tabe poteced fromlessprivileged progranms ard
proceduesshould be placedn noncanforming coce segments.

NOTE

Execution canot be transfered by a call ora jumpto a les-privileged
(numeically higher privilege level) code gment, regadlessof whetherthe
target segmentis a conbrming or norcorforming code sgment Attempting
slch an execution transfer will resut in ageneral-protedion exceptian.

All data segmes are nmcanforming, meaningthat they cannbbe accesed byless privileged
programs or procedues (co@ execting at nunerically high pivilege lewels). Unlike coce
segments, lowever data segments carbe accesxl by more piivileged programs @ procedires
(cock execting at rumericallylower pivilege levels) withot usinga ecial acces gate.

The pocessr mayupdate the ¥pefield when a segmeinis accessd, evenif the accesssa read
cycle. F the descriptortableshave been it in ROM, it maybe recesaryfor hardvare toprewvent

the ROM frombeingenabledntothe data bs duing awrite cycle. It also maye recesaryto

return the READY# signal to the processorwhen a write cycle to ROM accurs, otherwise

the cycle will not teminate. Thesefeatures of the hardware design are necessay for using

ROM-basd degriptor talles with the InteB8™ DX processr, which always sts the
Accesed bit when a segment destwipis loaded. The P6 familyPentium®, and Inel486™

processors, however only set theaccesed lit if it is not alreag set. Witesto descripto tables
in ROM can beavoided hy setting the aces®d hits in every desriptor.

3.5. SYSTEM DESCRIPTOR TYPES

WhentheS (descriptortype)flagin a segrent descriptois clearthe descriptor type is a system
degriptor. The pocesa recogrizes the following types d systemdegriptors:

® Localdegriptor-tade (LDT) segmentderiptor.
® Task-state sgmert (TSS) descriptor.

® (Call-gate descripto

* Interrug-gate esciiptor.

* Trapgate ascriptor.

®* Task-gate desriptor.

Thes desriptor typesfall into two cakgaies. system-egmen descriptorsand ga¢ desriptors.
System-segment aescriptors pant to system segmés(LDT andTSSsegmenty. Gate descrip
tors are in temslves“gates,” which hold poirters to procedue entry pints in coe segments
(cal, interrupt, andtrap gags) or which hold segmentsekcors for TSS’s (taskgates). Teble 3-2
showsthe encaling of the type field for system-egmen desriptors and gte degriptors.
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Table 3-2. System-Segment and Gate-Descriptor Types

Type Field
Decimal 11 10 9 8 Descri ption

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 LDT

3 0 0 1 1 | 16-Bit TSS (Busy)

4 0 1 0 0 16-Bit Call Gate

5 0 1 0 1 | Task Gate

6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 | 32-Bit TSS (Available)
10 1 0 1 0 Reserved

11 1 0 1 1 | 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call Gate
13 1 1 0 1 Reserved
14 1 1 1 0 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

For mare informaion on he systemsegment degriptors, refer b Secton 3.51., “Segnent
Desciptor Tables”,and fcion6.22., “TSSDegriptor” in Chapter 6, Task Managemen For
more information onthe gate descripbors, refer tdSection 4.8.2., “Gate Degriptors” in Chapter
4, Protection; Se¢ion 5.9.,“IDT Desciiptors’ in Chapter 5, Interrupt ard Exception Hanting;
andSecton 6.2.4., “Task-Gate Descriptdbin Chapter6, Task Management

3.5.1. Segment Descriptor Tables

A segment descriptor tableis an array of segment descriptors (refer to Figure 3-10). A desaiptor
table is variale in length andcan catain upto 8192 (2'°) 8-byte desriptors. Thereare tvo
kinds of desciiptor tabes:

® The global desriptor table (GDT)
® Thelocal descriptor tables (LDT)
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Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
N ¢ ¢
| TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit [ Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and L ocal Descripto r Tables

Each gstem muwst have ane GDT dfined,which may beused fa all programsandtasks in the
system.Optionally, one @ more LDTs can e defined For exarple, an LDT carbe defired for
each sepate task beingrun, or some @ all taks can share th ssme LDT.

The DT is nota sgment itself; instead, itis adata $ructure in the inearaddressspace.The
basdinear addess ard limit of the GDT must be badednto theGDTRregster (refeto Section
2.4., “Memory-ManagmentRegdsters’ in Chaper 2, SystenArchitectue Oveview). The base
addes®s of the GDT should be alignedon an eight-byte boundary to yield the beg procesa
performance. Theimit value for the GDT isexpres®d in bytes As with segmerts, the limit
value is adced to the bag address to get tre addessof the las valid byte. A limit value of O
resultsin exactlyone valid byte. Becauseament descriptrs are always 8 byteslong, the GDT
limit should alwaysbe e les than anintegral multiple of eigtt (that is, 8N —1).

The first descripor in the GDT is not sed by the pracesor. A segmenhselectorto this “null
descriptot doesnot gererate anexceptionwhenloadedinto a dta-egment egister (DS, ES,
FS or G9, butit alwaysgeneraes a gemral-protecion excefion (#GB when an aenmpt is
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mack to acces memoy using the descriptor. By initializing the ssgment regsters vith this
segment selectpaccidetal refererce b unused segménmegisters canbe giararieedto generate
an exception

The LDT is located ina g/stem segrant of tre LDT type. he GDT must cotain a gment
descriptor for the LDT segnert. If the systemsupports multiple LDTs, eachmust have a sepa-
rate segmerselector ad ssgment decriptor in the GDT The gment descriptofor an LDT
can be locaed anywhezin the GDT. Refer toSecion 3.5, “System Descrptor Types for infor-
maion onthe LDT ssgmert-de<riptor type.

An LDT is accessed with its segmehsekcta. To eliminate addess ranshtions whenaccesing
the LDT, the #gment ®lector, basdinearaddress)imit, and accesdghts of the LDT are ®red
in the LDTR register (eferto Section2.4., “Memary-Managenent Registers” in Chapter 2
System Athitectue Oveview).

When the GDTRregister is stored (sing the SA@T instruction), a 8-hit “pseudedescrifor”
is stored in memay (refer to Hgure 3-11). To awoid alignmert checkfaultsin usermode (piv-
ilege level 3, the pseudalescrigior shoud be located at almdd word address(that is addess
MOD 4isequ to 2). This catses tle pracessoto sbre an aliged word, followedby analigned
doubleward. Usermode prograns normally do not stare pseudo-descrigors, but the passibility
of genesating an algnment checkfault can ke avoded by aligning pseudo-deriptors in this
way. The same alignent shald beused whemtoring the IDTRregisterusing the SIDT irstruc-
tion.Whenstbringthe LDTRor task register (usng the S TR or STRinstruction, regpecively),
the pseudalescripto shaild be locatedat adoubleword addess (that is, addressMOD 4 is
equal to0).

47 16 15 0
| Base Address | Limit

Figure 3-11. Pseudo-Descriptor F ormat

3.6. PAGING (VIRTUAL MEMORY)

When @eratingin pratectedmade, the Intel Architecturepermits thdinear adressspace tabe
mayped directly into a lage physical menory (for example,4 GBytesof RAM) or indirectly
(using pagig) into a snaller physical memay and disk storage. Thi latter metod of mapping
the linear adress pace is comnonly referred to as virtual menmg or demail-pagedvirtual
memay.

When pagilg isused, the prmesor dividesthe linear adeess gaceinto fixed-size pagefgener
ally 4 KBytesin length) that can be mappednto physcal memory ard/or disk storage.Whena
program (@r tak) referercesa logcal addessin memoy, the processor trarslates theaddes
into a linear adlress ad then uses its pagingmechanismto trarslatethe linearaddress intca
comresgonding physical adiress If the pag cortaining the linear adress isnot curertly in
physical memory, the pracesor gnerates a pag-fault exception(#PF). Tle exceptiorhardler
for the pagdault excefion typically drectsthe ogerating system or ecutive to load theage
from disk sbrage intgphysical memaoy (perhas writing a dfferent pag from physical memoy
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outto disk inthe pocess). Wenthe mge tes been I@adedin physical memoy, a ieturn from
the exception handler cawsesthe instruction that gereratedthe excefion to be restartedThe
information that the qfpcessr usesto map linear addess into the plysical adiressspace and
to geneate page-fault excepions (when necesary) is cortained in page directoies and pag
tables sbredin memoy.

Pagdng is differert from segmertation through its useof fixedsize pages. Unlike segnens,
whichusually ae thesame size as ¢hcodt or data stucturestheyhold, pages hae afixed size.
If segrrentaton is the oty form of addesstrarslationused, alata sructurepresent in pysical
memory will have all d its parts in memory. If paging is used, a data structire can b partly in
memory and partly in disk storage.

To minimize tke nunber d bus cycles required for addess trarslation, the mat recenly
accesed ge-drectory and pag-table entres are cacheth the pr@esorin devices caéd
translaton lookaside bffers TLBs). The TLBs satsfy most regestsfor readirg the current
page drectoryand page tades witout reqiiring abus cycle. Extra bs cycles occupnly when
the TLBs dona cortain apagetable ertry, which typicaly happenswhenapagehasna been
accesedfor along time. Refer to Section 3.7., “Trarslation Lookaside Riffers (TLBs)” for
more infformaiononthe TLBs.

3.6.1. Paging Options
Padngis controlled by three flags in the procesa’s contol registers

®* PG (paging) flag, bt 31 of CRO (available in all Intel Architecure pocesors begnning
with the Intel386™ processo).

®* P (page ste extensons) flag, bit 4 ofCR4 (introduced in the Pentiufhand Pentium®
Pro pracessrs).

®* PAE (physical addressextensbn) flag, bit 5 o CR4 (introduced in the PentiufnPro
procesas).

The PG flagenalbesthe pa@-translaton mechanism. Tl operatingsystemor executive sually
sets tis flag during procesa initialization. The RG flag must be set if the procesa’s page-
translaton meclanian is to be used to impment a demaspaged vitual memoy system a if
the operaing systemis designed b run more thanone pogram (r task) in virtual-8086 mode.

The PSE flag endéslarge pag sizes:4-MByte pages or-MByte pages (whethe FAE flag is
set). When the BE flag is clear themore comnon pag lengh of 4 KBytesis used.Refer to
Chaper 3.6.2.2, Linea Addes Trandation (4-MByte Pages) ard Secion 3.82., “Linear
AddressTranshtion With Extended Addressing Enabled (2-MByte or 4-MByte Pages)” for
more information about the wse of the PSE flag.

The FAE flag enalbes 3-bit physical adiresgs. This physical adiressextensioncan aly be
used when pgingis enalted. It relies an page drecbries and @ge Bbles b refererce physcal
addessesabore HFFFA-FH-H. Refer to Section3.8., “Physical Address Extension” formore
informafon abou the plysical addessextension.
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3.6.2. Page Tables and Direct ories

The infamationthat the proesor usedo translatdinear addes®s into physical addresgs
(whenpagng is enalbed) is cortained n four data structures

® Page drecbry—An aray of 32-lit page-drecbry enties (PDES) cortained in a 4-KByte
page. Upto 1024 pagedirecbry ertries canbe teld in a pag direciory.

®* Page Bble—An arrayof 32-bit page-able enties (PTES) cantained n a4-KByte page. Up
to 1024 page-table entries canebheld in a pge table. Page tablesare not sed for 2-
MByte or4-MByte pages Thesepagesizesare nappeddirecly from ore ormore pag-
directoryentries.)

®* Page—A 4KByte,2-MByte, a 4-MByte flataddess space.

® Pagebirecbry-Pointer Table—An arrayof four 64-bit entries, eactof which paints to a
page drecbry. This dai@ gructure is only used whenthe physical addres extendon is
erabled (eferto Secton 38., “Physical Addess Extersion”).

These gblesprovide acces © either4-KByte or 4MByte pagesvhen nomal 32-bit physical
addessngisbeingusedand to eithed-KByte, 2-MByte, or 4MByte pages when extenard (36
bit) physcal addessing is being used. Table 3-3 stowsthe paye $ze andphysical addres size
obtained from various settings of the paging cortrol flags. Eactpage-directary entrycortains a
PS(page $ze) flagthat specifiesvhetter the entry pints to a page table whose entriegum
point to 4-KByte pages(PS &t to 0) a whether the pag-directay ertry points drectly to a 4-
MByte or2-MByte pag (PSE or PAE st to 1 andPSset to 1).

Table 3-3. Page Sizes and Physical Address Sizes

PAE Flag, Physical
PG Flag, CRO CR4 PSE Flag, CR4 PS Flag, PDE Page Size Address Size
0 X X X — Paging Disabled
1 0 0 X 4 KBytes 32 Bits
1 0 1 0 4 KBytes 32 Bits
1 0 1 1 4 MBytes 32 Bits
1 1 X 0 4 KBytes 36 Bits
1 1 X 1 2 MBytes 36 Bits

3.6.2.1. LINEAR ADDRESS TRANSLATION (4-KBYTE PAGES)

Figure 3-12 shows te pagedireciory ard page-table hierachy when mappng linearaddreses
to 4-KByte pags. Tteertries in the pag direcory point to page gbles,ard the entiesin apage
tatde point to pagesin physical memory. This paging method canbe sed to addressup to 22°
pages, which spas alinear addessspaceof 222 bytes(4 GBytes.
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Linear Address
31 22 21 12 11 0
Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

Y

Page-Table Entry

Directory Entry ——>

>
’

-

>

30+ 1024 PDE 01024 PTE = 2%° Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

N

Figure 3-12. Linear Address Translation (4-KByte Pages)

To select the vaous table efnies, the linearaddess isdividedinto three sectins:

® Page-drecory enty—Bits 22 through 31 provide an offset to an enty in the pag
direciory. The slectedentryprovides the bse physical adiressof apage take.

®* Page-take entry—Bits 12 through 21 of thelinear adress preide an dfset toanentryin
the sedcted page table. This entryrpvidesthe base plgical addessof a pag in physical
memay.

® Page dfset—Bits 0 through 11 providesan dfsetto a ptysical addres in the page.

Memoly maregemen sdtware haghe option of usng one page drectay for all programsand
taks, one @ge drectoryfor each taskor sone combnationof the two.

3.6.2.2. LINEAR ADDRESS TRANSLATION (4-MBY TE PAGES)

Figure 312 stowshow a @ge drecbry canbe sedto map Inear addes®s to 4-MByte pages
The entries in the page directory point to 4-MByte pages in physcal memory. This paging
method can beused to ma@ up to 1024 paes into a 4-GByte linear address space.
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Linear Address
31 22 21 0
| Directory | Offset

22 4-MByte Page

10 _Page Directory Physical Address

Directory Entry >

L.
>
>
’
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE = 1024 Pages

Figure 3-13. Linear Addres s Translation (4-MByte Pages)

The 4MByte page size is selectedby setting the PSE flag in cortrol register CR4 and seting
the mge size (P¥flag ina pagedirectoly ertry (refer toFigure 314). With these flags set, the
linear addess isdivided into two sections

® Page drecory entry—Bits 22 through 31 provide an ofset to an enty in the page
direcory. The slectedenty providesthe bag physical addres of a 4-MByte pge.

® Pageoffset—Bits 0 through 21 providesan dfsetto a ptysical addessin the page.

NOTE

(For the Petium® processa only.) When enabling or disabling large page
sizes the TLBs must be inwidated (flished) after the PSHlag in contrbd
register CR4 hasbeen st or clearedOtherwise, mcorrect page trarslation
might occurdue to the pcessr using aitdated jage translatin information
storedin the TLBs. Refer to Section 90, “Invalidating the Tarslation
Lookasde Buffers (TLBs)”, in Chaper 9, Memory Gche Control, for
information on how to invalidate tke TLBs

3.6.2.3. MIXING 4-KBY TE AND 4-MBYTE PAGES

When the PSE flagin CR4 is set, both 4-MByte pagesind page dbles for4-KByte pags can
beaccesedfrom thesame pge drectory If the PSE flags clear only page talbesfor 4-KByte
pages can be accesed(regardless d the setting of the PS flag in a page-directary ertry).

A typical example ofmixing 4-KByte and4-MByte pags is to place the peratingsystem a
exective'skernel in a lage pagto redice TLBmisses andthus impree owerall s/stem gerfor-
marce. Theprocesor maintains 4MByte pageentries andd-KByte pege eltries in separate
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TLBs. So, placingften used caoglsuchas the kerel in a lage pagefreesup 4-KByte-pag
TLB ertries fa application programs andtasls.

3.6.3. Base Addres s of the Page Directory

The phyical addres of the currentpage diecbry is stored in the CR3 register (ako caled the
page drecory ba register or PDBR). (Refr o Figure 25 ard Section 2.5, “Control Regis-
ters' in Chapter 2 System Achitecure Overviewfor more infarmationon the FDBR.) If paging
is to be wsed the PDBR must be loaded as fart of the pracesso initialization process(prior to
enablirg pagirg). The FDBR can therbe chaged eitherexplicitly by loadng a new @ue in
CR3 with a MOV instruction or implicitly as pat of a sk switch. (Refer o Secton 62.1,
“Tak-State Segment (TSS” in Chaper 6, Task Management for a desription of how tke
contents of the R3 regster is sefor a tak.)

Thereis no presern flag inthe PDBER for the pag directoy. The ge drectorymay ke nat-
presen{paged ait of physicalmemog) while itsassociatedaskis suspeded,but the gerating
system must ensure th#te page directoryindicated by the PBR image in atask'sTSSis
presenin physicalmemaoy befare thetask is dispatchedThe page directay must ale remain
in memory aslong asthe tak is active.

3.6.4. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages ard 32-bit physicd addresse ae beng used. Figure 3-14 shows the format for the
page-directoryenties when 4MByte pagsand32-bit physicaladdesses ardeingused Refer
to Secion 3.8., “Phydcal Addres Exengon” for the format of pagedirecory ard pagetable
entrieswhen te physicaladdess extersion is being used.
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Page-Directory E ntry (4- KByte Page Table)

31 1211 9876543210
P|P|U|R
Page-Table Base Address Avail. |G g O|A|C|W|/|/|P
D|T|S|wW
Available for system programmer’s use —l
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4- KByte Page)
31 1211 987654321
P|P|U|R
Page Base Address Avail. |G|0|D|A|C|W|/|/
D|T|S|W

Available for system programmer’s use —l
Global page

Reserved (set to 0)
Dirty
Accessed
Cache disabled
Write-through

User/Supervisor

Read/Write

Present

Figure 3-14. Format of Page-Directory a nd Page-Table Entries for 4- KByte Pages
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Page-Directory En try (4-M Byte Pag e)

31 22 21 1211 9876543210
) P|P|U[R

Page Base Address Reserved Avail. |G|P c|w|/|/|P
D|T|S|W

Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

&|D[A
Available for system programmer’s use J ‘ ‘

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

The functiors of the flags andields in tte entries in Figies3-14 and3-15are as follows:

Page baseaddress, bits 12through 32

(Pagetable entries fo 4-KByte pages.) Spefies thephysical adiress ofthe
first byteof a 4KByte pag. The hitsinthis fieldare intepretedasthe 20most-
significantbits of the physcal addess which forcespagesto be aigned on
4-KByte ourdaries

(Pagedirectory ertries for 4-KByte page tables.) fgcifies the physical
addessof thefirst byte d a mge talbe. Thebits in this field ae interpeted as
the20 most-significant bits of thephysical adresswhich forcespagetablesto

be algned o 4-KByte boundaies.

(Pagedirectoryentries for 4AMByte pages.) Specifies the pHcal addessof
the first byte ofa 4MByte page. OnY bits 22 throuch 31of thisfield are used
(and bits 12 through?21 are resrved andmust be set to 0, foIntel Architectue
procesors through the Rentium® Il processor) Thebas addess bits are inter
preted asthe 1D most-significart bits of the physical addess which forces4-
MByte pagedo be algned on4-MByte bourdaries

Preeent (P) flag, bit 0

Indicaes whelter the pag or paye gble beng pointed to by the enty is
currentlyloadedin physical memry. Whenthe fag is set the mgeisin phys-
ical memoy ard address translatn is carriedout. Whenthe fag is clearthe
pace is not in merory and, if the ppcessr atiempts to accesshe page, it
gererates a pag-fault excepion (#PF).

The pocesa doesnotsetor clear hisflag it is up b the operaing /stemor
exective to mantain the state ofhe flag
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The bit must be setto 1 wheneer exended physical adiresshg mode is
erabled.

If the pocessomgeneates apagefault exception,the geratingsystem mst
carly out the following operations in the order kelow:

1. Copythe ppge fomdisk storage nto physical memoy, if neeced.

2. Load he pageaddessinto the pag-table or page-directay enty andset
its preent flag. Oher bits, such asthe dirty and accaegd flagsmay also
be #t at thistime.

3. Invalidatethe current ppge-talbe entry in the TLB (referto Sectbn 3.7,
“Translation Lookasde Buffers (TLBs)” for a dscussion d TLBs ard
how to invalidate tkem).

4. Retun from the pa@-faut handler to restart the inerruged program or
task

Readwrite (R/W) flag, bit 1
Specifiesthe read-write privlegesfor apage or goup of pags (in the casef
a ppge-drectory entrythat pantsto a pa@ table).Whenthis flag is clearthe
page isreadonly; when the flag is st, the @ge can beaad andwritteninto.
This flag interactswith the U/Sflagandthe WP flag in regster QRO. Refer to
Secion 411., “Page-LevelProtecion” ard Table 4-2in Chaper 4, Protecion
for a detailed discus#on of the se d these flag.

User/supervisor (U/S) flag, bit 2
Specifiesthe user-supervisor privileges fa a pag or group of pags (in the
case ofa ppge-drectory entry that ints to apagetable). When this flagis
clear thepace is asggnedthe sugrvisor privilege level; whenthe 1ag is set,
the page is assgnedthe wer privilege level. Ths flag irteracts wih the R/W
flag and the WP flag in regster CRO. Refer to Section 4.11., “Pagektevel
Protecion” ard Table 4-2in Chapter 4, Protection for adetail discussion of the
use @ these flag.

Page-level write-through (PWT) flag, bit 3

Contrds the write-though orwrite-back cachng pdicy of individual pegesor

page tables. Wen thePWT flagis set, write-thragh cachirg is enabledor the
as®ciated page or page table; wlen theflag is clear write-back cacing is
erabled fo the asociatedpage orpage table. Tépraesor ighoresthis flag if
the D (cacle disable) lag in CRO is set. Rfer to Section9.5, “Cache
Control”, in Chapter 9, Memory Giche Gontrol, for moreinformation abait the
use of thiflag. Refer to Section2.5., “Control Registers” in Chapter 2, System
Architectue Overviewfor a desription of acomparon PWT flagin cortrol

register CR3

Page-level cache disable (PCD) fag, bit 4
Contrds the cachig of indvidual pags or page tables. Wenthe RCD flagis
set, cachig o the associatedsge @ page table is peventedwhen tte flagis
clear the page opage tabe canbe cachedThis flag pernits cachingto be
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disabled fa pagesthat contin memay-mapped 1/0O ports or that do not
provide a peformance bnefit when cacled. The pocessr ignoresthis flag
(asamesit is set) if the © (cacte disable)flag in QRO is set. Rfer to Chapter
9, Memay Cache Control, for more information alout the use of ths flag.
Refer to Section 2.5.in Chaper 2, System Athitecture Ovewviewfor a desrip-
tion of a canpanon PCD flag in contiol regster GR3.

Accessed (A) fag, bit 5

Indicateswhetler a pag or pege table has beatcesed (ead fom a written
to) when setMemay managment ftwaretypically clears his flag when a
page a page table isinitially loadedinto physical memory. The proces®r then
set this flag the firsttime a page opage tableis accesed. This flag isa
“sticky” flag, meaninghat once sethe pra@esordoesna implicitly clear it.
Only software carclearthisflag The accesed and dirtflags are prowded fa
use by memoy mangementoftware b managthetrarsfer of pagesand pag
tablesinto ard aut of physical memory.

Dirty (D) flag, bit 6
Indicateswhether a pge hasbeenwrittento whenset. (Thisflag is not used in
page-direcory enties that point to page taes.) Memory managemat soft-
ware tyically clears this flagvhena pag is initially loadedinto physical
memay. The processor thenets this flag the first timea page isaccesed fa
a wite operation.This flag is “sticky,” mearing that once &, the pocessr
does nat implicitly clear it. Oy software canclear ths flag. The dirty ard
accesed flags are povided for use bymemoy maragement sdfvare to
manae hetrander of pages andpage tablesinto andout of physicalmemay.

Page size PS) flag, bit 7

Determines the page size. THlag is only used in pagesdirectoly entries.
When thisflag iscleat the page $ze is4 KBytes and the pagdiredory entry
pointstoa pa@table. When the flag is &t, the pag size is 4 MBytes fornomal
32-bit addessing (and2 MBytes if exteded ghysical addrssing is enabled
andthe pagedirectoly entrypoirts to a pag If the page-drectoryentrypoints
to a page talbe, allthe mges assciated wth thatpage tade will be 4KByte
pags.

Global (G) flag, bit 8
(Introducedin the Fentium® Pro processr.) Indicates a glbal pag when set.
When apage ismarled glotal ard the page glbal erable (PGE) flag in register
CRA4 is =t, the ppge-able or page-drecbry entry for the page isnotinvalidated
in the TLB when egister CR3 is loadedor atask switch occus. This flag is
providedto preven frequenty used pages (suchaspageghat contain kernel or
other operaing system a executve cale)from beng flushed fromthe TLB.
Only sdtware carset @ clear ths flag. Far page-directay entriesthat point to
pace tables, his flag isignared andthe gldoal characteristcs of a page are set
in the mge-table entries Refer to Section 3.7., “Trandation Lookaside Bufers
(TLBs)” for more information atout the use of this flag. (Thishbit is reservedin
Pertium® andearlier htel Architectureprocesors.)
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Resened and available-to-oftware bits
In apage-talle enry, bit 7isresrvedand stould be seto 0; in a pagedirecory
enty that pants © a page talbe, it 6 is reservedard should be set to0. For a
page-drectay ertry for a 4-MByte pa@, bits 12 through 21 ae reseved aml
must be set to O, for Intel Architecture processrs through the Pertium® I
processr. For both types of ertries, bits 9, 10,and11 are available ér use by
software.(Whenthepresent H is clear, bits 1through 31 are awailable tosoft-
ware—reér toFigure 316.) Whenthe PSE andAE flags in @ntrd register
CR4 are setthe piocessr generates pagefaultif resered btsare nd setto O.

3.6.5. Not Present Page-Directory and Page-Table Entries

When the pesert flagis clear fo a pageable or pag-direcory ertry, the opeating sysemor
exective mayuse theestof the enty for storag ofinformationsuchasthe locationof the pge
in the disk sbragesystem eferto ).

31 0

Available to Operating System or Executive ‘ O‘

Figure 3-16. Format of a Page-Table or Pag e-Directory En try for a Not-Pres ent Page

3.7. TRANSLATION LO OKASIDE BUFFERS (TLBS)

The pocessr storesthe most recently used pagdirectory ard pagetable entriesn on-chip
caches called anshtion lookasde bufers or TLBs. The F6 family and Pentium® processors
hawe sepaate TLBs for the dtaand instructioncacles Also, the P6 family ppcessors maintain
separae TLBs for 4-KByte and 4MByte pa@ sizes The CPUID instruction an be sed to
determine the sizes bthe TLBsprovided in the P6family ard Penium® procesas.

Most pagng is perfamedusng the ontents of the TLBs. Bus cyclesto the page dreciory ard
pace tablesin memoy are perérmed only when the TLBsdo na contain the trangdation infor-
mation for arequested page

TheTLBs are imccesible to aplication programs andasks (privilegelevel greatetthan (; that
is, theycannd invalidate T.Bs. Onlyopeiting system oexective procedues ruming at piiv-
ilege level & O caninvalidate TIBs or selected TB entries. Wheneer a pag-diredory or
page-tabe entryis chamged (including whenthe presenflag isset to zerq, the operating-system
must immedately invalidate the coespading entryin the TLB so that it can be pdated the
nex time the entryis refereed. Howewr, if the plysical addessextersion (PAE) featue is
enalted to use 36bit addessing,a new tablés addedto the pagng hierachy. This new table $
caled the page drectory pointer table (as desribed in Secion 38., “Physical Address Exen
sion”). If an entry is changed in this table (to point to another page directory), the TLBs must
thenbe tushed by writingto CR3.
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All (nondobal) TLBs are autmaticaly invalidated angime the GR3 regster isloaced (uhes
the G flagfor a jage a page-tade enty is set, aslesribe later inthis section). The CR3 regster
can ke loadedin eitherof two ways:

® Explicitly, udng the MOV instruction, for exanple:
MOV CR3, EAX

wher the EAX regster contains anappiopriate pagedirecory bas adires.

* Implicitly by exectting a taskswitch, wrich auomatically chargesthe cantentsof the CR3
regster

The INVLPG instruction is povided to invalidate a spedif pagetable entryin the TLB.
Normally, this instruction invalidates oty an irdividual TLB ertry; however, in same cass, it
may inwlidate mare than the dectedertry andmay even inaidate all of the TLBs. This
instruction ignores tre setthg of the G flag inapage-directary or pag-tade entry (refer to the

following pargraph).

(Introducedin the Peium® Proprocessr.) The page glohl enable (IBE)flag inregster CR4
and he gbbal (G) flag d a page-drecbry or page-table ertry (bit 8) canbe ugd b prewent
frequently used pages from being auomatically invalidatedin the TLBson atask switch or a
load d regster CR3. (Refer to Sectior3.64., “Pagebirectoryand Pagérable Entries” fomare
information abou the gbhal flag.) Whenthe pocesa loads apagedirecry or pagetable
ertry for aglobal page irto a TLB, the efry will remain in the TLB indefinitely. The oty way
to deterministically invalidate dobal page entiesis toclear tle PGE flag ad theninvalidate he
TLBs or to use the INVLPG instruction to invalidate individual pagedirecory or pagetable
ertries inthe TLBs.

For additional information about invalidation of the TLBs refer to Sectbn 9.10., “I nvalidating
the Trarslation Lookaside Buffers (TLBs)”, in Chapter 9, Memory GacheControl.

3.8. PHYSICAL ADDRESS EXTENSION

The physical adaessextension PAE) flag in register ®R4 enables amxtensionof physical
addressesfrom 32 bits to 36 hits. (Thisfeatue wasintroducedinto the Intel Architecture inthe
Pentium® Proprocesas.)Here,the processr provides 4additional address line pinsto accan-
mockte the addtional addessbits. This option canonly be sed when faging is erabled that
is, when oth the FG flag inregister CRO ard thePAE flag in regster CR4 are set).

Whenthe plysical addess extension is erabled, theprocessor atiws several sizesof pages:
4-KByte, 2-MByte, or 4-MByte. As with 32-bit addessing, these pa@ szescanbe adiresed
within the sane set of pagingtales (ttat is, a @ge-drectary ertry canpaint to eithera 2MByte

or 4-MByte age or apage table thatin turn pdnts to 4-KByte pags). To suppat the 36bit

physical adiressesthe following changes arenade tahe pagng data stuctures:

®* The pagimg table enties are iwreased to 4 bits b accomnodate 8-bit base physical
addesses Each4-KByte page drecory andpage #ble can hushaveup o 512 enties
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®* A new talbe, caled the pag-directay-pointer talbe, is adced to thke linearaddes
trarslation hierarcly. This table has 4 entries ofiits each, andt lies alove the pge
directoryin the hierachy. With the plysical addes exenson mechanism embled,the
processor sypports up to 4 pege directories.

®* The 20bit page-drectory base adcassfield in register QR3 (PDPR) is replacedwith a
27-hit pagedirecory-pointer-table bag addres field (referto Figure 3-17). (In this cas,
register CR3 is calledthe PDA'R.) Thisfield providesthe 2 most-significart bits of the
physical addessof the first byte d the pag-directay-pointertable,which forces tte table
to be bcatedona 32byte bounday.

® Linear addess translatin is changedto allow mapping 32-bit linear addesses nto the
larger physical adiressspace.

31 0

Page-Directory-Pointer-Table Base Address

oo
—-=7T
[S)
[S)
o

Figure 3-17. Register CR3 Format When the Physical Addres s Extension i s Enabled

3.8.1. Linear Address Translation With Extended Addressing
Enabled (4-KByte Pages)

Figure 3-12 shavs the pa@-directay-pointer, page-drectory and page-tatbe hierarcly when

mapping linear addesses to 4KByte pags with exXendedphysical adiressng enalbed. Ths

pagng methodcan ke usedto addess up o 22° pages, whichspars a linearaddess space 0232
bytes @ GBytes).
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Linear Address
31 30 29 21 20 12 11 0

Directory Pointer —>| | Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

Y

Page-Table Entry

Y

» Directory Entry

Page-Directory-
Pointer Table

4 PDPTE 0512 PDE 0512 PTE = 2%° Pages

»| Dir. Pointer Entry
—>

32+
CR3 (PDBR)

*32 bits aligned onto a 32-byte boundary

Figure 3-18. Linear Address Translation With Extended Physical Addressing Enabled
(4-KBy te Pages)

To select the vaous table efnies, the linearaddess isdividedinto three sectins:

® Page-drecry-pointer-table enty—Bits 30 ard 31provide anoffsetto oneof the 4enties
in the ge-drectory-painter table. Tl ®lected etry provides the lkase physical addess
of a pag direcory.

®* Page-itectoryentry—Bits 21 through 29provide anoffset to an entryn the ®lected pag
direciory. The slectedentryprovides the bse physical adiressof apage take.

® Page-tale ertry—Bits 12 through 20 provide an ofsetto an ertry in the ®lected pag
table. This entryprovides the bse physical addessof a page inphysical memory.

® Page &fset—Bits 0 through 11 provide anoffsetto a physical addess inthe pag.
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3.8.2. Linear Address Translation With Extended Addressing
Enabled (2-MByte or 4-MByte Pages)

Figure 3-12 showshow a pag-directory-pointer table andpage direcories can beused © map
linearaddes®s to 2-MByte a 4-MByte pags. This paging mehod can te usedto mapup to
2048 pages(4 pag-directay-pointer-table enties times 512 page-drecbry enties) into a
4-GByte linearaddess space.

The 2-MByte or4-MByte pege size isselected p seting thePSE flag in cantrol register CR4

andsetting the page e (PS) flag in gpage-drectoryertry (refer to Figure 3-14). With these
flags set, te linea addressis dvidedinto threesections

®* Pag-directay-pointertade erry—Bits 30 ard 31 provide anoffset to an enty in the
page-drectorypainter tabbe. The seleatd ertry provides thebase pysical adressof a
page directory.

® Pagedirecory ertry—Bits 21 through 29 provide an offset to an enty in the page
directory The selectedentry provides thebase pysical adiress ofa2-MByte or4-MByte

page.
®* Pageoffset—Bits 0 through 20 providesan dfsetto a pltysical addessin the page.

3.8.3. Accessing the Full Extended P hysical Addres s Space
With the Extended P age-Table Structure

The page-table strudure described in theprevious two sectionsallows up to 4GBytes d
the 64-GByte exendedphysical adiressspace to be atdtessed at antime. Addtional 4-GByte
sectons ofphysical menory can le addessedin either ¢ two way:

® Change the pointer in register CR3 to pant to anoher page-directay-pointer table, which
in turn points to anoher set of page drecbries andpage tables.

® Change entiesin the @ge-drectory-pointer talle to paint to aher pa@ directaies,which
in turn point to other sets of page tables
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Linear Address
3130 29 21 20 0

—>| ‘ Directory Offset

Directory
Pointer

21 2or4-MByte Pages

Page Directory Physical Address

Page-Directory-
Pointer Table

Y

| Directory Entry

Y

»| Dir. Pointer Entry

—
3% 4 PDPTE 0512 PDE = 2048 Pages

CR3 (PDBR)

*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With Extended Physical Addressing Enabled
(2-MByte or 4-MByte Pages)

3.8.4. Page-Directory and P age-Table Entries W ith Ext ended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-diredory, and
pagetable entries when 4-KByte pages ard 36-bit extended physical addresss are being
used. Figure 3-21 shows theformat for the page-directory-pointe-table and page-directory
entries when 2-MByte or 4MByte pages ard 36-bit exended physical addreses ae beng
used. The factions of the flag$n thee entriesare the same aglescribedn Section 3.4,
“Page-Directoy and Page-de Entries’. Themajar differences inlies entries are dsllows:

® A page-direcory-pointertable entryis added

® The sze d theentries are in@a®dfrom 32bits to 6l bits.

®* The maxmum numberof entiesin a page drecory or page #bleis 512.
®* The base pysical adiress field inreach efry is extemled to24 bits.
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Page-Directory-P ointer-T able Entry

63 36 35 32
Reserved (set to 0) 233?

31 1211 9 8 543210

Page-Directory Base Address Avail. | Reserved E \Z/ Res.|1

Page-Director y Entry (4-KByte Page Table)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
PIP|U[R

Page-Table Base Address Avail. [0|0|O|A|C|W|/|/|P
D|T|S|W

Page-Table Entry (4-KByt e Page)

63 3635 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
P|P|U[R

Page Base Address Avail. [G|0|D|A|C|W|/|/|P
D|T|S|W

Figure 3-20. Format of Page-Directory -Pointe r-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages and 36-Bit Exte nded Physical Add resses

Thebase phgical adiress in amrentry specifiesthe following, dependng on the type é ertry:

® Pagedirectoly-pointer-table etry—the ghysical addessof thefirst byte d a
4-KByte page diecory.

® Pagedirecory enty—the plysical addres of the first byte d a 4KByte pege gble a a
2-MByte page.

® Pagetale enty—the plysical addres of the first byte of a 4-KByte pag:.

For all table entries (exeptfor page-directary ertriesthat point to 2-MByte a 4-MByte pages),

the hts in the page baseaddress are intempretedasthe 24 most-significant bits of a 36-bit phys-

icaladdres, which forces page tablesand pags  be aigned on 4KByte baindaries. When a
page-drectoryertry pointsto a 2MByte or 4-MByte pagg, the baseaddressis interpretedasthe
15 most-significant bits of a 36-bit physcal addres, which forces pags © be aligned on 2-

MBYyte or 4-MByte baindaries.
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Page-Director y-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) 233?

31 1211 9 8 543210

Page Directory Base Address Avail. | Reserved g \Zv Res.|1

Page-Directory E ntry (2- or 4-M Byte Pages)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 21 20 1211 9876543210
) P|PU|R

Page Base Address Reserved (set to 0) Avalil. |G|1|D[A|C Wé /P
D|T|S|W

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for
2- or 4-MByte Pages and 36-Bit Extended Physical Addre sses

The presen(P) flag (bt 0) in all pag-directay-pointer-table erries nust be €t to 1 anytime
extenad physical adiressng madeis erabled;that is whereverthe RAE flag (bit 5 in register
CR4) and the PG flag(bit 31 in regster CR) areset. If the P flagis nat set inall 4 page-drec-
tory-pointer-table etriesin the age-drectory-pointer tabe whenextenad mysical addessng
is enalted, a general-potection excepion (#GP) is gnerated

The pageize (PJflag (bit 7) ina pag-directay entry deterrimesif the entrypointsto apage
tableor a2-MByte a 4-MByte page. Wien thisflag is clear the ertry paints to apage table;
whenthe 1ag is set, th enty points toa 2MByte or 4-MByte pa@. Thisflag dlows 4-KByte,
2-MByte, a 4-MByte pagedo be mixedwithin one st of paghg tables

Acces (A) anddirty (D) flags (hits 5and6) ae piovided for table etriesthat poirt to pages.

Bits 9,10, ard 11 in all the tableertriesfor the plysical addess extension are availabier use
by software. Whenthe pesent flags clear bits 1 through63 are awailable to safvare.) All bits
in Figure 314 that are m&ed resergd or 0 shuold be seto Oby software andhot accesed by
software. When the P& and/or PAE flags in cotrol register QR4 are set, the poesorgener
atesa page faut (#PF) if resered bits in pag-direciory ard page-talbe ertriesare nd set to 0
and t geneates a genedl-protection excepion (#GP if reseved hts in a page-drecory-
pointer-tabde ertry are na set toO.

3.9. 36-BIT PAGE SIZE EXTENSION (PSE)

The 36-lit PSE exends 36-lt physical addesssupport to 4-MByte pagesvhile maintaining a
4-byte pag-directay ertry. This appoach povidesa simple rechanism fo opeating system
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verdors o addres physcal memay above 4-GByes wihout requring mapr desgn changes
but has gractical limtations with respect to &émand pagng.

TheP6 family of procesors’ physical adiress extesion (PAE) featue povides geneic acces
to a36-bit physical addess space. Hoever it requires ex@nsion o the pagedirectory ard
page-tabe enriesto an8-byte format (64 bit), and the adlition of a pege-directary-pointer tabe,
resuting in arother level of indirection to acddresstrarslation.

For P6-family processors that support the 36bit PSE featte, thevirtud memoy architectures
exterded to supprt 4MByte ppge $ze gandarity in combnation with 36bit physical
addessng. Note hat sorre P6family processrs do not supprt thisfeature. Foinformation
about determining a pocesa’s feaure sypport, referto the following documents:

* AP-48, Intel Processr Identfication and the CPUID Ingruction

¢ Addendum—Intel Architectue Software Develpers Manual, Volumel: Basic Archi-
tectue

For information abait the \rtual memaoy architecture éatres of Péfamily processrs, refe to
Chaper 3 of the Intel Architectue Softvare Developr's Manud, Volume3: SystenProgram-
ming Guide.

3.9.1. Description of the 36-bit PS E Feature

The 3-bit PSE feature (PSE-36s detectedby an oratingsystem thraghthe CPUID instruc-
tion. Specifically, the operatirg system executeghe CRJID instruction with the vale 1 inthe
EAX regster and hen determinessuppott for the feature by nspecting bit 17 of theEDX
regster eturn value (seeAddendim—Irtel Architectue Sftware Developr's Manual,
\Volumel: BasicArchitectue). If the PE-36 featue is suported, an @eratirg systemis
pemittedto uilize thefeature,aswell as e cetain formerly reservedits. To use the 36bit
PSE featue, the FSE flag mustbe enabledby the opeating system (bit4 of CR4). Note hata
separate cdrol bit in CR 4 deesnot existto reguate the e d 36-bit MByte pages, because
this featue becomas the exampe for4-MByte pages onprocesors that suppat it.

Table 38 showsthe pag sze andphysical addres size obtained from various settings of the
page-cortrol flags fa the P6-&mily processrs that sugport the 36bit PSE featue. Shadedn
gray is the chnge tathistable resultingrom the 3-bit PSE featte.
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Table 3-4. Paging Modes and Physic al Address Size

PG Flag PAE Flag PSE Flag PS Flag Page Physical

(in CRO) (in CR4) (in CR4) (in the PDE) Size Address S ize
0 X X X — Paging Disabled
1 0 0 X 4 KB 32 bits
1 0 1 0 4 KB 32 bits
1 0 1 1 4 KB 36 bits
1 1 X 0 4 KB 36 bits
1 1 X 1 2 KB 36 bits

To use the 36bit PSE featte, the FAE featuremust becleaed @s indicated inTable 34).
However, the 36bit PSE inno way afectsthe RAE fedure. Exiging operating systensand sdit-
wware that use the RE will continue b have corpatible functionality ard featueswith P&
family procesas that sppat 36-bit PSE. Specifically, the Page-Directory Entry (PDE) format
when RAE is enabled for 2-MByte or4-MByte pagsis exatly as apicted n Figure 321 of the
Intel Architectue Sftware Developr's Manual, \Wblume3:System RigrammingGuide

No matter wich 36-bit addessng featue isused (PAE or 36-bit PSE), the linear adress pace
of the processar remains at 32 hits. Applications must partiti on the adiress space @ their work
loads acoss multiple operatirg system process totake advantage of tle additonal physical
memay provided inthe system.

The F-bit PSE featre estends theDE formatof the Intel Archtectue for 4-MByte pages and
32-bit addressesby utilizing bits 16-13 (formerly reserved bits that were reqied to be zerd to
extendthe physical addess without reqiiring an 8-lyte pag-directay entry Therefae, with
the 36bit PSEfeaure, apage directoy can contain upo 1024 ertries, each pimting to a4-
MByte page that can ebst anywherein the $-hit physical addessspaceof the pracesor

Figure 3-22 showsthe dfferencebetveen BE formats for 4-MByte pageson P6-family proces
sors that supprt the 36bit PE featue compredto P6-family processrs that donat suppat
the 36bit PSE featws (i.e.,32-bit addessng).

Figure 322 al® showsthe linear adakssmapping to 4MByte pags whenthe 36-bit PSEis
enabledThe base piisical addessof the4-M Byte pageis cortainedin the PDE PA-2 (bits 13-
16)isused b provide the upperfour bits (bits 32-35) of the 36-bit physical addess PA-1 (hits
22-31) continuesto provide the next ten bits (bits 22-31) of the physicaladdessfor the 4-MByte
page. The dfset into the pageis provided bythe lower 22 bits of thelinear addess. Thischene
eliminatesthe seondlevel of indirection caugd by the u® of 4-KByte page tbles
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Page Direct ory E ntry format for processo rs that support 36-bit addressi ng for 4-MByte pages
31 22 |21 17 | 16 13 12 11 8 7 6 0
PA-1 Reserved PA -2 PAT PS=1

Page Direct ory E ntry format for processo rs that support 32-bit addressi ng for 4-MByte pages
31 22 |21 12 111 8 7 6 0

Base Page Address Reserved PS=1

Figure 3-22. PDE Form at Diffe renc es between 36-bit and 32-bit addressing

Notes:
1. PA-2 = Bits 35-32 of thebase physical address for the 4-MByte page (correspond to bits 16-13)
2. PA-2 = Bits 31-22 of thebase physical address for the 4-MByte page

3. PAT = Bit 12 used as the Most Significant Bit of the index into Page Attribute Table (PAT); see Section
10.2.

4. PS = Bit 7 is the Page Size Bit—indicates 4-MByte page (must be set to 1)
5. Reserved = Bits 21-17 are reserved for future expansion
6. No change in format or meaning of bits 11-8 and 6-0; refer to Figure 3-15 for details.

The PSE-36 featue is trarsparentto exising operatirg systens that utilize 4-MByte pages,
becawge unwsed bitsin PA-2 are curertly enforced aszero ly Intel pracesors. The feaure
requires4-MByte pagesaligned on a 4MByte baindaryand4 MBytesof physicaly coniguous
memay. Therefoe, the terbits of A-1 ae suficient to specif the tase physical adiressof ary
4-MByte page béow 4 GBytes An operating system casadly support addessesgreater thn
4 GBytes simply by providing theupper 4 bits ofthe physical address inPA-2 when creating a
PDE for a 4MByte page.

Figure 3-23 shawvsthe linearaddess maping to 4 MB pages when the 36bit PSE is endled.
The bas physical addessof the 4 MB pages cortained n the PDE. R-2 (bits 13-16) is used
to provide the yoperfour bits (bits 32-35) of the 36hit physical addess PA-1 (bits 22-31)
cortinuesto provide te rext ten bits (bits 22-31) ofthe plysicaladdess for the 4 MBpage The
offset irto the pageis provided bythe laver22 bits of thelinearaddress. This schene eliminates
the secod level d indirectioncaused byhe wse of 4 KB page tables.
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Linear Address 4 MB Page
31 2221 0
‘ Directory Index ‘ ‘
|
Page Directory -
31 2221 1716 131211 8 7 6 0
Page Frame Address Reseved PA-2 | PAT| PS=1
PA-1 -

CR3—»

Figure 3-23. Page Size Extension Linear to Physical Translation

The PE-36feaure istrarsparent to existing ggrating systemthat utilize 4 MB pagesbecause
unused bits inPA-2 are curertly enforcedas zerdoy Intel processors. e featre requires 4
MB pagesaligned on a4 MB boundary and 4 MB of phsicaly coniguousmemoy. Therefore,
the ten bits of R-1 are suficient to specify te basehysical addess ofary 4 MB page lelow
4GB. An gperaing system eady cansupport addresses greaerthan4 GB smply by providing
the upper4 hits of the physcal addessin PA-2 when ceating a FDE for a4 MB page.

3.9.2. Fault Detection

There ae seweral conditions that cancawse Peéfamily procesas that support this feature o
geneate a page faut (PF) fault. The® condtionsarerelatedto the u® of, orswitching between
various memoy maragemen feaures:

* |f the PE feature is endbd, a nazeo valuein anyof the remainiig reservedits (1721)
of a 4MByte PDE cases a gge faut, with the eserved bt (bit 3) setin the eror code.

* If the RAE featue is enaled ard set touse 2MByte or 4-MByte pages (that's, 8-byte
page-direcory table entriesre being used)a nazerovalue in ary of the resered bits13-
20 caugs apage fault, with the reservedbit (bit 3) setin the eror code. Note thatbit 12 is
now beng used b support the Page Attribute Table featre (refer to Secion 9.13, “Page
Attribute Table (RAT)").

I 3-39



PROTECTED-MODE MEMORY MANAGEMENT Intel®

3.10. MAPPING SEGMENTS TO PAGES

The segmetation ard pagng mechaisms provde in the Intel Architectuwre suppat a wide
variety of appoacheso memory managenent. When segmenttion and paging is cambined

segments canebmapped to @ges h several ways. D implement a flat (nsegmeted)

addessng ervironment, fa example, allthe co@, data, and gack modiles canbe maped to
one ormore large segmets (up to 4-GBytes) that shar ssme range oflinear adiressegreferto

Figure 32). Here, sgments are esstially invisible to aplications and the geratingsysemor

exective. If pagirg is used, the pagghmechanism can map ange linear addressspace
(containedin a sinde segment)into virtual memay. Or, eachprogram (or tak) canhawe its own

large linearaddressspace (cotained inits own segnent), which isnapped into virtual memaoy

throughits own page drectay andsetof page tables

Segmets can be smaller than the siaka page.flone ofthee segmets is placedin a page
whichis not sharedvith andhersegment, tre extranemoy is wased Forexamplea small data
structure such asa Xbyte semapore, occupes4K bytesif it is placedin a page b itself. If
mary semaphbres are sed it is moreefficiert to pack theminto asingle page.

The Irtel Architecture desna enforce coregpondence betweerhe bourdariesof pagesand
segmens. A page can attain the end & one ggmert ard the begnning of anober. Likewise, a
segmentan comain the ed of one pa@ andthe keginning of andher.

Memoly-managerant ©ftware may le simplerand mae eficient if it erforcessome aligment
betweerpage ad segnent baindaries For example, ifa ssgment whichcan ft in one pagéds
placedin two pagestheremay be twice & much paging overheadto suport accesdo that
segnert.

Oneappoachto cambining paging andsegmentatiothatsimplifies manory-maragemensoft-
ware Bto give each ggmentits own page ble, asshownin Figure 324. This corvenion gives
the segrent a singleentryin thepagedirectol thatprovides the access ctal information for
pagng the entire segent.

Page Frames

LDT Page Directory Page Tables

PTE —
PTE >
PTE T

Seg. Descript.—> PDE 4,—>

Seg. Descript.[—> PDE >
PTE |
PTE

Figure 3-24. Memory Management Convention That Assig ns a Page Table to Each
Segment
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CHAPTER 4
PROTECTION

In protected mod, the Intel Architectue providesa prdection mechanism thaiperatesat bah
the ssgmert level and the page level. Ths pratection mechaism providesthe ability to limit
acces tocertainsegmets or pages bsed on privilege levels(four privilege levels for segments
and two pivilege levelsfor pages). For exampe, critical operatingsystem coa and @ta canbe
pratected by placing them in more privileged segments thanthose that caotain aplications
code. The proces®r’s protection mechansm will then prevent agplication code from accessg
the operatng-systemcodeand ditain ary bu a cortrolled, defined mamer.

Segment arl page protectioncan be sedatall stagesof software deglopment to asistin local-
izing anddetecting de$gn prablemsand bgs It canalso be hcorporated into endproducts to
offer added robustnessto goerating systens, uilities sdtware,and applications sdtware.

When the protectionmechanism isised,eachmemory refererce is checkedto verify that it
satisfiesvaiious protectionchecks. Al checks are made k@t the memar cycle s sarted any
violationresultsin anexcepion. Because afcks are grfformedin parallel with addesstransla-
tion, there isno peiformance penaltyThe praectionchecksthat are perfomedfall into the
following categoies

® Limit checls.

®* Typechecls.

® Privilege level clecks

® Restrictionof addresable danain.

®* Restriction of procedireenty-points.
® Restriction of instruction st.

All protection violation reailts in anexcepion being gererated. Rfer to Chapter 5, Interrupt
and Excepion Handling for anexplaration of the excefion mechanism. Tis chapterdescribes
the potectionmechamsm ard theviolations whichlead toexceptios.

Thefollowing sections dscribe theprotection mechaism available inprotectednode Refer to
Chaper 16, 8086 Emudtion for informaion on protecion in realaddressand virtual8086
moce.
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4.1. ENABLING AND DISABLING SEGMENT AND PAG E
PROTECTION

Seting the PE flag in registe€RO causes the processr to switch b protected mde, which in
turn enalbes thesegment-protectionmechaism. Once in potectedmode there is na@ortrol bit

for tuming the potectionmeclanian on or off. Thepartof the segmenpratection mechanism
that is based a privilege levels can essentially ke disabed while still in protected mode by

assigning a privilege level of 0 (mog privileged) toall segment selectars andsegment desrip-

tors. This action disables the pivilege lew protection barriers tetween sgmerns, bu other
protecton checks such as limit cheirlg ard type cleckingare stil carried aut.

Page-leel pratectionis automatically eabled wien pa&ingis erabled py setting tle PGflag
in register CR0). Here agan there 5 no node bt for turning off pagelevel protecion once
paging is enabled. However, page-level protection can be disabled by performing the following
operatons

® (Clear the W flag in contiol regster GRO.

® Set he read/write (RV) and wer/sugrvisor (U/S) flags for eagbage-drectoryand pag-
table entry

This action makes each page avritable, user pagewhich in effect disablespag-level
protecion.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The procesor's prdection meclanism uses the lmwing fields and flags in the systm data
structures to contiol accesgso segments andpages:

® Degriptor type (S flag—(Bit 12 in the seconddoubdeword of a segmen de<riptor.)
Determines f the ssgmert deriptor is for a systemsegnentor a coe or dat segmert.

* Type field—(Bits 8 through 11 in the secad cudeword o a segent degriptor.)
Determines he typeof cade,dat, or systemsegnent

® Limit field—(Bits 0 through 15 of the first dowbleword and Iits 16 through 19 d the
secon doubleword of a segrent descriptn) Determines theize d the segrant, alowg
with the G flag ad Eflag (for data segmea).

* G flag—(Bit 23 in the £conddaubleword of a £gmen desriptor.) Determinesthe size d
the segment, alorg with the limit field andE flag (for data sgmerts).

* E flag—(Bit 10in the secand dbubleword of a daé-segmentdesciiptor.) Deerminesthe
size ofthe segmetn alongwith the limit fieldandG flag.

® Degriptor privilege level (DPL) field—(Bits 13 and 14 in the seconddoudeword of a
segnent descriptor.) Determines tre privilege level of the segnent

®* Requesed privilege level (RPL) field. (Bits 0 and lof any segnentselecor.) Secfifies he
requestedprivilege level of asegmert selecto.
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® Currert privilege level CPL) field. (Bits Oandl1 o theCS segmetiregister) Indicatesthe
privilegelevel of the curenty executing programor procedire. The term currentprivilege
level (CPL) refers tothe setting of thisfield.

® Userkupervisor (U/S) flag. Bit 2 of a pagedirecry or pagetable enty.) Determinesthe
type of page:user or supervsor.

* Read/write(R/W) flag. (Bit 1 of apage-drectoryor page-table entry Determineshe type
of accesallowedto a [age: readonly or readwrite.

Figure 4-1 shavs te locaion of the variousfields ard flagsin the daf, code, and gstem
segnentdegriptors; Figure 3-6in Chapter 3, Protected-Mode Memory Management stows the
location d the RPL (or CPL) field in a segmerselector (or the CSregister); andrigure 314 in
Chapter 3, Protected-Mod Memory Maagement shows the bcation of the U/SandR/W flags
in thepagedirectory andpage-table etries.
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Data-Segment Descri ptor

31 242322212019 1615 14 13 12 11 8 7 0
Base31:24  |G[Bo|v| LML lp| p P Base 23:16 |4
L : L |10 | E ‘w| A
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descrip tor

31 242322212019 1615 14 13 12 11 8 7 0
A i D Type
Base3124  [a|pjo|v| LML |p) p P Base 23:16 4
L : L |11 |c ‘ R | A
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

System-S egment D escri ptor

31 242322212019 1615141312 11 8 7 0
Base 31:24 |G| |0 Lmit ol 2 lo| Type Base 23:16 4
’ 19:16 ’
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer's G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

\:| Reserved

Figure 4-1. Descriptor Fields Us ed for Protec tion

Many different styleof protection schemes care bmplementedwith these fields andflags.
When the operatingsystem creates a ebcriptor, it placesvalues inthese fields ash flags in
keepng with the particular prdectionstyle chosen fioan operatirg system or exedive. Appli-
cationprogramdo rot generally access anodfy these field ard flags.

The fllowing sections describeotw the praessor uses these fields and flago perform the
various categaes of checks describeth theintroductionto this chapter
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4.3. LIMIT CHECKING

The limit field of a sgment descriptor prevents progams orprocedues fran addessng
memay locations ouside the segmen Theeffective valie of the limit dgpend on the seting
of the G(grarularity) flag(refer toFigure 4-1). For datasegnents thelimit alsodeperds on the
E (expanson direcion) flagandthe B (defaut stackpointer size am/or upper ound) flag. Tte
E flag isore of thebits in the type field whenthe segnentdescriptor is for a data-segnent type.

WhentheG flagis clear(byte ganudarity), the efectivelimit is thevalueof the 2-bit limit field
in the segmetrdescriptor. Here, the limit rangsfrom Oto FFFH-H (1 MByte). When the Gflag
is set (4-KByte pa@ grandarity), the praesorscaleshe value in theiimit field by a factorof
2712 (4 KBytes) In this ca®, the efective limit ranges from FFFH (4 KBytes)to FFRFFFA-H
(4 GByte9. Note that wherscalingis used G flag isset), the laver 12 hits of a £gment ofset
(addresg are ot checked agang the limit; for exanple, nde that if the segnent limit is O,
offsetsO through FH-H arestill valid.

For all types d segments excep expand-down data segmerts, the effective limit is the last
addess thatis allowed to beaccessedhithe segmenwhich isore lessthan the ize, inbytes,
of the segmeh Theprocesorcauses gerral-protectionexception ary time anattempt is mael
to accesshe fdlowing adiresgs ina ssgment:

®* A byte at an ffset geater tlan theeffective limit

* A word at anoffset greatethan tte (efectiveldimit —1)

®* A doubeword at anoffset geater tharnthe (efective-limit — 3)
®* A quadwod at anoffset greatethanthe (efectiveldimit —7)

For expand-down data segmerts, the segnert limit has the sane function but is interpreted
differently. Here, the déctive limit specifies thedst addess thatis not allowed to be access
within the segnent; the range of valid offsets isfrom (effective-limit + 1) toFFFR-FH-H if the
B flag is st andfrom (effective-limit + 1) to FA-FH if the B flag is clear An expanddown
segmen hasmaximum size whenthe segmert limit is O.

Limit checking catches programming erors sich asrunaway cod, runawaysulscripts, and
invalid pointer calclations. These erig are detected veim theyoccur so idetification of the
causeis eager. Without limit checlng, these erms coud ovemvrite cock or data in anoty
segment.

In addition to checlking segnent limits, the processr alsochecls descriptor talie limits. The
GDTR ard IDTR regsters cotain 16-bit limit values that therocesor uses to prewvent
programs from selecting a segmendescriptos outside theregective descripor tables. Tk
LDTR andtask regsters cotain 32-bit segment limit value (readfrom thesegment descriptors
for the currem LDT and TSS respectively). The pracesor wses hese segmet limits o prewvent
acceses begnd the bounds of the curert LDT and TSS. Refer to Section35.1, “Segnent

Degriptor Tables” in Chapter 3,Proteced-Mode Memoy Managementfor more information
on the GDT andLDT limit fields; refer to Secton 5.8, “Interupt Desciptor Table (IDT)” in

Chapter 5, Interrupt and Excepion Handling for more information on the IDT limit field; and
referto Section 6.23., “Task Register” in Chapter6, Task Management for more irformation on
the TSS sgment limit field.
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4.4. TYPE CHECKING

Segmendescriptos contain type informationin two places
®* The S(desriptor type) flag.
®* The typefield.

The procesa uses ths informationto detect pragramming errorsthat resit in anattenpt to use
a £gmert or gak in anincomrector unintendedmanrer.

The S flagindicates whetér adescriptoris a system tge o acocde or datatype. Thetypefield
provides 4adlitional bits for use in defining varioustypes of code, data, ard systemdesriptors.
Table 3-1lin Chapter 3, ProtectedMode Memory Maagemehshowsthe encothg of he type
field for code and daa descriptors; Table 3-2 in Chapter 3, Protected-Mod Memory Manage-
mentshavs theencodng o thefield for system descripts.

Theprocessr examines typ informaion atvarious times while peratirg on segment selectors
and segnent descriptors. The following list gves examples 6 typical opegtions whee type
checkng is peformed.Thislist isnotexhaugive.

® When a segmeh selector is loaded into a segment egister. Certain segment registers
cancortain only certain ascriptortypes, fo example:

— The CSregister ofy canbe loaed with aselectorfor a coe segment.

— Segment selectors fococe segments that & not eadable b for system segmées
canna be loa@d irto data-segrent regsters (DS, ES, FS, ar@s).

— Only segmenselectors of writabledata segmeg canbe loa@d irto the SS reigter
® Whena segmenselector is loaded irto the LDTR or task register.

— The LDTRcanonly be loaed with aselectorfor an LDT.

— The task egister can aly be loadedwith a segmetselecta for a TSS.

® When instructions acces segments whose descriprs are already loaded into
segment egisters. Certain segments can be used by instructimmy in certainpredefired
ways, for example:

— No instructionmaywrite into anexectiable ssgment.
— No instruction may write into a data egmert if it is nat writable.
— Noinstructionmayread arexectable segmerunlessthe readble flagis set.

® When an instruction operand contains a segmeh selector. Certain instructios can
accessement @ gates obrly a particular type, for example:

— A far CALL or far JMP instruction can oty acces a ggment descriptorfor a
conforming cade £gmert, noncorforming cale ®gment cal gak, tak gatk, or TSS.

— The LLDT instruction nmust referance a sgmen deriptor for anLDT.
— The TR instruction mug refelence a sgmentdegriptor for a TSS.
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— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, tas gate, coek segnent, or data segnert.

— The LSL instruction must refeence a segmendescriptorfor a LDT, TSS, coe
segment, or dat segment

— |IDT ertries nust ke interrug, trap, o tak gates.
® During certain internal operations. For exanple:

— On afar call or far jump (executedwith afar CALL or far MP instruction), the
processo determines the type of control trander o be carriedout (cdl or jump to
arothercoce segmet) a callor jumpthrough a gate, ora taskswitch) by checlng the
type field in the segnent (or gate) desiptor pdnted to by the segnent (or gate)
selecor gven asanopeiand in the CALL or MP instruction. If the desriptor type i
for a cale gment or call gate, a call 0 jump to arother code gmert is indicated if
the cescriptor typeisfor aTSS or tak gate, a tak switch is indicated.

— On a callor jump through acall gate(or on an interrpt- or excefion-handlercall
through a trap ointerrupt gate), the pcessr autonatically checksthat the segnent
desciiptor being pointedto by the gak isfor a cod segnent

— On a callor jump to anewtaskthrough a tak gate(or on anintermupt- or excegion-
handlercall toa new task through atask gate) theprocessorautanaticdly checls that
the gment desriptor beirg pointed toby the task gate isfor a TSS

— Ona call or jump toa new tak by a direct eferen@ o a TSS, the mrtessr autanati-
cally checks that the segnent descripior being pointed to by the CALL or MP
instruction is for a TSS.

— On return from a neged task (initiated by an IRET instruction), the proces®r checls
thatthe previoustasklink field in the currem TSS pants toa TSS.

4.4.1. Null Segment Selector Checking

Attenpting to loada rull segnentselecto (refer to ®ction 3.4.1. in Chapter 3, Protected-Mod
Memay Managament) into the CSor SS segmert register ganeraes a geeratprotecion excep

tion (#GP). Anull segnentselector can be loadéato the DS, ES FS, or GS registerbu any
attempt to acces a segmerthroughone ofthese registers whdnis loaded witha null segrent
selectorresultsin a #5P exception leing generatedLoad ng unused dta-segment regsters wih

a null segmenselector isa weful metha of detecing accesss o unused segment regsters
and/a preventirg urwanted accessés data segmesa
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4.5. PRIVILEGE LEVELS

The pocesa’s segnentprotecion mectanism recognzes 4 pwilege levels, numbered fom 0

to 3. The greater uambers mean leser privileges. Figure 4-2showshow these leels of privilege

can be intermted asings of praection. The center (reseed for the mosprivilegedcode, data,
and stacks) is used 6br the segmets containing the critical software, wsualy the kerrel of an

operating system. Outeings are sedfor less critical oftware. (Systems that use orflyofthe
4 possible privilege levels stould use levels 0 ard 3))

Protection Ring s

Operating
System >
Kernel Level O

Operating System
Services Level 1

Level 2

Applications Level 3

Figure 4-2. Protection Rings

Theproces®r uses pivilege kevels to preventa pogram ortask operatng atalesser privilege
level from accessg a segment with argater pivilege, excep uncer corrolled siuations.
When the proesordetectsa privilege level violation, it genestesa gerral-protection excep
tion (#GB.

To carly out privilege-level checks between edegnentsanddata segnents the pocessr
recoquizes tte following three types of privilege levels

® Current privilege level (CPL). The CPL is the privil ege lew of the curretly execuing
program a task It is stored in bits 0 and1 o the CS andSSsegmen registers. Normaly,
the CR. is equal to the privilegelevel of the cale segnent from which instructions are
being fetched. The pocessr chamgesthe CPL when pogram contol is transfered to a
code £gment with adifferent privilege level. The CPL is treated sghtly differertly when
accessig corforming cale segmets. Conforming coce segments can be accessedrnro
any privilege level that is eqial toor nunerically greater(less privileged) than tre DPL of
theconforming code segment. Also, the €L is not charged wlen the pocessr accesss a
conforming code segment thathas a diferen privilege level tharthe GPL.

® Descriptor privilege level (DPL). The DPL isthe pivilege lewe of a sgmert or gate. It is
storedin the DR field of the segmetror gate descrifr for the ssgment orgate. When the
currertly executingcode segnent attemts to acces asegmen or gate, tre DPL of the
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segmenh or gate is conparedto the (PL and RPL of the segrant orgate slecta (as
degribed laterin this secion). The DPLisinterpreted differertly, dependng onthe type d
segmehor gate beingaccessd:

— Data ssgment. The DR indicatesthe rumerically highest privilege level that a
program @ tak can hae to be allowed t@acces the segmenFor exampe, if the DPL
of a data segmens 1, only pragrams running at a PL of 0 or 1 can accesshé
segnert.

— Nonconforming code ggment (without using a call gate). The DPL indcatesthe
privilege level that a prgramor task must be at to accesshe segnent. For exampe, if
the DA of a mnonforming cade #gmentis 0, only programsrunning ata CPL of 0
canaccesshe sgment.

— Call gate. The DPL indicates theumerically highest pivilege level that thewrertly
executingprogramor task carbe at ad still be able toacces the call gte. (This isthe
same access ruésfor adata segmet)

— Conforming code segnent and nonconforming code ssgment accessedhrough a
cal gate The DPL irdicates tle nunerically lowest privilege level that a prgram or
task can hawto beallowed to accesthe ®gment. For examle, if the DPL of a
conforming code segmnt is2, programs runningat a @PL of 0 or 1canna accesshe
segnert.

— TSS The DPL indicatesthe numerically highest privilege level that the currently
executing program or taskcan be at and still be abe to accesghe TSS (This isthe
same access ruésfor adata segmdr)

Requested pivilege level (RPL). The RPL is anoveriide privilege level thatis asigned
to segment seledars. It is storedn bits O and1 of the segment selectorThe piocessr
checls the RPL alongwith the (PL to determine if accesto a segmenis allowed.Even if
the pogram ortak requeting acces to a segmerhas suficient privilege to accesshe
segmeh accesss deniedif the RPL is nat of sufficient pivilege level. That is, ifthe RPL
of a segmeinselectoris numerically greaer thanthe @PL, the RPL overides the ®@L, and
vice versa. Tle RPL can te usedto insue that pivileged code doesnot a&cces a segrant
on betdf of anapgication programunlessthe pragram itself has accessivileges forthat
segnent Refer to Section 4.10.4., “Checkng Caler Access Privileges (ARPL
Instruction)” for a detailed escription of thepupose andypical wse of the RPL.

ilege lewels are checkd wten thesegmentselectorof a segmendescriptoris loadedinto a

segment iegister. Thechecks sedfor data accesdiffer romthose sedfor tranders ofprogram
contiol amorg code segnents theefore the wo kinds ofaccesseare cosideredsepaately in
the following sectims.

4.6.

PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To acces®perards in a data segment,greegment seécta for the data segmémust be loaded

into

the data-segent regsters (DS, B, FS, or GS) a into the stacksegment egister (SS.
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(Segmenregigerscanbe loa@&d with the MOYPOR, LDS, LES, LFSLGS, ard LSSinstruc-
tions.)Before the piocessr loads a segmenselectorinto a segmetregisterit peformsa piiv-
ilege check(referto Figure 43) by conparing the privilege levels of the curently running
program or task (tb CPL), the RPL of the segment selectqrand tle DA of the segmet's
segmentescriptor The procesor loads the segmensekctor into the segmentregister ifthe
DPL is numelicaly greater than oequal to boththe (PL andthe RPL. Otherwise, a gesral-
protecion fault isgeneeted andthe sgmen regster is nat loaded.

CS Register

CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

Yy

DPL

Figure 4-3. Privile ge Check for Data Access

Figure 44 shavs four proeedures (locaiedin codes segnentsA, B, C, andD), each anring at
differert privilege levels angach attemng to acces the sameata sgment.

®* The piocedue incod segmehA is able toaccesslata segmdrE wsing segmenselectr
E1, because th€PL of code segmehA and theRPL of segnent seleair E1 are equl to
the DPL of data sgmert E.

* The pracedue in coe segment Bis ale to accesglata segnent E usingsegment seleatr
E2, because the RL of code segment A anthe RPL of segment seécta E2 are bth
numerically lowerthan (mae privileged) tharthe DR of data sgment E. A cod segment
B procedue canalso acces datasegment E sing segmenselectorEL.

® The praedue in code segmdnC is na able to accesdata segmérE wsing segment
selector E3 (dibed line), becausehe (PL of code segmdnC andthe RPL of segment
selectorE3 ae bdh numerically greaterthan (less privileged) than the DPL of data
segmehE. Even if acode £gment Cprocedue were b use segmenselector E1 0E2,
suwch that the RPL would be accepable, it still could not accesslata segnert E becaise is
CPL is not privileged eouwgh.

®* The pracedue in coe segment D $ould be able to accesdata ssgment E becase cade
segnent D’s CPL isnumerically less than tre DPL of da& segment E. However, the RPL
of segment seécta E3 (which the code segmérD procedire is using to acces data
segmen E) is nunerically geatr thanthe DAL of data sgment E, so acces is not
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allowed.If thecocde segnent Dproceduie were to use segmentselector E1 or E2to acces
the dita ssgment,acces woud beallowed.

Seqiment C|__[ Segment Sel.E3 '
egment egmentSel. E3 | _ _ _ _ . |
CPL=3 RPL=3 | !
Lowest Privilege L :
I
Code I

S t A SegmentSel. E1 | 3 Data
Cliﬁrznzen RPL=2 Segment E :
~|DPL=2 I
I
I
Code I
Segment B|— Segment Sel. E2 | |

RPL=1
CPL=1 |
I
I
Code
Segment D

CPL=0

m Highest Privilege

Figure 4-4. Examples of Ac cessing Data Segments From Various Privilege Levels

As demanstrated intte prevousexamples, he addessable dorain of aprogram ortask varies
asits CPL changes. Whenthe CPL is 0, data segmenaat allprivilege levels are accagbe; when
the CPL is 1, only data segnentsat pivilege levelsl through 3are accesible; when the BL is
3, anly data segments atipilege level 3areaccesible.

The RPL of a £gment selector can always@vide tle addessable dmain ofa progam o tak.
When properly used RPLs can preent poblems caused bgccidental (pintensional) se d
segnentselecorsfor privilegeddat segmens by lessprivilegedprogramsor procedues

It is importart to note thatthe RPL o a segnentselecto for a cita segmert is under software
contol. For exanple,an aplicaion programrunning ata CR. of 3 can st the RPL for a data
segment sekctor t00. With the RPL setto 0O, only the CPL checks nat the RPL checks will
provide prdection againstdeliberate, direct tgnpts to violate privil ege-level gcuity for the
data segmenTo prevent tlese types of privilege-lewel-check volations, a ppgram orprocedue
can checlacces privilegeswherever it receives a data-segm slector from arotherproce-
dure (refr to Section4.10.4., “Checkirg Caller Acces Privileges (ARL Instruction”).
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4.6.1. Accessing Datain Code Segments

In some irstances it my be desirableto accesglata structtes that a& conained in a cale
segmentThe Pllowing method of accessig data in coad segmets arepossble:

®* Load a data-segent regiser with a segmenselector 6r a nacorforming, readable, cde
segnent.

®* loada datasegment register with a segment selector for a corforming, readakte, cae
segnent.

®* Use a codesegment oerride pefix (CS) to read a reathle, co@ segment whee seleabr
is alreadyloaced in the CSregster.

Thesamerules fa accesmg datasegments aply tomethodl. Method 2 is always valithecause
the privilege level of aconforming code £gment iseffectively the ame as the ®L, regadless
of its DAL. Method3 is ailvays valid because the DPL tfie co& segment selead by the CS
regster is the same as to@L.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checkig al® occurs vihen the SSegster isloaded with the segnentselector fo
a dacksegnert. Here dlprivilege levels relatedto the stacksegnent must match the CR_; that
is, the CPL, the RPL of the gacksegment selectpandthe DR of thestack-segnent descrifor
must bethe same. Ithe RPL and DPL arenot equal to theCPL, a general-potectionexcepion
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN T RANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer prgram cortrol from ore code segmehto anothe the segnent selecor for the
destination cde segmeinmust be loadd intothe co@-segmenregister (CS). As part of this
loadng processthe praesor examines the segmedescriptor for the destination code segment
andperfams varias limit, type, and pivilege check. If these checks are succkdsthe G
regster is loadd, program cantrol is transfered tothe newcode segrent, arl program execu
tionbeghnsatthe instruction pointedto by the BP regster.

Progam caotrd trandersare carriedout with theJMP, CALL, RET, INT n, ard IRET instruc-
tions, aswell asby the exceptionand interript mechaisms. Excefions, interrupts, and the
IRET instruction are pecia caes digussed in Qiaper 5,Interrupt and Excefion Handling.
This chaper digusses only the MP, CALL, and RET ingructions

A JMP or CALL instructioncan efererce anotlr cade segmetrin anyof four ways:
®* The taget oerandcortains the ssgment selectofor the taget cos segment.

®* The taget opeand mints to a call-gateeacriptor, which coriains he ssgment selector fo
the tagetcode ggment.
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® The targetopeiand points to a TSS, whichontains the segmeselectorfor the taget coa
segnent

* Thetarget qperard points o ataskgate, which pointsto a TSS, with in turn cortains the
segmenselectorfor the taget cale segmen

The fdlowing scions degribe frst two typesof references Refer to Secion 6.3, “Task
Switching’ in Chapter 6, Task Managementfor informaion on tansferring programcontol
througha task gae ard/or TSS.

4.8.1. Direct Calls or Jumps to Code Segments

The neaforms of the MP, CALL, and RET ingrudions tranger piogram contrd within the
current code segmeérso pivilege-level check are no performed. Tte far forms of the JIMP
CALL, and RET ingructiors trarsfer contrd to ather coce segmerns, 0 the pocesor does
perform privilege-level check.

Whentrandering program cantrol to andher code £gmert without gang through acall gate,
the piocesa examinesfour kinds of privilege level andtypeinformaton (eferto Figure 4-5:

® The CPL. (Here, the @L is the privilege level of the calling cade £gmernt; thatis, the cale
segmenthat cortains the pracedue that is makig thecall or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL
Destination Code > Privilege
Segment Descriptor
g p »| Check

DPL| (C

Figure 4-5. Privilege Check for Con trol Transfer Withou t Usin g a Gate

®* The DPL of the segnent deriptor for the desination cale segnent that contains the
called pocedire.

®* The RPL of the segrant seécta of the destination code segment.

®* The conbrming (C) flag in the segrant descriptofor the dstination code segment, whch
detemines whether th ssgment is a coforming (C flagis set) omonconforming (C flag is
clear) code segmeh (Referto Section3.43.1, “Code- ard Data-Sement Descripto
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Types” in Chapter 3, ProtectedMode Memay Managementfor more infeamation abaut
this flag.)

The wlesthat the pracesorusego check the ®L, RPL, andDPL deperds on the setting bthe
C flag, as @scribed inthe fdlowing sections.

4.8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

When accessg noncorforming cade segmets, the GPL of the caling procedue must be eqal
tothe DR of the desinationcode segment; othewise, he pocesa generaes ageneaal-protec-
tion exception#GP).

For exampk, in Figure 46, cade £gmen C is a ronconforming cade £gmen. Theefore, a
procedue in coe segment A can call a predue in code segmnt C(using segment selear
C1), becage theyare athe same pivil ece level (the @L of code £gment A isequal tothe DPL
of code segmerC). Howe\er, a procedire incode segmenB canrot call a pocedire in cale
segment Qusing segment ®lector C2 or Cl), becase the two code segmtsare atdifferent
privilege leels.

S t Sel. D2
Code egmen %PL

Segment B 3

— || SegmentSel.C2 |- - - - - A
CPL=3 RPL

1l
w

Lowest Privilege

/N
| Segment Sel. C1 Code
S COdetA RPL=2 Segment C
egmen
~ || Segment Sel. D1 DPL=2
CPL=2 — -
RPL=2 Nonconforming
Code Segment
Y
.| Code
| Segment D
DPL=3
Conforming
Code Segment

m Highest Privilege

Figure 4-6. Examples of Accessing Conforming and Nonconform ing Code Segments
From Various Privile ge Levels
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The RPL of the ®gment seéctor that poiris to a nacorforming cade ggment has a liméd
effecton the pivilege checkThe RPL mustbe numelicdly lessthanor equal to the @PL of the
calling procedue for asuccessful condt trander o occur So, in he example in kgure 4-6 the
RPLs of segnentselectas C1andC2 coul legaly be setto 0,1, a 2, butnotto 3.

Whenthe ssgment €lecta of a nacorforming coce segment isloaded into the G regster, the
privilegelevelfield is not charged; thatis, it remains atthe CPL (whchistheprivilege level of
the calling pocedire) Thisis true, een ifthe RPL of the segrant ®lecta is different fomthe
ChRL

48.1.2. ACCESSING CONFORMING CODE SEGMENTS

When accesig conforming code segmets, the (PL of thecalling procedire maybe numei-
cally equal to or geater tharn(less pivileged) tre DAL of the ckstination code segrnt; he
procesa generates a gneral-prdaection excetion (#GP) aly if the CPL Blessthan tre DPL.
(The segmerselector L for the desination code segméris not checkd if the segnent s a
conforming code €gmert.)

In the exampe inFigure 46, cale segmerD is a coffiorming cale segmet Therebre, caling

proceduesin bothcode segmet A and B can acces code segment Qusing either segnent
selectorD1 or D2, respectively), becage they bah have CPLs that are greater thaw equal o

the DPL d the conbrming code sgmert. For conforming code sgments, the OPL repre-

sents the numerically lowest privilege level that a calling procedure may beat to success-
fully make acall to the mde sgment.

(Note that segmets selectors DlandD2 are icentical excepfor their respectiveRPLs. But
since RPLs are not checkd wheraccesing caxforming code segmnts the two segment selec-
tors are essdially interchamgeable.)

When program cantrd is transferredo a conbrming codesegnent, the ®L doesna chang,
evenif the DPL d the desination code segnentis lessthanthe CPL. This stuation isthe anly
one wtere the GL may le different fom the DAL of the curert cade segmetn Also, since he
CPL doesnot clange nostack switch accurs.

Conforming segments araised ér codemodulessuch as mattibraries anl exceptionhardlers,

which supprt appicatiors but do na require accesdo protected system faciies. These
modules are par of the opeating system orexective software, hut they can ke exected at

numerically higher privilege levels (lessprivileged levels). Keepingthe GPL at thelevel of a

calling coce segnent when swiching to a cofiorming cale £gment pevents an apization

programfrom accesing noncanforming code segnentswhile atthe privilege level (DPL) of a
conforming cade segmerandthus pevents it fron accessig mare pivilegeddata.

Mostcode ggments are natonforming. For theseegments, prgramcontrd canbe transferred
only to code segmerts at the sane level of privilege, unlessthe trarsferis caried out through a
call gate, as descridan the following sectons.
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4.8.2. Gate Descriptors

To provide controlled accessto code segments with different privilege levels, theprocessa
provides speial sa of descriptors cdled gate desciliptors There ae four kinds of gae
descriptors:

® Callgates
®* Trap gates
® Interrupt gaes
® Task gates

Task gaks are ugd fa task switching and are bcussed in Chapter 6, Task Management Trap
and interupt cates are special kids of call gates usedbr calling exception and interrypt
hardlers. The aredescribedn Chaper 5, Interrupt and Excepion Handling. This chapteris
concerred only with call gates.

4.8.3. Call Gates

Cadll gatesfacilitate conrolled trarsfers of pogram control between dfferert privilege levels.
They are typically usedonly in operatingsystemsor executives tht wse the privilege-level
protecton meclanism. @l gates are also uséffor trarsferringprogramcontrd between 1ébit
and32-bit code segmens, asdesribed in Secion 174., “Tranderring Control Among Mixed
Size Code Segmets’ in Chapter ¥, Mixing 16-Bit and 32-Bit Coce.

Figure 4-7 shows the format of a call-gate desaiptor. A call- gate descriptor may reside in the
GDT orinanLDT, but nat in the interrupt desriptor table (IDT). It performssix functions

® It specifiesthe codesegment tobe accesl.
* Itdefines arentrypoirt for a poocedue inthe specified cde segmet.
® |t specifiesthe privilege level regired for a caller tryng to acces theprocedue.

* If a dack switch occurs, it pecifies the nunber d optional parameters to be cojed
betweenstacks.

® |t defines thesize d valuesto be pushed oto the taget gack 16-bit gates foce 16bit
pushesand32-bit gaks force 32bit pushes.

® It specifieswhether thecal-gate descriptois valid.
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31 16 15141312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 %%rgrry. 4
L |o|1 ‘ 1 | 0 ‘ 0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-7. Call-Gate Descripto r

The segment selectofield in a call gatespecifiesthe cod segmento be accesad. The offset
field specifies tke entrypoint in the cod segnent. Ths enty pant is generally to the first
instruction ofa specifc procedue. The DPL field indicatesthe privilege levelof the call gate,
which in turnis the privlege level requiredto acess the selected mrcedue thraughthe gate.
The P flag inttates whethethe call-gate descriptds valid. (Thepresence othe code segent
to which the gae pantsisindicatd bythe P fagin the code #gmen’s de<riptor.) The param
eter cout field indicates tle number of paraneters to cog from the callirg procedures stacko
the new stack i dackswitch accurs (reér to Sectiort.85., “Stack Switching). The pararater
court specifiesthe number ofwords for 16-bit cal gakes ard dowblewords for 32-bit call gaes.

Note that the P flagn agate descripbor is rormally alwaysset to 1. If it is set to0, anot preseh
(#NP) exeption is geerated whera pragram atempts to acces the @scriptor. The gerating
system caruse the P flag fospecial paposes. For exampe, it coud be used to track themmber
of timesthe gateis used Here, tle P flagis initially set to 0 causng a trap b the rot-presen
exceptim handler. The exceptionhander thenincrements a aenterandsets theP flagto 1, so
that an returning fromthe hamller, the gate descriptor will be valid.

4.8.4. Accessing a Code Segment Through a Call Gate

To access callgate, adr panter tothe gate is preidedasa taget opeandina CALL or IMP
instruction. The segnert selecta from this pointer identfies the cal gate (refr to Figure 4-8);
the ofsetfrom the pmter isrequired, but nd used a checkedy the pocessr. (The ofsetcan
be set toanyvalue.)

Whenthe pocessr has accesed tle cal gate, it uses the segmeselector fomthe callgate ©
locate the segmenestriptor for the destinationcode segmen(This gment descriptor can e
in the GDT o the LDT.) It thencombinesthe base adéss from the cde-segrant descripto
with the offset from the callgateto form the linearaddressof the procedire entry point in the
code sement

As shown in Figure 49, four dfferent privilege levels are ugd b checkthe valdity of a
program control transferthrough a call gte:
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®* The CR. (current privilege level).

®* The RPL (requedor's privilege level) of the call gat's selecbr.

®* The DR (descrigor privilege level) of the call gate desriptor.

® The DPLof the ssgmert deriptor of the desination cale £gment

The C flag (corforming) in the segnent descriptor for the dedination code segnert is also
checled.

Far Pointer to Call Gate

Segment Selector | | Offset
Required but not used by processor

Descriptor Table

— Offset CaII-G_ate
Segment Selector Offset Descriptor

»| Base Base Code-Segment
?1 Base Descriptor
Procedure
Entry Point

Figure 4-8. Call-Gate Mechanism
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CS Register

CPL

Call-Gate Selector

RPL

Call Gate (Descriptor) Privilege

Check

Y

DPL

Y

Destination Code-
Segment Descriptor

DPL

Figure 4-9. Privilege Check for Con trol Transfer with Call Gate
The pivilege clecking rules are differert deperding on whether he cortrol trander was initi-
ated with a @LL or a JIMPinstruction,asshavn in Table 4-1

Table 4-1. Privilege Check Rules for Call Gates

Instruction Privilege Check Rul es

CALL CPL < call gate DPL; RPL < call gate DPL
Destination conforming code segment DPL < CPL
Destination nonconforming code segment DPL < CPL

JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DR field of the call-gate descripor specifiesthe nunerically highestprivilege level fron
which acaling procedue canacces thecall gate; that is to access callgate, theCPL of a
calling procedue must be eaial to or lessthan the DPL of the call gate. & exampe, in Figure
4-12, cal gate A has DPL of 3. So @lling procedues at all ®Ls (0through3) canacces this
call gate, which includescalling procediresin cade sgmerts A, B, and C. Call gate B tes a
DPL of 2,s0only caling proceduesata CPL or 0, 1,0r 2can accessall gate Bwhich includes
calling proceduesin code segmésaB and C The dotted line shavs thata calling pocedue in
codesegment A camot access call gate B
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The RPL of the £gment seledalr to a call gte mustsatisfy the same test dlse CPL of the caling
procedure; that is the RPL must ke lessthan @ equal to the DPL d the call gate. In the exanple
in Figure 4-12, a callirg procecurein code segmernt C canacess callgate B usng gate seleor
B2 or B1, bu it could not wse gate Electa B3 to access call gate. B

If the privilege checks betveen tte calling procedure andcall gate arsuccessful, the pracessr
thenchecks the DPL of thcodesegment abscriptor agairst the GPL of the caling procedure.
Here, the pvilege cleckrules vary betweenCALL ard IMP instructions. Only CALL instruc-
tions can e call gtes totranger program control to more privileged (numerically lower priv-
ilege level) nanconforming cock segnerts; that is, tononconforming code segnentswith a DPL
less than the @L. A JMP instruction can use a dadate oty to transfer prgramcontrd to a
noncorformingcode ggmentwith a DR equal tothe GPL. CALL and MP instructioncan bah
transferprogramcortrol to a nore privileged canforming code £gment; that is to a caforming
code ®gmen with a DA less ttanor equal to the CPL.

If a cal is made to amore privileged (numetically lower grivil egelevel) nonconforming desti-

nation code segnert, the CR. is lowered to the DPL of thedegination code segment ard a stack
switch occurs (reér to Secton 48.5, “Stack Switching”). If acdl or jump is made to a e
privileged coriorming destination codesegment the CPL is not chargedand no stack switch

occus.

Code || Gate Selector A > call
Segment A RPL=3 Gate A
CPL=3 | — Gate SelectorB3 | — — — — - DPL=3
RPL=3 |
Lowest Privilege \f/
Code Call
Segment B|_| Gate Selector B1
9 [RPL=2—> Gate B
CPL=2 »|DPL=2
S code C Gate Selector B2
egment C | — |
—\CPLzl RPL=1]
No Stack Stack Switch
Switch Occurs Occurs
Y \
Code Code
Segment D Segment E
DPL=0 DPL=0
Conforming Nonconforming
m Highest Privilege Code Segment Code Segment

Figure 4-10. Example of Accessing Call Gates At Various Privil ege Levels
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Cadll gates dbow asindge code segmetrto have pocedires that candbaccesed at diferent priv
ilege levels. Forexampe, anoperatingsystem Iacated ina cod segmeh may have some
serviceswhich are intended to beused by boththe operatingsystem and applicationoftware
(such as preeduesfor handing chaacter 1/0). @Il gates for thee poceduwescanbe €t up
that alow accesat allprivilege levels(0 through 3). More pivileged call gategwith DPLs of
0 or 1)can therbe setup for other operatingsystem ervicesthat arentendedto be used dy
by the qoerating system (suchas pocedures that intializedevice drivers).

4.8.5. Stack Switching

Wherever a call gate issedto transfer pogram contol to a more pivileged honcanforming
code sgmert (thatis, when he DPL of he nortonforming dedination code segentislessthan
the CPL), the proces®r autamatically switches to the stackfor the degination cade segnents
privilege level. This stack switching is carried outto prevert more privileged preedues fran
crashingdue to insuficient stack space. It also pexts kss privilegedporoceduesfrom inter
fering (by accidem orintent) with nore privileged proceduesthrough a aredstack

Eachtak mug define upto 4 sacks ore far appicationscoce (running atprivilegelevel 3) and
one Pr eachof the privilege leels 2,1, and0 that are sed (If only two privilege levels are sed
[3 andQ], thenonly two stacks must ke defined.) Eachof these stacks is lotsl in a separate
segment aml is identified witha segmenselectorandan offset intothe stacksegment @ stack
pointer).

The segrant seleair ard stack pinter for the pivilege level3 stack is locateth the SS and
ESPregisters, respectivelwhenprivilege-level-3cade is leing executedard is adomatically
stored an thecalled proceduie’s stackwhen astackswitch occurs.

Pointers b the privilege level 0, 1,and 2 stacks aretared in the TSS for the curently running
task (refer to Figure6-2 in Chaptr 6, Task Management Eachof these pinters camsists of a
segment selector and a stackpointer (loadedinto the ESP reigter). These iitial pointers are
strictly read-only values. The pro@ssor desnot charge them while the tasis running. They
are sedonly to create aw stacks when callsare maé to mae pivilegedlevels (numerically
lower pivilege level3. These tcks are dsposed of when a returnis mace from the calked
procedue. The mext time the pocedue iscalled a new sickis createdusing the intial stack
pointer. (The TSS does ot specify a stackfor privilege level 3 because therocessr does rot
allow a trarsfer of program corrol froma piocedue running at aCPL of 0,1,0r 2toa praedue
running at a L of 3, excep ona retun.)

The operating system ieespasible for creaing sacks andstack-segment descriptes for all the
privilege lewls to be used andfor loadng initial pointers br these stacksinto the TSS. Each
stackmust be read/write accsible (asspecifiedin the type field ofts segmehdescriptor) and
must comain enaigh space (as specifieiah the limit field) to hold the following items:

® The catentsof the SS, ESFCS ard EIP regsters for tle callirg procedire.
® The paramters and tempraly variables reqired by thecalled procedue.

®* The EFLAGS reégter and eror cade, whenimplicit calls ae made to an exceptionor
interrupt handler.
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The stack will needto require enaugh spaceto contain many frames 6 these items,because
procedures dtencall other procedues, andanoperatingsystemmay support nesting of multiple
interrupts. Each stack shioube lage enaighto allow forthe worst cas resting scerario at is
privilege lewl.

(If the operatirg systemdces rot usethe pracesso’s multitasking mechaism, it still must create
at leas one TSS far this sackrelatedpumpose.)

When aprocedire call tirough a call gat resuts in a chage in privilege level, the pracessr
performs the followingstepsto switch siacks andbegin exection of the called pocedue ata
new privilege level:

1. Usesthe DPL d the destination code fgment (the new CPL) to selecta pointer tothe rew
stack gegnent selear ard stack pinter)from the TSS.

2. Reads the egment selector andtack pointer for the dack tobe switched to from the
curent TSS. Any limit violations detectedvhile readimg thestacksegment selectgrstack
pointer, or gack-egnment degriptor cause arinvalid TSS (#TS) excepion © be geneated

3. Checksthe sacksegmentdegriptor for the poper privilegesand type andgeneraes an
invalid TSS (#TS)exceptionif violations are dtecied

Temporaiily saves the cuent \elues ofthe SSand ESP regsters.
Loads thesegment selectoandstack painter for the rew stackin the SS andESP reggters.

Pushes tb tempraily savedvalues for the SS ad ESP registers (@r the calling
procedire) ontothe rew stack(referto Figue 4-11).

7. Copies the omber of paraneter specified inthe paameter caint field of the callgate fran
thecalling procedue’s dackto thenew sack If the caint is O,noparametes are coped

8. Pushes theetun instruction pointer (the current catents oftheCS andEIP register$ onto
the newstack.

9. Loads thesegment selectofor thenew cale segrant aml thenew irstruction pointerfrom
thecall gate intothe CS andEIP regsters, respectivehand begins executionof the called
procedure.

Refer to the description of the CALL instruction in Chapter 3 Instruction Set Refeence in the
Intel Architecture Sdtware Develogr's Manual, \blume 2, for addailed desaiption of thepriv-
ilege kevel checks and aher protecion checksthat the plocesa performs ona far cal through
a call gite.
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Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter 3 <— ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <— ESP

Figure 4-11. Stack Switching During an Interpriv ileg e-Level Call

The mrameter cant field in a call gate specifies the mberof data items (g to 3l) that te
procesa should copy from the calling pracedue’s stacko the stack ofthe called pracedue. If
more than31 data items eedto be mssedto thecaled procedire,one d the parameters aabe
a pointer to a dat structure, orthe saed conerts of the SS and ESPregiters may be usd to
acces parametesin the old stackspace. Tle size 6 the dataitemspassed tahecalledproce-
dure dendsonthe cal gate size,as ascilibed in Secton 48.3, “Call Gaes’

4.8.6. Returning from a Called Procedure

The RET instruction canbe usedto perform anear retun, a far retun atthe same privilege level,
ard a far eturnto a dfferert privil ege lew. Thisinstrucion isinternded to execte retuns from
proceduesthat were calledvith a CALL instruction. It does na suppat retuns fran aJMP
instruction, becage the MP instructiondoesnot save aeturninstructionpoirter onthe stack.

A nearretun only transfers psgram cantrol within the curret code segmet therefae, the
procesor perfams ory a limit check. When the pocessor pps the rettn instructionpoirter
from thestackinto the EIP regster, it checks that thepointerdoes not exceed tle limit of the
current coe segmen

On afar returnat thesame privilege levé, the pocessompops botha segmeinsekctor for the
codesegnentbeing reurned b and a eturn instruction pointer from the sack Undernomal
condtions, these pointershoud be \alid, becage theywere pshed onthe gack by the CALL
instruction. However the praesor performs privilege checks todetect duatons wherethe
current procedure might have alteredhe minter a failed to maintain the sack poperly.
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A far retun thatrequires a prilege-level charge is aly allowedwhenreturning to aless piv-
ileged level (thatis, the DPLof the returncode ®gmert is numerically greater tanthe CR.).
The procesor usesthe RPL field from the CS regster value savedor the caling procedue
(refer to Figure 4-11) to determine if a retun to anumerically higher privilege level is required.
If the RPL is numerically greater(less privileged) thanthe QPL, a return acrass pivilege levels
occus.

The processr perfams the following stes when perfeming a fr retun toa calling procedure
(refer to Figures 42 ard 44 in the Intel Architectue Sftware Developr's Manud, Volumel,
for anillustrationof the sack cortentsprior to ard aftera retun):

1. Checks the RPL field of the saed CS register \alue to detemmine if a privilege level
changeis required onthe retun.

2. Loads the G ard EIP registers with the values onhe callecbrocedue’s stack. (¥pe ard
privilege level checkare grformed a the co@-segment descrifpr andRPL of the coe-
segmehsalecta.)

3. (If the RET instruction includes a paramster count operand and the retun requires a
privilege levelchange.) Adds the parameter count (in bytes obtained from the RET
instruction) to thecurrert ESPregister @ ue (ater pgping the CS ard EIP values)to step
pad the parameters on the calledprocedure’s gack Theresulting value inthe ESPregider
pointsto thesawed SS ard ESP aues fa the callirg procedue’s gack (Note thatthe byte
count in the RET ingruction must be closento metch the pararmster count in the call gite
that the caling procedure rerenced wten it made tre orignal call multiplied by the size
of the paameters.)

4. (If the retun requires a privilege level change.) Loads the SS al ESPregisters with the
savedSS and ESRaluesand switches back to the calling gredue’s stack. The Sard
ESP valesfor the cdled procedue’s stack arediscaded. Any limit violations detected
while loading the stacksegment selectoror stack pointer cause agenesal-pratecton
excepton (#GP) to be geneated. The new stck-segment degriptor is also checkedfor
type and privil ege violations

5. (If the RET instructionincludesa paameter cant gperand.) Adds the paameter caint(in
bytesohtained from the RET instruction) to the curent ESPregider vaue, tostep pas the
paraneters o the calling procedire’s stack The resulting ESPvaue is rot checked aging
the limit of the stacksegnent. If the ESPvalue is beyond the limit, that fact isnat
recogrized unil the nex stackopestion.

6. (If thereturn reqiiresa privilege level chang.) Checksthe contets of the D5, ES,FS,ard
GS sgment regigers. Ifary of these regsters refer to segnentswhose DPL islessthan the
new CPL (excluding corforming codesegments), thesegment regsteris loaded with anull
segmenhsalecta.

Refer to the descrigtion of the RET instruction in Chapter 3 Instruction Set Refance of the
Intel Architecture Sdtware Develogr's Manual, \Volume 2, for addailed desaiption of thepriv-
ilege level clecks andtherprotection checks that th@rocesorperfams ona farretun.
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4.9. PRIVILEGED INSTRUCTIONS

Some of the g/stem irstructions (called “pivileged irstructions” are potected fom use by
applicationprograms. Tle privileged instructios contra system factions (suctasthe loading
of system regsters). Theyan be exeded only when theCPL is 0 (mast privileged). If ore of

theseinstructiors is executed when th€PL is nat 0, ageneral-potectionexcepion (#GP)is

geneated. The fdlowing system instructicare pivil eged irstructions:

® LGDT—LoadGDT register

® |LLDT—LoadLDT register.

® [TR—Load tak regster.

® LIDT—Load IDT regiger.

® MOV (control registers)—Load ard gore catrol registers.
® |LMSW—Loadmacthine datus word.

® CLTS—deartask-switchedflag inregister QO.

®* MOV (debugregsterg—Loadandstore debuy registers.
* INVD—Invalidate cachewithout writeback

®* WBINVD—Invalidae cache, with witeback.

®* INVLPG—InvalidateTLB ertry.

® HLT—Halt processr.

* RDMSR—Read Modl-Specific Registers.

*  WRMSR—Write Model-Specifc Registers.

® RDPMC—Read Perfamarce-Moritoring Counter.

® RDTSC—Read Time-Stamp Counter.

Some of the pivileged instrctionsare available only in the mie recenfamilies of Intel Archi-
tecure processorgrefer toSection 187., “New Instrudions In the Pentim® andLater Intel
ArchitectureProcessrs’, in Chapterl8, Intel Architecture Canpatibility).

The PE andTSD flagsin register (R4 (bits 4 and 2respecively) enalbe the RDPMC and
RDTSC instructions, respectivelyto be executed aany CPL.

4.10. POINTER VALIDATION

When operatingin protectedmode,the pocessowalidatesall pointers to enforce protection
betweensegnerts ard maintain isolation betweenprivilege levels. Panter validation consists
of the following checks:

1. Checkingaccessights to d@termine if the segmetitype is conpatible with itsuse.

2. Checkingreadwrite rights
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3. Checking if the panter ofset exeeds the segmehimit.
4. Checking if the supplier of the panter is albwed toacces the segmnt.
5. Checking the ofsetalignmeri.

The praesorautonatically perbrmsfirst, secord, and third checkduring instructionexecu
tion. Sdtwaremust exgicitly request trefourth check ty issuing anARPL instruction. The fifth
check (dfset aligiment) is performed auomatically at privilege level 3if alignmert checkngis
turnedon. Offset aligyment doesnat affect isdation of privilege levek.

4.10.1. Checking A ccess Rights (LAR Instruction)

When theprocesoraccesesa ggment wsing a farpainter, it performs an access ritghcheck
on the segnentdescriptr pointed to bythe far painter. This checkis performed to deternine if
type ar privilege level (DPL) ofthe segnent cescriptor ae canpatible with the ogeratian tobe
performed. For exampke,whenmaking a far cal in proteced nmode,the segnentdescriptor type
must befor a corforming or noncorforming code ggment, a cal gate, a task gag, or a TSS.
Then if the callis to anoncorforming code sgment, he DPL of the code egmentmustbeequal
to the CPL, and the RPL of the code egmert’s sesgment selecor mug belessthan or equato
the DPL. If type or privilege level are faund to be incompatible, the agpropriate excepton is
gererated.

To prevert type incompatibility excegions from being generated software carched theacces
rights of asegment descriptousing theLAR (load accessights) instruction. The LARinstruc-
tion specifies the ssgmentselector for the segrant descripto whose acces rights are tobe
checled aml a destinationregster The instuctionthen performs the éllowing opektions:

1. Checkthat the segmdrselectar is not rull.

2. Checks that the segnert sekctor pintsto a ®gment descripbor that is wihin the descripor
tadelimit (GDT or LDT).

3. Checks that the sgmen descripbor is a cale, dita, LDT, call ggte, taskgate, a TSS
segmernt-de<riptor type.

4. If the segmentis not a conforming code sgment checksif the ssgmentdegriptor is
visible atthe C(PL (that is if the CPL and the FL of the segment setta arelessthanor
equ to the DR.).

5. If the pivilege level and tge check pass, loads the secod daublewod of the segment
desciiptor into the degination register (masked by the value OOFXFFOOH, where X
indicatesthat thecorrespading 4 bits areundefined ard sets th&F flag in theEFLAGS
register. If the segmetnselectoris na visible a the curent privilege level oris an invalid
type for the LAR instruction, the instruction does rot modify the desination register and
clears thezF flag.

Once ladedin the destnation register, sotware canprefam additiona checks o theacces
rights information.
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4.10.2. Checking Read/W rite Rights (VE RR and VERW
Instructions)

When the pocessr accesss ary cock or data ggment it cheks the readwrite pivileges
assignedto the ggment to verify that theinterded read o write operation is alloved Software
can cleck readwriterights usinghe VERR (verify for readng) andVERW (verify for writing)
instructions. Both thesenstructions gecify the ®gment seleair for the £gment beingchecked
The irstructions therperformthe fdlowing gperatiors:

1. Check thatthe segmetrselectoris not null.

2. Checks that the segnent €lectar points toa segnent descriptor that iswithin the descriptor
tade limit (GDT or LDT).

3. Checksthat the segnentdescriptor is a cale ordai-segnent desriptor type.

If the segmenis not a conforming code ®gment, check if the ssgment descriptoiis
visible atthe CPL (that is if the GPL and the FL of the £gment slectorare lessthanor
equal tothe DPL).

5. Checks that th segmehis readable(for the VERR instruction) or writable (br the
VERW) instruction.

The VERR instruction sts the ZF flag h the EFLAGS regster if the ggment is visible at he
CPL and readble; theVERW setsthe ZF flagif the segment is visble andwritable. Code
segments are everwritale.) The ZF flagis clearedf any of these checdkfail .
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4.10.3. Checking Thatthe Pointer Offset Is Within Limits (LSL
Instruction)

When the pocessr acceses any segmeit performs a limit check tansure that the déet is
within the limit of the segnent. Sdtware can perform this limit check using the LSL (load
segnert limit) instruction. Like the LAR instruction, the LSL instruction specifiesthe ssgment
sekcta for the £gment descriptor whose limit is to ke checkedand a dstinationregister The
instruction thenperforms the following operations:

1. Checkthat the segmdrselecta is not rull.

2. Checks that the segnert sekector pintsto a ®gment descripbor that is wihin the descripior
tadelimit (GDT or LDT).

3. Checksthatthe sgmentdesciiptor is a cale, dita, LDT, or TSS segmeni-de<criptor type.

If the segment is not a conforming code sgment checksif the ssgmentdegriptor is
visible atthe CPL (that &, if the CPL and the RL of the segnent ®lector lessthanor
equ to the DR.).

5. If the privilege lew and type checkspas, loadsthe urscranbled limit (the imit scaled
accading to the stting of the Gflag in the segnert descriptor) into the destination regster
ard setsthe ZF flag in tre ERLAGS regster. If the segmenselector is not visible at the
currentprivilege level or isaninvalid type fa the LSL instruction, the instruction doesnot
modify the dstinationregister ad clears the E flag.

Onceloadedin the destinationregister, software cancomparethe segrent limit with the offset
of a panter.

4.10.4. Checking C aller Access Privileges (ARPL Instruction)

The requesta’s privilege level (RPL) field of a segnentselecbr isintendedto carrythe givi-
lege level 6 a calling procedire (the calling procedue’s CPL) to a called pocedire. The called
procedue then useshe RPL to determine if accesdo a ®gmentis alowed. The RPL is said to
“weaker the privilege leve of the calkd procedue tothat ofthe RPL.

Operatimg-system pocedues typically e the RPL to prevent lessprivileged aplication
programsfrom accesingdata locateéh mare privileged segments. When anopegting-system
procedue (the cakd procedire) receiwes a £gmentselector fom an applicatioprogram (the
calling procedire), it setsthe segnentselectors RPL to the privilege level of the calling proce-
dure. Then, when the operating system usesthe sgmentselector to access & associated
segmentthe pocessr performs privilege check using thecalling procedire’s privilege level
(staredin the RPL) ratterthanthe rumerically lower frivilegelevel (the GPL) of the operatirg-
sysemprocedire.The RPL thusinsuregthat theoperatingsystem des rot accesa segmenon
beldf of an aplication program wlesstha programitself has access to the sesm

Figure 4-12 shavs anexanple of how the piocessr uses the RL field. In this example,an
apgicationprogram (lacated in code segmief) poses®s a @gment Electa (segnent selealr
D1) that mints to a pivileged dat stricture (that is, a dita stricture locatedin a dita gmennt
D at privlege level 0). The appicationprogramcanna acces data segméem, because it does
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not hae sufficient privilege, but the operatirg system (located in casegmehC) can. 9, in
an attempt to acceskta segmerD, the application pogram exectes a callto the operating
system andpassesegment ®lector D1 b the oerating gstem asa parameter orthe gack
Before passing the segmert selecto, the (well belaved) appication programsets the RPL of the
segment selector to its currentprivilege level (whichin this exanyple is 3). If the operatirg
system attemfs to accesslata £gment D using segnmt selector D1, the pocessr conpares
the CPL (whichis nav 0 following thecall), theRPL of segnent selectoD1, ard the DPL d
data ssgment D (whichis 0). Since e RPL is greater than the OP accesgo data segment D
is deried. The praesor's prdedion mechaism thus protects dataegment D fran accesdy
the opeating system,because applicatiorrpgram’s privilege level (repeserted by the RL of
segment selector Bis greaer thanthe DPL ofdata segmerD.

Passed as a

parameter on

the stack.

Application Program \
Seqront A Gate Selector B Call s t Sel. D1
egment ate Selector egment Sel.
CPL=3 RPL=3 Gate B " RPL=3
— DPL=3 |
Lowest Privilege | |
I
|
|
| I
: |
Access !
| not |
| allowed |
| |
| A\
Operating | S Code c_ s Data
egmentC| 4, | Segment Sel. D2 | 4. Segment D
System RPL=0

DPL=0 =
Access DPL=0

m Highest Privilege allowed

Figure 4-12. Use of RPL to Weaken Privilege Level of Call ed Procedure

Now asunethat insteadof settng the RPL of the segmetrselector t@, the aplicaton program
sets theRPL to 0 (segment selectob?2). The opemting system camow accesslata segmenD,
because it€PL and theRPL of segmeat selectorD2 are bth equl to the DPL of dta segnent
D. Becawsethe apfication program is able tehang the RPL of a segmendelectorto anyvalue,
it can pdentialy use a proedue operating at a umeiicdly lower pivilege level to accss a
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protecteddata dructure. This alility to lower the RR. of a segnernt selecta breactes the
processr’s protectionmechaism.

Because a calledprocedure camot rely on the calling procedire tosetthe RPL correctly, oper-
ating-system pocedires (execting at nunerically lower pivilege-leels) that receig segment
sekctas from numericallyhigher privilege-level proceduesneedo test thdRPL of thesegment
sekector todeternineif it is at the apropriate level. The ARPL (adjwst requegedprivilegelevel)
instruction isprovided for ths pupose. This instruction adjusts the RPL of one segnent selecbr
to match that d andher segrant seécta.

The examfe in Figure 4- demorstrateshow the ARPL instruction is intendedto be usd
When the operatingsystemreceives segmeselecta D2 from theapgdicationprogram, it ses
the ARPL instructon to conparethe RPL of the segnent seleatr with the privilege le of the
apgication program (lepresentedby the cod-segment seleot pushed ontothe stack) If the
RPL is lessthan apgication programi's mrivilegelevel, the ARPL instruction chargesthe RPL
of the 'gment selecor to math the pivilege level of the application program (segment
selecto D1). Using this instriction thus pevents a pocedure running at a umerically higher
privilege level fran accesisig numerically lower pivilegedevel (moke privileged) segmets by
loweringthe RPL of a ssgment selector

Note that the mrivilegelevel of the application program canbe deermined by readng the RPL
field of the ssgmen sekcbr for the applicaion{programs code gment. This ssgmentselecta
is stored onthe stackas part of the chto theoperatirg system. The ograting gstem can cop
the sggmen selector from the stackinto a rejisterfor useas an operard for the ARPL
instruction.

4.10.5. Checking A lignment

When the ®L is 3, alignment of memory referercescan be chead by sding the AM flag in

the CRO register ard the AC flag in the BFLAGS register. Unaligned menory references
gererate alignment exceptios (#AC). The pra@esor de@s not geneate alignment exceptions
when operating at privilegelevel 0, 1, or 2. Refer to Table 5-7 in Chapter 5, Interrupt andExcep

tion Handing for a description of the agnmen requremens when adignment checiag is

enalted.

4.11. PAGE-LEVEL PROTECTION

Page-keel pratection canbe usedaloneor appied to ssgmens. When mpge-level protecion is
usedwith theflat memory madel, it allows supenisor code anddata the geratingsystem o
exective) to beprotectedfrom wser code anddata(apdicationprogramsg. It also allowspages
cortaining cale to be write pmtected. Wen the segent- andpagelewvel praection are
combined,pagelevel read/write mtection allevs more prdection grandarity within segments.

With page-level piotection és with segment-level potectio) each memoy referenceis
checled to verifythat protection checkare sasfied. All checks are made bafthe memor
cycleis startedandany violation prevents thecycle from starting andresults in gpagefault
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exceptim being gererated. Becase checls are perdrmed in parallel with addres trarslation
there s noperformance enatty.

The pocessor prforms two page-level potectionchecls:
® Restrictionof addresable damain (supervisor anduser maleg.
* Page tpe (ead aly or readwrite).

Violations of eitherof these checks esults ina pag-fault excepion being geneated. Refer to

Chapter 5, Interrupt ard ExceptionHandling for an exylanationof the pagefault exception
mechaimsm. This chapier describeshe protectionviolations which lead to pagéault excep
tions.

4.11.1. Page-Protection Fl ags

Protecioninformationfor pagesis cortained in two flagsin apagesdirecory or page-tade enty
(refer to Figure 3-4 in Chapter 3 ProtectedMode Menory Managemerit the real/write flag
(bit 1) andthe user/supervisorflag (bit 2). The potection clecksare applied to bothfirst- and
secmddevel page tables(thatis, page direcoriesand age gbles.

4.11.2. Restricting A ddres sable Domain

The mge-lewel pratection mectanian allowsregricting accesso page based on two privilege
levels:

® Supewvisor made (USflag s 0)—(Most privileged)For the operatng sysem a exective,
other system sdtware 6uch asdevice drivers) andproteced ystem dah (such aspage
tades).

® User node (U/S flagis 1)—(Leastprivileged) Fa application cade aml data.

The segnert privilege lewls map to the pag privilege levels as fdlows. If the praesso is
currertly operatirg ata GPL of 0, 1, a 2, it is in supervisor mode; if it is operatirg at a ®L of
3, itis in tsermocde. When the pocessor is in sugovisor mode it can accesall pages; wheim
user male, it canaccesnly userlevel pags. (Note that theVP flag in cortrol regster CRO
modfiesthe supenisor pemissions, as escribed in Section4.11.3., “PageType”)

Note tha to use the pagelevel potectionmectanian, code am data segmntsmust ke set up
for atleas two segmert-basd privilege kvels: level O for sipewnisor code anddat segnents

and level 3for user code andata ggments. (In thismodel, the stacksare placedn the data
segments.) D minimize theuse d segments, &lat menory model carbe used (redr to Section
3.21., “Basic Flat Modl” in Section 3 “ProtecedMode Memay Managenent”). Here,the

user ad supgrvisor codeanddata segnms all beginat addesszeroin thelinear adiressspace
andoverayeach ther With this arragemern, operatingsystem cale (unring at tre supenvisor

level) andapplication code(runring at he ugr level) can execute a# there are no segments.
Protecion betveen operting-system and applicaion coce ard data is provided by the

processor's pag-level protectionmechaism.
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4.11.3. Page Type

Thepagelevel praection mechanism reggnizes two pge types:
®* Read-oly aces (RW flagis 0).
® Read/write acces®R/W flag is 1).

When te processors in supervisor moa ard the WP flag in regisér CRO is clear (itsstate
following reset initialization), all pages ae both readable and writade (write-protecton is
ignored) Whenthe piocessr is in user mock, it canwrite orly to usermode pa@s that are
readwrite accesible. Userrmodepageswhich ae readwrite or readonly are readble; super
visormode ges are ather readable ar writakde from user node.A pagefault exceptionis
generatedon anyattenpt to violate the potecfon rules

The P6 family, Penium®, and Inel486™ procesors allow usermode gesto be wrie-
protectedagpinst supervisor-mode accessSettirg the WP flag in regster QRO to 1 erales
supervisor-mode sersitivity to user-mode, write-praectedpages This supervisor write-praect
featue isusefu for implementinga “copy-onwrite” strategy used ly some peratingsystems,
such asJNIX*, for task creation (atscalledforking or gawning). Whenanewtask i creaed,
it is possble to copy the etire addessspace ofthe mrenttask. This gives the child tak a
conplete, duplicate €t of the parent's segnents ard pages. An adtnative copy-on-write
strategy swves memay spaceand time by mappirg the child's segmentsard pagesd the same
segments ahpages usedby the prenttask. A private c@y of a pag gets ceaed only when
one ofthetaks writes tothepage By usingthe WP flag andmarkng the shaed pges as read
only, the suprvisor candetectanatemg to write to a usetevel pag, andcancopythe page at
that time.

4.11.4. Combining P rotection of Both Levels of Page Tables

For anyone pagethe potecion atributesof its pagedirecory enty (firstlevel page table) may
differ from thee d its pag-table entry(secanddevel page table)The pocessr checks the
protecion for a pagen both its page-directay andthe pag-table enties. Table 42 shows the
protection provided ty the posdile comiinations & protection attribiteswhen the WP flag is
clear

4.11.5. Overrides to P age Protect ion

The followingtypes of memoy accessearechecked asf theyare privilege-level 0 accesss,
regardlessof theCPL at whichthe pocessr is curently gerating

®* Accesdgo segmentegriptors inthe GDT, LDT, or IDT.

® Accessto aninnerprivilegedevel sack during an irter-privilege-level call o a call toin
exceptionor interrupt hander, when achange of privilege level occts.
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4.12. COMBINING PAGE AND SEGMENT PROTECTION

PROTECTION

When pagng is enaled, the pocessor ealuates segnent prdection first, thenevaluaes pa@

protecion. If the pocessr detectsa protection volation ateither the ssgment level or the pag
level, the memxy accesss na caried ait and anexceptionis generated.If an exeption is
geneated by segmertation, o pagng excepton is geneated

Page-level rotections canot be tsedto owerride segrant-level potection.For exanple, a cod
segment is by defintion not writable. f a coa segnen is paged settng the R/W flag for the
pages toreadwrite doesna make the pageswritable. Attenpts to write into the ages will be

blocked by segment-level protecion cltecks

Page-level piotection can eusedto enharce segnent-level potection. Forexample, if a lage
readwrite daa segmenis paged, the pagprotection mechasm canbe usedto write-piotect
individual pages.

Table 4-2. Combine d Page-Dire ctory and Page-Table Protec tion

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access T ype Privilege Access T ype Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If the WP flag of CRO is set, the access type is determined by the R/W flags of the page-directory and

page-table entries.
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Intel® INTERRUPT AND EXCEPTION HANDLING

CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter escribes the pracesor's interrypt andexceptiorhardling mechanism, whewoper
ating in protected mode Most of theinformation provided here a'soapplies tothe interrupt and
exceptimn mechanismused inrealaddress a virtual-8086 mode. Refer to Chapter16, 8086
Emuhtion for adescriptiorof the dfferencesn the interrupt and exceptiomrmechanisnfor real-
addessandvirtual-8086 node.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interrupts anl exceptiors are facedtransfers bexecutionfrom the curently running program
ortask to aspecial pocedireor taskcalledahandler. Interupts typicaly occu at ralomtimes
duringthe executonof a plogram, n regonse to signalsfrom haidware. Theyareused b hardle
events eternal to the pracesor, suchas regeds to serice perifheral cevices Software caml
generate interrugds by execting the INT n instruction. Exceptions ocauwhenthe pocessr
detectsanerror cordition while execuing an irstruction, such as dvision by zeio. The pocessr
detectsa varietyof error comlitions including pratection violations, pag faults, ard intemal
machire faults. Themachine-check achitecture of the P6 fanly andPerium® processaos
also pemits amachineeheckexcepion to begenested wheninterral hadware erors ard bus
erras aredetected

The pocessr’s interrypt and excejion-handing mechaism allowsinterupts and excejpns
to be handled transpaently to apgdication programs andthe operating system or exective.
When an nterrupt is received pan exceptions detected, the crtently running procedire o
tak is autanatically susperdedwhil e the pracessor executes an inteupt orexceptio hardler.
When executionof thehander is canplete, tle pocessr resumesexection of the interupted
procedue or task The resmption of the interrupted praedue or task happers without 10ss of
program continuity, unlessrecovery from anexceptionwas rot possble a aninterrupt catsed
the currertly running programto be terminated

This chapter escribes the pracessor's interrypt andexceptionrhardling mechanism, whewper
ating in proteced node. A detailed descrigtion of the exceptions ard the corditions that case
themto be generatedis given at the end of this chapter. Refer toChapter 16, 808 Emuétion for
a description of theinterrupt ard exceptionmechanian for real-addessand virtual-8086 moce.

5.1.1. Source s of Interrupt s

The pocessoreceives intermptsfrom two souces
* Extemal (hardwaregenested) interrupts.

* Softwaregeneated interapts.
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5.1.1.1. EXTERNAL INTERRUPTS

Extemal interrupts arereceived though pins onthe processor othrough the local APIC serial
bus. Tte primaty interrupt pinson a B family or Pentium® processor arethe LINT[1:0] pins,
which are conected to the local RIC (referto Secton 7.5, “Advanced Rogrammable ier-
rupt Cantroller (APIC)” in Chapter 7 Multi ple-Processr Managemet). When thelocal APIC
is disabled these pins are ctigured as INTRard NMI pins, respectively. Assertng the NTR
pin signalsthe processor that an exteaninteriupt has occued, aml the processor reaifrom
thesydembus the interrupt vectornumberprovidedby anexernalinterrupt cortroller, suchas
an 82%A (referto Section5.2, “Exceptionard Interrypt Vectas’). Asserting the NMI pin
signals a nammakah e interrupt (NMI), which is asigned b interrupt vector 2.

When the local RIC is enabledthe LINT[1:0] pins can be prgrammed thraighthe APIC's
vecta table tobe assciated with anyof the pocessr’s exceptionor interrypt vectas.

The pocessois local ARC canbe comected taa /stem-tased|l/O APIC. Here,exterral inter-
ruptsreceived at the 1/0 AIC’s pins canbe directed to tk local APIC through the APICserial
bus (dns ACDJ[1:0]). The IO APIC determinesthe vecbr number of te interrupt and ends
this number to the local APIC. Whena systemcortains multiple pracesses, rocessrs canalso
send interrupts  oneanoher by mears d the ARC serial bus

The LINT[1:0] pins are ot available on the Intel4®&™ processr andthe earlier Pentiufh
processrs that donot contain an orchip local ARC. Instead these poesors havealedicated
NMI and INTR pins. Wth theseprocessors, exteahinterrupts are typcally generatedby a
systembasedinterrupt contraller (8259A), with the interrugs being signaled through the INTR
pin.

Note thatseveralotherpins onthe procesa cause a proessr interruptto occur; however, these
interrupts arenot handed by theinterrupt ard exceptionmechaism describedn this chapter
Thes pinsinclude the RESET#, FLSH#, STRCLK#, SMI#, R/S#, ard INIT# pins Which of
these pins are inalied an a paticular Intel Architectue pracesorisimplementaton dependent.
The funcions of these ns are desciibed n the data books for the individual procesas. The
SMI# pin is alsodegribedin Chaper 12, Sysem Managenert Mode @VIM).

5.1.1.2. MASKABLE HARDWARE INTERRUPTS

Any extemal interrupt that is delivered to the piocesa by meas ofthe INTR pn or trrough
the localAPIC is calleda maskable hardware interrupt. The meskable tardware irterrupts
that can ke delivered through the INTR gn include all Intel Architecture ddined interrupt
vecbrs from 0 tirough 255 those thatcan be divered tirough the local APIC include interrupt
vecbrs 16 through 255

All maskablehardvare intertupts canbe masked as a @up. Use the sigle IF flag in the
EFLAGS regster (refer toSecton 5.61., “Masking Maskale Hardware Inerrupts’) to mak
thesemaskable interrupts. Note thatwheninterrugs O through 15 are aliv eredthrough the local
APIC, the APICindicatesthe receipt banillegal vector
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5.1.1.3. SOFTWARE-GENERATED INTERRUPTS

The INTn instruction permits interrugsto be generated from within software by supplying the
interrupt vecta numberas an perard. Forexampe, the NT 35 instruction forcesanimplicit
call to the interrupt handler for interrupt 35.

Any of the interrupt vedors from 0 to 255 can le used asa paramer in this instruction. If the
procesor's pre@finedNMI vector isused howeer, the esponse of the ppcessr will nat be
the same as it wodi befrom anNMI interrupt generatedn the namal mamer. If vecior number
2 (the NMI vector)is used in this instruction, the NMlinterrug hardler is called but the
processors NMI-handing hadware is no activated.

Note thatinterrupts gereratedin software with the INT n instruction canrot be maskedby the
IF flagin the EFLAGS regier.

5.1.2. Source s of Exceptions

The pocessoreceives exceptitsfrom threesources:
®* Processodetectedprogramerra exceptions.

* Softwaregeneated excefons.

® Machine-checkexcepions.

5.1.2.1. PROGRAM-ERROR EXCEPTIONS

The pocesor geneates one a mare ex@ptions whenit detects program erras during the
executim inanapgicationprogram @ the operatingsystemor exective. The Intel Architectue
defines a vector umber for eachprocesordetectable excéjpn. The excefions are firther
classified asfaults, tr aps, and aborts (refer toSection 53., “ExceptionClassfications’).

5.1.2.2. SOFTWARE-GENERATED EXCEPTIONS

The INTO, INT 3, andBOUND instructios permit exceptios to be generatedin software.
These istructions allow checksfor specific excepion corditions to be performed at gecific
points in the instructionstream. For exant@, the INT 3 nstruction causes breakmint excep
tion to be gererated

The INT n instructioncan be sedto emdiate a specific eeptionin software, with me limita-
tion. If then opeand in the INT n instruction contains a vectdor one of the Intel Archtectue
exceptions, the procesa will generate arnterrug to thatvecta, which will in turn invoke the
exceptim hander asociated with that vectoBecause this is actually an inteupt, havever the
processordoes not peh an erra code oto the stack, eveifi ahardware-gererated exceypon for
that vectornomally produces oe. For those excetions that produce anerror code,theexcep
tion handler will attenpt to pop anerrorcode from the gackwhile hardling the excepion. If the
INT n instruction was ugd toerrulate the gerration of anexcepion, the handler will pop off
and discardhe EIP (in place ahe mising errorcode),sendng the returrio the wrang location
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5.1.2.3. MACHINE-CHECK EXCEPTIONS

The P6family and Pertium® processrs piovide both internal and exterral maclhine-check

meclanians for checking the operationof the intenal chip hardvare ard bustransactions.
These mechasms constitite extended (implementationdependent) excefion mechairsms.

When a machie-checkerror is detected, therpcessr sgnals a macine-creck excepion

(vecor 18) andreturrs an erra coce. Refer to “Interrug 18—Machire Check Excepion

(#MC)" at theend d this chaper andChaper 13 MachineCheck Architedure, for a cetailed

descriptionof the macime-check mechnism.

5.2. EXCEPTION AND INTERRUPT VECTORS

The pocessr asociatesan identification nunber called avector, with eachexceptionard
interrupt. Table 5-1 shows the assgnmert of excepion and interupt vecbors. Thistabe also
gives the exceptiontype for eachvector, indicateswhetheranerra codeis savedon the stack
for anexception andgives the sourceof the exceptia orinterript.

The wectors in the rang 0 through 3L are asigred to the excedjons ard the NMI interryt. Not
all of thes wectors are auently used bythe pocessr. Unassgned vestors in this rang are
resrvedfor possble futureusesDo not use the eserved vectors.

The vectosin therange 32 to255 are deginated asuserdefined interrupts These mterrugs are
not resened by the Itel Architectue and are gamnally asignedto external I/Odevicesard to
permit themto signal the procesa through one of the exernalhardware irterrupt mechaniams
degribedin Secion5.11., “Sourcesof Interrupts’

5.3. EXCEPTION CLASSIFICATIONS

Excepiions are cladfied asfaults, trap s, oraborts depending on the waythey ae repoted aml
whethettheinstruction that caused the exdem can ke restartedwith noloss of program or task
continuity.

Faults A fault is an exeptionthat can geerally be correciedandthat, orce corecied,
allows the programto be resarted with no lossof continuity. Whena fault is
reported, the pocessr resbres he machie date to the statprior to the begn-
ning of exection of the falting instruction The eturnaddess (savedonters
of the CSandEIP regsters) for the faut hander points to the fadting instruc-
tion, ratter thanthe instruction following the faulting instruction.

Note: There area small subsetof exceptiors that are rormally repated as
faults, but under arclitectural correr casesthey are ot restartable andome
processr context wil be lost. An exampe ofthese cassis the exection of the
PORAD instruction where the stack framtrosss overthe the end of the stack
segnent. The excepton hander will see ttat the CSEIP hasbeen resiredas
if the PORD instructionhad nat exected howeverinternal procesor state
(general puposeregisters) will have beemadified. Thesecorner casesare
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corsidered pogramming erfors andan ajlication caseing this clas o
excepions will likely be teminated ly theopemting system.

Traps A trapisanexceptio that is eported immediatelyfollowing the executionof
the trapng instriction. Traps allow exection of a program ortask to be
continued without loss d program continuity. The returnaddess fo the trap
handler pants tothe instruction to be execuedafter the trapping instruction.

Aborts An abot is an exeptionthat des nd always reprt the precis locationof the
instruction causing the exception ard does rot allow restart 6 the program or
tak that caged the exeption.Aborts are used taepat severe gors, such as
hardware erors andincorsistert or illegal valuesin systemtables
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Table 5-1. Protec ted-Mode Exceptions and Interrup ts

Vector | Mne- Error
No. moni c Descri ption Type Code Source
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB Debug Fault/ No Any code or data reference or the
Trap INT 1 instruction.
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Fault No ubD2 insiruction or reserved
Opcode) opcode.
7 #NM Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can generate
(Zero) | an’exception, an NMI, or an INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes IS'[aé:k operations and SS register
oads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not use.) No
16 #MF Floating-Point Error (Math Fault No Floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Yes Any data reference in memory.3
(Zero)
18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.
19 #XF Streaming SIMD Extensions | Fault No SIMD floating-point instructions®
20-31 | — Intel reserved. Do not use.
32- — User Defined (Nonreserved) | Interrupt External interrupt or INT n
255 Interrupts instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium® Pro processor.

2. Intel Architecture processors after the Intel386™ processor do not generate this exception.

3. This exception was introduced in the Intel486™ processor.

4. This exception was introduced in the Pentium® processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium® |1l processor.
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5.4. PROGRAM OR TASK RESTART

To allow resarting of programor task foll owing the hamlling of anexcepion or aninterrupt, all
exceptims except abrts aregualanteed torepat the exeption on a precise instruction
boundary, andall interrupts are garaneedto be takenon aninstruction bouncary.

For fault-classexcepions, the retun instruction panterthat the pra@esorsavesvhenit gener
atesthe excepion points to the fadting instruction. So, when a program or task is redarted
following the handling of afault, the fauling ingtruction is restartedre-exected). Resarting
the faulting instructios commorly usedto handle exceptinsthat are genated when acces
to an ograndis blocked The most commmexampbe of a fault s a pageault exceptio#PF)
that occuswhen a pogram o tak refelences an oprandin a ge that is not imemoy. When
a pag-fault exceptim occurs, theexcepion handlercan laad the pag into memoy ard resume
execttion of the programor tak by redarting the faulting ingtruction. To insure thatthisinstruc-
tion restart is randed trangarerily to the curremly execuing program or task, the processr
savesthenecesary registersandstackpainters toallow it to restore itslf toits state gor to the
execttion of the faulting instruction.

For trap-classexceftions, the returninstruction pointer pants to the instructon following the

trappng instruction. If a trap is detecteduring aninstructionwhich transfers exedion, the

returninstruction pointer reflects tle trarsfer. Forexampe, if a trapis detected while executing
a JMPingtruction, the retun instruction pointer pants tothe destination of the IMP instruction,

not to the rext addresgpag the IMPingtruction. All trap excepions allow programor taskrestart
with noloss of cortinuity. For example, tle owerflow exceptionis a tappingexcepion. Here,

the return instruction pointer pants tothe ingruction following the INTO instruction that teséd
the OF pverflow) flag in the EFLAGS register. The traphandler for thisexcegion resdvesthe
oveiflow condtion. Uponreturn from the trap hauller, program ortask executon contnues at
the rext instruction following the INTO instruction.

The abot-classexaeptions do not suppott reliable restarting of the program or task. Abort
handers gererally aredesgnedto cdlectdiagnatic information aloutthe gate of the plocesa
when the abarexcepion occured and then shut down the applicatiomisystemasgracefuly
as posible.

Interruptsrigoroudy suppart restarting of interrupted prgramsand asks without loss of corti-

nuity. The retun instrucion pointer saed for aninterrugt points to the nex instruction to be

executedat the istruction bourdary wherethe piocessr took the irterrug. If the instruction
justexectied hasa repeat @fix, the nterrupt is taken atthe endof the current iteration with he
registers & to execue the nex iteration.

The alility of a P6family processor tapeculatively ercute instructios does na affect the
taking of interrupts by the procesa. Interrupts are taken at instruction bourdaries located
during the retirerant phase of instaoion exection; so they are alwaysaken in the “in-order”
instruction stream Refer to Chapter 2, Introduction to the Irtel Architecture, in the Intel Archi-
tecure Software Developr's Manud, Volume 1 for mae information abou the P6 family
proces®rs’ microachitecure aml its syppatt for ou-of-order instruction exection.

Note that the Petium® processorand edier Intel Architecture pocessors atsperfam varying
amounts of prefething ard preliminary decaling of instructions however here alsoexcepions
and interupts are notignaled util actual “in-order” exection of the instructioa For a given

I 5-7



INTERRUPT AND EXCEPTION HANDLING Intel®

cock sample, the sgnaling of excepions wil occur uriformly when tke code is executesh ary
family of Intel Architectue processorgexcepwherenewexcepions a new opcodes hawe been
defined).

5.5. NONMASKABLE INTERRUPT (NM1I)

Thenommaslable interrupt (NMI) canbe gneratedin either of two ways
® External tardwareas®rts the NMI pin.
®* The piocessr receives a mssage o the APIC serial bg of delivery modeNMI.

When thepracesorreceives a NMfrom eitherof these sources, thgrocesorhardlesit imme-
diately by caling the NMI hardler painted to by interrupt vecr number 2. The processor also
invokescertin hardvare caditionsto insure that no otherinterrupts, including NMI i nterrupts,
are reeived urtil the NMI hander has comieted execting (refer to Section %.1., “Handing
Multiple NMIs”).

Also, whenanNMI is receivedirom eitherof theabowe souces, it camotbe nasked by the IF
flag in the EFLAGS retgtet

It isposshletoissue a magahe hardware nterrupt (through the INTR pin) tovecior 2 binvoke
the NMlinterrugt handler; however, this interrug will not truly be anNMI interrug. A true NMI
interrupt that acivatesthe piocesa’s NMI-handing hadware canonly be deivered tirough
one ofthe meclanians listed aboe.

5.5.1. Handling Multipl e NMlIs

Whilean NMl interrypt handleris executing the pracesordisables adtional calls to tle NMI
handler urtil the next IRET instruction is executed. Ths blocking of stbsequert NMIs prewvents
stacking up calls to the NMlhandeer. It is recanmerded that tle NMI interrug handler be
accesed through aninterrupt gate to disable maskable thaare interupts (reér to Secion
5.6.1., “Masking Maskable Hardwae Interrupts’).

5.6. ENABLING AND DISABLING | NTERRUPTS

Theprocessr inhibits the gereration of some interrupts, dependng onthe gateof the procesa
andof the IF ard RF flagsin the BFLAGS regster asdescribedn the fllowing sectiors.

5.6.1. Masking Mas kable Hardwar e Inte rrupts

The IF flag candisable the servicingof maskabe hardware interapts receivedon the
procesa’s INTR pih orthrough the local ARC (refer to Secion 5.11.2, “Maskable Hardvare
Interrupts”). Whenthe IF flag is ckar the pocessor inibits interrupts delivered to the NTR
pin or throughthe local ARC from gereratingan interrl interript requed; when the IFflagis
set interrupts deliveredto theINTR or through thelocal APIC pin are pocessed as nmal
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exterral interrupts. The IF flag des not diect noimaskalke interrupts (NMls) delivered tothe
NMI pin or deivery modeNMI mesagesdeliveredthrough the APIC serial bus, nor doesit
affect piocesor gererated exeptiors. As with the otherflags inthe EFLAGSregister the
processor clears the IF flagn response to ehardvare reset.

The fact that the graip  maskabe hardware interrupts includes the reseed interupt and
exceptim vectors0 through 32can pdentialy catse corfusion. Arclitectually, whenthe IF
flag s set an interruptfor ary of the vecorsfromO throuch 32 can be dileredto the pocesa
throughthe INTR pin and anyof the vecbrsfrom 16 trough 32canbe deivered tiroughthe
local APIC. The processr will then generate arinterrugt ard call the interrupt or excegtion
handler pointedto by the vecta number. So for exanple, it ispossble to invoke the page-fault
hander through the INTR pin (by meais of vecbr 14); however, this is not a true page-fault
excegion. It is anintermupt. As with the INT n instruction (referto Section 5.1.22., “Software-
GereratedExceptions”), whenan irterrupt is gererated tlough the INTR pin to anexcegion
vector the pocessor des not psh an eror cade onthe séck, so the egeption fander may rot
opeste corectly.

The IF flagcan ke setor clearedwith the STI get interupt-enable fag) andCLI (clear irterrupt-
enable flag)nstructions, respectvely. Thes instuctions may be exeted only if the CPL is
equalto or lessthan te IOPL A gereral-protecion excefion (#GP is geneated if they are
executedvhenthe CPL is greaker thanthelOPL. (The effect o the IOPL a thes instructions
is modified dightly when the \irtual mode extersion is erabled by setting the VME flag in
contol register CR4 referto Secion 16.3,, “Interrupt andExcepton Hardling in Virtuat8086
Mode” in Chapter B, 8086 Emuétion.)

The IFflag is al® affected ly thefollowing operations:

®* The PWSHF instructionstores all flag on the stack, wkre theycan be examinedand
modified. The PORF instructioncan beused to loadthe madalified flags back into the
EFLAGSregiger.

® Task switches andthe POFF and IRET instructions load the EFLAGS regster; tlerefore,
they canbe wsedto modify the ®tting of the IF flag.

® Whenan interupt is handed thiough an interupt gate the IF flag is atomatically cleared
which disables maskable hardwate interrupts. (If aninterupt is handled throuch a trap
gate the IF flagis not cleared)

Refer to the descrigtions of the I, STI, PUSHE PORF, ard IRET instructionsin Chapter 3,
Instruction SetRegrence of the Intel Architectue Sdtware Developels Manual, \blume 2 for
a cetailed description of the gperations the<e instructions areallowedto performon the IF flag.

5.6.2. Masking Inst ruction Breakpoints

The RF (reauume) flagin the EFLAGSregster cantrds the respose of the ppcessor to instias
tion-brealpoint corditions (refer tothe description of the RFflagin Sectim 2.3, “SystemFlags
and Fieldsm the EFLAGS Register” in Chapter 2, System Athitecture Overviey. When =, it
prewvents aninstruction breakpant from geneating a delug excepion (#DB); when clear
instruction breakpmwints will generatedebug excepions. The primary function of the RF flagis
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to prevent the procesa from gaing into a debug excegtion loop on an irstruction-breakpoint.
Refer to Sectiom 15.3.1.1, “Instruction-Breakmint Excepion Condition”, in Chapter 15,
Debuwgging and PeformanceMonitoring, for more information on theuse ofthis flag.

5.6.3. Masking E xceptions and Interrupts When  Switching
Stacks

To switch toa differen stacksegment, sofware oftenusesa pair ¢ instructians, for exampe:

MOV SS, AX
MOV ESP, StackTop

If aninterrypt or exception @curs after the segent €lectorhas been loat! into tle SSregister
but before the ESP register has been laad] thesevto partsof the logical adressinto the stack
space aréncorsistent for the diration of the interupt a exceptionhander.

To preventthis dtuation, the processr inhibits interrugts, cebug exceptions, am Sngle-gep rap
excepions after either a MDV to SSinstruction or aPOPto SSinstruction, urtil the instruction
boundary fdl owing the nexinstruction isreacled. All other falts may stil be gneratedIf the
LSS instrwction is used to mdify the catentsof the SSregster (which is the reconmenced
method of modifying this regster),this problem does rot occu.

5.7. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more tlan ore exceftion or interrypt is pending at an instructio baundary, the pocessr
services thm in apredctable ader Table 5-3 shaws the priority anpong clasgs of excepion
andinterrypt sources. While priority amorg these clasesis corsistent thraughout the achitec-
ture, excepions within eaclclassare impenmentationdepementandmay vary from processr
to processr. The pocessr first services a penitig exception @ interupt from the tass vhich
has the highed priority, trarsfering exection to the firstinstrucion of the tandler. Lower
priority excepions are dicardel; lower priority interrupts are held pendng. Discaded excep
tions arere-gereratedwhen the irterrug hander returns exection to the pant in the pragram
or tak where tle excefions andor interupts occued

The Rentium® IIl processoradded theSIMD floating-point exection unit. The SIMD floating

point executionunit can gnerateexcepions as well. Sincéhe SIMD floatingpoint execuion
unit utilizes a 4wide regster set anexceptim mayresult fron mae thanone ogerandwithin a
SIMD floating-point register. Hencethe Rentium® 1ll proces®er hardles theg exeptions
accoding to a preéterminedprecedece. When a sutbpeind d a pacled instructiorgeneates
two or more excepion conditions, the exception precegrnce ®metimesresults in the higher
priority exception being handledand he lower piiority exeptionsbeing ignared. Prioritization

of excepionsis perormed only on a sub-operandbasis, ard nd betveensubopeilands Faor
example, aninvalid exception generated by one sub-operard will not preven the reporting of a
divide-by-zeroexception geerated byanothersub-opeiand. Table 52 showsthe pecedence fo
StreamingSIMD Extensbns nuneric exceftions. The tableeflectsthe aderin which interupts
are hadled ypon simultaneous recogition by the procesa (for example, wren multiple inter-

ruptsare peding at aninstructionboundar). However thetable dasnot necesarily reflect the
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order in which interrupts will be recaynized by the processo if received smultaneausly atthe
processr pins

Table 5-2. SIMD Floati ng-Poi nt Exc eptions Priority

Priority Descri ption

1(Highest) Invalid operation exception due to SNaN
operand (or any NaN operand for max, min, or
certain compare and convert operations)

2 QNaN operand*

3 Any other invalid operation exception not
mentioned above or a divide-by-zero
exception?

4 Denormal operand exception?

5 Numeric overflow and underflow exceptions
possibly in conjunction with the inexact result
exception?

6(Lowest) Inexact result exception

1. Though this is not an exception, the handling of a QNaN operand has precedence over lower priority
exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

5.8. INTERRUPT DESCRIPTOR TABLE (IDT)

The interryt degriptor table (IDT) asxiatesead exceptionor interrupt vecta with a gate
descriptorfor the procedure or tak used to servicethe as®ciatedexceptionor interrugd. Like

the GDT andLDTs, the IDT isanarrayof 8byte descriptas (in praected mock). Unlike te

GDT, the first ertry of the IDT may congin a desriptor. To form anindexinto the IDT, the
processor scalesthe exeption or interupt vector by eight (the rumber d bytes ina gate
descripto). Becawe thele are only256 interupt or exceptiorvectors, the IDT needot cortain

more than256 descripors. It cancortain fewerthan256 descripors, becase descriptos are

requred aily for the interrupt and excepton vecborsthat may acur All empt de<riptor slots
in thelDT shoud hawe the pesent flagor the descriptoset to 0.
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Table 5-3. Priority Among Sim ultaneous Exceptions and Interrupts

Priority Descripti ons

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/l-O breakpoint)

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Faults from Fetching Next Instruction
- Code Breakpoint Fault

- Code-Segment Limit Violation®

- Code Page Fault!

7 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- llegal Opcode

- Coprocessor Not Available

8 (Lowest) Faults on Executing an Instruction
- Floating-point exception

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- SIMD floating-point exception

NOTE:

1. For the Pentium® and Intel486™ processors, the Code Segment Limit Violation and the Code Page Fault
exceptions are assigned to the priority 7.

The lese addesesof the IDT houd be aigned a an 8-lyte boundary b maxmize perfor-
marce d cacte linefills. The limit value is epressedin bytes aml is added to the base adres
to get the adressof the lag vaid byte. A limit value of Oresllts in exactly Jvalid byte. Because
IDT enrtries arealwayseight bytes lang, the limit should always be ore lessthan an integal
multiple of eight (that is, 8\ — 1).
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The IDT mayresde anywhere inthe lineaaddess spaceAsshavnin Figue 51, the pocessr
locaes he DT usng the IDTR reggter. Thisregster holls both a32-bit bag addess and 16hit
limit for the IDT.

IDTR Register
47 16 15 0

IDT Base Address | IDT Limit

i Interrupt

: Descriptor Table (IDT)
Gate for

Interrupt #n (n-1)8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

B — S Interrupt #1 0
31 0

Figure 5-1. Relationship ofthe IDTR and IDT

The LIDT (loadIDT regster) andSIDT (store IDT regiser) instructionsload and ®re the
conterns of the IDTRregiser, respectiely. The LIDT instructionloads the IDTRegister wih
the base addess and Imit held in amemay operand This instruction can besxecuted oty
whenthe CPL 8 0. It normally is used by the initialization code of an operatirg systemwhen
creating arlDT. An opegting system also may € it to change fom ore IDT to anotter. The
SIDT instruction copesthe bae andlimit value storedin IDTR to memory. Thisinstructioncan
be execued at ay privilege level.

If a vectorreferences a dscriptor beyond the limit of the IDT, a gerral-protectionexception
(#GB is gererated.

5.9. IDT DESCRIPTORS

The DT mayconiin any d three kinds of gate degriptors:
® Task-gate desriptor

* Interrug-gate esciiptor

®* Trapgate ascriptor
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Figure 52 shows the famatsfor the sk-gate, interrpt-gae, ard trap-cate descriptors. The
format d atak gaeusedn anlDT isthe sameasthat d atak gateused intheGDT oranLDT
(refer to Secion 6.24., “Tak-Gate Desriptor” in Chaper 6, Task Managemen}. The tak gate
cortainsthe segment selectfor a TSSfor an exeptionand/orinterrypt handlertask.

Task Gate
31 16 15 14 13 12 8 7 0
D
PlP (00101 4
L
31 16 15 0
TSS Segment Selector 0

Interrupt Gate

31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |0OD110|0O0O 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 PlpP|OD111/00O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
D Size of gate: 1 = 32 bits; 0 = 16 bits
:| Reserved

Figure 5-2. IDT Gate Descripto rs

Interrupt and trap gates are ery similar to call gates (refer to Sectim 4.8.3., “Call Gaes” in
Chapter 4, Protecion). They contain a far poitier (segnent selector and d&et) that the
processr uses totransferexection to ahardler procedirein an exeption or interrupt-hardler
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codesegment. Trese gates differin the way tle pracesorhandesthe F flag in the ELAGS
register (efer to Secton 5.101.2, “Flag UsageBy Excefiion- or Interrug-Hander Prace-
dure”).

5.10. EXCEPTION AND INTERRUPT HANDLING

The processor hardles calls to excepion- andinterrypt-handlers similar tadheway it handles
callswitha CALL instructionto aprocedue a a taskWhen iespondng toanexcepion or inter-
rupt, the processr usesthe excepion or interupt vectoras an indexo a descriptoin the IDT.
If the index points to aninterrupt gate or trapgate, the procesa callsthe excepton or interrug
hander in a maner similar to a GALL to a call gate @fer to Section 8.2, “Gate Desriptors”
through Secion 4.86., “Returning froma Caled Procedure” in Chapter 4, Protectian). If index
points toa tak gate, tle pracesorexectes a task swih to the excegion- or interupt-hander
tak in a menner similar to a CALL to a tak gate (refr to Section6.3., “Tak Switching” in
Chapter 6, Task Managemet).

5.10.1. Exception- or Interrupt -Handler P rocedures

An interrypt gate oitrap gate refrences an excépn- or interrypt-handler pocedire that ras
in the context of the cuently executingask (reér to Figure 5-3). The ssgment lectorfor the
gate pants to asegmert descriptor for an exectade code segmert in either the GDT othe
current LDT. The dfset field ofthe gate descriptgioints o the begining of the excepon- or
interrug-handling procedire.

Whentheprocesorperforms acall to theexceptim- or interrupt-hander procedire, it savesthe
current statesf the EFLAGSregister CSregister, ard HP regster a the stack eferto Figue
5-4). (TheCS andEIPregisers provide a retun instruction pointerfor thehander.) If anexcep
tion catses anerra cocke to be saved, it is pushed o thestackafter theEIP value.

If the handler procedure is going to be execued at the sane privilege level as he interupted
procedue, the lander useshe curent stack.

If the hanller procedue isgoingto be executed at nunerically lover privilege level,a sack
switch occus. Whena sackswitch occurs, astackpointer for thestackto bereturred tois al®
sawed on te sack.(The SSard ESP regstersprovide a retrn stack panter for the handkr.)
The segmetnselectr andstack pinter forthe stack to be usedylthe handkr is obtained fran
the TSS fothe curently executingtask. The processorcopies theEFLAGS, SS, ESKS, EIP,
anderra coce informationfrom the irterrupted pocedire’s dackto thehander’s stack.

To returnfrom an excepon- or interupt-rander procedire, the handr mustuse he IRET (or
IRETD) instruction. The IRET irstruction issimilar to the RET irstruction excep that it restoes
the savedlags into the BFLAGS ragister. The IOPL field of the EFLAGS gister is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than a equal tothe IOPL.
Referto “IRET/IRETD—Interrypt Return” in Chapter 3of the Intel Architectue Sdtware
Devebper's Manud, Volume 2 for the canplete @eration performedby the IRET irstruction.

If a stack svitch occured when caling the hardler pracedue, the IRET instruction switches
backto the irterrupted pocedue’s gackonthe retun.
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Interrupt
Vector

Y

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt or —>@—'
Trap Gate
Segment Selector
GDT or LDT
Base
Address
Segment
Descriptor
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Stack Usag e with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code |<«——ESP After
Transfer to Handler

Stack Usage with
Privileg e-Level Change

Interrupted Procedure’s Handler's Stack

Stack
<<——ESP Before
Transfer to Handler sS
ESP
EFLAGS
CS
EIP

ESP After—>» Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt a nd Ex ception- Handli ng Rou tines

5.10.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The pivilege-leel protectionfor exception andinterrug-hardler piocedues & similar to that
used for ordinary procedue cals when caled through a cal gate (refer to Secton 48.4,
“Accessing a @de SegnentThrough a Call Gate” in Chapter4, Protection). The pocessr does
not permit transferof exeaution to an excepon- or interrupt-handler procedire ina lessprivi-
leged code segment (numerically greater pivilege level) than the CPL. Anattempt to violate ths
rule resultsn a geneal-pratedion exception(#GP). The prtecion mechaism for exception
andinterrypt-hardler procedires is diferent in thefollowing ways:

® Becausénterrupt and exeption ecbors have o RPL, the RPL is na checked @ implicit
callsto excepion ard interupt handers.

®* The piocessr checlsthe DPL d the interrypt o trapgate only if an exceptionor interrupt
is generatedwvith an INTh, INT 3, or INTO instruction. Here, the CR. must be less tlan or
equl to the DA of the gateThis restriction peverts applicationprograms @ procedires
running at pivilege level 3 from using a sdtware interrupt to access criticaéxcegion
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handlers, suclasthe pagefault hamller, providing that those hatiers are paced in moe
privileged code segmerts (humerically lower privilege level). For hardvaregererated
interupts ard processr-detectedexcepions, the pocessorignoresthe DPL ofinterrupt
ard trapgates.

Becatse exceptions and inteapts genaly do na ocarr at predictalbe times, hese pivilege
rules efectively impose restrictims on the privilege levels at which excegtion ard interrug-
hardling procedires canun. Either ofthe following technigies can besedto avad privil ege-
level violations.

®* The excefgion or interupt handler can ke placed ina coriorming mwde segrant. Ths
techique carbe usedfor handlers that onlyneed to accessdata available oine stack (fo
example, diviek error excepions). If thehander needsdata fran adata ggment, the data
segmenneed to be accesble fram piivilege level 3 whichwould make it unprotected.

®* The hamler can beplacedin a moncaforming coce segmenwith privilege level 0 This
handler would always run, regardess of the CPL that the interrupted pogram or task is
running at

5.10.1.2. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

When accedgg an exeption @ interrupt handler through eitheran interupt gate or a trapgate,
the pocessorcleas the TF fag in the EFLAGSregister afterit saves the catents ofthe
EFLAGSregster m the sack (On callsto exeption andinterrypt handers, the pracessor also
clears the VM, R andNT flags in the EFLAGSegister, afterthey are savedn the gack)

Cleaing the TF flagpreventsinstructiontracingfrom affectinginterrypt respose. A subseaant

IRET instruction restoresthe TF (andVM, RF, ard NT) flags tothe valuesin the saed cantents

of the EFLAGSregister orthe stack.

The aly difference letweenan interupt gate anda trap gate is the way ¢hpracesor fandes
the IF flag in the EFLAGS register. Whenaccesingan exeption-or interrypt-hardling proce-
dure though aninterupt gate, tle pracesorclears thdF flagto prevert otherinterruypts fran
interfering with the curent interrug handler. A subsequent IRET instruction restoresthe IF flag
to its valuein the saved cantents ofthe EFLAGSregister onthe stackAccesing a hamler
procedue thiouch a trg gate des nad affect the IF fag

5.10.2. Interrupt Tasks

When an excetpon or interupt hamller is accesad through a sk gatein the IDT, a tak switch
resuts. Hardling anexcegtion or interrug with a seprate task offers seeral adwantages

®* The entire catext d theinterryted pogram a task is aved automatically.

® A newTSS pernits the tandler to use anew privilege lew 0 stack when hardling the
exception @ interrupt. If anexceptioror interupt occus when the cuent pivilege level 0
stack iscorupted, accesingthe handlerthrough a sk gate canprevert a sysemcrash by
providing the hamller with anew pivilege level 0 stack
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®* The hardler can be fuher ilatedfrom othertasksby giving it a separate addss gace.
This isdore bygiving it a ®parate LDT.

The dsadvantge ofhandling an nterrupt with a sparae task is that the amout of maclhine
state that must be sawed on a tak switch makesit slower thanusng aninterrupt gate, resulting
in increa®d irterrup latercy.

A tak gate inthe IDT retrences a TSSebcriptor in the GDT teferto Figure 5-5. A switchto
the handler taskis hardled inthe sane manner as arordinary tas switch (refer toSectim 6.3.,
“Tak Switching” in Chapter6, Task Management The link backto the interrupted taskis
stored inthe pevious tag link field of thehander tak’s TSS. f anexcepion catsed anerrar
codeto begeneasted, this eror code is copedto the gackof the new task.

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector TSS
Base
GDT Address

—> TSS Descriptor

Figure 5-5. Interrupt T ask Switch
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When excepon- or interupt-handlertasks are sed inan ogerating system, therre actually
two mectanismsthatcan beaused to tspatchtasks: the sofware scheduler(pat of theopegting

sysem) ard the haravareschediler (part of he processr’sinterrupt mechanism)he sftware
schedler needs toacconmodateinterrupt tasks ttat maybe dispatchedvhen irterrupts are
enalbed.

5.11. ERROR CODE

Whenanexcepion cordition is relatedo a ecific ssgmen, the pracessr pushesaneror coce
onto the stack of the excejon hander (whether itis a plocedue or tak). The erro code has
theformat shavn in Figure 56. The error code resembes a segmenselectorhowe\er, instead
of a Tl flag aml RPL field, theerrorcock cortains 3 flags:

EXT External event (bit 0). When sgt, indicatesthat an evenexterral to the
program caged the excefion, such as a halware irterrupt.
IDT Descriptor location (bit 1). When set, irdicates tht the index portion of the

error cade reérs to a gate descriptdn the IDT, when clearindicates that the
index refersto a dsciiptorin the GDT @ the arrert LDT.

TI GDT/LDT (bit 2). Only tsedwhenthe DT flag is clearWhenset, the TIflag
indicates that he index portion of the erro coderefersto a segmenor gate
descripior in the LDT; when cleay it indicatesthat the mdex reérs to a
descripor in the curent GDT

31 3

—o-—|F
—xm|o

Reserved Segment Selector Index

Figure 5-6. Error Code

The segrant €lectorindexfield provides an inéx into the DT, GDT, or current LDT to the
segment ogate slectorbeing referencedby the erro code. In some casahe erro coceis null
(that is, allbits in the lower wat are clear)A null error code indcatesthat the elor wasnot
causedy a refeence toa specific segent orthat anull segmet descripto was refeencedin
an gerdion.

The famat of the errocode is diferert for pagefault exceptios (#F), refer to “I nterrypt
14—Pagefault Excepion (#PF)” in this chapter

Theerror codeis pushedon the stack asa doubleword or word (deperding on the default inter-
rupt, trap,or task gate size). 1o keepthe sackalignedfor dowblewordpushes the yper haf of
the eror cock is reerved. Note thatthe eror codeis not pgopedwhenthe RET instructionis
exected to eturn from anexceptionhardler, so the landlermust remwee theerrorcock befae
execting a return.
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Error codes are not pbed on the stckfor excepions that aregenerated extemwlly (with the
INTR or LINT[1:0] ping or the INT n instruction, evenif an eror coce is namally produced

for those egeptions.

5.12. EXCEPTION AND INTERRUPT REFERENCE

Thefollowing sections degribe condtions which geneate excepions andinterrupts. They are
arrarged inthe oder d vecta numbess. The information containedin these seaths are as

follows:

Excepion Class

Degription

Excepion Error Code

Saved Instruction Pointer

Program Sta¢ Charge

Indicates whetér the exceptionclass is a fadt, trap or abot type.
Some egeptions can be &ier afault or trap type, dependng on
when the eror cordition is detected. (Thé sedion is not apgicable
to interrugds.)

Gives a gneral ascription of the pupose d the excefion or inter-
rupt type. It al describes how the qpcessr hardlesthe exception
or interrupt.

Indicates whethreanermor coce is savedor the exception.If ore is
saved the caotents & the eror coce are described. (This sectionis
nat applicable tointerrupts.)

Descriteswhich instruction the saved (or return) instruction pointer
points to.It also indicates whether the pdnter canbeused torestart
a faulting instruction.

Describeghe effectsof the excepion or interrypt on the tateof the
currertly running program or task and the possbilities of restarting
the programor taskwithout lossof cortinuity.
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Interrupt 0—Divide Err or Exception (#D E)
Exception Class  Faut.

Description

Indicates he divisor opeend for a DIV or IDIV instruction isO or thatthe resilt camat be repe-
sented irthe nunberof bits specifedfor the dstinationoperand

Exce ption Error Code

Nonre.

Saved Instruction P ointer

Savedconterts of CS ard EIP registers point to the instructiorthat generatedhe excefion.

Program State Change

A program-state chage does ot accanpary the divide eror, because th@xcepion occurs
before the falting instruction is exectied
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Interrupt 1— Debug Exception (#D B)

Exception Class  TraporFault. The exeptionhander candistinguish ketweentraps or
faults byexanining the conerts of DR6 andthe dher dtbugregsters.

Description

Indicates that oneramore ¢ several debg-exception caditions has been texted Whether the
exceptim is a falt or a tap dejgnds on thecondtion, as showtbelow:

Exception Condi tion Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
I/O read or write breakpoint Trap
General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap
Execution of INT 1 instruction Trap

Refer to Chapter 15, Debugying and PerformanceMonitoring, for detaied iformation alout
the déugexcepions.

Exception Error Code

None. An excepion handler can eamine tle delug registers to determire which cadition
caused thexception

Saved Inst ruct ion P ointer

Faut—Saved conerts of CS and EIP registers mint to the instruction tat generaed the
exceptim.

Trap—Sawedconterts of CSand EIP regsters point to the instruction following theinstruction
that geerated tle excefion.

Program State Change

Fault—A programstate clangedoes mt accanpary the dehig exceptim, because thexcep
tion occurs bedre thefaultinginstruction is exected. The praggram can resura nommal execu
tion upon returning from the debug exception handler

Trap—A praram-state changdoes accomparthe debyg excepion, becase the instuctionor
task switch being execued is allowedto complete befare the exception is gererated. However,
the newstateof the program isnat corrupted and executio of the progam can cotinue reliably

I 5-23



INTERRUPT AND EXCEPTION HANDLING Intel®

Interrupt 2—NM | Interrupt
Exception Class Not apgicable.

Description

Thenonmakable interrupt (NMI) is generaed externally by asertingthe procesor’s NMI pin
or throughan NMI reqied set bythe YO APIC to the local APIConthe APICserial bus. Ths
interrupt caues the NMI interrug handler to ke called

Exce ption Error Code

Not apgicable.

Saved Instruction P ointer

The pocessor always takes an NMI intggtwnan instuction boundary. The saved cortentsof
CS and EIP registers point to the nextinstruction to be execued atthe pont the interrupt is
taken. Refer to Sectio 5.4., “Program or Task Restart” for nore information atout when tre
procesa takesNMI interrupts.

Program State Change

The instructionexecuting wheran NMI interrupt is received iscompeted before the NMI is
gererated. A program @ task canthus be resarted upon returning from an interrupt hardler
withou lossof continuity, provided he interrupt hardler savesthe date d the pocesa befae
hardling the interupt ant restoresthe pracesor's staé prior to a eturn.
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Interrupt 3— Breakpoint Exception (#BP )
Exception Class  Trap.

Description

Indicates that ereakmint instruction (INT 3) wasexecued, causing a brepkint trap to be

geneated. Typicaly, a debgger sts a lreakmint by redacing the first opcode byte of an
instruction with the ocode for the INT 3 ingruction. (The INT 3 instruction is ore byte long,

which males it easy to eplace an pcoce in a cale segment iIrRAM with the beakpant

opcale.) The eratingsystenor a debuggingtool canuse adata segmnt mappedto thesame
physical adiressspace as the de segmeinto place aniNT 3 instruction in daces whex it is
desred b cal the delugger.

With the F6 family, Pertium®, Intel486™, ard Intel386 ™ processrs, it is mare convenient to
set brealpoints with the debug registers. (Refer to %ction 15.3.2., “Breakmint Exception
(#BP)—Interrupt Vecor 3", in Chapter 15, Debugying and Performarce Manitoring, for infor-
mation alput the lbeakmint excepion.) If more breakoints are reededbeyond what the ebug
registers abw, the INT 3instruction can ke used.

The lreakmint (#BP) exceptioncan also b gererated ly executingthe INTn instruction with
anoperard of 3. The actio o this instruction (INT 3) is dightly differentthanthat o the INT
3instruction (refer to“INTn/INT O/INT3—Call to Interrugt Procedure” in Chapter 3of thelntel
Architecure Softvare Developes Manud, \olume 3.

Exception Error Code

None.

Saved Inst ruct ion P ointer

Saved conterts of CS ard EIP regigers mint to the instrucion following the INT 3instruction.

Program State Change

Eventhough the EIPpoints to the instruction following the breakoint instruction, the sate o
the pogramis essentiall unchargedbecause # INT 3 instruction does rot affect ary register
or memay locaions The delbigger canthus resumethe sispendedprogram by repacing the
INT 3 instruction that caused the breakmint with the aiginal opcode anddecrenentingthe
saved catents of tle EIP registerUpon retuning from the delbgger, program execution
resumes with thesplacedinstruction.
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Interrupt 4—Overflow E xception (#OF)
Exception Class  Trap.

Description

Indicatesthat an @erflow trapoccured when anINTO instruction was executed.The NTO
instructionchecks the gate of he OF flagin the EFLAGS registerlf the OFflag isset, an over
flow trap i genested.

Some arithmetiénstructiors (such aghe ADD and SUB) perform bothsigned and unsigsd
arithmetic.These instructionset the OF athCF flags in theEFLAGS regsterto indicate siged
overflow ard ursigned o\erflow, repecively. When peforming arthmeic on sgnedopeands
the OF flagcan le teseddirectly or the INTO instruction can ke used.The kenefit of usingthe
INTO instructionisthat ifthe orerflow excepionis detected, a exceptionhardler canbe called
auomatically to hande the overflow condition.

Exce ption Error Code

Nonre.

Saved Instruction Pointer

The savedconterts of CS and EIP registers point to the instructia following the INTO
instruction.

Program State Change

Even tough the EIP mints to the instruction following the INTO instruction, the stateof the
program is essentigllunchangedbecause th&NTO instriction doesnot affect ary regiser or
memay locations. Theprogram can thi resume nomal exection upon retuming from the
overflow exceptionhardler.
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Interrupt 5— BOUND Range Exceeded Exception (#BR)
Exception Class  Fadut.

Description

Indicates tha a BOUND-rarge-exceededfault occured whena BOUND instruction was
executed The BOUND instruction checks that a ghed arrayindex is within the upger and
lower bourds of an aray locatedin memory. If the arrayindexis not within the bourds of the
array aBOUND-rang-exceedd fault is geneated.

Exception Error Code

None.

Saved Inst ruct ion P ointer

Thesaved cantents 6 CSandEIP registers point to the BOUND instruction that gerratedthe
exceptia.

Program State Change

A program-state clangedoes ot acconpanythe munds-checkault, bkecause theperards fa
the BOUND ingruction ae not mdlified. Returning from the BEDUND-range-exceedecdexcep
tion handler causeghe BOUND instructionto be restarted.
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Interrupt 6 —Invalid O pcode Exception (#UD)

Exception Class  Faut.

Description

Indicatesthat the pocessr did ore ofthe fdlowing things:

Attempted toexecue a Strearing SIMD Extersions instruction in an Intel Architecture
procesa that doesna suyppat the Sreaming SMD Extensions

Attempted toexecue a Streaimg SIMD Extensions instruction whenthe OFXSR bit is
not set (Q in CR4. Nae this does rot include the following Streaning SIMD Extensions
PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB,
PMOVMSKB, PMULHUW, PSADBW, PSHUFW, MASKMOVQ, MOVNTQ,
PRBEFETCH andSHENCE.

Attempted toexecue a Strearing SIMD Extersions instruction in an Intel Architecture
procesor which caues a nuneric exceptiorwhen the OSMMEXCPT bit is nat st (0) in
CR4.

Attempted to execue aninvalid or resered opcode, ircluding any MMX™ instruction in
anIntel Architecture processr that des na suppat the MMX™ architectue.

Attemptedto execite anMMX ™ instruction or SIMD floating-point instruction whenthe
EM flag in regiger CRO is set.Note this does ot include the following Streaning SIMD
Extensons SFENCE andPREFETCH.

Attemptedto execte an instruton with an @erard type that is invaliddr its accomp-
nying opcale; for exampe, the surce gerard for a LES instructioris nat a memoy
locdion.

Execueda UD2 instruction.

Detected d.OCK prefix that pecedes amstruction that may not be laccked @ ore that
may belockedbut the destination erard is nd a memay location.

Attemptedto execute ah LDT, SLDT, LTR, STR LSL, LAR, VERR, VERW, or ARPL
instructon while in real-adiressor virtual-8086 mode.

Attempted toexecue the RSMinstruction when nat in SMM mode.

In the P6family procesars, this exceppion is not generated until an atempt is made to retire the
resut of executirg an invalid instruction; that is, dcoding ard specuatively attenpting to
execte aninvalid opcode @esnot geneste this excepion. Likewise, h the Rentium® processr
ard earlier htel Architecture processrs, this excegion is not gererated as ta result of
prefetchingandpreliminary decodng of aninvalid instruction. (Refer toSecton 54., “Program
or Task Regart’ for generalrules for taking d interrupts ard excepions)

Theopcodes DéandF1 ae urdefined gpcodes that ae reservedy Intel. These opcales, een
thoughuncefined, dona geneete an nvalid opcodeexcepion.
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The UD2instructionis guaranieedto generate annvalid opcale exception

Exception Error Code

None.

Saved Inst ruct ion P ointer

The sved corterts of CS andEIP regsters point to theristruction that geneted he exception

Program State Change

A program-stte chang does not accompny an irvalid-opcoce faut, becase the invalid
instructionis nat executed
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Interrupt 7—Devi ce Not Available E xception (#NM)
Exception Class  Faut.

Description
Indicatesone d thefollowing things:
The device-nd-available faut is generatedby either of three couwlitions:

®* The processr executed floatingpoint instructionwhile the EM flag of regster CRO was
set.

® The pocesa exected a floaingpoint, MMX™ or SIMD floating-point (excluding
prefetch,sfence orsreaming stag indructions) irstruction while theTS flag of register
CRO wes sd.

®* The pracesor excuted a WIT or FWAIT instruction while the MPard TS flags of
register CRO were st.

The EM flag is set whetheprocesordoesnat hawe aninterral floating-point unit. An excep
tion isthen genmtedeach time afloating-point instruction isencountered,allowing anexcep
tion handler to call floating-paint instrucion enulaton routines.

The TS flag intcates thatd context svitch (task svtch) hasoccured sncethe lasttime a
floating-point, MMX ™ or SIMD floating-point (excluding prefeth, Sernce a streamng store
instructions) instruction wasexecued but that the cantext of the FRJ wasnot sawed. Whenthe
TS flag is &t, the pracesor genesates a @vice-nd-available egeption eachime a floating
point, MMX™ or SMD floaing-point (excluding prefetch, sferce or $reamng store instruc-
tions) instrietion is ercountered.The exeption landler can thersave the comext ofthe FPU
before it exectes tle instruction. Refer to $ction 2.5., “Control Regsters’, in Chaper 2,
System Athitectue Overiew, for more information alout the TS flag

The MP flag in control regiger CRO is used dong with the TS fag to determine if WAIT or
FWAIT instructionsshoud gererate a devce-nd-avaiable excepton. It extendsthe function o
the TS flag to the WAIT andFWAIT instructiors, giving theexcepion handler anopportunity
to save tk contexof the FPU befre the VAIT or FWAIT instruction is exected. The MPflag
is provided pimarily for use with the Intel286 ard Intel386™ DX processrs. Fa prograns
running on the P6 family, Pentium®, or Intel486™ DX procesas, o the Intel 487 SX coproces
sas, the MP flag should aways be sd; for programs running on the Intel486™ SX processar,
the MP flagshould be clear

Exce ption Error Code

Nonre.

Saved Instruction P ointer

The saved contents of CS and EIP regsters point to the floaing-point instruction or the
WAIT/FWAIT instruction that gnerded the exeption.
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Program State Change

A program-state chage des not acampary a devce-nd-available fait, because the instru
tion thatgenerated the excegion is na executed

If the EMflag s set, the excefpion hander canthen read the floatingaint instruction poirted
to bythe HP andcal the appopriate emulatiorroutine.

If the MP andTSflags are & or the TS flag aloa is set, the excdjpn hardler cansave the
contex of the FPU, clear the TS flag, antbntinie executiorat the interaptedfloatingpoint or

WAIT/FWAIT instruction
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Interrupt 8—Dou ble Fault Exception (#DF)
Exception Class  Abort.

Description

Indicatesthat the pocessor eected a secahexceptionwhile callingan exeptionhander for
a [rior excepion. Normally, whenthe processr detectsanother exceptionwhile trying to call
an exceptionhardler, the twoexceptios can k& handed serially If, however, the pocessr
camot hande themserially it signals the doublefault exception. To determine whentwo faults
needto be signalecsa dule fault, the pocessor tvides he excefions into three classes
berign exceptons, contibutory excepions, andpage fauts (refer to Table 54).

Table 5-4. Interrup t and Exceptio n Classes

Class Vector Number Descri ption
Benign Exceptions and Interrupts 1 Debug Exception
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point extensions
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-5 shaws the various comhinations d exceptionclases that cause tuble fault to be
gererated.A douwble-fadt exceptionfalls in theabot class ofexceptios. The pogram a task
canrot berestarted nresumed.The dulde-faut hander canbe wsedto collectdiagrostic infor-
mation abaut the state of the macine am/or, when mssble, to shu the applicationandor
sysemdowngra@fully or restart thesystem.

A segment or page falt may be enaantered while pefething instructions however this
befhavior isoutside he danain of Table 5-5. Any furtherfaults gererated while the procesor is
attenpting to trarsfer contrad to the appopriate fault hardler could still lead to a double-faut
sequerce.
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Table 5-5. Conditions for G enerating a Double Fault

Second Exception
First E xcepti on Benign Contri butory Page Fault

Benign Handle Exceptions Handle Exceptions Handle Exceptions
Serially Serially Serially

Contrib utory Handle Exceptions Generate a Double Fault | Handle Exceptions
Serially Serially

Page Fault Handle Exceptions Generate a Double Fault | Generate a Double Fault
Serially

If anather exceptionoccurswhile atempting to call the doble-faut hardler, the pocessr

erters siutdown mode. This mode is similar to the shte following execution of an HLT instruc-
tion. In this mode, the processr stops execuing instructionsurtil an NMI interrupt, SMI inter-

rupt, hardware reset, or INIT# is receved. The processor gemmatesa special bus cycleot
indicate thatit has entered shutdn moce. Software degjners may neetb be awae of the
resporse of hardvare to receivingthis signal. For example, hadware mayturn onan indicato

light onthe front panel, generate an NMinterrup to recorddiagnostic information, invoke reset
initialization, generate adNIT initialization, or gererate an SMI.

If the shitdown occus whilethe grocessr is executinganNMI interrug handler, then ally a
hardvare reset caredart the piocessr.
Exception Error Code

Zero.Theprocessr alwayspushes anerror codeof 0 orto the sackof the doude-fault hander.

Saved Instruction P ointer

The swvedcortents of CS andEIP regstersare undefned.

Program State Change

A programsstate following adowble-fadt excepton is unddined. The pogram @ task canrot
be resimedor regarted. The oty avalable acton of the daublefault excepiton hander is to
collect all posdile contex information for use in diagrostics ard thenclose the appication
andbr shut down or resetthe processr.
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Interrupt 9 —Coproces sor Segment Overrun

Exception Class  Abort. (Intel reserved; do not use. Recent Itel Ar chitecture proces-
sors do notgeneratethis exception.)

Description

Indicatesthat an htel386™ CPU-based systemaith an htel 387 mathcoprocessr detecieda
page or segnent violaton whie tranderiing the middle pation of an Inel 387 math copro-
cessr operand The P&amily, Pentium®, ard Intel486™ procesors donotgenerae this excep
tion; instead this condition is detectedwith ageneral protecion excepion (#GP), irterrupt 13.
Exception Error Code

Nonre.

Saved Instruction P ointer

The saved cdaentsof CS ard ElPregisters poitt to the instructiothat gerated the exception

Program State Change

A program-state followinga coppcesa segmert-overun excepton is undefined.The pogram
or tak canna be esumed o restartedThe aly available action 6 theexceptionhardler is to
sa\e the instruction painter ard reinitialize the F ugng the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)
Exception Class  Fadut.

Description

Indicates that a tdsswitch was agmpted am that invalid ifiormation was detected in the TSS
for the taget task Table 56 shows the conditions that will cause aninvalid-TSS excepion to
be gererated. In gneral, tlese ivalid canditions resut from protectionviolations for the TSS
degriptor; the LDT pointedto by the TSS; or the dad, cade,or data segmens referencedby
the TSS.

Table 5-6. Invalid TSS Conditio ns

Error Code Index Invalid Condition

TSS segment selector index TSS segment limit less than 67H for 32-bit TSS or less than 2CH for 16-
bit TSS.

LDT segment selector index Invalid LDT or LDT not present

Stack-segment selector index | Stack-segment selector exceeds descriptor table limit
Stack-segment selector index | Stack segment is not writable

Stack-segment selector index Stack segment DPL # CPL

Stack-segment selector index | Stack-segment selector RPL # CPL

Code-segment selector index Code-segment selector exceeds descriptor table limit
Code-segment selector index Code segment is not executable

Code-segment selector index Nonconforming code segment DPL # CPL
Code-segment selector index Conforming code segment DPL greater than CPL
Data-segment selector index Data-segment selector exceeds descriptor table limit

Data-segment selector index Data segment not readable

This excepion cangereratedeither in the catex of the aiginal taskor in the cantext of the
new task (efer to Sectior6.3, “Task Swiching” in Chapter 6, Task Managemenk Until the
processorhas comfztely veiified the presence of the neWSS, he exception isgererated in be
context of the aiginal tak. Once the exstence d the newTSS is verified, the taskswitch is
consideed comtete. Any invalid-TSS corditions detected after this pdiare handed in the
context d the new task (A taskswitch is considered corplete whenthe tak register is loaded
with the ssgmert selecor for the rew TSSand, if the switch is due toa pocedure call @ inter-
rupt, the pevious tasklink field of the new TSS refences theld TSS.)

To insure that avalid TSS is available to proes the exceptignthe invalid-TSS exception
handler must be a taslcalledusng a taskgae.
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Exce ption Error Code

An erra code containig the segmehselectr index fa the segmehdescripto that caused the
violation is pushed orto the $ackof the excefion handler. If the EXT flag is s, it indicates tht
the exceptionwascaused H anewvent extenal tothe curently running program (for exampe, if
anexternal interrupt handler using a tak gate attenpted a taskswitch toan invalid TSS).

Saved Instruction P ointer

If the exception cordition was detected before the task switch was carriedout, the sved
conterts of CS ard EIP regsterspaint to the instruction that invoked the tag switch. If the
excepion condition was detectedfter the tak switch wascarriedou, thesaved cantents ofCS
ard EIP regiters mint to the first irstruction of the rew task

Program State Change

The ability of the irvalid-TSS hardlerto recover from the faut depends on the eror condition

thancauseghefault. Refer to Sectior6.3, “Task Swiching” in Chapter 6, Task Management
for more information on the tak switch proces andthe ssible recovery actinsthat canbe

taken.

If aninvalid TSS exceptionoccusduring a task swith, it canoccu before or afterthe canmit-
to-new-tak pant. If it ocaurs bebre the canmit pant, no program state chaye acurs. f it
occurs aftethe commit point (whenthe segientdescriptor information for the rew segment
sekctorshave beenloadedin the segnentregiders), tle procesa will load all the gate irfor-
mation fromthe new TSS lefore it gererates tle exception. Duing atask switch, the pracessr
first loadsall the segmennregsters wih segnent €lectors from the TSSthenchecks their
cortentsfor vaidity. If aninvalid TSS excefpon is discovered the emainingsegment regsters
are ladedbut rot checled for vali dity andtherebremay rot beusable fo referencingmemay.
The invalid TSShander should not rely on being able touse the segnentselecorsfound in the
CS, SS, DS, ES, FS, af@lSregistersvithout catsing andher exception.The exeptionhardler
should load all segnert regstersbefae trying to resune the new task otherwise, general-
protecion excepions (#GP) may resllt later uncer comlitionsthat make diagnesis more diffi-
cult. The Intel ecommeded wayof dealing situatioms to use atask for the invalid TSS excep
tion hardler. The tak switch backto the interripted tak from the invalid-TSS exepion-
handler taskwill thencause the pracessr to checkthe regsters as itoads themfrom the TSS.
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Interrupt 1 1—Segment Not Present (#NP)
Exception Class  Fadut.

Description

Indicates that the men flag ofa segnent or gte descriptor is ckar The praesorcan geprate
this excepton during any of the following operatons

® While attenpting to load CS DS, ES, FS, or GS redéss. Detection of a not-presen
segmen while loadng the SSregister cages a $ack fadlt exception ¢SS to be
gererated.] This dtuation canoccu while pefforming a task switch.

®* While attenpting to loadthe LDTR using anLLDT instruction. Detection of a rot-presem
LDT while loadng the LDTR during a tak switch operation cawses an invalid-TSS
excepion ¢#TS) to be generaed.

®  When executingthe LTR instruction ard the TSSis maked rot preser.

® While atempting to use a ga¢ degriptor or TSS thatis marked £gmentnot-present, bu is
otherwise valid.

An opesgting system typcally uses he segnent-nd-presert exaption to implemetvirtual
memory at the semert level. If the excegion hardler loads the segnent andreturns, the inter-
rupted pogram ortask reaimesexecution.

A not-present indicaion in a gae desciiptor, hovever, does rot indicate that a £gmert is not
present (bcause gates dmtcoregond to segmets). The orating system mayse he
present lfag fa gate descriptos to trigger excepions of special sgnificanceto the gerating
system.

Exception Error Code

An error coce containingthesegmenselecta indexfor the segmentdescriptorthatcausedhe
violationis pushed ato the stack bthe exeption fandler If the EXT fagis set, it indicates that
the exception resulted froman exteral evert (NMI or INTR) thatcaused an interrypt, which
subsequetly referencedanotpresent segent. The IDT flag is setif the eror coderefeisto an
IDT entry (eg., an INT irstruction referercing a rot-present gate).

Saved Inst ruct ion P ointer

The swved cottents of CS ard EIPregisters nomaly pant to the instruction that geneated the
exceptio. If the exceptiomccurred while loadng ssgment descriptes for the segmenselectors
in a rew TSS the CSard EIPregiserspointto the frst instruction inthe new taskif the excep
tion occuried while accessg a gate desriptor, the CS and HP registeroint to the instruction
that innokedthe accesffor exanple a QALL instruction that refeences a call gate)
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Program State Change

If the segrant-nd-presenexceptionoccurs as theeallt of loading aregister (S, DS, SS, ES,
ES, GS or LDTR), aprogramstatechang does accormanytheexception because thesgister
is not loaded. Recwery from this exception is passble by simply loadng the nissirg segment
into memory ard seting the presenflag in the segmert descriptor.

If the segmennot-resent exaetion accurs while accessy a gate descriptg aprogramstate
charge es not acompaly the exceptia. Recovey fromthis exceptionis possble merely by
seting the presenflag in the gate dscriptor.

If a segment-rot-presert exception occts during a tag switch, itcan occubefae or after the
conmmit-to-naw-task paint (refer b Section 6.3 “Task Switching” i n Chapter6, Task Manage-

men). If it occurs bedfre the commit pint, no program state champccus. Ifit occurs afer the

commit point, the pocessr will load all the state iformation from the new TS (without

performing ary additional limit, presem, or type check9 befare it generateghe exception. The

segmentnotpresent excepton hander shoud thus nat rely on being able to use the segnent
selectorsfourd inthe CS SS DS ES FS, and GSegiterswithout causng anotherexcepion.

(Refer tothe Prgram State harge description for “Interupt 10—Invalid TSS Excefpion

(#T9)" in this chapter for addi onal information on how to hande this situaton.)
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Interrupt 12—Stack Fault Except ion (#SS)
Exception Class  Fadut.

Description
Indicates ttat ore of thefollowing stack relateccorditionswas de¢cted:

® A limit violationis detectedduring an operationthat refers to the S register Operations
that can causa limit violation incluce stack-giented instructioa such asPOR PUSH,
CALL, RET, IRET, ENTER and LEAVE, as well as other memory referenceswhich
implicitly or explicitly use the SSregister (for exanple, MOV AX, [BP+€ or MOV AX,
SS[EAX+6]). The ENTERInstruction generdes this exception whenhereis not enaigh
stack spaceof allocatinglocal veriables.

®* A not-presentstack ggment is detected \Wwen atempting to load theSS register. This
violation can occuduring the executionof a tak switch, a QALL instruction to a diferent
privilege level, a returnto a dfferert privilege level, anLSS indruction, or aMOV or POP
instruction tothe SS register.

Recowery from this faut is possble by either exendng the limit of the stacksegnent (in the
casof alimit violation) or loadingthemisgng stacksegmentinto memory (in the case banaot-
present iolation.

Exception Error Code

If the excefioniscatsed by a rot-presert stacksegmenor by overflow of thenew stack dring
an interprivilegedewel call, the eror code coriains a segment seéctor for the segmenthat
caused the exceptiohlere, the exception hadler can testhe present flag inhe segnent
descriptor pointed to by the segnent selecto to deermine the cawse d the excepion. For a
normal limit violation (on a séck segnentalread in use) the error coglis st to 0.

Saved Instruction P ointer

Thesawed cantents of CSard BIP registersgererally point to the instruction that gererated the
exceptim. Howeer, when the egeption esults from attemptingto loada not-pesent sick
segment during atask switch, the CSand EIP regsters pint to the first instruction of the new
tak.

Program State Change

A program-state charggdoes not geerally accompany a stack-fdti exception,because te
instruction that generatedthe falt is not execued. Herethe instruction canbe restarteatfter
the excefion hardler has carectedthe $ack fadt condition.

If a gackfault occus during ataskswitch, it occus after the canmit-to-newtask point (refer
to Section ., “Tak Switching” Chapter 6, Task Managemern Here, tle pracesorloads all
the state iformation from the rew TSS (without perforning ary additional limit, prent, or
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type clecks) befae it gererates tle excegion. The stackfault handler should thus not rely on
being alde to use the sgmert selecbrs faund in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. The exeption landler should check all £gment regsters
before trying  resumne he new &sk; othemwise, generalprotecion faults mayresilt later under
corditions thatare nore difficult to diagnee. (Referto the Progam State Gange description
for “Interrug 10—Invalid TSS Excepion (#T9" in this chapter br additional information on
how to handle this situation.)
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Interrupt 13—General Protection Excep tion (#GP)

Exception Class  Fadut.

Description

Indicates that the qcessor dectedone ¢ a classof praection violations caled “geneal-
protecfon violations” The canditions that cawse ths exceftion to be generatecconprise all he
protection violatonsthat do not catseother excepionsto be gererated (suchas invalid-TSS,
segment-rot-presert, sackfault, or pagefault excefions). The fdlowing cortitions cause
gened-pratecion exceptonsto be generaed:

Exceedinghe segmetrlimit when accesgsg theCS, DS, ES, FSor GS segnents

Exceedingthe segmenlimit when refelencing a descripor talde (excep duing a tak
switch or a gack switch).

Trarsferring exection to a ssgment thatis not exectiable.
Writing o a coa segmentor aread-mly data ssgment
Readingfrom an excute-aly code segrant.

Loading the SS register with a ®gment seleatr for a readonly segmenh (unless he
selecor comesfrom a TSS drng a task swith, in which case arnvalid-TSSexception
occus).

Loadingthe SS DS, ES FS or GS reggter witha ssgment selectordr a g/stemsegment.

Loadingthe DS, B, FS, or GSregister with asegmentselector for an exectie-only coce
segnent

Loading theSS register ¥th the segnent ®lector of an executable egment ora null
segmenhselector.

Loading the G regiser with a segnent selector fora data egment or anull segnent
selecor.

Accessng menory usingthe DS, ES, FS, 0 GS kgister whenit contains anull segnent
selecor.

Switching o a bisy taskduinga cal or jump b a TSS.
Switching to an awailable (habusy) task diring the executionof an IRET instruction

Using asegmert selectar ontask switch that pints toa TSSdescripbor in the current LDT.
TSS degriptors canonly resde inthe GDT.

Violatingany d the privilege rules desribedin Chager 4, Protecton.

Exceeding tk instruction lengh limit of 15 bytes (thisonly can occur wten redindant
prefixes are [aced lefore an instrution).
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®* Loading the CRO regster with a set PG flag (paging enabled) ard a clear PE flag
(protecion disabled).

®* Loadingthe RO register with a set NVilag anda clear © flag.

* Referencig an ertry in the IDT (following an interrupt or exception) that is not an
interrupt, trap or taskgate.

* Attemptingto accesaninterrug or exception fandler through aninterrypt or trapgate
fromvirtual-8086 moce whenthe tandler's coce segment DPL is geatr thanO.

® Attempting towrite al into a resered bt of CR4.

* Attempting to execude aprivileged instruction when the CPL is not equal to O (refer to
Secion 4.9, “Privileged Ingructions’ in Chaper 4, Protection for a list of privileged
instructons).

®  Writing to a eserved btinan MSR
® Accessng a gate that cotainsa null segmet selecta.

® Execuing the INT n instructionwhen he CPL is greater than the DPbf the refererced
interrupt, trap or taskgate.

®* The segmengelectorin a call, irierrupt, or trap gate does 1ot paint to a cale segrent.

®* The segnent €lector gerard in the LLDT instructio is a local type (T flag is se) or
doesnotpoint to a £gmen degriptor of the LDT type.

®* The segnern selecto operand in the LTR instruction is local or mintsto a TSS that isna
available.

* The taget coc-segmehselectorfor a call, jump orretun is nul.

* If the AE andor PSE flag in cotrol regster CR4 is st ard the pocessr detectsary
reserved bits h a pagedirectoly-pointer-table etry set to 1 These bitsare checkedduring
a write to contol registers CRO, CR3, or CR4 that causesa rloading of the pag-
directorypainter-table enty.

A program or tak canbe restartedfoll owing any geeral-protection excefpon. If the excefion
occus while atempting to call an interupt handler, the irterrupted program can b restrtable,
but the interrupt may be lost.

Exce ption Error Code

The pracesso pushes arerror cock onto the exceptian hardler’s stack If the faut condition was
detectedvhile loadinga segmetdescriptorthe erra code corainsa ssgment selectoto or IDT
vecta numberfor the descriptg othewise, theerrorcock is 0. The souce d the selector imn
errar code maybeany d the following:

®* An opeand oftheinstruction.
® A selector foma gate with is the operandof the instruction
* A sdecbor froma TSSinvolved in a task switch.
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®* IDT vecor numler.

Saved Inst ruct ion P ointer

The sved corterts of CS andEIP regsters point to theristruction that geneted he exception

Program State Change

In genedl, a program-state chage es nd accompnya gemral-protectionexcepion, because
the invalid ingtruction a operationis nat executedAn exception fander can ke desgned to
correct all d the corditionsthat case geeral-protection excepions andrestart the pogram or
task without ary loss of programcontnuity.

If a general-potectionexceptionoccus during a tak switch, it can ecur tefore or afterthe
comnit-to-new-task point (refer to Secion 6.3, “Task Switching” in Chapter 6, Task Manage
men). If it occus befae thecommit pant, no program satechange occus. If it occurs aftethe
commit paint, the pocesa will load all tte staé information from the rew TSS (without
performing ary addtional limit, presen, or type checkg befae it generateghe excefion. The
genesl-protecion exceptonhander stould thusnot rely on being abbe to use the segnentselec-
tors faundin the G5, SS, DS, ES, FS, an@Sregistersvithout causinganotter excepion. (Refer
to theProgram State Gharge descrigtion for “I nterrypt 10—Invalid TSS Exception(#T9” in
this chapter for additionalinformation on how to handle this situation.)
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Interrupt 14—P age-Fault Exception (#PF)

Exc

eption Class  Fadt.

Description

Indicateghat, withpagingerabled(the PG fagin the QRO regsteris set) the pocessodetected

one

of the following conditions while usng the pag-trandation mechartism totrarslate dinear

addessto a plysical adiress:

The
tak

The P (pesent) flag in a pag-directay or page-table ery needed dér the addes
trarslation is clear indicatingthat a page tablerdhe pag cortaining the gerard is not
present in pysical memoy.

The praedue does not hag sufficiert privilege to accesshe indcated pag (that is, a
procedire unring in user node attemts to acces a suprvisor-mode pege).

Coderunning in user mode atempts to write to a readonly page.In the Intel486™ ard
later procesas, if the WPflag is set inCRO, the page fault will also be triggered by coce
running in supervisor mode that tries towrite to a read-oly usermode pag.

excepion hardler canrecower from page-rot-present corditionsard resart the rogram or
without ary lossof program continuity. It canalsoregart the programor tak after a privi-

lege \iolation, but the problem that causedthe pivilege violaton may be uncrrecate.

Exce ption Error Code

Yes
tion
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(special fomat). Theproessorprovides the pge-fault hamler with two itemsof informa-
to aid indiagrosing the exceptionandrecovering from it:

An error coce on the stack. The ernocode fo a pa@ fault has aformat different from that
for other excepions (referto Figure 5-7). The erra codetells the exceptiorhander four
things:

— The P flag inicates whethethe exceptionwas die © a not-pesent pag (0) a to
either anacces rights violation or the use ofa reservedit (2).

— The WR flag indicates wtether the memoy acces thatcaused thexcepion was a
read Q) or write (1).

— The UK flag indicateswhether the praesor wasexecuting atuser mode (3 or
supenisor moce (0) at the time btheexception

— The RSVD flag indicatestha the pracesor detecied 1s in reservedits of the @pge
directory, whenthe PS or PAE flags in cortrol regster CR4 areset to 1. (The PSE
flag is only availabde in the P6family ard Pentium® processrs, and the RE flagis
only available onthe P6 &mily processrs. In earlier Irtel Architecture processr
families, the kit position of the RS/D flag is reserved)
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31 4

Reserved

n=Cc|N

0<0D | 6o
=
T

P 0 The fault was caused by a nonpresent page.
1 The fault was caused by a page-level protection violation.

W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.

u/s 0 The access causing the fault originated when the processor
was executing in supervisor mode.
1 The access causing the fault originated when the processor
was executing in user mode.

RSVD 0 The fault was not caused by a reserved bit violation.
1 The page fault occured because a 1 was detected in one of the
reserved bit positions of a page table entry or directory entry
that was marked present.

Figure 5-7. Page-Fault Error Code

® The conerts of the CR2 register The processor loads tle CR2 register with the 32-bit
linear addessthatgeneratedhe excefion. The pagdault hantler canuse thisaddess o
locake the carregponding page drecbry and pagetalle enties If another page faut can
potertially occur during execution of the page-faut hander, the hardler must push the
contentsof the CR2 register ontothe stack bfere the secongage fault cccurs.

If a page fault iscawsed by a @ge-le\el protectionviolation,the acces flag in the page-drectory
entryis set when the &ult occus. The belavior of Intel Architecture pocessors regding the
acces flag n the coregponding pag-table entry ismodd specific and nbarclitectually
defined.

Saved Instruction P ointer

Thesawed cantents of CSard BIP registersgererally point to the instruction that gererated the
exceptio. If the @pge-fault excefion occurred diring a task swich, the GS andEIP regsters
may point to the first instruction of the new tak (as desribedin the following “Program State
Change” sectioh

Program State Change

A program-state cangedoes rot normally accanpary a pege-fault exception becausethe
instruction thatcau®s the excefion to be gnerateds nat executed After the page-faut excep-
tion handler tas carectedthe violation (for exampe, loadedhe miseng pag into memay),
executim of the pogram o task carbe resurad.
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When apage-faut excepion is gererated duing atask svitch, the prgram-state may chargy
as follows. Duing a tak switch, a mge-fault excegion canoccu during any of following
operaions

®*  While writing the gate of tke original taskinto the TSS of that task

® While reading the GDT to locate the TS$@lesriptor of the new task

®  While readng the TSS of the new tak.

®* While readng segmendescriptos associated with segemt seleairs from the rew tak.

® While readng the LDT of the new tasko verify the segment regsters stoed inthe new
TSS.

In the las two caseghe excefion occus in the context of thenew task. The instiction panter
refersto thefirst instruction of the rew task, not to the instruction which caugd the taskswitch
(or the last irstruction to be executed, inthe cae of an irterrugt). If the design of the operating
systempernmits page faults to occur during tak-switches, the page-faut handler stould be called
through a taskgae.

If a page faut occursduring ataskswitch, the procesa will loadall the staténformation from
the rew TSS (without performing any adiitional limit, presem, or type checks) kefore it gener-
ates he excepion. The pagefault hander should thus not rely on tkeing abk to use the segnent
selectorsfourd inthe CS SS DS ES FS, and GSegiterswithout causng anotherexcepion.
(Refer tothe Prgram State harge description for “Interupt 10—Invalid TSS Excepion
(#T9)" in this chapter for addi onal information on how to hande this situaton.)

Additional Exc eption -Handling Inf ormation

Specialcare shaild be taken to ensure that an exceptizat occus during an explicit stack
switch doesnot cau® the proces®r to use aninvalid stack pointer (SSESP). Séware written
for 16-bit Intel Architecture processrsoftenuse a pair dinstructions to chamge to a rew stack,
for exanple:

MOV SS, AX
MOV SP, StackTop

When exeuting this coce onone d the 2-bit Intel Architectue praesors, it ispossbleto get
a pag@ fadt, gened-protecion fadt (#GP), @ alignment checkfaut (#AC) after thesegment
sekcta has been laded intahe SSregster bu before the ESPregster has beenloaded At this
point, the two frts of the stack pater (SS andESP) ae incorsistent. The aw stack segment
is being used with the old stackpainter.

The pocessr does not use thadorsistent stack panter if the exceptionhandlerswitchesto a
well defined stack (hatis, the handler is atask or a moe privileged pre@edue). However if the
exception handler is calledat the sane privilege level andfrom the same task the praessowill
attenpt to use the incorsistert stackpainter.

In systemghat handle pag-fault, general-gotection or aligrment checlexceptions wihin the
faulting tak (with trap o interrugt gates),software executing at the same privilege le as tre
excepton hardler should initialize a new stackby using the LSS instruction rather thana pair
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of MOV instructions asdegribed edierin this nate. Whenthe excefion hardler is running at
privilege level O (the rormal case), therpblem s limitedto praceduesor taks that run at priv

ilege level Q typically the kenel of the geratingsystem.
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Interrupt 16—Float ing-Point Error E xception (#MF)
Exception Class  Faut.

Description

Indicateghat theFPU has dtecied afloating-point-error exception. TheNE flagin theregister
CRO must beset ard the appopriate excefion must beunmasked (clearmask fit in the cortrol

regster) for an interrug 16, floating-paint-errar exceptionto be generated.(Referto Secton

2.5, “Control Registers” in Chapter 2, Sysem Architectue Overviewfor a detailed description

of the NE fag)

While executing floating-point instructions the FRJ detcts ard repats $x types o floating-
point erras:

® Invalid operaion (#l)
— Stackoverflow or underflow (#1S)
— Invalid arithmetic operatin (HA)

® Divideby-zero (#2)

®* Derormalized opeand (#D)

®  Numeric overflow (#O)

®  Numeric underfiow (#U)

® |nexact esult (precision)(#P)

For each ofhes erra types, the PU providesaflag in the FPUstats regster anda mask bit
in the FPU contrd register. If the FRJ detectsa floating-point erra and the mask bibr the erro
is set, the FPWandles the eor auomatically by generatinga pre@fined(defaut) resporse ard
cortinuing program exection. The default respases have beendesgnedto provide area®n
ahle result for most floating-point applications.

If the mak for the erra is clear ad the NE flagin register RO is st, the FPU does the
following:

1. Setsthe necessanydg in the FRJ status register

2. Waits until the rext “waiting” floating-paint instructon or WAIT/FWAIT instruction is
ercourtered in tle prayram's instructionstream (The FPU checls for pending floating-
point exceftions on “waiting” instructions prior to execuing them All the floating-point
instructions except the FNINIT, FNCLEX, FNSTSW FNSTSW AX, FNSTCW,
ENSTENV, and FNSAVE ingtructions are “waitirg” instructions.)

3. Generatesn irternalerror sgnal that causs the pracesso to generate a flaating-point-
error exception.
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All of the floating-point-error corditions canberecoveredfrom. The floating-point-error excep
tion handler candeternine the eror cordition thatcaugd the exception from the sttings of the
flags inthe FPUstatus word. Refer to “Software Excefion Handling” in Chapter 7 6 the Intel
Architecure Software Developes Manuwal, Wolume 1, for mare information on handling
floating-point-errar exceptions

Exception Error Code

None.The FPU providesits own eror information.

Saved Instruction P ointer

The savedcontents of CS andEIP regsters pmt to the floating-point or WAIT/FWAIT instruc-
tion that wasalout to be executedwhen the floating-point-emror excepion was gnerated This

is not the fadting instruction in which the error condition was detected.The adiress of the
faulting instruction is cortained in the FPUinstrucion pointer regster Refer to“The FPU

Instructionand Opeand (Data) Pointst in Chapter 7 othe Intel Architectue Sdtware Devel-
opers Manud, VWlume 1 for mare infarmation abou information tke FPU savesfor use in

handing floaing-point-error excepions.

Program State Change

A programstate clange gnerally accompaies a foatingpoint-error excepion bea@use the
handling of the excepion is delayed until the rext waiting floating-point or WAIT/FWAIT
instruction following the faulting instruction. The FPU, lawever, sawes stficient information
abou the erra cordition to allow recwery from the erro andre-execution é the fauting
instructionif neeed.

In situations where norfloaing-point instructions depend on the reaults of a floaing-point
instruction, a WAIT or FWAIT instruction canbeinserted in front of a dependert instruction to
force a ending floating-point-error excepion to behanded before the dependentinstruction is
execued. Refer to “Floating-Padnt Excepiion Synchronization” in Chapter 7 of the Intel Archi-
tecure Sdtware Develger's Manud, Volume 1 for more informaiton alout synchionizaion of
floating-point-errar exceptions
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Interrupt 17—Alignment Check Except ion (#AC)
Exception Class  Faut.

Description

Indicatesthat the processor detected an unalgyl memoy operandwhenalignment checkig
wasenalbed. Alignmentchecks ag oy carried outin data (o stack)segments fotin cade o
sysemsegments). Anexampe ofan alignment-check violation is a wordstoredatan ald byte
addess or a cbudewordstored at araddess that is nban integr mutiple of 4. Table 57 lists

the alignment requirements various data typesrecaynized by the pracesse.
Table 5-7. Alig nment Requirem ents by Data Type

Data Type Address M ust Be Divisi ble By

Word

Doubleword
Single Real
Double Real
Extended Real
Segment Selector
32-bit Far Pointer
48-bit Far Pointer

A A MDD N OO 0 M B DN

32-bit Pointer
GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

128-bit* 16

1. 128-bit datatype introduced with the Pentium® Ill processor. This type of alignment check is done for
operands less than 128-bits in size: 32-bit scalar single and 16-bit/32-bit/64-bit integer MMX™ technol-
ogy; 2, 4, or 8 byte alignments checks are possible when #AC is enabled. Some exceptional cases are:

®  The MOVUPS instruction, which performs a 128-bit unaligned load or store. In this case, 2/4/8-byte
misalignments will be detected, but detection of 16-byte misalignment is not guaranteed and may
vary with implementation.

® The FXSAVE/FXRSTOR instructions - refer to instruction descriptions
To enalbe alignmert checking, the following conditions must be true:

* AM flag inCRO regster is st.
® AC flag inthe EFLAGS regi®r isset.
® The CR is 3 (pratectedmade orvirtual-808 mode)
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Alignmentcheck faults aregenerated only when operatirg at privilege level 3 (user node).
Memory referencegthat defadt to privilege level 0, such as segment descriptor loads do not
geneate alignment-check falts, everwhen caused bgmemory refererce made fom piivilege
level 3.

Storing the corterts o the GDTR IDTR, LDTR, a tak register in nemory while at givilege
level 3 can gnerat analignment-checkfaut. Although applicaion programsdo na nomally

store theg registers, the fult canbe avaded by aligning the information sbred o an even
word-addess

FSAVE andFRSTOR instructiors geneate uralignedreferences whichcan case alignmern-
checkfaults. These instations are raaly needed ty application programs.

Exception Error Code

Yes (always zerp

Saved Instruction P ointer

The sved corterts of CS andEIP regsters point to thenstruction that geneted he exception

Program State Change

A program-statechange doesnot accom@any an aligment-check fault, becase the instruction
is nat executed
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Interrupt 18—Machine-Check E xception (#MC)
Exception Class  Abort.

Description

Indicateghat the pocessr detecedaninternal nachineerroror a bis errar, or thatan exernal
agen detected aus erra. Themachineeheckexceptionis modelspedfic, available oly on
the P6 &mily andPentium® processors. Thamplementatiorof themachineeheck exeptionis
different letweenthe P6 fanly andPerium® processors, ard these imfementatons may ot
be conpatible with future Intel Architecture pocessrs. (Use the GPUID instruction to detr-
minewhether ths featre is present.)

Bus errors detected Yo extenal agents are signaled tbe praesor on dedcated pins: the
BINIT# pin on the P6family procesas and he BUSCHK# pin on he Petium® processa.
When ore of these pins isnatbed, assrting the pincawses errag informationto be loadednto
machine-checkregsters anch maclkne-check excefion is germrated.

Themachineeheckexceptiorandmachinecheckarchitectue are discusl in detail in Chapter
13, MachineCheck Achitedure. Also, refer b the dat books for the individual processrs for
processr-specific hardvare inbrmation.

Exce ption Error Code

Nore. Error information is provide by machineeheck MSR.

Saved Instruction P ointer

For the P6family processrs, if the EIPV flagin the MCG_STATUS MSR is «t, the swved
cortentsof CS andEIP registers are drectly assciatedwith the erra that caused th macine-
checkexceptionto be gererated;if the flagis clear the savednstruction pointer may not be
as®ciatedwith the erra (refer to Secton 133.12., “MCG_STATUS MSR’, in Chapter 13
MachineCheck Achitectue).

For the Rentium® processr, contents 6 the CS andEIP regstersmaynotbeas®ciatedwith the
erra.

Program State Change

A program-state changalways acconpanies anachine-cteck excepion. If the macime-check
meclanian is enabledtheMCE flag in cortrol register CR4 is set), anachineeheckexcepion
resultsin an abat; that is, informationabou the excefion can I collected from the machne-
check MSRs, but the pogram canrot be restartedIf the machne-checkmechanism is ot
enabed, a nachineeheck &ceptioncauseshe piocessr to erier the shtdown state.
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Interrupt 19—SI MD Floating- Point Exception (#X F)
Exception Class  Fadut.

Description

Indicates theprocesorhas detected SIMD floatingpaoint exection unit excegion. The agpro-
priate status flagn the MXCSR register mst be set andhe particularexcepion unmaskedor
this interrug to be generated

Thereare sk clases ofnumeic exceptim corditions that caroccurwhile execting Streaming
SIMD Extengons:;

Invalid operatin (#)
Divide-by-zero ¢2)
Denamalized @erard #D)
Numeic owerflow #O)
Numeic underflow (#U)

6. Inexact reslt (Precison) (#P)

AN SR

Invalid, Divide-by-zero,andDenamal exceptions a& pe-comptationexceptios, i.e.,they ae
detected befre ary arithmetic opration occts. Undeflow, Overflow, and Precigin exceppions
are pstcomputational exceptions.

Whennumeric excefions occuya pocessr supporting Streaming SIMD Extersions takes or
of two possilde courses of action:

» Theprocesorcanhandetheexcepion by itself, producingthe mcst reasomble esult and
allowing numeit program execution to continue undsturbed (ie., maked excepbn
regorse)

» A software excepion hander can be invoked to hande the excepion (i.e., unmaged
exceptio respose).

Eachof the 9x excepion corditions desribed alove hes caregponding flag and mask hits in
the MXCSR. If an exceptio is masked(the corregpondng mask bit in MXGR = 1), the
procesortakes an ggropriate deéult actionand catinues with the compitation. If the excep
tion is unmasked (mask bit =0) andthe OSsupports SIMD floating-point excepions (i.e.
CR4.OSXMM EXCPT = 1), a oftware exepton hander is invoked immediately through
SIMD floating-point exceptioninterrupt vector19.If the exeptionis unmasked (nask it = 0)
andthe OSdoesnot suypport SIMD fl oating-point excepions (i.e. CRA.OSXMM EXCPT = 0),
an invalid opcode exceptim is sgnaled insteadfoa SIMD foatingpoint exeption

Note that lecause BMD floating{point exceptios are pecise anl ocar immediately, the stu-
ation daesnot ariee whee an xg-FP hstruction, anFWAIT instruction or arother Streaming
SIMD Extersionsinstrucion will catcha pemling unmasked SIMD floating-point excetion.
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Exce ption Error Code

Nonre. TheStreamng SMD Extensons providetheir own erra information.

Saved Instruction Pointer

The saed corterts d CSandEIP regsterspaint to the Strearing SIMD Extensons instruction
that was ercued whenthe SIMD floating-point excepion was gnerated This is the fauling
instruction in which the eror condition was atected

Program State Change

A program-stte dhange genedlly acconpanies a SIMD floatingboint excepion because the
hardling of the excefion isimmediate unlesthe particulaexaeeption ismaskedThe Pentiun®
Il processor contairs suficient infformation amut the erra condition to allow recaery from
the eror and re-exection of thefaulting instruction if needed

In stuations where a SIMD flating-point exception occured while the SIMD floaing-point
excepionswere maskedSIMD floating-point exceptions vere thenunmaskedand eStreaminy
SIMD Extersionsinstruction was execied, tten noexcefion is raised.

5-54 I



Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined | nterrupts
Exception Class  Not apgicable.

Description
Indicates that te pracesordid oneof the following things:

® Executed anNT n instruction whee the instruction opeand is one of the vecbr nunbers
from 2 through 255.

® Responded to an interupt reqeg at the INTR pin or fran the local ARC when the
interrupt vecor number ascciatedwith the reques is from 32through 255.

Exception Error Code

Not appicale.

Saved Inst ruct ion P ointer

The saved awtents of G ard EIP regsters poih to the instruction that fdlows the NT n
instruction or ingtruction following the instruction on which the INTR signal occured

Program State Change

A program-state cange does rot accompny interrupts gneratedby the INT n instruction or
the INTR signal. The INT n instruction gererates tle interrypt within the instruction stream
When the processr receives an INTR signal, it commits all state chges fo dl previous
instructions before itresponds to the interrupt; sq programexecttion can resme upon returring
from the interrupt handler.
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CHAPTER 6
TASK MANAGEMENT

This chapter desribes the Irtel Architecture’s tagk management facilities. The® facilities are
only available wien the pocessor is nuning in protectedmock.

6.1. TASK MANAGEMENT OVERVIEW

A task isa unt of work that a preesor candispatch, executeand suspend.It canbe usedto
execue a prgram, a taskor process, aroperatirg-system service utlity, aninterrupt or excep-
tion hardler, or a kerel or executive uility.

Thelntel Architectue providesa meclanian for savingthestate d atask, for dispatchiig tasks
for execution andfor switching from ore tak to andher. When operating inpratectedmock,
all procesorexection takes place fomwithin a taskEvensimple systemsnust deine at least
one task More camplex systens can se the proces®r’s taskmanagement facilities to support
multitasking apgications.

6.1.1. Task Structure

A tak is madeup of two parts: atak exection spaceanda task-state segmefftSS). The tak
executim space casists of a cale segmein a gack segment, awl ore ormore dta sgments
(refer to Figure 6-1). If an opeating system orexecutive useshe pre@esors privilegelevel
pratecion mechanism, th task egcutionspace also pvidesa separatgtackfor eachprivilege
level.

The TSSspecifiesthe segmets that make up the tadsexecution space and @rides astorag
place fo taskstak information. In multitaskng systems, the TSS als provides a mechrism for
linking taks.

NOTE

This chapter describes primdly 32-bit tasks and th 32-bit TSS $ructure.
For information on 16-bit taks and the 16-bit TSS streture, tefer to Sectiom
6.6., “16-Bit Task-State Segment (TSS)”.

A taskis idertified by thesegnentselectao for its TSS. Whena tak is loadedinto the processr
for execution the segmerselectorbase addess limit, and ssgment descriptoattributesfor the
TSSare loadednto the task regdster (refr to Section2.4.4., “Tak Register (TR” in Chapter2,
SystemArchitedure Overview).

If paging is implemented for the task, the bag addessof the pag direcory used by the task is
loadedinto cantrd register QR3.
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Code
4,_, Segment
Task-State Data
Segment —\_> Segment
(TSS) Stack
5| Segment
“~| (Current Priv.
Level)
Stack Seg.
» Priv. Level 0
Stack Seg.
_|:| > Priv. Level 1
Task Register Stack
— > pSeament
CR3 (Priv. Level 2)

Figure 6-1. Structure of a Task

6.1.2. Task State

Thefollowing itemsdefinethe state d thecurrently executingtask:

The task’s curent exection spae, defined by the segmensekctas in the ggment
registers(CS, DS, SSES FS and GS).

The date d the geneal-pumpo registers

The state d theEFLAGS regster.

The stte d theEIP regster

The stte d control register CR3.

The stte d thetaskregister

The state d theLDTR register.

The 1/0 mapbase adekssard I/O map (cantainedin theTSS).

Stack minters tothe piivilege 0,1, ard 2 stacks (cortained in the TSS.
Link to prevously executedtask(cortained inthe TSS).

Prior todispatching a task, all othese items are cdained in tle task’s TSS except the stat o
the ta& register. Also, the complete contents of the LDTRgister are not coained inthe TSS,
only the segnent sekctor for the LDT.
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6.1.3. Executing a Task

Software o the pocessor cadispatcha tak for exection in one d thefollowing ways:
* A explicit call to a tak with the CALL instruction.

* A explicit jump to a tak with the JMP irstruction.

®* Animplicit call (by the pocesar) to aninterrupt-hardler tak.

®* Animplicit call to anexcepion-handler task

® A return (initiated with an IRET instruction) whenthe NT flag in the EFLAGSregsteris
set.

All of these methalof dispatchinga tak identify the task to be dispatchedavith a segrent
selectorthat poirts either to a task gate the TSSor the task. Wen dspatching a task wih a
CALL or IMP instruction, the slector inthe instructon may select eitbrthe TSS drectlyor a
tak gate that hdds the selectofor the TSS. Wlendispatching atask to hande aninterrupt or
exceqion, the IDT entry for the interrupt or exception must cortain a tag gate that tolds the
sekcor for the interrupt- or excepiton-handler TSS

When a task is dispatchedfor execution, a tds switch autoratically occus between the

currently running task ard the dspatcled taskDuring atask switch, the executionenvironment
of the curently execting tak (called the tasks stat orcontext) is sawed in its TSS anéxecu-
tion of the tak is suspenetl. The cantextfor the dspatched tasksthen lcaded nto the piocessr

ard execuion of that task begins with the instruction pointed to by the rewly loaded EIP
regster If thetaskhas not beenrun since tre g/stemwaslastinitiali zed, the EIPwill paint to

the first instruction of thetask's codg; otherwise, it will pant to the next instruction afterthe last
instruction that the taskexected whenit was las active.

If the curently exeating task the calling task) calledhe tak beingdispatchedthe calledask),
the TSS segment selecto for the callirg taskis staed in the TSSof the calledtask to provide a
link backto the calling task

For all Intel Architectue processors, t&s are not rectsive. A task camot call or jump to itslf.

Interrupts ancexcepions can bénanded with a tak switchto a hanller task. Herethe pocessr
not only canperforma tak switch to handle the interrupt or excegtion, but it canaubmatically
switch backto the interrupted sk upan returning fromthe interrupt- or excepion-handkertask.
This mechaism can tandle irterrupts that acurduring interrupt taks.

As partof a tesk switch, the procesor can also switch o andher LDT, allowing each tak to have
adifferent logicalto-physcal addess mappng forLDT-based segmentThepage-diecory base
register (R3) also is reladedon a tak switch, allowingeach tasko hawe its own set 6 page

tades Thes protection facilities helpisolate task andprevent them from interfering with one
another. If one a both of these potectionmectanisns are rot used the processr provides no
protecion betweentasks. This is true evermwith operatirg systerns that ug multiple privilege
levels for pratection. Here, a taskunning at pivilege lew 3 thatuses thke sane LDT andpage
tablesasotherprivilege-level-3tasks caracces cale andcorrupt cbta andthe stack of other

tasks.
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Use of taskmanagement facilities for hardling multitasking applicationsis optional. Multi-
tasking can ke hardled in software with eachsoftware dfined tak exected inthe catext d
a single htel Architectue ta.

6.2. TASK MANAGEMENT DATA STRUCTUR ES

The procesa defines five data stricturesfor handling taskrelated activties:
® Task-state segent(TSS.

®* Task-gate descripto

® TSSdegriptor.

® Task register.

® NT flag in tre EFLAGS register.

When @eratirg in protected mde,a TSS ard TSS descriptor must ke createdfor atleast oe
tak, and the segmenselecor for the TS mustbe loadednto the ta& regster (usingthe LTR
instruction).

6.2.1. Task-State Segment (TSS)

Theprocessr state ifiormation neead torestore atask is savedn asystemsegmencalledthe
taskstate gment (TS). Figure 6-2shows the format of a TS for taks desgned for 32bit
CPUs. (Compatibility with 16-bit Intel 286 processo tasks is provided by a differert kind of
TSS, referto Figure 69.) Thefields of a TSS are dvidedinto two main catgories. dynamic
fields andstatic fields.

The processor updatesthe dyramic fields whera tak is suspendedduring atask switch. The
following aredynamic fields

General-purpose register fields
Stateof the EAX, ECX, EDX, EBX, ESR EBR ESI, anl EDI regstersprior to
the task switch.

Segmen selector fields
Segmenhselectorsstoredin the ES, G, SS, DS, FS and GS registersprior to
the task switch.

EFLA GSregiste field
State & the EFAGS register prior to the tak switch.

EIP (instruction pointer) field
State otthe EIP reggter prior to thetask switch.

Previoustask link field
Contains he gment glectorfor the TS of the peviows tak (updated on a
task switch that wasinitiated ty a call interrug, or exception). This field
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(which is sometimes cattl the backink field) permits aask switch backo
the prevoustaskto be initiated wih anlRET ingruction.

The pocessoreads the statifields, bu does ot normally change them.These fields are set up
whena tak is creaed. The following arestatic fields:

LDT segment selecto field
Contains the segmeelecta for the tasks LDT.

31 15 0
1/0 Map Base Address T]100
LDT Segment Selector 96
GS 92
FS 88
DS 84
SS 80
CS 76
ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
| ss2 24
ESP2 20
| ss1 16
ESP1 12
| SS0 8
ESPO
‘ Previous Task Link
\:’ Reserved bits. Set to 0.

Figure 6-2. 32-Bit Task-State Segment (TSS)
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CR3 cantrol register field
Containsthe base phical addessof the page drecbory to be used bythe task
Control register CR3 isalsoknown asthe pag-directay baseregister (FDBR).

Privilegelevel-0, -1, and -2 stack pointer fields
Thes stack pmters consis of a logcal adiressmade upof the ssgment
selectr for the stack egment (SS0, SS1, dr52) andan ofset into the stack
(ESPO, ESP1, and ESP2). Ndtattthe valuesin thesefields are satic for a
patticular task; whereas, theSsand ESRralueswill chamge if stack svitching
occurs within the task.

T (debug trap) flag (byte 1@, bit 0)
When set, th T flagcauses therpcessr to raise a delng exceftion whena
taskswitch to this taskoccus (refr to Section 5.3.1.5, “Tak-Switch Excep
tion Condition”, in Chapter 15, Debugying and Performance Monitoring).

I/O map baseaddress field

Containsa16-bit offsetfrom the bag of the TSSto the I/O pernission bit map
andinterryt redilecion bitmap When present, these mgre storedn the
TSS at ligheraddes®s. The 11O mapba® addesspaints to the beghning o
the VO permission bit map and the endof the interrupt redirection bt map.
Refer to Chapter 9, Input/Output, in the Intel Architecture Sftware Devé
oper’'s Manual, Volume1, for more information about the /O permission bit
map. Refer to Section16.3., “Interrupt ard Exception Handing in Virtual-
8086 Mode” in Chaper 16, 8086 Emuhtion for a detiled de<ription of the
interrupt redirection bit map.

If paging is used, care fiould be takento awid pacing apageboundary within the part of the
TSS that the procesa readsduring atask switch (the first 104 bytes). If a pa@ boundary is
placedwithin this part of the TSShe pages on either side of the loodary must be pesen at
the sametime andcortiguous in fhysical merory. The rea®n for this redriction is that wien
accesB1gaTSS duing a tak switch, the pocessr reads andvrites nto the first 104oytesof
each TS from catiguaus phyical adiresgs beginning with the fysical addess d the first
byte of the TSS. It may na perfam adires trarslations ata pag boundar if oneoccurswithin
this area. Sagfter tte TSS access beginif a pat of the 104bytesis nd bothpresent ad phys-
ically cortiguous, the pocessr will acces incarect TSS infomation without generatirg a
page-faut excetion. The readig of this incorrect iformation will generally leadto an wre-
coverable excefion later in the tak switch process.

Also, if pagng is used, the pags caregonding to the prevous tak’s TSS, tle current tas's
TSS and the descrifor table entries foeachshould ke markedasreadwrite. The tak switch
will be carried att faser if the pags cortaining these structues are also @ert in memoy
before the tak switch is initiated

6.2.2. TSS Descript or
The TSS, like al other segnent, is defined by a €gment degriptor. Fgure 63 shows the

format d a TSSdescriptor TSS descriptors ray only be paced inthe GDT; they camot be
placedin an LDT or the IDTAN attempt to accesaTSS usihg asegnentselector with is Tl
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flag set which indcatesthe curent LDT) causes a geral-protectionexcepion (#GP) to ke
generated A gereral-praection exception is dso gererated if anattenpt is made toload a
segment selectordr a TSSinto a segmetregister

The tusy flag (B) in the type field indicates whether the tak is busy. A busy taskis currently
running or is sgpended. A type field with a valie of 1001B indicates aninactive task a vale
of 1011B indicates a bugy task. Tasks arenot recusive. The procesor uses the bugy flag to
detect an atterpt to call a taskvhose exection has keen interrupted. To insurethat there is aly
one by flag isasociated ith atask, eaci SSshoud have only ore TSSdescriptothatpoints
toit.

TSS Descri ptor

31 242322 212019 1615141312 11 8 7 0
Base31:24  [|ojo|v| LML Ip| p P Base 23:16 |4
L : L |o|1 ‘ 0 ‘ B ‘ 1
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type
Figure 6-3. TSS Descri ptor

The bas, limit, and DR fields and he grandarity and pesntflagshave fincions similar to
their uisein data-segment ascriptors ¢eferto Secion 3.43., “SeymentDescriptors’ in Chapter
3, ProtectedMode Memoy Managemet). The limit field musthavea valle eqal to orgreater
than67H (for a 2-bit TSS), ore bytelessthantheminimumsizeof a TSS Attemptingto switch
to a tak whose TSSdescriptor hasal limit lessthan 67H generatesaninvalid-TSS exception
(#TS). A larger limit is requred if an 1/0 permission bit map is included in the TSS. Aneven
larger limit would be regired if the operaing system stores addtional data inthe TSS. The
processordoesna checkfor alimit greater than 67H oa task switch; however, it doeswhen
accesingthe I/O grmisgon bit mapor interrupt redrection kit map.

Any program @ procedue with acces to a TSS descriptdthat is, whose BL is nunerically
equal to or lesthanthe DPL of the TSSdescriptor) can dispatch thegk with a callor a jump
In most systens, the DPLs & TSS abscriptors should be set to valuesless than 3, sahat aly
privilegedsdtware can rform task switching. However in multitaskng apgications, DPLs
for some TSS ascripbrs carbe set to3 toallow task switching at the application (or user) priv-
ilege lewl.
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6.2.3. Task Register

Thetaskregsterhadsthe 16-bit ssgmen sdector ard the erire ssgmen de<riptor (32-bit bag
addess 16-bit segmenlimit, anddescripto attribues for the TSS o thecurrent task (eferto
Figure 2-4 in Chapter 2, System Achitectue OvervieWy. This information is coped from the
TSSdescriptor in the GDI for the curent tsk. Figure 6-4shaws the path the pcessr uses to
accesss the TS, wing the irformation inthe tak regster

The task rgister has both a \isible pat (that can bread ad chamedby software)and arinvis-

ible pat (that is maintainedby the praesorand is inaccesdle by sotware). The sgment
sekector inthe visible pation pointsto a TSS desriptor in the GDT. The procesa uses the

invisible pation of the task register to caahthe segmerescriptorfor the TSS Caching these
valuesin a regster nakes exection of the task rore efficiert, becage the piocessr doesnot

needto fetch these valasfrom memoy to refererce the TSS ofhe curent task.

The LTR (load tak register) and STR(store task register) instructiloadand read the isible
portion d thetak register. The LTR instruction loadsa sgmentselecor (saurceoperand) into
the tak register that pintsto aTSS descriptor in the GDT, ard thenloadsthe invisible portion
of the task regster withinformation from the TSS dscriptor. This instruction is aprivileged
instruction that may be executed only whentheCPL is 0. The LTR instruction gererally is used
during systeminitialization to put aninitial value inthe sk register. Afterwards, the catents
of the task reigter are chagedimplicitly whena tas switch occurs.

The STR (store taskregister) instrucion staes the isible pation of the task regster in a
gereral-purpose register or memoy. This instruction can beexecued by cade unning atary
privilege lew, to identfy the curently ruming tak; however, it is normally usedonly by oper-
ating systemsdtware.

On pwerup a reset of theprocesor, thesegment selectoand laseaddess areset to the dsfault
value d 0 ard the limit is set to FFFFH.

6.2.4. Task-Gate Descriptor

A task-gate descriptoprovides an indirect, qotected réerence to a task. Figei6-5 shows the
formatof atask-gate descripto A taskgatedescriptor can be placed ithe GDT, an LDT, or the
IDT.

The TSSsegmenselecta field in a taskgate dbscriptor pointsto aTSSdescripto in theGDT.
The RPL in this segnent slecta is not used.

The DPL o atask-gatedescriptorcontrols acess tothe TSSdescriptorduring atask switch.
Whena piogram a procedire makes acall a jump to ataskthroughatas gate,the CPL and
the RPL field of the gate slectar pointing to the task gat must be lessthanor equalto the DPL
of the tak-gate descripto(Note hatwhena tak gate is used, the BL of the deshation TSS
degriptor isnotused)
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A task can be accesd either thragha tak-gate descriptoor a TSSdescriptor. Both of these
structures are providedto satigy the bllowing needs:

®* Theneed fora task ® have only one busy flagBecauselte busy flag fa a task § stored in
the TSSdegriptor, eah task stould have amly one TSS degriptor. There may however
be ®veral taskgates that reference te sane TSS akscriptor.

®* The needto provide Elective accesso taks. Task gatesfill this need becasethey can
reside inanLDT and can have BPL that is differert from the TSSdescripto’'s DPL. A
program orprocedire that desnot have suicient pivilege o acces the TSSdescripor
for a tag in the GDT (which usually has a DPof 0) maybe allowed acced® the task
throuch atask gae with a higher DPL. Task gakes give the operaing g/stem greaer
latitudefor limiting accesgo specific taks.

®* The needfor an irterrug or exceptionto ke hardled by anindependent tak. Task cates
may also resice in the IDT, which allows interrugs and excepions to be handled by
handler tasks. Wen an nterrypt or excefion vectorpoints b atask gate, therpcessr
switchesto the specifiedak.

Figure 6-6 illustrateshow a tak gakin an LDT, a taskgate inthe GDT, ard a taskgate inthe
IDT can all wint to the same task

6.3. TASK SWITCHING

Theprocesortransfers exedion to anotler task inany d four casges:

® The curentprogram task,or procedue executes a JMProCALL instrudion to a TSS
descriptor in the GDT.

® Thecurrert program, tak, or piocedue executes AMP or CALL instruction to a tak-gate
descriptor in the GDT or the current LDT.

® Aninterrug or excepion vector pdnts toa taskgate ascriptor in the IDT.
®* The curent task egcutesan IRET when the NTflag inthe EFLAGSregiser is set.

The JMP, CALL, ard IRET instructiors, aswell asinterruptsand exceptios, are allgereralized
mectanisms for redrecing a pogram. The eferendng of aTSS degriptor or a sk gae (when
calling a jumping to a task) or the gate ofthe NT flag(when excutingan IRET instruction
determneswhethera tak switch accurs.

Theprocessr performsthe following opegtions whenswitching to anew sk

1. Obtairs the TSS ®gment selector fo the new tak as he operard of the MP or CALL
instructon, from ataskgate, a from the previous tasklink field (for ataskswitch initiated
with an IRET irstruction).
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LDT GDT TSS
Task Gate
Task Gate g TSS Descriptor

\

IDT

Task Gate

Figure 6-6. Task Gates Referencing the Same Task

2. Checks thatthe curert (old) task is allowedto switch tothe new task.Data-acces
privilege rulesapply to JMP andCALL instructions. The ®L of the curent (olg task and
the RPL of the segnent selecor for the rew taskmust ke lessthanor equal to the DPL of
the TSS descripr o tak gate being refelenced Excepions interrupts (excep for
interupts gereratedby the INT n instruction), andthe IRET instruction ale pernitted to
switch taks regardless d the DPL d the destination tak-gate or TSSdescriptor. For
interrupts generatedby the INT ninstruction, the DPL ischecked

3. Checks ttat the TSS descriptorof the newtask is maked present and has a valid limit
(greater tha or equal to 67H).

4. Checks that th new tasks available (call, junp, exception or interupt) or busy (IRET
retun).
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10.

11
12

6-12

Checks thathe current (old TSS, new TS, andall segment descriptors used the task
switch are @gedinto system meunry.

If the tak switch was intiated wth a MP a IRET instrucion, the pracessr clears tie
busy (B) flag in the currem (old) tak’s TSS desriptor; if initiated with a CALL
instruction, anexcepion, or aninterrupt, thebusy B) flag is left set. (Rfer toTable 62.)

If the ta& switch was initatedwith an IRET instruction, the praesor clearsthe NT flag
in a emporarily sawed imageof the EFLAGS register; f initiated with a CALL or IMMP
instruction, an exceton, or an interrupt, the NT flag is left unchangd in the sved
EFLAGS image.

Saveshe stae of the curent(old) tak in the currert ta€’s TSS. The proesor finds the
base addess of the curent TS5 in the ta& regster andthen coges the statesof the
following registersinto the currert TSS all the generalpumose registers, ggment
selectorsrom the ggment registersthe tempaoarily saved image of theEFLAGS register,
andthe instruction painter regster (EP).

NOTE

At this paint, if all checks and saveshave beerncarried ot siccessflly, the
processr commits to the tak switch. If an unrecoveeble eror occus in
stepsl through 8, the proesordoesnot complete the t&sswitch ard insures
that the procesa is retuned to its gdate prior to the exection of the
instructon that initiated the tak switch If an wrecoverable error @cursafter
the canmit point (insteps9 through 14), the pocessr competes the tak
switch (without performing addtiona acces armd segnert availahlity
checks) andjenerates the apppriate exceptiorprior to begnning execution
of the new task. If excefions occur afterthe comnmit pant, the exception
hardler must finish the taskswitch itself befare allowing the procesa to
begin executing the tak. Refer to Chapter 5, Interrupt and Exception
Handling for more informationabou the afect of excptions on a task when
they accur afterthe commit point of a tak switch.

If the tak switch wasinitiatedwith a CALL instruction, an exepion, a an nterrug, the
processr setsthe NT flag in the EFLAGS image doredin the rew tasks TSS;if initiated
with an IRET instruction, the piocessr restoes the NT flag from the EFLAGSimage
staed o the stack. F initiated with a JMP istruction, the NT fag is left uncharged.
(Referto Table 62))

If the task switch was intiated with aCALL instruction, IMP instruction, an exepton, or
an interrug, the pocessr sets the tusy (B) flag in the new &sk's TSS degriptor; if
initiatedwith an IRET instruction, the busy (B) flag is left set

Setsthe TS flagin the cantrd register RO image sbredin the rew tak’s TSS.
Loadsthe task register with the ssgmen sekcr anddesriptor for the rew tasks TSS.
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13. Loadsthe new taslks gtate fiom its TSS into procesor. Any errors asociatedwith the
loadng andqualification d segment descriptain thisstep occuin the contekof the new
task. The tasktate inbrmationthat is loadedhere incluésthe LDTR register the PDBR
(control register @R3), the EFLAGS regster, the EIP redster the gneralpurpose
registers, and the segment desaiptor pats of the segment registers.

14. Begns execuing the newtask (To anexcegion handler, the first irstruction of the rew
task appars noto hawe beenexecued.)

The date of the currely executingtask s always saved when asuccessfulask switch occus.
If the tak is rezimed, execdion startswith the instruction pointedto by the saed EIP value,
andthe regsters araedored tothe \aluesthey held whenthe task wasuspendel.

When switching tasls, tre grivilege level of the new éskdoes rot inherit its privilegelevel from
the susperal task. he newtask begins ercutingat the piivilege level specifiedn the CPL
field of the CSregisterwhich isloaded from the TSS. Bcawe tasks are matedby ther sepa-
rate addess spaces and TS%nd becase privilege rulescontrol acces$o aTSS, sftwaredoes
notneed b perform explicit privilege check on atask switch.

Table 6-1 showshe exception coditions thatthe praesorchecksfor when svitching tasks. It
also shows the egeptionthat isgeneratedor eachcheckif an eror is detecied andthe segrant
that the eror cock refelences. (Tl orderof the check in the talbe is the order usedin the F6
family processrs. The eact orde is madel specific andnay bedifferent fa other Intel Archi-
tecure precesors.) Exceptionhandlers degjnedto harle theseexceptions may be subjed t
recusive cals if theyatemp to reloadthe segmenselector tht generatedthe excetion. The
cause of the excépn (or the first of multiple cawses) shold be fixed before reloading the
selector.

Table 6-1. Exception Cond ition s Checked Durin g a Task Switch

Error Code

Condition Checked Exceptio nt Reference 2
Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table.
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a | #GP (for IMP, CALL, | Task's back-link TSS
call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated by #TS (for IRET) New Task’s TSS

an IRET instruction).

TSS segment limit greater than or equal to 108 (for 32- #TS New Task’s TSS
bit TSS) or 44 (for 16-bit TSS).

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 2. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SF New Stack Segment
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Table 6-1. Exception Condition s Checked Durin g a Task Switch (Contd.)

Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 2. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 2. #TS New Data Segment
DS, ES, FS, and GS segments are readable. #TS New Data Segment
DS, ES, FS, and GS segments are present in memory. #NP New Data Segment
DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments).

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table’s segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code-segment descriptor).

The TS (tak switched flag in thecontol regster QRO is set evey time atask switch occurs.
System sotware uses he TSflag b coordinat the acions of floating-point unit when gener
ating floating-point excepions with the restof the pr@esor The TS flag indicatesthat the
contex of the floating-paoint unit may be different from that of the current tak. Refer to Sedn
2.5., “Control Registers” in Chapter 2, Syseém Architectue Overviewfor adetailed description
of the function anduse ofthe TSflag.

6.4. TASK LINKING

The peviowstask Ink field ofthe TSS (emetimescalled the “lacklink”) and the NT flag in the
EFLAGS regster are ged to eturn execution to the mviows tak. The NT flag indcakes

whetherthe currently executingtask is msted within the exection of anotter task,andthe

previous tak link field of the curent tag's TSSholds the TSSelector fothe hider-level task
in the nesting hierarchy if there is om (refer toFigure 67).

When a @Q\LL instruction, an interrypt, or an egeption causea task witch, the pocessr
copesthe segmensekctor for thecurrert TSSinto the previous tak link field of the TSSfor
the rew tak, andthen sets the NT flaip theEFLAGS regster The NT flagindicatesthat the
previous task linKield of the TSS has bedoadedwith a saved TSS sgment selectorlf soft-
ware ugs anlRET instruction to susperd the new tak, the pracesso uses the value in the
previous task link field ard the NT flagto return to the previous task; that is, if the NT flag is
set the pocessr performs a tak switch to the task specifieth theprevious tak link field.
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NOTE

When a JMPristruction cases a task swich, the new task is notested that
is, the NT flag isset to0 ard the previous tasklink field is not used A JMP
instruction isused to dispatch a newtask when neging is not desred.

TASK MANAGEMENT

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS
NT=1
NT=0 NT=1 NT=1

Prev. Task Link

|Prev. Task Link

|Prev. Task Link

| Task Register |

N N

Figure 6-7. Nested Tasks

Table 6:2 sunmarizesthe wses ofthe tusy flag(in the TSS sgment descriptor), the NTflag, the
prevous tasHink field, andTS flag(in cortrol register QR0) during atask switch. Note thatthe
NT flag maybe modfied by sotware executingat ary privilege level. It ispossible for a
programto set its NT flag ard executean IRET instruction, which would hawe the effect o
invoking the tak specified in e previous link field of thecurrert tak’s TSS To keepspuious
task switches from siwcceedhng, the goerating system $ould initialize the previoustasklink field
for everyTSSit createdo 0.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,
and TS Flag

Flag or Field

Effect of JIMP
instruction

Effect of CALL
Instruction or
Interrupt

Effect of | RET
Instruction

Busy (B) flag of new
task.

Busy flag of old task.

NT flag of new task.

NT flag of old task.

Previous task link field of
new task.

Previous task link field of
old task.

TS flag in control
register CRO.

Flag is set. Must have
been clear before.
Flag is cleared.

No change.

No change.

No change.

No change.

Flag is set.

Flag is set. Must have
been clear before.

No change. Flag is
currently set.

Flag is set.

No change.

Loaded with selector
for old task’s TSS.

No change.

Flag is set.

No change. Must have
been set.

Flag is cleared.
Restored to value from
TSS of new task.

Flag is cleared.

No change.

No change.

Flag is set.
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6.4.1. Use of Busy Flag To Prevent Recursive Task Switching

A TSS alows ornly ore conext to be sved for a tsk; therefore, oncea tak is caled
(dispatched), a recusive (ar re-entrar) cal to the task wouldcatse the curretstateof the task
to be lost. The lusy flagin the TSS segmen desciptor is provided to prevent re-errant task
switching ard sutsequentloss of task state infamation The piocessr mareges thebusyflag as
follows:

1. Whendispatchinga tak, the pocessor sets the guflag of the new task.

2. If duing a tak switch, the curent task is placed ina nested din (thetask switch is beirg
generaked by a CALL instruction, an interrupt, or an exepion), the bugy flag for the
cumrent task remains set.

3. Whenswitching to the newtask (initiated by a CALL instruction, interrupt, or excepion),
the processr generates gened-protecion exception (#GP) if the busy flag of the new
taskis alreag set. (If thetask switchis initiated wih anIRET instruction, the excefionis
not raised lecause therpcessr expectsthe busy flag to be set.)

4. Whena tak is termnated ly a jump to a rew task (initiated with aJMP ingruction in the
taskcode)or by an IRET instructionin thetask code, the procesor clears tle bwsy flag
returning thetask to the “rot busy” state.

In this mamer the pracesor pgevens recusive tak switching by preverting a task fron
switching to itself orto anytask in a nested din of tasks. The chainof nestedsusperedtasks
may grow toary length, due tomultiple calls, irermupts, or excepions. The bisy flag prevents
a taskfrom beirg invokedif it is in this chain

The busy fag maybe wsed in multi processor enfiguratiors, because thprocessor follows a
LOCK pratocol (o the bus or in the cacte) when itsetsor clearshe busy flag. Thisock keeps
two processrs from invoking the same tésat the same time. @®er to Section 71.21., “Auto-

matic Locking” in Chapter 7 Multiple-Proceser Managementfor mae infarmation abat

seting the busy flag in a multiprocesa applications.)

6.4.2. Modify ing Task Link ages

In a wiprocesor system, in sitations where itis necesary to remwae a &sk from a chairof
linked taks, use the following procedue to renove the tak:

1. Disable interrupts.

2. Charge the pevious tak link field in the TSS 6 the pre-enpting task (the task that
suspeded the taskabe remeed) It is asumedthat the pre-enpting task § the nex task
(newer taskjn the clain from tre tak to beremovsed. Charge the prevous task linkfield
should to pointto the TSS o the next oldeg or toan een dder task in the chain.

3. Clear he busy (B) flagin the TSS segmert degriptor for the task being renovedfromthe
chain. If more than me task is beingemored from the chainthe husy flagfor each task
being remove must be keaed.

4. Enabe intermupts.
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In amultiprocesing system addtional synchronization and serializaton operaticns must be
addedto this procedire to insure thahe TSS and itsssgment descriptoare both lockedwhen
the pevious task linkfield is changedandthe by flagis cleared

6.5. TASK ADDRESS SPACE

Theaddress spacedr atak corsists of the segments that th tak canacces. These sgments
include the coak, datastack,and system segmiseferencel in theTSS ard anyothersegments
accesed bythetask co@. Thesesegmets are mappd into the proesor's linear addess ace,
whichis in tum mgppedinto the pocesso's plysicaladdes spacédeitherdirectly or through
paghg).

The LDT sgment field in the TS can be used to give each taskown LDT Giving a tak its
own LDT allowsthe task addrss paceto be isolated fran othertasksby placingthe segnent
descriptos for dl the sgments assciatedwith the task irthe tasks LDT.

It also is possible for sewral tasls o use the sane LDT. Thisis a $mple andmemory-efficient
way to allow sme tags to canmuricaie with or contrd each otherwithou dropping the
protecton berriers fa the etire sysem

Because all taskshave access to the GPTalso is pssible to create shad segmets accesed
through segment desriptors inthis tale.

If paging is enalted, the @QR3 register (PDR) field in the TSS allows each t&scan also hay
its own setof page tablesfor mappng linear addess to physical addesses Or, seeral tasks
can shaz the same set phgetables

6.5.1. Mapping T asks to the Linear and Physical Addres s
Spaces

Tasks canbe nmeppedto the linearaddessspace ad physical adiressspace ineitherof two
ways:

® One lineatto-physical addess gpacemapping is shared amag all tasks. When paging is
not enalbed, this is the orly choice. Wthout paging, all linear adresesmap to the sane
physical addresgs. When pagiig is enalbed, this form of linearto-physical addess pace
maping is oltained byudng ore pa@ direcory for all tasks. The inearaddessspace
may exceedhe awailable physical space iflemarl-pagedvirtual menory is supported.

® Eachtak has itsown linear adressspace that is magedto the physical addressspace.
This form of mayping is accomplished by usinga dfferent age directoly for eachtask.
Becausehe PDHR (control regster (R3) is loaded on each t&sswitch, each tdsmay
have adifferent page directory.

Thelinear adiress spaces different tasks maynapto comgetely distinct physicaladdesses.
If the entiesof differentpage drecbries pant to differentpagetadesandthe pag tablespaint
to different pags of physical memaoy, thenthe tasks dmot shag anyphysical adiresses
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With eithe method of mappng tak linear addess spaces, the TSSor all taks must le in a
sharedarea of the hysicalspacewhich is accesile to all taks. This mapping is requred so
that he mappingof TSS addessesdoesna charge whilethe pocessr is readingard updating
the TSSgduring a task swich. The lirear addessspace reppedby the GDT al® should be
majped to a sharedrea of the pysical space; oterwise, the prrposeof the GDT isdeeaed
Figure 6-8 shows how tle linear adressspacesof two tasks canwerlapin the pysical space
by sharing page tables.

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS »| Page
Task A
PTE — Page
PTE >
PDBR > PDE > PTE T Task A
PDE . Page
Shared PT >
Shared
o Page
PTE —
> PTE Shared
Task B TSS 7 Page
Task B
o Page
PDBR > PDE PTE —
PDE PTE Task B
7 o Page

Figure 6-8. Overlapping Line ar-to-Ph ysic al Mapping s

6.5.2.

To allow the daring of data amog taks, use anyof the fdlowing technigiesto createshaed
logical-to-physica addess-space mapngs for data segments:

Task Logical Address S pace

®* Through the sgment descriptorsnithe GDT All taks musthave accesgo the ggment
degriptors inthe GDT. If some segment degriptors inthe GDT mint to segments in the
linearaddress gacethat are mapedinto an area of the pysical-addess space commbo to
all tasks, therall tasks carshare thedata andcock in those segments.

®* Through a $ared LDT Two or more taks can usette same LDTif the LDT fields in their
TSSs point to the sane LDT. If some segmert de<riptors in a shared LDT point to
segmets that ae mappedto a commn aea of the pysical addes gace, the data an
code in hosesegnentscan besharedanmongthe tasksthat share the LDTThis methodbf
shaing is moe selective than sharingthroughthe GDT because the shagrcanbe limited
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to specific taks. Other tags in the systemmay hawe different LDI's that do not give them
accesgo the shaed segmets.

Through ssgmentde<riptors in distinct LDTs that aremappedo conmaon addresesin the
linearaddess spacelf thiscomnonarea 6 thelinear adress space is mpgdto the same
areaof the plysical adiress pace fao eachtag, these segmende<riptors prmit the tasks
to share £gments Suchsegmendescriptos are comronly called alases This methodof
sharingis even moe ®lective thanthose lised above, because, other segnietescriptors
in the LDTs may mint toindependert linear adiresgs whichare rot shared

6.6. 16-BIT TASK-STATE SEGMENT (TSS)

The 32bit Intel Architectue praesors also recogize a 16bit TSS format like the ore usedin
Intel 286 processos (referto Figure 6-9). It is supported for compatibili ty with software written
to run on these earlieintel Architectue piocessrs.

The following additional information is importart to know albout the 16bit TSS.

Do not use al6-bit TSS o implemer a virtud-8085 task.
The \alid segnent limit for a 16-bit TSS is2CH.

The 16bit TSS doesnot contain a field for the bae adres of the page drecbory, which is
loaded into contol register CR3. Therefae, a sepaate set 6 pagetables br eachtaxk is
not supportedfor 16-bit tasks. If a B-bit task is dispatched, he page-tablestrucure fa the
previoustaskis used

The I/O bag addessis notincluded inthe 16-bit TSS, so none of tie functionsof the 1/O
map ae sypported.

Whentask stateis saved in a16-bit TSS, the upper16 bits of the EFLAGS register ard the
EIP registerare lost.

When the gneral-purpose registersire loaded o saved fom a B-bit TSS, the uper 16
bits ofthe regsters arenodifiedandna maintained.
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CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The Intel Architectug provides several mechasms for mamaging ard improving the pefor-
manceof multiple pracesors connectedto the same systembus. These nmechanisms inclust

Bus locking and/@ cache cherery marsgemen for performing atomic ogrations on
system memory.

Serializng ingructions. (The® instructions apply orly to the Petium® and P6 family
procesas)

Advance programmable irterrupt controller (APIC) locatedon the pgrocessorchip. (The
APIC arclitectue was introducedinto the Intel Architecure with the Pentim® procesa.)

A seconary (ewel 2, L2 cacte. For the P6 &mily processrs, the L2 cabe isincludedin
the procesor paclage and is tightly coupled to the pocessar For the Pentium® and
Intel486™ procesas, pinsareprovidedto support anexternal L2 cade.

These metanismsareparticularlyusefu in symmetric-muti procesang systems; havever they
can also be sed in appicatiors where a Iel Architectue piocessr anda gecial-purpose
procesor (suchasacommunications, gaphics, @ video processr) share the systemus.

The nmain goals of these mliiproceseng mectanismsare as follavs:

To mairtain system memyy cchererty—When two or mae praesors are attempting
simultaneodly to acces the same adessin system menmy, some conmunication
meclhanisn or memay acces potocol must be available to pomote dita coherencyand
in sone instarces to allow me processr to temporarily lock a memay location.

To maintain cacte camsidency—When one pocessr accesesdata cacted in anotker
processr, it must rot receiwe incorrect dita. If it maodifies dataall other processrs that
accesghat data md receive the rodified data.

To allow predictable odering of writes to memoy—n same circumstarces, itis importart
that memory writes be observed externallyin precisly the ssme oder as ppgrammed

To distribute interrupt hardling anong a graip d procesas—When gverd procesors
are @eratingin a system in pallel, it is usefu to have a centralizednechanism fo
receivng interrupts ard distribuing themto awilable procesors br senicing.

TheIntel Architecture$ cacling mechaniam ard cahe casigencyare dscussedn Chapter 9,
Memary Cache Control. Bus andmemay locking, serializing instructions, menory ordering,
andthe piocessr’s internal APICare discusal in the following sectons.
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7.1. LOCKED ATOMIC OPERATIONS

The 32-bit Intel Architectue processrs suppat locked atomic geratiors on locations in
sysemmenory. Theseopegtions ae typically used to manageshareddata structues(suchas
semaphaes segment desciiptors system segnents, or page tables in which two or mare
processrs may try smultareously b modify the same fieldor flag. The processor usethree
interdepen@nt meclanismsfor carrying out locked atonic opestions:

® Guaanteed aimic operations.
® Bus locking, udng the LOCK# signal andthe LOXK instruction prefix.

® Cache cberemy protocds that irsure that atoric opegtions can le carriedout an cacted
data structures (cach lock) This meclanism ispresent irthe P6 fanily processrs.

These mechasms are interdpenant in the followirg ways.Certain basic memgrtransactions
(suchasreadingor writing abyte insystemmemoy) are always garanteedo be hardled atan-
ically. Thatis, once startedthe processr guaranteeshat the opration will be conpletedbefore
andher pocessr or bus agst is allowedacces to the remory location The pocessor also
supports bus locking for peforming sekeced memoy operatons (suwch asareadmodify-write
operation ina sharedrea ofmemay) that typically reed to ke hardled atanically, but are rot
autamatically hardled ths way. Because fqueily used memay locations areoftencachedn
a piocessr'sL1 or L2 caches, atomicperatiors can dten ke carriedout irsidea praesors
caches withat assertinghe hus lock Herethe pocessaols cacle coterency protocds insure
that other proesors thatare caching the same memagrlocationsare maaged prgerly while
atomic qeratiors are peformed o cactked menary locations.

Note that the mdmnismgfor handlinglockedatomic ogrations hagevolved as he compexity
of Intel Archtecture processors has elwed.As such, mae recent Irtel Architectureprocesors
(suchasthe P6éfamily processors) prade amare refinedocking mechaism than earlier Intel
Architectue praesors, asis describd in the following sectbns.

7.1.1. Guaranteed Atomic Operations

The Intel386™, Intel486™, Pentium®, andP6 family processors garantee tht the fdlowing
basic memry opetions will always ke carriedout atanically:

® Readng o writing a byte.
® Readng orwriting a wad aigned on a 16-bit bounday.
® Readng orwriting a dubeword alignedona 32bit boundary.

The P6family procesas guarantee hat the following adlitional memory operatians will
always be cared aut atomically:

® Readng or writing a quadwod aligned ona 64bit bownday. (This operaion is also
guararteed onthe Pentiurf processa)

® 16-hit accesesto uncachednemoy locatiors that fit within a 2-bit data bs.

®* 16-, 32-, and64-bit accesss to cahed nemory that it within a 32Byte cache line.
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Accesedto cacheale memoy that ae glit aciossbus widths, cachBnes, and @ge lbundaries
arenot guarnteedto be atomic by the Intel4d86™, Pentium®, or P6 family pr@esors. The B
family processrs provide hus cortrol signals that permit external memory subsystemns to make
split acceses atomic; hwever nonaligneddata accegs will seriously im@actthe perbrmarce
of the piocesorandsiould be awidedwherepossible.

7.1.2. BusLocking

Intel Architectue pocessrs provide a LOCK# signal that isassertedautomatically dring

certaincritical memory operatians to lock the systembus. While this output signal is aserted,

requess from other procesors or bus agentss for control of the bus areblocked Sdtware can
specify otheroccasios when thd.OCK semanticare to bdollowed byprepending the LGCK

prefix to an irstruction.

In the cae ofthe Inel386™, Intel486™, and Pertium® procesas, exlicitly locked instruc-
tions will resut in the asertian of the LOCK# signal. It is the respnsibility of the hardware
designerto male the LOCK# signal aailable in systemdrdwareto cortrol memory accesss
amory procesas.

For the P6 family procesors, if the nemory area ling accesedis cacled intenally in the
procesar, the LOCK# signal is generally nat aserted instead locking is only apdied to the
procesor's caches (ref to Section 7.14., “Effects ofa LOK Operation m Intemal Processr
Cactes).

7.1.2.1. AUTOMATIC LOCKING

The operatilms on which the processar autanatically follows the LOCK senantics are as
follows:

®  When execuing an XCHG instru ction that referencesmemory.

®  Whensttingthe B (busy) flag of a TSS descriptor. The processar test ard setsthe busy
flag in the type feld of the TSS descriptovhen swiching to a task. @ insure that tvo
proces®rs do not switch to the same task simultaneously, the pracessr follows the LOCK
senantics while teging ard tting this flag.

® When updating segment de<cript ors. When lbadng a ggmen desciptor, the piocesa
will set the accesseddy in the segrent descriptor if the flag is clear During this
operatim, the processo fol lows the LOCK semantics so that the desriptor will not be
madified by andter procesa while it is beng updatd. Fa this acion to be effective,
operaing-systemprocedues hat updatede<riptors $ould use the fdlowing geps

— Use alockedoperationto madify the access-righ byte toindicate tlat the segrnt
descriptor is notpresent, andpecify avalue for the type field that indicateghat he
desciiptor is beng updatd.

— Update tte fields ¢ the segrent descriptor. (This operation may recuire several
memory accesss; therebre,lockedopegtions caniot beused.)
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— Usea lockedoperation tomadify the accesrights byte b indicate thatthe sgment
degriptor is valid andpreent

Note that the Inel386™ processr always updatesthe accessedldy in the segment
degriptor, whether it is clear or nt. The P6family, Pentium®, and Intel486™ processas
only update thisflag if it is rot alread/ set.

® When updating pagedirectory and page-table entries When uplaing pagedireciory
ard pagetale ertries, the praesoruseslocked cyclego setthe accessl and dirty flag in
the pagedirecbry ard pag-table ertries.

® Acknowledging interru pts. After an ierrupt requed, aninterrupt controller may use the
data bus to sendthe irterrupt vector for the interrypt to the pocessar The pocessr
follows the LOCK semantics during this time to ersure that noother data apears a the
data bus when the interrupt vecta is beirg transmitted.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly force the IOCK semartics, software camuse he LOCK prefix with the fdlowing
instructiors when theyare sed to madify a memoy location An invalid-ogpcoce excefion
(#UD) is generated when tre LOCK prefix is used with any other indruction or when no write
operatian is made tomemory (that is, when the desination operard isin a regiser).

®* The bt testand modify instructions(BTS, BTR ard BTC).
®* The exclangeinstructions (XADD, CMPXCHG, andCMPXCHGS8B).
® The LOW prefixis autamatically assimed for XCHG instruction.

®* The following single-operam arithmetic ard logical instructions INC, DEC, NOT, and
NEG.

®* The fdlowing two-operand aithmetic andlogical instructios: ADD, ADC, SUB, SBB,
AND, OR, andXOR.

A locked instretion is guaranteedo lock only the area & memay defined by thedestnation
operand but maybe interpeted ly the system & a loack for a lager memay area.

Sdtware slould acces semapores (slared memay used for signaling between multiple
processrs) using idertical addesses and operand lenghs. Forexanple, if one pocessr
accesss a semaph@ usig aword acces, other proesors should not accesshe #maphae
using abyte acces.

Theintegrity d a tus lock is nd affected by the alignnent ofthe memoy field. The LOCK
semanticsare followedfor as many bus cyclesas necessaryat update be ertire operand
However it is recomnend that locke@ccesesbhe aligned ontheir natural boundariesfor better
sysem perormarce:

® Any boundaryfor an 8bit accesglockedor othewise).
® 16-bit boundar for locked wod accesses

® 32-hit boundaw for locked cubeword acces.
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®  64-bit bourdaryfor lockedquadwod access

Locked operatims are atomic \ith respect toall other memoy operationsand all exterrally
visible everis. Only instuction fetch andpage table accesescan pasdocked instructions.
Locked instructios can ke used to synaionize data writtn by ane processr andread by
anoher procesa.

For the P6 &mily processrs, locled geratiors serialize all outstandingoad andstoreopeie-
tions (thet is, wait for tlemto complete).

Lockedinstructions should not be usedto insure thatdata written canbefetched as nstructions.

NOTE

The lacked irstructions for the current ersions of the Intel486™, Pentium®,
and P6 family procesas will allow data writtento be fetched asinstructions
Howewr, Intel recomnendsthat developess who requre the ue of salf-
modifying code ge a diferent synchronizing meclanism, desribedin the
following scions

7.1.3. Handling S elf- and Cross-Modif ying Code

The act ofa processomvriting data intoa curertly execting codesegmentwith theintent d
executilg thatdata as ode is calledself-modifyin g code. Intel Architecture processors éxbit
modkl-specfific belavior when execuing sef-modified code, deending yoonhow far atead
the currert executionpainter the cale has bee modified. As processomarchitectuesbecane
more complex aml gart to speculativelgxecute code aad of the retireent poirt (as in the B
family processes), the ries regarthg which code should execue, pre- or pst-modification,
becone blurred To write sef-modfying code andersure that it is campliantwith curert and
future Intel Architecuresone ofthe fdlowing two coding options shoud bechon.

(* OPTION 1 %)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The ue of one of these ofdbnsis notrequred for prgrams intendedto runon the Pentium® or
Intel486™ proces®rs, but are reconmended to insure canpatibility with the F6 family proces-
$as.)

It should be nated that <if-modifying code will execue at alower level of performance than
norsef-modfying or nomal coce. Thedegee ofthe peformance aterioraion will depend
upan the frequencyof modficaion ard specific claracteriics ofthe cale.
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The actof one pr@esor witing data into the curently executing code egment of a secomnl
processr with the intem of havirg the sscand piocessr execute that data asde iscalled
cross-modifying code. As with self-malifying code, Intel Architecture pcessrs exhibit
modelspecific betavior whenexecuing cros-modfying code, @pendng yponhow far atead
of the executingprocessrs curent excution panter the coe has beenmodfied. To write
cross-modifying code aml insure that itis campliant with current ad future Intel Architectures,
the following processr synchonizaion algorithm shoud beimplemened.

; Action of Modifying Processor
Store modified code (as data) into code segment;
Memory_Flag « 1;

; Action of Executing Processor
WHILE (Memory_Flag # 1)
Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The u of this option is nd required for programs intendedto run on the htel486™ procesor,
but is recanmendedto insure canpatibility with the Pertium®, ard P6 family procesas)

Lik e self-modifying code, cros-modifying code will execue at alower level of performance
than noncross-modifying (rormal) code, dependng upn the frequery of madificaion ard
specific chaacterigics ofthe cod.

7.1.4. Effects of a LOCK Operation on Internal Processor
Caches

For the Irteld86™ and Rntium® processrs, the LOCK# signal is always aserted orthe bus
during a LOCK operation evenif the area ® memay beinglockedis cacted inthe pocessr.

For the P&amily processrs, if the areafomemay being locked diring a LOCK operationis
cachedin the pre@esorthatis perbrming the LOXK operationas write-backnemoy andis
conpletely containedn a cache line, the ptesor maynot asertthe LOCK# dgnal on the bus.
Instead it will modify the memay location interrally ard allow it's cacte cohererncy mecta-
nism toinsurethat theoperationis carried out atomically This operationis called“cache
locking.” The cack cohererry mechaism auomatically preventstwo or mae praesors that
hawe cachedhe same &a ofmemoy from simultaneosly mdifying datain that aea.

7.2. MEMORY ORDERING

The termmemory ordering refers tothe aderin which the piocessr isuuesreads (lads) am
writes (stores) out onto the bis to system memory. The Intel Architecture syports several
memay ordering modelsdependingon theimplementation of the architecture. For example, the
Intel386™ processr enforcesprogram ordering (gererally referredto asstrong ordering),
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where pads andvritesare issied onthe system s in theorder they occu in the instruction
streamunder all circumstarces

To allow optimizing of instruction execuion, the Intel Architecture alows departuresfrom
strong-ordering model calledprocessr ordering in P6-family processrs. Theseprocesor-
ordering variations allow perfanarceerharcing operations sch asallowingreads® go ahead
of writes bybufferingwrites. The goal of any of the® variatiosis toincrease iatruction execu-
tion speeds while maintaining memory coherency, even inmulti ple-processr systerrs.

The fdlowing secions desciibe the memoy ordering modek usedby the Intel486™, Pentium®,
and P&amily processrs.

7.2.1. Memory Ordering in the Pentium ® and Intel 486™
Processors

The Petium® ard Inteld86™ pracessrs follow the pocesa-ordered memoy maodel;
howe\er, they operate asstrorgly-ordered pocessrs under mat circunstances. Rad and
writesalways afpearin programmedorder at the sysembus—excep for the bllowing situation
whereprocesororderirg is exibited. Readmissesarepermittedto goaheadf bufferedwrites
on the systmbus whenall the bufered writesare cache hitard, therebre, are nodirected o
the same attessbeingaccesed ly the readmiss.

In the case of/O opexstions, bdh read and wites always apmr inprogramned oder.

Software intendedto operatecorrectly in pra&cesorordered pracesors (sich asthe F6 family
proces®rs) should not depeid on the relatively strong ordering of the Pentium® or Intel486™
procesors. Instead, it shdd insute that access to shaed varablesthat are inteded tocontiol
concurert exection anong processrs are eylicitly required to doey program ordering
through the use o appopriate locking or seralizing operatons (refer b Secion 72.4,
“Strenghering or Wealening the Memay Ordering Model”).

7.2.2. Memory Ordering in the P6 Family Processors

The P6 farily processors atsuse a pocessr-orderedmemoy ordering model that carbe
further refineddefinedas“write ordered with store-bufer forwardng.” This model can be char
acterized as fbows.

In a shgle-processor syyemfor memay regions deifned aswrite-back cachedb, the following
ordering rules apgy:

1. Readscan te carriedout speclatively and in ary order.

Readscan pass bufferedwrites, lut the pocessor is self-castent.
Writesto memay are alvayscarriedoutin progran order.

Writes canbe bufered.

Writes are na performed gpecuktively; they ae ory pefformed for instructions that have
actually beemetired.
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6. Data fliom buffered writescanbe fawarded to waiting reads within the pracessar.

7. Reads or writegamot pasgbe carried at ahead dfl/O instructions, lockednstructions,
or serializng instrucions.

The secondule allowsa reado pass wite. Howewr, if the write isto the same memagrloca-
tion asthe read the pracesso’s internal “srooping” mechaism will detectthe coriflict and
update the alregdcachedead lefore the pracesorexecutes the instctionthat ues the aue.

Thesixth rule castitutesanexcepion to an otterwise wiite adered madel.

In a multiple-processor system the folowing ordering rulesapgy:

® Individual processrsuse the samerdering rulesas ina sngle-processr system.
® Writes bya dngle processr are doservedin the same order by all processrs.

®* Writes from the individual pracesors on the ystem bus are glohlly observed andare
NOT ordered with respect teach ther

The latter rule canbe clarified by the exanple in Figure 7-1. Consider ttree pocessors ira
sysemand each proesor peformsthree writesone to eachof three defied locations(A, B,
andC). Individually, theprocesors perform the writes inthe same pgramorder, but because
of bus abitrationandothermemay acces meclanismsthe aderthat thehree pocessors write
the indvidual memoy locatilmscandiffer each time the respectivedecequences are exetad
onthe praesors. The final valuedn location A,B, ard Cwould possibly varypon eachexecu
tion of the write squence.

Order of Writes From Ind ividual Processors

Each Processor #1 Processor #2 Processor #3
is Ziafarr?tcee;;(t)or Write A.1 Write A.2 Write A.3
perform writes Write B.1 Write B.2 Write B.3
in program order. Write C.1 Write C.2 Write C.3

Example of Order of Actual Writes
From All Processors to Memory

Writes are in order Write A.1 —

o with respect to Write B.1

individual processors. Write A.2 Writes from all
Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occurin a
Write C.2 particular order.
Write B.3
Write C.3 —

Figure 7-1. Example of Write Ordering in Multi ple-Processor Sy stems
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The processar-ordering modd desaibed in this section is virtudly identical to that used by the
Pentium® ard Intel486™ procesors. Tle oy erhancemets in the P6 émily processrs are:

¢ Added support for specuktive read.
* Store-luffer forwarding, whena readpasgs a write tahe same meany location.

® Qut of order store from long string sbre and sting move ogeratons (refer b Secton
7.2.3, “Out of Order SoresFrom String Opertionsin P6 Family Procesas” below).

7.2.3. Out of Order Stores From S tring Operations i n P6 Family
Processors

The B family procesas modify the procesors operaton during the dring store opeations
(initiated with the MOVS and STOS irstructions) to maximize perfornance. Once tre “fast
string” operatimsinitial conditions aremet (as desribed below), the pracesso will essetially
operte on from an exernal perspectivethe stringin a cachdine by cacte line node. This
resultsin the pocessr looping onissuinga cacle-line reador the souce adiressandan inval-
idation onthe exernal lus for the destination address knowing that al bytesin the desination
cacte line will be madified, for the lergth of the sting. In this made interrupts will only be
accepted byhe praesor oncache Ilhe boundaies. It ispossible in thismade that he desina-
tion lineinvalidations and therefore gsires, willbe issued on the exterial bus aut of order.

Cade depeden uponsequenia store ordeling shoud notuse the sting operatonsfor theertire
dat dructure o be stored. Data andsemahaesshould be sparted Order dependent cock
should use a dscrete semaphare uriquely storedto after any $ring goeratonsto allow correcty
ordereddaia to be seen byall processrs.

Initial conditions for “fast sting” operatiors:

® Source anddegination adireses nmust be 8byte aligned.

® String opertion must be performed in asceding addessorder.

® The initial operaion cowunter ECX) must be eqgal to o greater tharé4.

® Souce anddestination rastnot overlapby less thana cache ling€32 bytes).

®* The memoy type for bath source anddedination aldresses nust be ether WB or WC.

7.2.4. Strengthening or Weakening the Memory O rdering Model

The Intel Architecture mvides sveral mechanismsfor strergthering or weakenig the
memay ordering mode to hande ecial progranming stuatons These mecanisms include:

® Thel/O instructions, locking instrucions, the LOCK prefix, ard serialzing instructions
force stroger adeling on theprocesor

®* The menory type rangeregsters(MTRRS) canbe usedto strenghen or weakenmemory
ordering for specificarea & physical memoy (refer to Secion 9.2., “Memory Type
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Range Rgisters (MTRRS)", in Chaper 9, Memory Gache ntrol). MTRRs are available
only in the P6family processrs.

These medinismscan ke used as fibows.

Memory mapped devices ad ather I/O devices m the kus are dten snstive to the ader of
writesto their 1/0 buffers.l/O instructions canbe usedto (theIN and OUT instructions) impose
strong write odering on suchacceses adollows. Priorto executingan YO instruction, the
proces®r waits for all previous instructions in the programto conplete aml for all buffered
writes to drain to memory. Only instruction fetch and page tadeswalks canpass /O instruc-
tions Executon of subsequeninstructionsdo na bedgn urtil the pracessr deerminesthat the
I/O instruction has been completed

Synchronization mechaisms in multiple-pocessr systems may deperd upan a grong
memay-ordering model. Here,a pogram canuse a laking instructionsuch as the XCHG
instruction or the LOCKprefix to insure that a readmodify-write operation on memory is
cariiedout atonically. Locking operatimstypically operate lke I/O opegtions in that they wait
for all previous instructions to complete and for all buffered writesto drain to memory (refer to
Secion 7.1.2, “BusLocking”).

Progam g/nchonizationcanalso be caied out wih serializinginstructians (refer to Sedbn
7.4., “Serializing Instructions”). These instictions are typrally used at critical pr@edue or
tak boundaries tdforce conpletion of all previous irstructions bebre a junp to a rew secton
of cock or a context witch occus. Like the I/O and bcking instructiors, the pra¢esor wais
until all prevous instructions have beencompletedard all buffered writeshave beendrainedto
memory before executng the ®rializing instruction.

The MTRRs were introduced in the P6 faity processors to defie the cache charactestics for
specified ares of physical memaoy. The bllowing are o exampes ofhow menory types st
upwith MTRRscan be usd grengthen or weakermemoy ordering for the F6 family proces
sas.

®* The urcached C) menory type rces a sbngordering modsl on memory accesss.
Here,all reads andvrites tothe UCmenory regon appearon the bis andout-of-order a
specliative accesss ae ot performed. This memory type canbe apgied to an addess
range adicaied b memay mappedl/O devces b force srongmemay ordeling.

® For areas b memory whee weakordering is acceptablethe wite back (WB) memoy
type canbe closen. Hee, read an beperformedspecuktively andwrites canbebuffered
ard conbined. For this type of memoy, cache lockg is perfemedon atanic (locked
operatiors that do not glit acrosscache lineswhich helps to redwe the peformance
penalty assciatedwith the use othe typcal syrchronization instretions, sich as XGG,
that lockthe biws during the entire readiodfy-write operation. Wth the WB memoy
type, the XCHG instructionlocks the cache instadof the bus if the memaey acces is
containedwithin a cacke line.

It is recanmenckd that sftware writento run onP6 family procesors asurre the processr-
ordering model or a weakememoy-ordering madel. The 5 family processrs do nat imple-
ment a strang memory-ordering model, excep whenusing the UCmemory type. Desjite the
fact that P6 family processors support procesor ordering Intel does ot guaranteethat future
proces®rs will support this model. To make sdtware patable to fuure pocessrs, it is recom
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menckd thatoperatingsystemsprovide critical region and resorce contrbéconstuctsand API's
(appicationprogram interice$ based oM/O, locking, ard/or serialzing ingructions be usedt
synchionize &ces to shaed aepasof menory in mutiple-pracesor systens. Also, software
should nat depend onprocesa ordeingin sStuationswherethe g/stem tardware doesnot vsup-
port this memory-ordering model.

7.3. PROPAGATION OF PAGE TABLE ENTRY CHANGES TO
MULTIPLE PROCESSORS

In a mutiprocessr sysem, when me pracesor changs a pag table entryor magping, the
changs must also be prpagatedto all the otter procesors. Thisproces isalo knowvn as*TLB
Shootdown.” Propagaton may ke done by memay-basd senaphaes andbr interprocesa
interrupts ketweenprocesors. One natre bu algorithmicaly corectTLB Shoadown squerce
for the Irtel Architectures:

1. Begin barrier: Stop all processrs. Cause al but oneto HALT or gopin a ginloop.
2. Lettheactve piocesorcharge thePTE(s).

3. Let all processrs invalidate the PE(s) modified in their TLBs.

4. End barier: Resune al processrs.

Alternate, perbrmance-gtimized, TB. Shootdown algorithms maybe devedped; however
care mut be takenby the deelopers to ensurehat eiher:

® The difering TLB mappngs are not acualy used o different procesas duing the
updatk proces.

OR

®* The operatingsystem igpreparedo deal with the cae whee processor(s) fare using the
stalemappig during the ypdae proces.

7.4. SERIALIZING INSTRUCTIONS

The Intel Architectue ddines ®veral seridizing instructions. Thes instructions brce the
processr to compete al maodificaionsto flags, regsters and memuoy by previousinstructions
ard to drain all bufferedwrites to memory befae the nex instruction isfetched and execued.
For example when aMQV to cortrol register instructionis used tdoad anew \alue intocontol

register QRO to enale protectedmode, the processor mst peform a rializing operation
befare it enters ptected mde. Ths serializing operationinsures that all operdions hat were
started while the pocessor was ineal-addess maode ae competed before the switch to
protectedmade s made.

The cortept of serializirg instructions was introduced into the Intel Architecture with the
Pentium® processo to sypport parallel instruction exection. Serializing instructions have no
mearing for the Intel486™ and ealier processrs that do not implement parallel irstruction
executia.
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It is important to nate that execting of serializirg instructions on P6family procesars corstrain
speculative exetion, becausehe results of speculativelgxecuted instructiomare dscarad.

The following instructions are srializing instructions

® Privileged serializirg instructions—MOQOV (to cortrol register), MOV (to dehug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, andLTR.

®* Nonprivileged serializing instructions—CPUID, IRET, ard RSM.

The CPUID instruction can be executedat any privilege level to serialize instruction exeau-
tion with no effect on program flow, except that theEAX, EBX, ECX, and EDX registeas
are mdified

Nothing canpass a serialzing instruction, and serializng instructions canot passany other
instruction (read, write, istrucion fetch, @ 1/0).

When the pocessor serializeastruction execution,it ersures hat all pending menory transac-
tions are conpleted including writes sbred in its gore hiffer, befae it exeaites the nex
instruction.

The following additional information is worth nating regarding serializing instructions:

®* The procasor deesnot writeback the contes of modified datain its data cacle to external
menory whenit seridizes instructiorexection. Software canforce malified data tobe
written back by execding the WBINVD instruction, which is a serializiry instruction. It
should be notedthat frequert use of the WBINVD instruction will seriausly reduce system
performance.

® Whenan irstruction is exected thatenables odisables pagg (that is, chages the PG

flagin contrd regster CRO), the instruction shold be followedby ajump instruction The
target instruction of the jump instruction is fetched with the rew setting of the RG flag (thet
is, pagng is enalted or disabled), but the jump instruction itself is fetched with the
prevous settng. The P6family processaos db not require the jump operation following the
moveto regster CRO (because anuse of the MOV irstruction in a P6family procesorto
write to CRO is completely serialzing). However, to maintain backwards and forward
conpatibility with code written to run on other Intel Architecture pra@esses, it is
recommededthat the junp operationbe gerformed.

® Whenewer an irstruction is executedo chang the corents of CR3 whle paging is
enalted, the nex instrucion is fetchedudng the translation tablesthat caregpond to the
new value ¢ CR3. Therefae the mxt instructionandthe squertially following instruc-
tions shoud have a mappig baged upm the new vale of CR3. (Global ertries in the
TLBs are no invalidated refer to Secton 9.10., “Invalidating the Trarslation Lookasice
Buffers (TLBs)”, Chaper 9, Memory GacheControl.)

® The Petium® ard P6 family procesors e brarch-prediction technques toimprove
performance by prefiching the destinationof a branch ingruction befge the braich
instrucion is executed Consequertly, instruction executon is not deterministically
serialized wikn a banchinstructionis executed.
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7.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER
(APIC)

The AdvancedProganmable Interrug Controller (APIC), referredto in the following sectons
as the local APIC, was inroduced nto the Intel Architecture with the Petium® procesa
(begnningwith the 735/90 and815/100 madels) andisincludedin all P6family processrs. The
local ARC performstwo mainfunctions for the pocesor:

®* |t proceseslocal extermal interrupts that the pocessr receivesat its interrypt pins and
local internal interrupts that sdtware generates.

® In mutiple-pracesor systems it communicateswith an external /O APIC chip. The
extenal I/O APIC receivesexternal interrpt evers from the gstem andinterprocessr
interrupts fromthe procesors on the g/stem bus anddistributesthemto the procesas on
the systembus. The I/O APIC is part of Intel’'s systemchip set.

Figure 72 shows the relationship bthe local ARCs on the gpocessrsin amulti ple-processr

(MP) system adh the 1/O APIC. The localAPIC contrdls the dispatchig of interrugs (to its

associated proesol) that i receiveseitherlocally or fromthe I/OAPIC. It provides facilities
for quaiing, neging ard magking of interrupts. It handlesthe interrupt delivery pratocol with its

local processr andaccesss to APICregsters, andilso marages interpocessr interupts and
remote APIC regiger readsA timer an the local APIC allows local generatian of interrupts, ard

local interupt pins pemit local recgtion of processoispecific irterrupts. The lacal APIC can
be dsabledand sedin conjuncion with a gandard8259A-gyle interrupt controll er. (Disabling

the local APIC carbe done in hardware br the Rentium® processrs or in sdtware fa the F6

family procesors.)

The VO APIC is resposible for receivinginterupts geerated ly 1/0 devices andlistributing
them anongthe lacal ARICs bymeans btheAPIC Bus. Thel/O APIC manages inteupts using
eitherstatic or dynanic distribution schemesDynamt distribution of interrupts allows routing
of interrupts to the lowved priority processass. It alsohardles the dstribution of interprocessr
interrupts and systemwide cotrd functions such as NMI, INIT, SMI and gart-up-interpro-
cesgr interrupts. Individual pins on the /O APIC canbe pogrammedto generate a specific,
prioritizedinterupt vectorwhenasgrted The 1/0O APICalso fas a “virtual wire node” that
allows it to cooperate with arexterral 825A in the g/stem.

The APC in the Pertium® and P6 family proesors is an architectal subsetof the Intel
82489DX external APIC The dfferences areedcribed in Section7.519., “Software \sible
Differences Btweenthe Lacal APIC andthe 48DX”

The fdlowing sectimsfocuson the local ARPIC, ard its implementatonin the P6family proces-
sas. Contact Irtel for the informationon /0O APIC.
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Processor #1 Processor #2 Processor #3
CPU CPU CPU
Local APIC Local APIC Local APIC
Local A Local A Local A
Interrupts Interrupts Interrupts
A APIC Bus
\
1/0 APIC
External T
Interrupts 1/0 Chip Set

Figure 7-2. I/O APIC and Local APICs in Multi ple-Processor Sy stems

75.1. Presence of AP IC

Beginning with the P6family processors, thpresence absencef anon-chip APIC canbe
detectedusng the GPUID instruction. When the GPUID instruction is executed bit 9 of the
featue flags retuned in the EDXregster indicateghe preserce (set) orabsence (cleai) of an
onchip local APIC.

7.5.2. Enabling or Disabli ng the Local APIC

For the P6 family processors, a lag (the E flag, bit 11) in the APIC_BASE_MSR regider
permits the localAPIC tobe exdicitly enabled a disabed. Refer to Sectbn 75.8,, “Relocaion
of the APIC RegistersBase Adiress$ for a description of this flag. Fa the Petium® procesor,
the AHCEN pin (which issharedwith the PIM1 pin) isusedduring resetto erable or disable
thelocal APIC.

7.5.3. APIC Bus

All 1/0O APIC ard local APICs communicate tlough the APIC bus (a 3line interAPIC bus).
Two ofthe lines are opn-dain (wiredOR) ard are used fodata transmisort the thid line is
a clock The bus and its messages ke invisible to software and are not clessed as achitec-
tural (that is, the APIC bus and messageformat may change n future implementations
without having any effect i software compatibility).
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7.5.4. Valid Inte rrupts

Thelocalard I/O APICs support 240distinct vecorsin therange of 16 to 255. Interruptpriority
is implied by its vector accoding to the Pllowing relationship:

priority = vecta / 16

One is the lowest prity and 15isthe highed. Vectors 1&hrough31are eserved for exclusive
use ly the processr. Theremairing vectors & for geneal use. he pocessars localAPIC
includesan inservice erry anda tolding ertry for eachpriority level. To avdd losing inter
rupts, software shoud allocae nhomare than 2 interrupt vecors per priority.

7.5.5. Interrupt Sources

The lacal APIC canreceive inerrupts fromthe fdlowing souces
® Interrug pins onthe pocessor cip, driven by locally comectedl/O devices.
®* A busmessage fim the /0O ARC, originatedby anl/O device comected to tk 1/0 APIC.

®* A bus message frm andher processr’s local APIC originated as an interprocessr
intermupt.

®* The local APIC’'s progranmable timeror the errar register, through the self-interrupt
gererating mechaism.

® Software,throughthe slf-interrupt geneating meckanism.
* (P6family procesas.) The peformance-nonitoring counters.

The local APICservicesthe YO APIC and inerprocessor irterrupts accadingto the inbrmation
includedin the bis message (seh as \ector trigger type, interrupt destination, etc). Interpreta-
tion of the pocesa’s interrupt pins and the timergeneated interrupts is programmalbe, by
means ofthe local vecto table (IVT). To gererate an iterprocesor interrug, the souce
procesorprogramsits interrupt comnand regster (ICR). The programmingof the ICR catses
genestion of a carespading interrug bus message. Refer to Secton 7.511., “Local Vecta
Table” ard Section 7.5.12., “Interproces®sr and Self-Interrypts” for detailed information on
programming the LVT andICR, respectiely.

7.5.6. Bus Arbitration Overview

Being connectecbnacomman bus (he APIC bus), thelocal ard I/O APICs have toarhitrate for
pernmission to senda mesage onthe APIC bus. Logically, the APICbus is a wireedDR connec-
tion, erablingmore than e local APICto sendnesages simultanasly. Ead APIC issuesits
arbitrationpriority at thebegiming of eachmesage,andone winrer is cdl ectively seleced
following anarhitration round. At ary given time, a local APIC's the arhitration priority is a
unique value from Oto 15. The arlitration priority of eachlocal APICis dynamicallymodified
aftereach succefslly transmitedmessage tpresere fairness. Refer to Section75.16,“APIC
Bus Arhitration Mectanism andProtocd” for a desiled dscussion of bus arbiraton.
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Secion 7.5.3., “APIC Bus' desribes the exgting arbitration protocds ard bus mesage
formats, while Section 75.12, “Interprocesa andSef-Interrupts’ degribes the INIT level de-

as®rt message, used to reshinonize al local APICs’ arlitration IDs. Note that excet for start-
up (refer to Secion 7.5.11., “Local Vecbor Table”), al busmesagesfailing during delvery are
auomatically retried. The software should awid situations in which interrupt messages nay be

“ignored by disabled a nonexistent “taget” local APICs, and mesages are beingresent
repeaedy.

7.5.7. The Local APIC Block Diag ram

Figure 7-3 gvesa functiorel block diagam fa the local ARC. Software iteractswith the local
APIC by readirg ard writing its regsters. Tle registersare merory-mapyed to theprocesor's
physical adiressspace, anébr eachproessor theyhave an ideticd addressspace oft KBytes
starting at adlressFEEM000H. (Referto Section 5.8, “Relocationof the APIC Registers
Base Addess for information an relocating tie APIC registers lase address forthe P6 &mily
procesas))

NOTE

For P6family procesors, the APIC handesall memoy accesss to addesses
within the 4KByte APIC register space ando extenal bus cyclesare
produced.For the Pentiumprocessorsvith an onchip APIC bus cyclesare
producedfor acceses to thé-KByte APICregister spacé hus, br sotware
intenced to run on Pertium® processrs, system sftware $ould explicitly
not map the APIC regster space toregular system memay. Daing so can
resut in an nvalid opcode exepton (#JD) being gererated or urpredctable
execution.

The 4-KByte APIC register addessspace shold be mappedas uncacheale (UC), referto
Sectbn 9, “Memory Cache @ntrol”, in Chapter 9,Memary Cache Control.
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DATA/ADDR INTA EXTINT INTR
A A
Version Register ‘—»
Timer EOI Register
Current Count
Register
" Task Priority
Initial Count < > :
Register <> Register
Divide Cor_1figuration Y Y
Register
Prioritizer
Local Vec Table
> Timer T 3T
I [
| IT\SIRI --rls[rl v |
LINTO/L—> Local
Interrupts 0,1 [ A TvR, ISR, IRR Registers A
Performance
Monitoring Counters®|
s RIV - [T[R[ v
Error Software Transparent Registers
T A Vec[3:0] A Register
& TMR Bit Select
- Interrupt C_ommand - Arb. ID Vector
Register Register Decode
APIC ID _»| Processor Acceptance 5 ',\"\‘,\'ATl
Register Priority Logic smi’
A A
Logical Destination Dest. Mode
Register <> & Vector
Destination Format APIC Bus
Register Send/Receive Logic
APIC Serial Bus
* Available only in P6 family processors

Figure 7-3. Local APIC Struc ture

Within the 4-KByte APICregster area, the register addyalocaion scheme is shown in Table
7-1 Register offsetsare aigned on 18-bit bondaies. Al registeramustbe accesed using 32
bit loadsard gores.Widerregisters (64-hit or 256-bit) are defied and accessd asindependent
multiple 32-hit registers. If a LOCK prefix is used with a MOV instruction that accesss the
APIC addressspace, the gefix isignored that is a lockng gperationdoesnot takeplace.
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intgl.

Table 7-1. Local APIC Register Addre ss Map

Address Register Name Software Read/Write

FEEO 0000H Reserved

FEEO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/write

FEEO 0030H Local APIC Version Register Read only

FEEO 0040H Reserved

FEEO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FEEO 0080H Task Priority Register Read/Write

FEEO 0090H Arbitration Priority Register Read only

FEEO 00AOH Processor Priority Register Read only

FEEO 00BOH EOI Register Write only

FEEO 00COH Reserved

FEEO 00DOH Logical Destination Register Read/Write

FEEO OOEOH Destination Format Register Bits 0-27 Read only. Bits
28-31 Read/Write

FEEO O0FOH Spurious-Interrupt Vector Register Bits 0-3 Read only. Bits
4-9 Read/Write

FEEO 0100H through ISR 0-255 Read only

FEEO 0170H

FEEO 0180H through TMR 0-255 Read only

FEEO 01FOH

FEEO 0200H through IRR 0-255 Read only

FEEO 0270H

FEEO 0280H Error Status Register Read only

FEEO 0290H through Reserved

FEEO 02FOH

FEEO 0300H Interrupt Command Reg. 0-31 Read/Write

FEEO 0310H Interrupt Command Reg. 32-63 Read/Write

FEEO 0320H Local Vector Table (Timer) Read/Write

FEEO 0330H Reserved

FEEO 0340H Performance Counter LVT! Read/Write

FEEO 0350H Local Vector Table (LINTO) Read/Write

FEEO 0360H Local Vector Table (LINT1) Read/Write

FEEO 0370H Local Vector Table (Error)? Read/Write

FEEO 0380H Initial Count Register for Timer Read/Write
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Table 7-1. Local APIC Register Addre ss Map (Contd.)

Address Register Name Software Read/ Write
FEEO 0390H Current Count Register for Timer Read only
FEEO 03A0H through Reserved
FEEO 03DOH
FEEO 03EOH Timer Divide Configuration Register Read/Write
FEEO 03FOH Reserved
NOTES:

1. Introduced into the APIC Architecture in the Pentium® Pro processor.
2. Introduced into the APIC Architecture in the Pentium® processor.

7.5.8. Relocation of the APIC Regist ers Base Addre ss

The P6 farily procesors pemit the gartingaddess of tre APIC registersad be rel@atedfrom
FEEOOMOHto andherphysical adiress. Ths exenson of the APIC architecturds providedto
help resolve canflicts with memory maps of exsting systens. The P6 family processeos al®
provide the ablity to eralde or dsabe the lecal APIC

An alternate APIMase adess is pecified though the APIC BASE_MSRregister This MR
is locatedat MSR address 27 1BH). Figure 74 shows the endling of the hitsin this register
This register alsorpvidesthe flagfor enablingor disablingthe local APIC

The functiors of the bitsin the APIC BASE_MSRregister ar@asfollows:

BSP flag, bit 8 Indicatesif the piocessr is the potstrap pocessr (BSP), déermined diuring
the MP initialization (refer to Secton 7.7., “Multiple-Procesa (MP) Initial-
ization Protocol’). Following apower-up or resetthis flagis clearfor all the
processrsin the system exceéphe single BP.

63 36 35 12111098 7 0

Reserved APIC Base

APIC Base—Base physical address Q

E—APIC enable/disable
BSP—Processor is BSP

:’ Reserved

Figure 7-4. APIC_BASE_MSR

E (APIC Enabled) flag, bit 11
Permitsthe local APICto be erabled éet) or disabled (clear).Following a
power-up or reset, this flag is set, enaling the Iccal APIC. When this flag is
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clear the pocessr is functiorally equivalent to an Irtel Architecture pocessr
without an onchip ARC (for exampe, an I1tel486™ procesa). This flagis
implementation degnden and in nd guararieedto be available or availdle at
thesamelocation in future Intel Architecture pocessors.

APIC Bas field, bits 12through 35
Specifiesthe base addess of the ARC registersThis 24-bit value is extena:d
by 12 hits atthelow erd to form the bas address, whch auomatically aligns
the adires m a 4-KByte baindary. Fdlowing a peverup or rest, thisfield is
set toFEEMOOOH.

Bits 0 through 7,bits 9 and 0, andbits 36 trough 63 h the APIC_BASE_MSR regster are
reerved

7.5.9. Interrupt De stination a nd APIC ID

The destination of an intepticanbe one, all or a sibsetof the pr@esors in the system. The
serder specifiesthe destination of an interrupt in one of two dedination modes: physical or
logical.

7.5.9.1. PHYSICAL DESTINATION MODE

In physical destination mode, the desination processo is specified by its local APIC D. This
ID is matched agninst the local APICs actwal physical ID, whichis storedin the local APICID
regster (referto Figure 7-5). Either a single desination (thelD is O through 14) or sbroadcast
to all (the ID is 15) canbe sgcifiedin physical destination mode. Nde that in this mode, up to
15the local ARCscanbe indvidually adiressed. An ID oéll 1s derotes abroadtas to all local
APICs. The ARC ID regiseris loaded at poweaup by samplingconfiguration data that idriven
onto pins of the procesa. For the P6 family procesors, pins A11# andA12# and pins BRO#
through BR3# are simpled; for the Petium® procesor, pins BEO# through BE3# are smpled.
ThelD portion can beread ad modified by sdftware.

31 28 27 24 23 0

Reserved | APIC ID Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

Figure 7-5. Local APIC ID Register

7.5.9.2. LOGICAL DESTINATION MODE

In logicaldestnation mode,mesage destinatioaare specifiedusingan 8bit mesagedestha-
tion adlresgMDA). The MDA iscomparedagainstite 8-bt logical APIC ID field of the ARC
logical desination regiger (LDR), referto Figure 7-6.
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31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 7-6. Logical Destination Re gist er (LDR)

Dedination format regster (DFR definesthe irterpretation of the logical destination informa-
tion (referto Fgure 7-7). The DR register can be pgyanmed forflat model or eluster model
interrupt deivery modes

31 28 0

Model Reserved (All 1s)

Address: OFEEO 00EOH
Value after reset: FFFF FFFFH

Figure 7-7. Destination Format Register (DFR)

7.5.9.3. FLAT MODEL

For the flat model, Lts 28 through 31 of the DFR must be progranmed to 1111. The MDA is
interpeted as a ded®d adress. This scheme allows the specificatbrabitrary groups d
local APICs simdy by setting eachAPIC’s hit to 1 in the carespnding LDR. In the flat malel,
upto 8local APIGscan cexig in thesystem.Broadcast t@ll APICsis achievedy seting all
8 hits of the MDA to ones

7.5.9.4. CLUSTER MODEL

For the cluger madel, the DFRbits 28through 31 shoud be programmedo 0000. In this modd,
there ae two baic cannectionschemes:flat cluser andhierachical cluster

In theflat clusterconnectionmodel, all clusers are asumedto be conectedon asingle APIC
bus Bits 28 through 31 of the MDA cortains the encaedaddessof the destination cluger.
Thesehits are compred wih bits 28 thraugh 31 of the LDRto determiw if the localAPIC is
partof the cluger. Bits 24 through 27 of the MDA are compred wth Bits 24 through 270f the
LDR toidentify individual local AR C unit within the clugter. Arbitrary setsof procesars within
a cluser can be pecified by writing te target cluger addessin bits 28 tirouch 310f the MDA
and setting selected lits in bits 24 through 27 of the MDA, correspnding tothe ch@senmembers
of the clusgr. In this mode 15 clusters (wih cluster addes®s of 0 through 14 each havig 4
processas canbe specified in the message. The APICanbitration ID, however, sugports anly
15 agetts, and heree the tdal number of processors spported in thismode is lintedto 15.
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Broadcast toall local APICsis achievedby settng all destination bits to one. This guarartees a
matchon all clusters, ad selecs all APIGs ineach cluster

In the herarchcal clugercomectionmodel, anarbitray hierarchicalnetworkcanbe ceated iy
comecing dfferentflat clusers via independent APIC buses This scheme reqires a adiger
mareger withineach clustemrespamsible for hardling message @ssing between APIChuses.
One cluster contains up to 4 ate Thus 15 cluser manages, eachwith 4 agets, can fom a
netwok of up to 60 APIC agaits. Note that hierahical APIC networls requires aspecial
cluser mareger cevice, whch is not part of the locd or the 1/0 APIC units.

7.5.9.5. ARBITRATION PRIORITY

Eachlocal APIC is given anarhtration priority of from 0 to 15 upon reset Thel/O APIC uses
this priority during arbitration rounds to determine which local APIC should be alowed to
tramsmit a message m the APIC buswhen multiple local APICs are isung messages The local
APIC with the highreg arbitration priority wins accesso the APICbus. Upn canpletionof an
arbitration round, the winning local AR C lowersits abitration priority to 0 and the losing local
APICs eachraise theirs ¥ 1. In this manner the 1/O APIC distributes message bus-cycles
amang the corestinglocal ARCs.

The current abitration priority for alocal APICis stored ina 4bit, sotware-transpaent aibi-
tration ID (Arb ID) register. During reset, thé register is initialized tothe APIC ID number
(storedin the local ARC ID regster). The INIT-deassrt commandresynchonizes the aiitra-
tion priorities d the local APICs by restting Arb ID regster d eachagert to its currernt APIC
ID value.

7.5.10. Interrupt Dist ribution Mechanisms

The APIC suypports two mechanisms for selectilg the desination processr for an irterrupt:
static anddynamic. Sétic distribuion is used to acces a pecific pracesor in the network
Using this mechaiism, the interrupt is unconditionally deliveredto all local APICs that metch
the desination information supplied with the irterrug. The fdlowing delivery modes fall into
the gatic distribution caegowy: fixed SMI, NMI, EXTINT, andstart-up.

Dynanic didribution assgns incoming interrupts to the lovest priority processo, which is
gererally the least bsy processr. It canbeprogranmedin the LVT for local interrupt delivery
or the ICR for bus mesages Using dynamic dstribution, only the“l owed priority” delivery
mode s allowed. From all proesors Isted in the destinatiothe pocessr selected isthe one
whose currernt arbitration priarity is the lowest.The latter is sgecified in the arbitraton priority
regster (APR), referto Section7.5134.,“Arbitration Priority Regster APR)” I f more than ane
processr sharesthe lowest pridty, the pocessr with the highet arbitration priority (the
unique alue inthe ArbID regster)is selected.

In lowest prigity mode,if afocus procesor exsts it mayaccepthe interryt, regadless of its
priority. A procesa is saidto be the focus d aninterrupt if it is currertly servicing that interrug
or if it has a peding reqiest fa that interrupt.
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7.5.11. Local Vector Table

The local APIC contairs a local \ectortable (IVT), specifyirg interrupt delively ard status
information for the local interrypts. The information cantained in this table includes the inter
rupt’s associated vecor, deivery mode, satusbits and oherdat as $iown in Figure 7-8 The
LVT incorporates five 32-bit entries: om for the timer one eachfor the two Iaal interrypt
(LINTO ard LINT1) pins one fa the errorinterrug, and (in the B family procesas) one far
the peformancemonitoring cainter interrupt.

The fieldsin the VT areasfollows:

Vector
Delivery Mode

MULTIPLE-PROCESSOR MANAGEMENT

Interryot vecta number

Definedonly for localinterrupt entries 1 ard 2 ard the perfornance-
monitoring counter The timer ad the errg stats register (ESR
generat only edge tiggeredmakale hardvare nterrupts to the
local processor. The delivey made field doesnot exist for thetimer
ard error interrupts. The perfonarce-maitoring counter VT may
be pogranmed with a Deliver Mock equal to Fixed or NMI only.
Note thatcettain delivery modes will only operateas ntendedwvhen
used in conjunction with a gecific Trigger Mode. Tle allowable
delivery modes arasfollows:

000 (Fixed)

100 (NMI)

111 (ExtINT)

Delivers the interrypt, received onthe local
interrug pin, to ths proces®r as sgcified inthe
correpondng LVT entry The trigger mode can b
edgeor level. Nate, if the pocesa isna usdin
conjunction with an 11O APIC, the fixed deivery
mode may be software programmed for an edge-
triggered interrupt, bu the P6family processos
implemenation will always oprate in a lesl-
triggeed male.

Deliversthe irterrupt, received on thelocal inter
rupt pin, tothis processor asan NMI interrupt. The
vecta information is ignored. The NMI interrugt
is treated as edgfriggered,even if pogrammed
othemwise. Note thtthe NMI maybe maskedt is
the oftware'sreponsibility to programthe VT
magk bit accading to the desired éhavior of
NMI.

Deliversthe irterrupt, received on thelocal inter
rupt pin, to this processa and responds as if the
interrupt originated in an exterally connecied
(8259A-compatble) interrupt contoller. A spe-
cial INTA bus cycle caresponling to ExtINT, is
routed to the exernal cortroller. The latter isex-
pectedo suppy the vectorinformation Whenthe
delivery node is EXINT, the trigger-mode is
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level-triggered, regrdless of how the APIC trig-
geling made is prgrammed. The APIC architec-
ture supports only one ExINT sourcein a g/stem,
usually cortained in the compatibility bridge.
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31 18 17 16 15 1312 11 87 0
Timer Vector
. K A Address: FEEO 0320H
Timer Mode Value after Reset: 0001 0000H
0: One-shot ’
1: Periodic Delivery St atus
0: Idle
1: Send Pending
Mask
0: Not Masked
1: Masked
Interrupt Input Delivery Mod e
Pin Polarity 000: Fixed
100: NMI
111: ExtINT
Remote All other combinations
IRR are Reserved
Trigger M ode
0: Edge
1: Level
31 17y y Yy Yy y 1110|87 0
LINTO Vector
LINT1 Vector
ERROR Vector
PCINT Vector
1015 ms e Add FEEO 0350H
ress:
[ Reserved Address: FEEO 0360H
Address: FEEO 0370H
Address: FEEO 0340H
Value After Reset: 0001 0000H
Figure 7-8. Local Vector Table (LVT)
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Delivery Status (read aly)
Holds the curent statusof interupt delivey. Two states are defied:

0 (Idle) Thereis currently no activty for this interrugt, or
the previous interupt from this saurce tas cam-
pleted.

1 (Send Pendng)
Indicates that the interrupt trarsmission has start-
ed, hut has not yet keen conpletely accefed.

Interrupt Input Pin Polarity
Specifies the garity of the carespading interupt gn: (0) active
high or (1) active low.

Remote Interrupt Requed Regider (IRR) Bit
Usedfor level triggered irterrupts orly; its meanirg is undefinedfor
edee triggeredinterrupts. Far level triggeredinterrupts, the bt is set
whenthe logic of thdocal APIC acceptgheinterrug. The renote
IRR bit is reset whn an EOIl command is received from the
processr.

Trigger Mode Selectghe trigger mode forthe localinterrug pinswhen thedelivery
mode is Fixed: (0) edje ®nstive ard (1) level sersitive. When he
delivery mode is NMI, the trigger mode is always level sersitive;
whenthedelivery mode is ExINT, the trigger nodeis always level
sensitve. The tiner and eror interrupts are always treated asdge

serstive.

Mask Interryot mask:(0) enalbesreceptionof theinterrupt ard (1) inhibits
reception of theinterrugd.

Timer Mode Selects hetimer mode: (0) onshot and (1) periodic (refer to Section
7.5.18., “Timer”).

7.5.12. Interprocessor and Self-Interr upts

A processo generatesinterprocesa interrypts by writing into the intemrupt command regster
(ICR) o its local ARC (refer to Fgure 7-9. The pocesor mayuse the ICRfor self interrupts
or for interruging other pocesors (for example, toforward devce interryts originally
acceped by it to other procesas far servce). In addition, special irnter-proces®r interrupts
(IP1) suchas te start-ip IPI mesage,canonly be delivered using the IR mechaism. ICR-
basednterrupts aretreatedasedgetriggered evenif programmedotherwise. Note thatnat all
comhbnationsof options for ICR generagd interrupts ae vald (referto Table 7-2).
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63

56 55 32

Destination Field Reserved

31

2019181716 15141312 1110 8 7 0

Vector

Destination Short hand J L

00: Dest. Field 000: Fixed
01: Self 001: Lowest Priority
10: All Incl. Self 010: SMmI
11: All Excl. Self 011: Reserved
100: NMI
101: INIT

‘:’ Reserved 111: Reserved
——  Destin ation Mode

Address: FEEO 0310H 0: Physical

Value after Reset: OH 1: Logical

Delivery M ode

110: Start Up

Delivery S tatus
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger M ode
0: Edge
1: Level

Figure 7-9. Interrupt Command Register (ICR)

All fields of the ICR are ead-wite by software with theexcepion of thedelivery status field,
which isread-aly. Writing to the 3-bit word that catainsthe interrug vecta cau®s the inter-
rupt mesage to ke sent. ThelCR corsists of thefollowing fields.

Vector

Delivery Mode

7-26

The vector idetifying the interrpt being sent. The localARC
register addesses are sumarized inTable 7-1.

Specifies tow the APICs listed in the destination field should act
uponrecepion of the interupt. Note that all interppcessor inteupts
behawe asedyetriggered interrupts (exceptfor INIT level de-assert
message) evenfithey areprogrammed asevel triggered interrupts.

000 (Fixed) Deliver theinterrupt to all pracessrs listedin the
destination field acording to the information pro-
videdin the ICR. The fixed interrupt is treatedas
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an edg-triggered interrupt even if pogrammed
othemwise.

001 (LowestPriority)
Same asfixed mode, exceptthat the interrupt is
deliveredto the pocessr execting at the lowest
priority among the set of proesses liged inthe
dedination.

010(SMI) Only the edje trigger nodeis allowed. The ector
field must be progranmed 6 00B.

011 (Rewrved)

100 (NMI) Deliversthe interrug as an NMlinterrugt to all
procesors listed in the destation field. The ve-
tor information is ignored. NMI is treated as an
edge tiggered nterrupt even if programmedoth-
erwise.

101(INIT) Deliversthe interrypt asan INIT sigral to all pro-
cesas listedin the desination field. As arestt,
all addessed ARCs will asume theilNIT state.
As in the case of NMI, the vector infmationis
ignored, aml INIT is treatedas an edgtriggered
interrupt evenif programmedothemise.

101(INIT Level De-as®rt)

(The tigger node nust dso be setto 1 andlevel
mode to 0) Sends a synchronization message to
all APIC agents to set their arbitration IDs to the
values of tleir APIC IDs. Note thatthe INIT inter-
rupt is snt to all agens, regartessof the destina-
tion field vaue. Hovever at least oe \aid
destnation pracesorshaild be pecified. For fu
ture conpatibility, the sdtware is requestedto use
a bradcast-to-all (“all-ircl-self” shorthard, as &-
scribed bdow).

110 (Start-Up) Sends a special essagebetween pcessors im
multiple-praces®r system Far details refer to e
Pentium® Po Family Developr's Marual, \ol-
ume 1 The \ectorinformation cantains the sirt-
up address for the multiple-processr boot-up pro-
tocol. Start-p istreated as an edgriggered inter
rupt evenif programmed otherwise. Note that
interrugs are ot auomaticdly retried by the
saurce APIC upon failure in delvery of the mes
sage. It isup to the sdtware to acide whether a
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retry is nealed in tke cag d failure, andissue a
retry messige accoréhgly.

Dedination Mode Selectseither (0 physical or(1) logical destinatiormock.
Delivery Status Indicates the divery status:
0 (dle) There iscurrertly no activity for this interrug, or
the prevous interrupt from this saurce tas com
pleted.

1 (Send Pendng)
Indicatesthat the inerrupt transmision has start-
ed, buthas not yet been completely accepted.

Level For INIT level de-assert dévery mode tre level is 0. Fa all other
modes thelevel is L

Trigger Mode Used for the INIT level de-asert delively made anly.

Degination Shorthand

Indicates ether a shortind rotation is usedto specify the destia-
tion of theinterrug and if sg which storthandis used. Deshation
shorthands do not use the 8-bit destination field, and can be sent by
software udng a sngle write to the lower 32-bit part of the APIC
interrupt comnmandregister Shathards ae cefined for thefollowing
casessdtware self interrupt, interrupt to all procesars inthe system
including the semler, interrugs to all processrs in the system
excluding the sendr.

00: (dedination field, no shorthand)
The degination is specfifiedin bits 56 through 63
of the ICR.

01 (self) The curent APIC is the single deshation of the
interrupt. This is useful for sdtware séf inter-
rupts.The destinationfield isignored Refer to Ta-
ble 72 for de<ription of syppated males Note
that self interrupts do na geneate busmesages

10: (all including self)
The interrupt is sert to all procesars inthe system
including the procesor sending the interrupt. The
APIC will broaccasta message with the destina-
tion field =t to FH. Referto Table 72 for desciip-
tion of sypported modes.

11: (all excluding self)
The interrupt is sert to all procesars inthe system
with the exeptionof the piocessr sendig thein-
terrypt. The ARC will broadcasta mesage usng
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the plysical deginaton mode aml destination
field set toFH.

Thisfield isonly used when lie desination storthard field is setto
“destfield”. If the desination node B physical, then bits 56 through
59 contain the APIC ID. In logical destination mode, the interpreta-
tion of the 8-hit dedination field deperds onthe DFR andLDR ofthe
local APIC Urits.

Table 7-2 shows thevalid conbinationsfor the fields in the irterrugt cortrol register.

Table 7-2. Valid Com bination s for t he APIC Interrup t Comm and Register

Trigger Valid/ Destination
Mode Destin ation Mode Delivery Mode Invalid Shorthand
Edge Physical or Logical | Fixed, Lowest Priority, NMI, Valid Dest. Field
SMI, INIT, Start-Up
Level Physical or Logical | Fixed, Lowest Priority, NMI 1 Dest. field
Level Physical or Logical | INIT 2 Dest. Field
Level x* SMI, Start-Up Invalid® X
Edge X Fixed Valid Self
Level X Fixed 1 Self
X X Lowest Priority, NMI, INIT, Invalid® Self
SMI, Start-Up
Edge X Fixed Valid All inc Self
Level X Fixed 1 Allinc Self
X X Lowest Priority, NMI, INIT, Invalid® All inc Self
SMI, Start-Up
Edge X Fixed, Lowest Priority, NMI, Valid All excl Self
INIT, SMI, Start-Up
Level X Fixed, Lowest Priority, NMI 1 All excl Self
Level X SMI, Start-Up Invalid® All excl Self
Level X INIT 2 All excl Self
NOTES:

1. Valid. Treated as edge triggered if Level = 1 (assert), otherwise ignored.

2. Valid. Treated as edge triggered when Level = 1 (assert); when Level = 0 (deassert), treated as “INIT
Level Deassert” message. Only INIT level deassert messages are allowed to have level = deassert. For
all other messages the level must be “assert.”

3. Invalid. The behavior of the APIC is undefined.

4. X—Don't care.
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7.5.13. Interrupt Acceptance

Three 256bit readenly registers (the IRR, ISR, and TMRreggters)are involved in the interrupt
acceptane logc (refer to Figure 7-10). The 256 bits represents the256 possible vectors.
Becauwse vectas0through 15 are reserd, ® are bits 0 thraugh 15 in these regsters. The fuc
tions ofthe three regsters are aoflows:

TMR (trigger mode register)
Upon accetance ofan interapt, the correspoding TMR bit is
cleaedfor edege triggered interrugs ard st for level interrugs. If the
TMR bit is set, be local APIC sends an EOinessage to alll/O
APICs as a resultof software issuing an EOI comand (efer to
Section7.5.13.6., “End-Of-Interrpt (EOI)” for a desription of the

EOI regiger).
255 16 15 0
Reserved IRR
Reserved ISR
Reserved TMR

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FEEO 0170H
TMR FEEO 0180H - FEEO 01FOH
Value after reset: OH

Figure 7-10. IRR, ISR and TMR Registers

IRR (interrupt request register)
Contains the active inteupt requess that have ben acceptedyut
not yet dispensed bythe current lgal APIC. A bitin IRR is set when
the APIC acceptshe interupt. The IRR bit is cleared, an@ core-
sponding ISR kit is set when tre INTA cycle isissued

ISR (in-service register)

Marks theinterrupts that have beendelivered tothe processor, but
have rot beenfully servicedyet, as an Bl has noyet keen receied
fromthe pocessr. ThelSRreflectsthe curent state othe ocessr
interrupt queue. The ISRDbit for the highestpriority IRR is setduring
the INTA cycle. Durirg the EOlcycle, the flghest prioity ISR bitis
cleaed, and if thecorrespading TMR bit wasset,an EOl message
is seti to all I/O APICs

7.5.13.1. INTERRUPT ACCEPTANCE DECISION FLOW CHART

Theprocesghatthe APIC usesto accept annterrug is shavnin the flow chart in Figure 7-11.
The esponse ofthe local ARC to the start-upPI is explainedin the Pentium® Po Family
Developels Manud, Volume 1
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Wait to Receive
Bus Message
Discard
Message

Yes Accept

Message

No
Lowest
Delivery Priority
Mode?
Set Status Is Interrupt Accept
< to Retry Slot Available? Message
Is Status No Yes Discard
a Retry? Message
Accept
Message
No Is Yes
<«| SetStatus Interrupt Slot
to Retry Available?
No Am | Yes Accept
Winner? Messapge >

Figure 7-11. Interrupt Ac ceptance Flow Chart for the Local APIC

7.5.13.2. ' TASK PRIORITY REGISTER

Task priority register (TPR) provides apriority threshold mechanian for interrupting the
processor (referto Hgure 712). Only interryptswhose priaity is igherthan that pecifiedin
the TPRwill be sericed Otherinterupts areecodedandare sericedas sooras thel PR value
is decreased engh to allow that. This enales the operatingsystem to bock tenporaily
specific interrupts (@ererally low priority) from disturbing high-priority tasks execttion. The
priority threshold mechanian is not apgicable for delivery nodesexcluding the vecta infor-
mation(that is,for ExtINT, NMI, SMI, INIT, INIT-Deasert,andStart-Up delively mades.
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31 87 0

Task
Priority

Reserved

Address: FEEO 0080H
Value after reset: OH

Figure 7-12. Task Priority Re gister (TPR)

The Task Priarity is specifiedin the TPR The 4most-significant kts of the tak priority corre-
spond to the 16intermupt priorities, whle the 4least-sjnificant bits caregpond to the sib-clas
priority. The TPRvalue isgererally deroted asx:y, wherex is the mein priority andy provides
more precision within a givepriority class When the xvalue d the TRR is 15, the APIC will
nat accept ay interupts.

7.5.13.3. PROCESSOR PRIORITY REGISTER (PPR)

The praeessr priority regster (PPR) is usedto deermine wheher aperding interrupt can be
dispensedo the pocessarlts valle iscompued as ftlows:

IF TPR[7:4] = ISRV[7:4]
THEN
PPR[7:0] = TPR[7:0]
ELSE
PPR[7:4] = ISRV[7:4] AND PPR[3:0] =0
Where ISR/ is the vector d the highed priority ISR bit set,or zeroif no ISR bit is set. ThePPR
format is ideticalto that of the TPR. The PPRaddress is FEEG@AOH, andits value ater reset
is zero.

7.5.13.4. ARBITRATION PRIORITY REGISTER (APR)

Arbitration priority regster (APR hdds the curert, lowestpriority of the pracesso, a value
used during lowestpriority arktration (refer toSection 7.5.16.,“APIC Bus Arbitration Mecha-
nism andProtocd”). The APRformat is identical to thatfothe TPR The APR value is
conputedasthe following.

IF (TPR[7:4] = IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN
APR[7:0] = TPR[7:0]
ELSE
APR[7:4] = max(TPR[7:4] AND ISRV[7:4], IRRV[7:4]), APR[3:0]=0

Here, RRV isthe interrupt vecbr with the Hghes priority IRR bit sd or cleaed (f noIRR bit
is set). The APRaddress isFEEO @90H, and its value after eset is Q.
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7.5.13.5. SPURIOUS INTERRUPT

A speciakituationmayoccur when a preesor raisedts tak priority to be greater than exqual
to the level of the interrupt for which the praces®r INTR signal is currertly being aserted If
at the time the INA cycle is isued the interupt tha was to le dispensed bs become masked
(programmed by sditware), the local APIC will return a gurious-interrupg vecta to the
procesor. Dispersing the spurious-interript vecior does na affect thelSR, so the fandler for
this vecor stould reurn without anEOI.

7.5.13.6. END-OF-INTERRUPT (EOI)

During the interrypt sening routine, sofware shoud indicate accefance d lowest-piority,
fixed, timer, ard erior interrupts by writing an arlitrary value into its local ARC endof-inter
rupt (EOI) regster(refer to Figure 7-13). Thisis anindicationfor thelocal ARC it canissuethe
next interrupt, regardless of wheter tre curent interrupt senice hasbeentermnated @ not.
Note that interrugs whose priority is higher than that curertly in service, i not wait for the
EOI canmandcorregpondng tothe interupt in service.

31 0

Address: OFEEO 00BOH
Value after reset: OH

Figure 7-13. EOI Register

Uponreceivingendof-interript, the APICcleass the highet priority bit in the ISRandselects
the rext highest griority interrugt for posting to the GPU. If the terminatedinterrupt was devel-
triggered interrupt, the lcal APIC serdsanend-of-interrupt message to all I/OAPICs. Ndethat
EOI conmand is spplied for the above twointerrupt delivery nodes regartessof theinterrup
source (that is, as aeslut of eitherthe /O APIC interrupts or those issied onlocal pins or usng
the ICR). For future compatibility, the sdtware is requestedto isaue the erd-of-interrup
command by writing a \elue d OH into the EOI egister.

7.5.14. Local APIC State

In P6 family procesas, all lccal APICs are intialized in a ©ftware-dsabled date afer ppwer
up. A sdtware-dsaled local APIC unit respondsonly to self-interruptsandto INIT, NMI, SMI,
and start-upmesages arriing on the APIC Bus. The oprationof local APICs during the
disabled state ias fdlows:

® For the INIT, NMI, SMI, ard gart-up mesages, the ARC behavesnormally, asif fully
enalted.
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Pending interrupts in the IRR and IR regsters are hel and reqire masking or handing
by the CPU.

A disabled l@al APIC does not dkct the sendig of APIC mesages. It issotware's
responsibility to avad issuing ICR canmands if no serding of interrupts is desired

Disabling a bcal APIC does na affect the message in progess The local ARC will
complete tle recegion/transmision of the curent mesage and then enterthe disabled
state.

A disabed local APIC automatically set all mask bits in the LVT ertries. Trying to reset
these bis inthe Iacal vector talde will beignored

A softwaredisabled local APIdistens to all bsimessages in oderto keepits arbtration

ID synchionizedwith the rest othe system, ithe eventhat it isre-enatbed.

For the Pertium® processr, the Iacal APIC is erabled ad dsabledthrough ahardvare mech-
nism. Referto thePertium® Procesor Data Bod for a desription of this mechaism.)

7.5.14.1. SPURIOUS-INTERRUPT VECTOR REGISTER

Software carenabé or disable a bcal APIC atany ime by programmig bit 8 of the urious
interrupt vecto register (SVR, refer to Figue 7-4. The functiors of the fields h the S\R are

as fdlows:
31 109 87 43 0
Reserved 1111

Focus Processor Checking |J ‘

0: Enabled

1: Disabled APIC Enabled Spurio us Vector
0: APIC SW Disabled
1: APIC SW Enabled

Address: FEEO 00FOH

Value after reset: 0000 O0OFFH

Figure 7-14. Spurious-Interrup t Vector Register (SVR)

Spuious Vector Released duiing an INTA cycle when B pending interupts are
masked @ when ro interrupt is pendng. Bits 4 through 7 of the tis
field are prgrammable by ftware, and bis 0 through 3 are hard
wired to logical cnes Sdtware writesto bits 0 through 3 have no
effect.

APIC Enable Allows sdtware b enable () or disble (0 the local APIC. To

Focus Processor
Checking
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bypas APIC completely, ue the ARC_BASE_MSRin Figure 74.
Deterninesif focus pocessorcheding is erabledduring the loveg
Priority delivery: (0) emabled ad (1) disabled
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7.5.14.2. LOCAL APIC INITIALIZATION

On a hardvare reset he pracesorard itslocal APIC are initialized simultaneasly. Forthe F6
family procesas, the local APIC oltains its iritial physical ID from system hardware athe
falling edje ofthe REET# signal by sampling 6 lineson he system b ¢he BR3:0]) and
cluster ID[1:0] lines) and storing this value into the APIC ID regiger; for the Pemium®
processr, four linesare smpled (BEO#through BE3#). Refr to the Pertium® Pro & Pentium
Il Processos Data Book ard thePertium® Procesor Data Bodk for descliptions of this mech
anism.

7.5.14.3. LOCAL APIC STATE AFTER POWER-UP RESET
The state ofocal APICregisters ard state machisatter a pwer-up reset are as fows:

® The fdlowing registersare all reset t00: the IRR, ISR, TMR, ICR, LDR, ard TPR
regiders; the hdding regigers; tke timer initial count and timer curren count regsters;the
remote regster; and the dvide canfiguration register.

® The DRR regster is reset tall 1s.
®* The LVT register enies areresetto 0 except br the mask bits, whichre setto 4
® The local APICversion kgister is not affected.

® The local ARC ID ard Arb ID registrs are loadedrom pracesorinpu pins (the ArbID
regider is set tahe APIC ID vale for the local ARC).

® All internal satemachinesarereset.
®* APIC is softwaredisabed (ttet is, bit 8 of the S/R regigeris set to0).
® The guriousinterrug vector regiter is intialized to FFH.

7.5.14.4, LOCAL AP IC STATE AFTER AN INIT RESET
An INIT reset dthe proces®r canbe initiated in either d two ways:
®* By aseting the proes®r’s INIT# pin.

®* By sending the praessr an INIT IPI (serding an APIC bus-besed interrupt with the
delivery mode set toINIT).

Uponreceivng anINIT via either d these twanechaisms,the pocessr responds by begin
ning the iritialization proces ofthe pocessoicore aml the local APIC Thestate d thelocal
APIC following anINIT reset is the same as it is aftera pawver-up resetexcept that the APIC
ID andArb ID regsters are ot affected.

7.5.145. LOCAL APIC STATE AFTER INIT-DEASSERT MESSAGE

An INIT-disassert mesge has naffect onthe state ofhe ARIC, otherthan toreloadthe arlp-
tration ID regster withthe value in the APICID register
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7.5.15. Local APIC Version Register

Thelocal APIC contains ahardvired version register which software canuse to identify the
APIC version (refer to Fgure 7-16). In addtion, the version regster pecifiesthe $ze of LVT
usedin the specit implemenation. The fields inthe localAPIC version regsterare as fdows:

Version The vesion numnbersof the local APIC or an exiernal 82489DX
APIC cortroller:

1XH Local APIC.
OXH 8248DX.
20H through FFHReserved.

Max LVT Entry Showsthe numbelof the highestorder LVT enty. For the F6 family
processes, having 5 LVT enties, the Max LVT numler is 4; for the
Pertium® processa, having4 LVT entries,the Max IVT number is 3.

31 24 23 16 15 87 0

Max. LVT
Entry

Reserved Reserved Version

Value after reset: 000N 00VVH
V = Version, N = # of LVT entries
Address: FEEO 0030H

Figure 7-15. Local APIC Versio n Regi ster

7.5.16. APIC Bus Arbitration Mechanism and  Protocol

Because only one nessage carbe sent at a timendhe APICbus, tle I/O ARC ard local APIG
empoy a “rotating priority” arbitration piotocd to gan pemission o serd a mesage on he

APIC bus.One @ more APICs maystart senihg their messages simultanesly. At the begn-

ning of evey mesage,eachAPIC presentghe type of the mesage it is sending ard its curent
arbitration priority on theAPIC bus. This infaemationis usedfor arbitration After each artira-

tion cycle (within an arlitration round, only the potential winners keepdriving the tus. By the

time all abitration cyclesare conpleted, tiere wil beonly one ARIC left driving the lus. Once
a winner isseleced, i is grarted exclusive wse d the tus, ard will cortinue driving the tus to

send its acual mesage.

After ead succedsllly transmitted mesage,all APICs increase #ir arkitration priority by 1
The previouswinner (thatis, the one that hes just succesfully transnitted its message) asumes
a riority of O (lowed). An agent whose arbitation priority was15 (highest) during arhtration,
but did ot senda mesage, ad@ts the pevious winner's arbitrationpriority, incremented ly 1.

Note that the arbitration protocol described above is dightly different if one of the APICs issues
a ecial End-Of-Interrupt (EOI). This high-priority mesageis grarted the busregardless of its
serder’s arbtration priority, unlessmore thanone APIC issues anEQl message smultaneously.
In the latter case, thAPICsserting the EOI nessa@s arhitrate usng their abitration priorities.

7-36 I



Intel® MULTIPLE-PROCESSOR MANAGEMENT

If the APICs are set up toaise “lowed priority” arbitration (refer to Section 75.10., “Interrypt
Distribution Mechanigns’) and multiple APICs are curently executingat the lowest pridty
(the value inthe APRregister), the arbitraton priorities (unique valuesin the ArbID register)
are ugd tobreakties. All 8 bits d the APRare wsedfor the lavestpriority arktration.

7.5.16.1. BUS MESSAGE FORMATS

The APIGs use three tygs of mesages EOI message, shtomessage, ad nan-focused lowest
priority messge. The pupose d eachtype d message ahitsformat are dscribed below.

EOI Message. Local ARCssendl4-cycle EOl messaget® the I/O APIC toindicatethata level
triggered interupt has beemccepted Y the pracesor. Thisinterrupt, inturn, is areault of soft-
ware witing into the EOIregister of the local APIC. Table 7-3 shows the cycles in an EOI
messie.

The checksurs conputed fa cycles 6 through 9. Itis a cumuiative sum of he 2-bit (Bit1:Bit0)
logical data valas The carryout ofall but the last addtion is addd to the sumlf any APIC
computesa diferent checksum tharhe one aparing m the bus n cycle 10, it ggnalsan eror,
driving 11 on the APIChus during cycle 12. In this casethe APICs disregrdthemessge The
sending APIC will receive an apppiiate erra indication (reér to Section 7.8.7., “Error
Handling’) ard resendhe message.he stats cyclesare deined inTable 7-6.

Short Message. Short mesages(21-cycles are usedfor sendimg fixed, NMI, SMI, INIT, start-
up, EXtINT and lowestpriority-with-focus interrupts. Table 7-4 shows the cyclesin a sort
messie.

Table 7-3. EOI Message (14 Cycles)

Cycle Bitl Bit0
1 1 1 11 = EOI
2 ArblD3 0 Arbitration ID bits 3 through 0
3 ArbID2 0
4 ArbID1 0
5 ArbIDO 0
6 V7 V6 Interrupt vector V7 - VO
7 V5 V4
8 V3 V2
9 V1 VO
10 C C Checksum for cycles 6 - 9
11 0 0
12 A A Status Cycle 0
13 Al Al Status Cycle 1
14 0 0 Idle
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If the physical delivey mock is beirg used, themrycles15 and16 epresent the APICD ard
cyclesl13 and 14 are consideddont care by the receivelf the logical delivery mockis being
used,then cyles B through 16 are the &it logical destnation field. For shothands of “all-
incl-self” ard “all-excl-sef,” the plysical delivery mode and an abitration priority of 15
(D0:D3 = 1111) are used. The agesendimg the messagesithe only one regired to diginguish
betweerthe two casedt doesso using irternal inbrmation.

When usingoweg priority delivery with an exsting focus processr, the focts processor iden
tifies itselfby driving 10 during cycle 19andacceps the interrypt. This isan irdicationto other
APICsto terminate arbtration If the focus processo has not been found, the short messag is
exterded on-the-fly to the na-focused oweg-priority messige. Notethat excep for the EOI

mesage, mesages generatinga checkum or anacceptance sr (refer to Section 7.517.,,

“Error Hardling”) terminate aer cycle 4.

Table 7-4. Short Message (21 Cycles)

Cycle Bitl Bit0
1 0 1 01 =normal
2 ArbID3 0 Arbitration ID bits 3 through 0
3 ArbID2 0
4 ArblD1 0
5 ArbIDO 0
6 DM M2 DM = Destination Mode
7 M1 MO M2-MO = Delivery mode
Cycle Bitl Bit0
8 L ™ L = Level, TM = Trigger Mode
9 V7 V6 V7-VO0 = Interrupt Vector
10 V5 V4
11 V3 V2
12 V1 VO
13 D7 D6 D7-DO0 = Destination
14 D5 D4
15 D3 D2
16 D1 DO
17 C C Checksum for cycles 6-16
18 0 0
19 A A Status cycle 0
20 Al Al Status cycle 1
21 0 0 Idle

NonfocusedL oweg Priority Message. Thes 34¢ycle messages(refer to Bble 7-5) are used
in the lowes priority delivery mode whena facus pocessr is not resent. @cles1 through 20
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are ameas forthe hort mesage. If duing the staits cycle (cycle 19)the stateof the (A:A) flags
is 10B, a focus pr@essor has been iddified, andthe shar message famat isused (referto
Table 7-9. If the (A:A) flags are set t®0B, lowest piority arbitration is startedandthe 31-
cycles ofthe nanfocused lowest prigty messige are ompeted For dher canbinations ofstatus
flags refer to Section7.516.2.,“APIC Bus Satus Gcles”

Table 7-5. Nonfo cused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bitl

1 0 1 01 =normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArblD2 0

4 ArbID1 0

5 ArbIDO 0

6 DM M2 DM = Destination mode

7 M1 MO M2-MO = Delivery mode

8 L ™ L = Level, TM = Trigger Mode

9 V7 V6 V7-VO0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 Vi VO

13 D7 D6 D7-DO = Destination
Cycle Bit0 Bitl

14 D5 D4

15 D3 D2

16 D1 DO

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 Al Al Status cycle 1

21 P7 0 P7 - PO = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 PO 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArblD2 0

31 ArbID1 0

32 ArbIDO 0

33 A2 A2 Status Cycle

34 0 0 Idle
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Cycles 21 through 28 are usedto abitrate fa the lowest piority procesor. The processors
participating in the abitration drive ther inverted pocesar priority on the kus. Only the local
APICs having free irterrugt slots participate inthe lowest piority arbiration If no such ARIC
exists the message willbe rejectedrequiring it to be tried at a later tira.

Cycles?29 through 2 are al® used or arbitrationin case two omaore processrs hae the same
lowestpriority. In the lowest piority delivery mode, all conbinationsof erorsin cycle 33 (A2
A2) will set the*accept eror” bit in the eror status reigter ¢eferto Figue 7-16). Arbitration
priority update isperformed in cycle 2Pandis not afected ly erras detected in cycle 330nly
the lacal APIC that wins in tle lowestpriority arkitration, drives cycle 33 An erra in cycle 3
will forcethe sendeto resendhe nessage.

7.5.16.2. APIC BUS STATUS CYCLES

Certain cycles wihin anAPIC bus message ae gatus cycles. Dung these cyclesthestatus flags
(A:A) and (ALAl) are examined Table 7-6 showshow these statis flags are mterpreted,
depending onthe curert deliverymade andexistence ba focus pocessr.

Table 7-6. APIC Bus Status Cycles Interpretation

Update
Delivery ArblD and | Message
Mode A Status Al Status A2 Status Cycle# Length | Retry
EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No
00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes
11: CS_Error XX: XX: No 14 Cycle Yes
10: Error XX: XX: No 14 Cycle Yes
01: Error XX: XX: No 14 Cycle Yes
Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No
00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes
11: CS_Error XX: XX: No 21 Cycle Yes
10: Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
NMI, SMI, 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No
INIT, ExtINT,
Start-Up 00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes
11: CS_Error XX: XX: No 21 Cycle Yes
10: Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
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Table 7-6. APIC Bus Status Cy cles Interpreta tion (Contd.)

Lowest 00: CS_OK, NoFocus | 11: Do Lowest 10: Accept | Yes, 20 34 Cycle No
00: CS_OK, NoFocus | 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 11: Do Lowest O0X: Error | Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 10: End and Retry | XX: Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 0X: Error XX: No 34 Cycle Yes
10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No
11: CS_Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
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7.5.17. Error Handling

The local APICses flags n the error statusregster (ESR) to recordall the errasthatis detects
(refer to Figure 7-16). The ESR isa read/wite regster ands reset aftebeing writtento by the
proces®r. A write to the ESR must be done just prior to reading the ESRo allow the reagisterto
be umlaied. An error interrupt is generated whenone of the eror hits is set. Eior bits arecumu-
lative. The ESR must be cleaed by software afterunmasking of the error irterrupt ertry in the
LVT is peformed (by exewting back{o-back awrites). If the software,however, wishesto
handle errorsset inthe regiser pria to unmasking, it should write ard thenread he ESRprior
orimmediately akr the mmaskirg.

31 876543210

Reserved

Received lllegal Vector
Send lllegal Vector
Reserved
Receive Accept Error
Send Accept Error
Receive CS Error
Send CS Error

lllegal Register Address ‘ ’ ‘

Address: FEEO 0280H
Value after reset: OH

Figure 7-16. Error Statu s Register (ESR)
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The functiors of the ESRflags are as follows:

Send CS Eror Set when te local APIC detectsa check aim error for a mesage
that wasser by it.

Receive CS Eror Set when the local APIC detectsa check aim error for a mesage
that wasreceived ly it.

Send Accept Error Set whenthe Iacal APRC detects that anesageit sent was ot

accepted lg ary APIC on the bus.

Receve Accept Bror  Set wherthe local APIC detectghatthe mesage it receied wasnot
acceped by ary APIC on te bus, including itself.

Send Illegd Vectar Setwhenthe local APICdetects an illegl vecta in the message that
it is sending onthe tus.

Receie lllegal Vector Set wken he local APIC detcts arnillegal vector inthe message it
received,includng anillega vecta code inthelocal vectortable
interrugs ard sif-interrupts from ICR.

Illegal Reg. Address  Set when the pressor is trying to accessa regisér that is not

(P6 Family Procesors implementedin the P6 familyprocessrs’ local APIC register

Only) address space; #t is within FEEOOQOH (the APICBase MSRH
through FEE@M3H-H (the APICBa® MSR pus4K Bytes).

7.5.18. Timer

The local APIC unit contains &32-bit programmable tmer for use by the local poesor This
timer is configuredthrough the timer register in the local vecor table (refer to Figure 7-8). The
time base is derived from the processa’s bis clock, divided by a value specified in the divide
configuration regiger (eferto Figure 7-17). After resetthe timer is intialized tozero. Theitmer

suppats one-shd and perialic modes. The timer can be conigured to interrpt the local
procesorwith an abitrary vector

31 4 3210
Reserved 0

Address: FEEO 03EOH
Value after reset: OH
Divide Value (bits 0, 1 and 3)

000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 7-17. Divide Configu ration Register
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The timer is started by programming its initial-count register, refe to Figure 7-18. The initial
count valueis coped into the curent-count regster ard cownt-down is begu. After the timer
reacteszeo in ore-shot mde, arinterrupt isgenerated ad the timer emains atts 0 \alue until
repragrammed. In periodic mode, the currenicount regster isauomatically reloaded fran the
initial-count regster when the cant reacles 0 ard the caint-down is repeated If during the
count-down proces the initial-count regiger isset,the counting will restart andthe newvalue
will beused. Theinitial-count regster is read-writeyosdtware,whil e the currertcount regster
is readonly.

31 0

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H
Value after reset: OH

Figure 7-18. Initial Countand Current Count Registers

7.5.19. Software Visible Differences Between the Local APIC and
the 82489DX

Thefollowing local APICfeatures diferin theirdefinitions from the 48DX featues

®* Whenthelocal APICis dsabled its internal registers arenot cleared.Instead settingthe
mask lits in the local ecbor table to disable the local API@erely causestito cease
acceping the tus messages excdpfor INIT, SMI, NMI, ard sart-up. In the 248DX,
when the local unit is disalded by restting the bi 8 of the guriousvecbor regster, all the
intemal regsters includthg the IRR, ISR and TMR arecleaed aml the nask bits in the
locd vector tables are sat togical ores In the dsabledmode, 82489DX local it will
accep only the reset dessert mesage.

® In the local APIC NMI and NIT (except forINIT deasert) ae alvays treatedas edye
triggered irterrugs, even if programmed otherwise. In the 82489DX these iterruds are
always level triggered.

®* Inthelocal APIC interupts generatedthrough ICR messgesare always waed as ede
triggered(except INIT Deasart). In the 8289DX, the IR can be used to gemate eiber
edee or lewe triggered irterrugs.

® |Logical Destnation register the local APIC supportts 8 hts, wheee it supports 32 bits for
the 8289DX.

® APIC ID regster is 4 bits widefor the local APIC and8 hits wide for the 8289DX.

® The remote read delivery mode provided in the 82489DX is not supported in the Irtel
Architedure local APIC
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7.5.20. Perform ance Related Differences between the Local APIC
and the 82489DX

For the 8489DX, in the lowed priority mode, al the tagetlocal APICs ecified by the desti-
nation field participatein the lowestpriority arktration. Orly those local APICswhich have free
interrug slats will participatein the lowest priority arbitration.

7.5.21. New Features Incorpora ted in the Pentium® and P6 Family
Processors Local A PIC

The local APICin the PentiurfiandP6 family procesas have the following new featires rot
foundin the 48DX.

®* The local APIC supports cluger addessirg in logical desination mode.
® Focus pocessr checkingcan e enatbed/disabled inthe local APIC
* Interrupt inpu signal pdarity canbe pogrammedn the local APIC.
® The local APIC supports SMI through the ICR ard 1/O redireciontablle.

® The local APIC incorporatesan eror staus regster tolog and repd errors to the
procesa.

In the P6 family procesas, the local APIC incorporatesan additional local vecta table ertry
to hardle performancemonitoring @urter interrupts.

7.6. DUAL-PROCESSOR (DP) INITIALIZATION PROTOCOL

The Petium® processr contains an interal dud-procesing OP) mechaism that permits two
procesas to be initialized and configured for tightly coupled symmetric multiprocessng
(SMP). The DPinitializaion piotocd supportts the corrolled baoting and corfiguration ofthe
two Pertium® processrs. Whencorfiguration lasbeen canpleted the two Pentiufhprocessos
can share #h praesing lad fa the systm and shag the hadling of interupts receivedrom
the systenis I/O APIC.

The Petium® DP intialization protocol definestwo procesas:

® Primaryprocessr (also cidedthe otstrapprocesor, BSP)—Ths pocessr boots it®lf,
corfiguresthe APICenvirommert, andstarts the secahprocessar

® Secondry procesor(also called the dal processr, DP)—This processr boots itself then
waitsfor a startupsignalfrom the primary processarUpon receivingthe startup signal, it
completesits canfiguration.

Appertdix C, Dual-Procesor (DP) Botup Segience Exenple (Scific to Pentiun® Proces-
$as) gives an exaple (with code) d the bootup sequerce for two Rentium® procesors oper
ating in a DPconfiguraion.
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Appendix E, Programming the LUNTO and LINT1 Inpus desribes(with code) hav to program
the LINT[0:1] pins of the pocessr’s local AR Cs after adual-processr configuration hasbeen
completed

7.7. MULTIPLE-PROCESSOR (MP) INITIALIZATION PROTOCOL

The Intel Architecture (beppning with the Petium® Pro procesas) defines a nultiple-
processr (MP) initialization protocd, for use withboth single- ard multiple-procesar systens.
(Here,multiple procesorsis defined as wo or more piocesas) The pimary gals of this
protocol are adollows:

* To permit segantial or cantrolled boating of multiple piocessrs (from 2 to4) with o
dedcatedsystem hardware. The initialization algorithm is nat limited to4 processrs; it
cansupmrt suppats from 1to 15 processrs in a muticlusteredsysem whenthe APIC
buses are tiedogetherLarger systems areohsupprted

®* To be able toinitiate the MP gotocol without the reedfor a dedicated ggnal or BSP.

® To provide fault tolerance. No &ngle processor iggearaphically designated the BP. The
BSP is determined dynamicdly during initialization.

The following sections describe an MP iriti alization protocol.

Appendix D, Multiple-Processr (MP) Bootup Sequence Exanple (Specific to P6 Family
Processas) gives anexample With code) d the b@tup sequence ér two F6 family procesors
operatingin an MP cafiguration

Appendix E, Programming the LUNTO andLINT1 Inpus desribes(with code) hav to program
the LINT[0:1] pins of the procesors local APICs ater an MP cafiguration has leen
completed

7.7.1. MP Initialization Protocol Requirements and Rest rictions

The MP protocol impaosesthe following requremens andregrictionsonthe gystem:

® An APIC dock (APICLK) must be provided on al systems baed on the P6 family
procesas (excluding molile processrs ard madules.

* All interupt mectanisms mus be disabdledfor the duation of the MP prdocol algorithm,
including the windav of time ketweenthe asertion of INIT# or receigt of anINIT IPI by
the application pracesors and the receipt afSTARTUP IPI by the appcationprocessors.
Thatis, requess generaed by interrupting devces musnotbe £en by e local APIC unit
(on board the procesar) until the conpletion of the aborithm. Failure to disable the
intemrupt mechanisms may resut in proces®r shutdown.

®* TheMP protocd should be initiated only after a lardwarereset. After campletion of the
protocol algaithm, aflag is set in the APIC base MSRof the BP (APIC BASE.BSP) to
indicatethat itis the BSP. Thisflag is clearedfor all other processors. If @rocessr or the
completesystem $ subjectto an INIT ®quence (either thrnagh the INIT# pin or an INIT
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IPI), then the MP prtocol is na re-exected. Irstead each proesor examines itBSP
flag to detemine whetler the pocesor should boa or wait fa a STARTUP IPI.
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7.7.2. MP Protocol Nomenclature

The MP intialization pratocol definestwo clasesof processaes:

® The bootstrap pocessor (BP)—This primary pocessr is dynanically selected byhe
MP initialization algorithm. After the BSP has been selected it configures he APIC
environment, anl startghe secondry procesors, imdersoftware cantrol.

® Application procesors (APs)—These secondy pocessors are theemainder of the
processrsin a MP system that wenotselectedasthe BSP. The APscamplete a rmimal
self-corfiguration, tren wat for a gartup signal from the BSP praesor. Upon receivirg a
startupsignal, an AP cmpletedts corfiguration.

Table 7-7describes theinterrug-style ablyeviations that will be wsedthrough out the remaining
description of the MP intialization protocd. The® IPIs a not define new interrupt messags.
They are messages hat are special oty by virtue of the time hat they exig (that is, befae the
RESET seqence is comigte).

Table 7-7. Types of Bo ot Phase IPIs

Message Type Abbreviati on Descri ption

Boot Inter- BIPI An APIC serial bus message that Symmetric Multiprocessing

Processor Interrupt (SMP) agents use to dynamically determine a BSP after reset.

Final Boot Inter- FIPI An APIC serial bus message that the BSP issues before it fetches

Processor Interrupt from the reset vector. This message has the lowest priority of all
boot phase IPls. When a BSP sees an FIPI that it issued, it
fetches the reset vector because no other boot phase IPIs can
follow an FIPI.

Startup Inter- SIPI Used to send a new reset vector to a Application Processor (non-

Processor Interrupt BSP) processor in an MP system.

Table 78 describes the varous fields ofeach lbot phase IPI.

Table 7-8. Boot Phase IPlI Message Format

Destinati on Destination | Trigger Destination Delivery Vector
Type Field Shorthand Mode Level Mode Mode (Hex)
BIPI Not used All including Edge Deassert Don't Care Fixed 40 to 4E*
self (000)
FIPI Not used All including Edge Deassert Don't Care Fixed 10to 1E
self (000)
SIPI Used All allowed Edge Assert Physical or StartUp 00 to FF
Logical (110)
NOTE:
* For all P6 family processors.
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For BIPI andFIPI mesages, the lowet bits of the ector feld are eqal to the ARIC ID of the
processr isquing the mesage. The upper4 hits of the vector field of a B?l or FIPI can be
thought of asthe“generationID” of the message. Al procesorsthat run symmetric to a P6

family proces®r will havea gerraton ID of 0100B or 4H. BIPIsin a yystembagd on the P6
family procesors will therefoe u® vecor valuesrangng from 40H to 4EH (4FH can no be
used lecause FH isot a valid APIC ID).

7.7.3. Error Detection During th e MP Initialization Protocol

Errors may @cur an the ARC bus during the MP hitialization hase. These ememay be tran
siert or pemanen ard can le caused by variety offailure meclnisms(for example, lboken
traces, soft eors during bus usage, etg. All serial bis related erras will result in an APIC
checlsum oracceptanre erra.

Theoccurence 6 anAPIC error causes procesorshutdown

7.7.4. Error Handling Duri ng the MP Initializat ion Protocol

The MP initialization pratocd makesthe fdlowing assimptions

* If any erras are datectedon the ARC bus during execdion of the MP initialization
protocol, all proces®rs will shutdown.

®* In a system that edorms to htel Architectureguidelines, a likely error (broken trace,
check aim errorduring transmission) will resut in no mote thanoneprocessr boding.

®* The MPinitialization protocd will be executedby procesas evenif they fail their BIST
seqgeences.

7.7.5. MP Initialization Protocol Algorithm

The MP initialization protocol usesthe messa@ pasing capabilities of the processo’s local
APIC to dynamically determine a boot strapprocesso (BSP. The algaithm used esertially
implemerns a“race fa theflag” mechanism usinghe APICbus fa atomicity.

The MP initialization algorithm is bagd onthe fact trat one andonly one nessace is allowed
to exist on the APIC bus at a gven time andthat once he message isissued, it will conmplete
(APIC messages are ataic). Another featue of the APICarchitecture that is isedin the initial-
ization algrithm is theexigence ofa round—+obin piiority mechanism betweeall agents that
use the APIus.

The MP intialization protocd algorithm performs the fdlowing operations in a SMPsystem
(refer toFigure 719):

1. After completing therr internal BSTs, all pre¢essrs stit their MP intialization protocd
seqierce ty issung BIPIs to“all including self” (at time t=0. The fou least ggnificant
bits o thevectorfield of thelPI cortain eachprocesors APIC ID. The APIChardvare
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observesthe BNR# (block nex request) pn to guarantee ttat the initial BIPI is nat issued
on the APIC tus until the BIST sequerceis conpletedfor all processaes inthe ystem

2. When the firstBIPI completes(at time t=1), the ARC hardvare (in each pesor)
propagatesan irterrupt to the proces®r core to indicate tle arival of the BIPI.

3. The praesor commres the far least gjnificant bits of the BPI's vector field to the
processr's APIC ID. A matchindicates that # piocessr shoud be the BSP andcontinwe
the initialization seaqience. If tre APIC ID fails to match the BIPIs vecta field, the
processr is esentially the “loser” or not he BSP. The processor ien becomesan
apgication processr andshoud entera “wait for SIPI” loop.

4. The winner (the B5P) issues an FIPI. The FIPI issued to “all including self” andis
guararteed to be thlastIPl on the APIC b during the intialization sequence. Thigs due
to the fact that the raund-robin priority mectanism forcesthe winring APIC agen's ¢he
BSP9 arhitration priority to 0. The FPI is therefore issted by a priaity 0 agent am has ©
wait until all other agents have issued their BIPI's. hen the BSP receies the FIPI that it
issued (t=5), it will start fetching code athe reset vectofintel Architectureaddess).

System (CPU) Bus

P6 Family P6 Family P6 Family P6 Family
Processor A Processor B Processor C Processor D
A A A A
\ / \ \
- ) '
APIC Bus
?O ?1 ?2 t;3 t=4 t=5
‘ BIPILA ‘ BIPI.B ‘ BIPI.C ‘ BIPI.D ‘ FIPI ‘

Serial Bus Activity

Figure 7-19. SMP System

5. All applicationprocessrs (non-BSP processors)amain ina “halted’ stateandcan aly be
woken upby SIPIsissued byanoherprocessr (note an APin the sartup 1Pl loop will also
regpondto BINIT andsnoms).
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Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

CHAPTER 8
PROCESSOR MANAGEMENT AND
INITIALIZATION

This chaper desribesthe facilities provided for managing proces®r wide functions and for
initializing the pracessr. The subjectscovered irclude: procesar initialization, FPU initiali za-
tion, procesa corfiguration, featire deermination, mode switching, the MSRs (in the
Pentium® andP6 family processrs), andthe MTRRSs (in the F6 family processrs).

8.1. INITIALIZATION O VERVIEW

Following powerup o an as®rtion o the RESET# pin, eachprocesor on the system lus
performsa hadwareinitializationof theprocesor (knownas ahardvare eset) andanoptional
built-in sef-te¢ (BIST). A hardware resesetseachprocesa’s regsters to a known stae ard
placesthe praesor inreal-addes mode. It al® invalidates the inteal cacles transhtion
lookasde buffers (TLBs) andthe bianchtarget buffer (BTB). At this pant, the action taken
depems onthe pocesa family:

* P6family pracesors—Al the pocessors on thystem hus (includng a shgle processr
in a uniproces®r system) execue the multiple procesa (MP) initialization protocd
acrass theAPIC bus. Theprocesorthat is glectedthrough this prdocol as tle batsrap
processr (BSP) then immediately starts execting oftware-intialization code in the
current coe segnentbeginning at he ofiset in the EIP registeilhe application (an-BSP)
processrs (AP) gointo a et state vhile the BSP isexecting initialization code. Refer to
Sectbn 7.7., “Multiple-Procesa (MP) Initialization Protocol” in Chapter 7, Multiple-
Processar Manageament for mare details Note that in a unipocessr sysem the sngle P6
family processorautonatically becomes th&SP.

® Pernium® procesois—In either a singe- or dwal- pracesor system, a single Pentidfim
procesa is alwayspre-desgnaed as he primary processor. Following areset the primary
processr behawes asfollows in both single- andlual-proces®r systems. Wing the dwal-
procesa (DP) read initializaion prdocol, the primary procesor immedately starts
executirg software-intialization code in the currernt code segment beginning at the offset
in the ElPregister. The £candary praesor (if there is one) goesrito ahalt gate. (Refer to
Secton 7.6., “Dua-Processr (DP) Initialization Protacol” in Chaper 7, Multiple-
Processr Managenent for more details)

®* Inteld86™ processr—The primaty processor(or single processr in a wiprocessr
system) immediately starts executing sdftware-initialization coce in the current code
segmen begining atthe of'setin the EIPregster. (The Intel486™ dasnot auomaicaly
execute a DPor MP initialization pratocol to determine which processr is the pimary
procesa.)

The oftware-intialization code performs all system-specific initialization of the BSP or
primaty processr ard thesystem l@ic.
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At this point, for MP (or DP) systemshe BSP (or pimary) processr wakes up eacAP (or
secondry) procesorto endle those pocessrs to execute self-cofiguration cale.

When all pocessrs are ilitialized,configured ard synchonized, tre BSP omprimary processr
begnsexecutingan iitial operatingsysemor executivedsk.

The floating-point unit (FPU) is al® initialized to aknown state dring hardware eset. FPU
sdtware intiali zationcode canthenbe executedto perform operationsswch as tting the preci-
sion of the FPU ad the exepfon masks. No special intialization of the FPU isrequired to
switch opeiting modes

Asserting the INIT# pin on the pocesor invokesa similar regonse to a rerdware rest. The
major differerce isthat duing an INIT, theinternal cacks MSRs, MTRRs, andFPU stat are
left uncharged(althaugh theTLBsandBTB areinvalidatedas with ehardvare eset). An INIT
providesa metod for switching from protecied to realaddress made whle maintaining the
contentsof the internal cacks

8.1.1. Proc essor State After Reset

Table 81 shavs the gate d theflags andotherregisters followingpower-up for the Pentiurfi
Pro, Pertium®, and In&l486™ procesas. The gate d control regster CR0is60000010H (refer
to Figue 84), which paces th@rocesoris in real-addessmodewith pagirg disabled

8.1.2. Processor B uilt-In Self-Test (BIST)

Hardwae may reques that the BIST be performed at power-up. The EAX register is cleaed
(OH) if the pocessopas®s theBIST. A nonzerovaluein the EAX register afterthe BIST indi-
catesthat a pocessr fault wasdetected. 1 theBIST is nd requeged, the catents ofthe EAX
regster afer a hadware eset is OH.

The overhead forperforminga BIST variesbetweenprocesor fanilies. For exampe, the BIST
takes appoximately 5.5 million processr clock periods to execute onthe Petium® Pro
processr. (This clock cownt is malel-specific,and Intel reseresthe lightto changetheexact
numberof periods, for anyof the Intel Architedure procesas, withou notification.)
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Table 8-1. 32-Bit Intel Archi tecture Proce ssor States
Following Power-up, Re set, or INIT

Register P6 Family Processors Pentium® Processor Intel486™ Processo r
EFLAGS! 00000002H 00000002H 00000002H
EIP 0000FFFOH 0000FFFOH 0000FFFOH
CRO 60000010H?2 60000010H2 60000010H?2
CR2, CR3, CR4 | 00000000H 00000000H 00000000H
MXCSR Pentium® 11l processor only- | NA NA
Pwr up or Reset: 1F80H
FINIT/FNINIT: Unchanged
CS Selector = FOOOH Selector = FOOOH Selector = FOOOH
Base = FFFFO000H Base = FFFFO000H Base = FFFFO000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed
SS, DS, ES, FS, | Selector = 0000H Selector = 0000H Selector = 0000H
GS Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed
EDX 000006xxH 000005xxH 000004xxH
EAX 03 0° 03
EBX, ECX, ESI, | 00000000H 00000000H 00000000H
EDI, EBP, ESP
MMO through Pentium® Pro processor - Pwr up or Reset: NA
MM74 NA 0000000000000000H
Pentium® 1l and Pentium® Il | FINIT/FNINIT: Unchanged
processor -
Pwr up or Reset:
0000000000000000H
FINIT/FNINIT: Unchanged
XMMO through Pentium® 11l processor only- | NA NA
XMM75 Pwr up or Reset:
0000000000000000H
FINIT/FNINIT: Unchanged
STO through Pwr up or Reset: +0.0 Pwr up or Reset: +0.0 Pwr up or Reset: +0.0
ST74 FINIT/FNINIT: Unchanged FINIT/ENINIT: Unchanged | FINIT/FNINIT: Unchanged
FPU Control Pwr up or Reset: 0040H Pwr up or Reset: 0040H Pwr up or Reset: 0040H
Word* FINIT/FNINIT: 037FH FINIT/FNINIT: 037FH FINIT/FNINIT: 037FH
FPU Status Pwr up or Reset: 0000H Pwr up or Reset: 0000H Pwr up or Reset: 0000H
Word* FINIT/FNINIT: 0000H FINIT/FNINIT: 0000H FINIT/FNINIT: 0000H

FPU Tag Word*

FPU Data
Operand and CS
Seg. Selectors*

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H
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intgl.

Table 8-1. 32-Bit Inte | Architecture Proc essor States

Following Po wer-up, Reset, or INIT (Contd .)

Register

FPU Data
Operand and
Inst. Pointers*

P6 Family P rocessors

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Pentium® Processor

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Intel486™ Process or

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

GDTR,IDTR Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, RI'W AR = Present, RIW AR = Present, RIW
LDTR, Task Selector = 0000H Selector = 0000H Selector = 0000H
Register Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, RI'W AR = Present, R'W AR = Present, RIW
DRO, DR1, DR2, | 00000000H 00000000H 00000000H
DR3
DR6 FFFFOFFOH FFFFOFFOH FFFF1FFOH
DR7 00000400H 00000400H 00000000H
Time-Stamp Power up or Reset: OH Power up or Reset: OH Not Implemented
Counter INIT: Unchanged INIT: Unchanged
Perf. Counters Power up or Reset: OH Power up or Reset: OH Not Implemented
and Event INIT: Unchanged INIT: Unchanged
Select

All Other MSRs

Pwr up or Reset:
Undefined
INIT: Unchanged

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

Data and Code Invalid Invalid Invalid
Cache, TLBs
Fixed MTRRs Pwr up or Reset: Disabled Not Implemented Not Implemented

INIT: Unchanged

Variable MTRRs

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

Not Implemented

APIC

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Not Implemented

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot
be invoked during an INIT.)

4. The state of the FPU state and MMX™ registers is not changed by the execution of an INIT.

5. Available in the Pentium® IIl processor and Pentium® Ill Xeon™ processor only. The state of the SIMD
floating-point registers is not changed by the execution of an INIT.
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Paging disabled: 0
Caching disabled: 1
Not write-through disabled: 1

Alignment check disabled: 0
,7 Write-protect disabled: 0

31302928 1918 1716 15 6 543210
PICIN Al |w N|, [T|E|m|P
G|D|w M| |P E|"[s|M|P|E

External FPU error reporting: 0 ‘
(Not used): 1
No task switch: O
FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

D Reserved

Figure 8-1. Contents of CRO Register afte r Reset

8.1.3. Model and Stepping | nformation

Fdlowing a hardiare resetthe EDX regster coniins compnert idertification and reision
informafton (referto Figure 8-9. The devce ID field is st to the value 6H, 31, 4H,or 3H to
indicate a PentiufnPro, Petium®, Intel486™, or Intel386™ procesor, respecively. Different
values nay be returned fa the variaus members of thes Intel Architecture families. For
exampe the Inel386™ SX pracessorreturrs 23H in the devcelD field. Binaryoljectcode can
be made compatible with other Intel proces®rs by using this numberto selecthecorrect iritial-
ization software.

31 14 131211 87 43 0

Stepping

EDX Family | Model D

Processor Type ‘
Family (0110B for the Pentium® Pro Processor Family)—‘

Model (Beginning with 0001B}
|:| Reserved

Figure 8-2. Proce ssor Type and Signature in the EDX Register after Res et
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The steppng ID field cortainsa unique iderifier for the pocessr’s steppng ID or revision
level. The uperword of EDX is resrved fdlowing reset.

8.1.4. First Instruction E xecuted

Thefirst instructionthat isfetchedandexecued foll owing ahardvare reset is locatetphysical
addes H-FFFFFOH. This addessis 16 bytes belbow the praessr's uppernpg physical
address The EPROM containing the ftware-intialization code must be locatedat ths adiress.

The addess FFH-FFM is beyond the 1-MByte adiressable range d the processr while in
real-addessmode. The processo is initialized to this startig addessas fdlows. Thke CS
regsterhas twaparts: thevisible segmensekctor part ard the hddenbase addess part. Inreal-
addessmade, the bse address $ narmally formedby shifting the 16bit segmenselector @lue
4 hitsto theleft to produce a 20bit ba® addess However, during a lerdware eset the segnent
sekcta in the CS regster is loaced wih FOOOH and the base adss is loaded with
FFFFOOM®H. The starting addssis thus formedby addng the base addss © the value in the
EIP register (that is, FFFF0000 + FFFMH = FA-FFA-0H).

The firsttime the G registeris loaded with anew vaue after a hadware resetthe processr
will follow the rormal rule far addressranshtionin realtaddress male (thais, [CS base adés
= CS segmeh selector *16]). To insure that the base adeksin the CS regiser remains
unchargedurtil the EPROM basedsoftware-initialization coce is canpleted the cale rrust not
cortain a farjump or far call orallow aninterrug to accur vhich woud cause the CS selecor
value to bechangd).

8.2. FPU INITIALIZATION

Softwaretnitialization co@ candetermine the whethehe pocessr containsor is atiacked to
an FPUby using the CPUID instruction. The cale nust theninitializethe FPU ard set flag in
cortrol regster CRO to reflect the state of # FRJ ervironment.

A hardwvare reset placebd Pentiurfi procesor FPU in the statel®wn in Table 8-1 This date
is differert from thestate theprocessoris placed inrwhenexecutinganFINIT or FNINIT instruc-

tion (abko shown in Table 841). If the FRJ is to be used the ©ftware-nitializaion coa shoud

execte an FINIT/FENNIT instructionfollowing a haravare reset These inguctions, tag all
dataregisersasempty clearall theexceptionrmasks, set thEOP-d-stack value to0, andselect

the default rounding andprecsion controls setting (rourd to nearesand64-bit precision).

If the piocessr is reseby assertingthe INIT# pin, the FPU tate is nbchangd.

8.2.1. Configuring th e FPU Environment

Initialization codemug loadthe ajpropriate \eluesinto the MP EM, ard NE flags of cortrol
regster (RO. These bitare clearedn hardvare rest of the pocessr. Figure 8-2shows the
suggeded settings for these flagsdepending on the Intel Architecture processr being initial-
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ized. Irtialization cale can test for thtype ofprocesor pesent befre seting or clearimy these
flags

Table 8-2. Recommended Settin gs of EM and MP Flags on Intel Archi tectu re Proc essors

EM MP NE Intel Archi tectur e Processor
1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.
0 1 1or0 Pentium®Pro, Pentium®, Intel486™ DX, and Intel 487 SX
processors, and also Intel386™ DX and Intel386™ SX
processors when a companion math coprocessor is present.

NOTE:
* The setting of the NE flag depends on the operating system being used.

The EM flagdetermires whetter floating-point instructions are exaited bythe FRJ (EM is
cleared)or gererate a devicerot-awailalle exception#NM) so that an eception fandler can
emulate the floatingoint operation (EM = 1)Ordinarily, the EM flag isclearedwhen an iPU
or math copocessoris presert andset if they ae nd present.flthe BV flag is selandno FPU,
math coprocesar, or floating-point enulatar is presen the systemwill hang when afloating-
point instruction isexecuted.

The MP flag determines whther WAIT/FWAIT instructiors react tothe setting of the TS flag
If the MPflag is clear WAIT/FWAIT instructions ignore the seting of the TSflag;if the MP
flag is =t, they will generate a évicenot-available excepion (#NM) if the TS flag isset. Genr-
ally, the MPflag shoud be set fo processrs with an integated FRJ ard clear br processors
without an integated FPU and withot a math copcessor msert. However, an operating
system carchocse to save the flating-point cortext atevery catext svitch, in which cae there
would be no need to set tle MP bi.

Table 241 in Chaper 2, SystemArchitedure Overviewshowsthe actonstakenfor floaing-point
andWAIT/FWAIT instructiorns based onthe ttings of the EM,MP, andTS flags

TheNE flag detemines whetlr unmaskedloating-point exceptiors are tandledby generating
a floating-point error exeptoninternally (NE isset, rative node) or through anexterral inter-
rupt (NE iscleared. In sysems where an exteal interrupt controller isused to invke nuneric
exceptim hardlers (suchrasMS-DOS-kased systems),the NE bit shald be cleared.
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8.2.2.  Setting the Processor for FPU S oftware Emulation

Seting the BV flag cawses the pocessor tagyeneate a deicenot-available excepon (#NM)
andtrapto a sofware excepion handler wheneer it ercourtersa floatirg-pant instruction
(Table 8-2 shows whenit is appropriate touse this flag.) Setthg this flag has twofunctions

* |tallowsfloating-point coce to runonanIntel pracessr that reither hasanintegrated~PU
nor is comectedto an eternal nmath coprocessarby using afloating-point emulator

* It allows floaing-paoint cock to be execued using a sgcial or ondandad floating-point
emdator, selected dr a particular apgication regardess of whetheran FPU or math
coprocesoris present.

To emulate flating-point instrictions, the B4, MP, ard NEflag in cortrol regster CRO shoud
be &t asshownin Table 83.

Table 8-3. Softw are Emulation Settings of EM, MP, and NE Flags

CRO Bit Value
EM 1
MP 0
NE 1

Regardessof thevalue of the EM bit, the Intel486™ SX piocessr generates aevice-nd-avail-
able excepton (#NM) upon ercourtering avy floaing-point instruction.

8.3. CACHE ENABLING

The Irtel Architectue processors (begning with the Intel4d®&™ processr) cortain internal
instructionand dta caches. These caches are kthby clearing tle CD and NW flags in
cortrol register RO. (They are &t during a herdware reset.) Bauseall internal cachénes are
invalid following reset initalization it is na necesaryto invalidate the cache bafenaling

cachirg. Any exterral caches may redpe initialization and inaidation using asystem-specific
initiali zation ard invalidation code segence.

Depemling onthehardvare amnl gperatingsystem o executiverequrements, aditional config-
uration of the pocesso’s cacling facilities will probably be required. Beginning with the
Intel486™ procesor, page-level cachingcan be cotrolled with the PO ard PWT flags in
page-direcory and age-tabe enties. For P6family processrs, the memaoy type iangeregis-
ters(MTRRS) control the cacing chaactristics of the regiors of physical memoy. (For the
Intel486™ ard Pentium® procesors, exteral hardware canbe used to contiahe caching char
acerigtics of regions of physical memay.) Refr to Chaper 9, Memay Cache ntrol, for
detailed information on configuration of the caching facilities inthe P6 family procesars and
system nmemory.

8.4. MODEL-SPECIFIC REGISTERS (MSRS)

The P6 farily procesors andPertium® processrs contain malel-specific regsters (MSR).
Theseregisters areby definition implemernation specific;tha is, they arenot guararteedto be
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syppated onfuture Intel Architecure pocesas andor to have be sane funcions. TheMSRs
are povided tocontmol a varety of hardvare- al softwarerelated €atres, incluihg:

® The performance-mdatoring couters (refer to Section 15.6, “Performance-Moniring
Counters”, in Chapter 15, Debwgging and Performarce Maitoring).

® (P6 family procesors only.) Debuy extersions (refer to Section 154., “Last Branch
Interrugt, ard Excepion Recoding”, in Chapter 15 Debuggng ard Perbrmarce
Monitoring).

® (P6 family processrs only.) The machie-checkexception caphility ard its accomp-
nying machinecheck architecture (reféo Chapterl3, MachineCheck Achitedure).

® (P6 family pracessrs only.) The MTRRs (referto Secton 9.12., “Memory Type Rang
Registers(MTRRS", in Chapter9, Memory Giche ntrol).

The MSRscan baead and wrignto using th(RDMSR and WRMSR instructions, respectively

Whenperfaming sdtware nitialization of aPertium® Pro or Pentium® processar, many of the
MSRswill needto be initializedto set up things like performance-monitoring events, run-time
machire checks, ahmemory types br physical memoy.

Systems corfiguredto implement FRC mode nust write all d the processrs’ internal MRsto
deterministic values tefore perforning either a read oreadmodify-write operatian usng these
registers.The following is a list of MSRs that are rot initialized by the praesors’ reset
sequences.

* Allfixed and varisble MTRRs.

® All Machine Check Architectue (MCA) gtatus reggters.
®* Micromde \pdae signature register.

® Al L2 cacle intialization MSRs.

The lig of available prformancemonitaing cauntes for the Pentiuf Pro ard Pentium®
proces®rs is given in Apperdix A, Performance-Moiritoring Events ard the list of availabe
MSRs for the Pentium® Pro pracessr is given n Apperdix B, Model-Specific Regsters The
references earlier inthis sedbn shav wherethe functiors of the vaious goups of MSRs are
described in this manual.

8.5. MEMORY TYPE RANGE REGISTERS (MTRRS)

Memory type rame regsters (MTRR) were intoduced into the Intel Architecture with the
Pentium® Proprocesor. They allow the type ofcaching ©r nocaching to be specified in system
memoy for selected hysical addess rangs They allow memoy accesss to be ptimized fa
various typesof memoy such asRAM, ROM, frame bffer memay, andmemay-mapped/O
devices

In general, initializing the MTRRs is normally hardled by the sdtware iritiali zation code or
BIOS andis na an operating system oexecutive finction At the vey leag, all the MTRRs
mustbe cleaed to 0, which sekts he uncachd (UQ menory type. Refer to Section9.12.,
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“Memory TypeRang Registers (MTRRS)”, in Chaper 9, Memory Gche Control, for detailed
information on the MTRRs.

8.6. SOFTWARE INITIALIZATION FOR REAL-AD DRESS MODE
OPERATION

Following a hadware eset(ether through a pwer-up or the asertion d the REET# pin) the
processr is placedin real-adiress mode ard begins execuing software intialization code from

physical address FFFRFFFFOH. Sdtwareinitiali zation cade must first set p the recessarylata
structures for handling basic sysmfunctions, suchasareal-male IDT for handing interupts
andexceptios If the rocessor is to remain real-adiress modgsoftware must thenload adli-

tional gperatingsystemor executive coe modules ard data structures b allow reliable execu
tion of applicaion programsin real-addressmade.

If the pracessor is goilgy to operate in potected mod, software met loadthe necessy data
structures to operae in praeciedmode andhenswitch b protected mde. The prtecedmode
data $ructures that mudbe loaded are describeih Section 87., “Software litialization fa
Protectedlode Ogration”.

8.6.1. Real-Address Mode IDT

In real-aldress mde,theonly sysemdatastructurethat nustbeloadedinto menory is thelDT
(alsocalled the“interrupt vectortable”). By defadt, theaddessof thebase 6the IDT is phys-
ical addess OH. Ths addresscan be cangedby using the LDT instruction tochang the base
addressvalue inthe IDTR. Software intializationcode reedsto load interrupt- and excegion-
handler panters irto the IDT before interrupts canbe embled

Theactual interupt- and eceptiorthardler cade canbe catainedeither inEPROM or RAM,;
however the coa must be locatal within the 1-MByte addressable range of he pro@s®r in
real-adiressmode. Ifthehandler cogisto be sored in RAM, it must be loa@d abng with the
IDT.

8.6.2.  NMI Interrupt Ha ndling

The NMI interrupg is alwaysenalted (except when multiple NMls are neted). Ifthe IDT and
the NMI interrupt handler need tobeloaded into RAM, there will be a period of time following
hardware rest whenan NMI interrupt camot be handed. During this time, hardvare must
provide a mecharsm to preventanNMI interrupt from halting code execution until thelDT and
the recesaryNMI hardler sotware is loaded.
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Here ae twoexanples d how NMIs canbe hardled during theinitial statesof procesar initial-

ization:

® AsimpleIDT and NMI interryot handlercanbe povidedin EPROM.This allowsanNMI
interrupt to be hardled inmediatelyafter reset iitiali zation.

®* The ystem hardware carprovide amechaism to erable andlisable NMIs by gssing the
NMI# signalthrough an AND gatk cortrolled by aflagin an I/O port. Hardvare can clear
the flag when therocessor isresefard software can sethe flag vhen it is readyto hardle
NMI interrupts.

8.7. SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The procesor is gdacedin real-addess mode following a hardware reset. At this point in the
initi alizationprocesssome lasic data structiesandcode modules mugt be loaledinto physical
memory to support furtherinitialization of the praessr, asdexribed in Section 8.6., “Software
Initialization for RealAddress Male Operatim”. Before tle processr canbe svitched to
proteced mode, the eftware initialization code must load a minimun number of praecied
moce daf structures and code malules into menory to support reliable opestion of the
procesorin protected made.These data struates includehe fdlowing:

® A proteced-node IDT.

* AGDT

* ATSS.

¢ (Optional.) An LDT.

* If paghgisto be usd, atleas one pag direcbory ard one paje tble.

®* A code £gment hat cortains the code to bexecuted when the pcesor switches to
proteced node.

®* One 0 mae cale malules that cotain the neces®y interupt ard exceptionhanders.

Software iritialization code nust al® initialize the fdlowing system registers befae the
procesorcan ke switchedto protectedmode:

®* The GDIR.

¢ (Optional.) The IDTR This register can alo be initialized inmediately after switching to
proteced node,prior to erablinginterrupts.

® Control registersCR1 through CR4.
® (Pertium® Proprocesor only.) The nemory type range regsters(MTRRS).

With these dta structues cade nodues, andsystem egistersinitialized the piocessr can be
switched to protectedmode by loading contral regster QRO with a value that setsthe FE flag
(bit 0).
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8.7.1. Protected-Mode System Data Structures

The cantentsof the protectednode system datatauctures loadethto memory duting software
initiali zation, depend largely on the type of memory management the protectedmode operatirg-

systemor executive isgoing to suypport: flat, flat with pagng, ssgmented or ssgmerted with

pagng.

To implement a flat memory model without paging, sdtware iritialization code must at a
minimum load aGDT with one cod and one dat-segrrent deriptor. A null desciiptor in the
first GDT ertry is also regired. The gackcanbe placedn a rormal readwrite data segnent,
s0 ro dedicated ascriptor for the stack is ragred. A flat memoy model with pagirg also
requiresa page diretory andat leastone page table (unlesdl pagesare4 MBytesin which case
only a page drecbry is required). Refer to Secfon 87.3, “Initializing Paging”

Before the GDT carbe used, the &se addressard limit for the GDT must be loadedinto the
GDTR registerusng an LGDT instruction.

A multisegrented model may requre adlitional ssgmerts for the qperatirg system aswell as
segments andlDTs for each aplication pogram. LDTs requre sgment descrifors in the
GDT. Some oprating systemsllocate ew segmets and LDTs asthey are neeeld. Ths
provides maximum flexibility for handling a dynamic pragramming environmert. However,
mary operatingsystemaise asingle LDT for all tasks,allocating GDT entries inadwance.An
embeddedsystem, suchasa process contller, might pre-allocate a fixeshumber ¢ segmets
andLDTsfor a fixed numberof application pograms. This woulde a simple anefficient way
to structue the safvare emvironnment ofa real-timesystem.

8.7.2. Initializing P rotected-Mode E xceptions and Interrupts

Sditware intialization codemust at a ninimum loada protectedmode IDT with gate descripior
for each exceptiomector that the paesorcangeneste. If interrupt or trap gates are used, the
gatede<riptors carall pant tothe same ade segrant, which cortainsthe recesaryexcepion
hardlers. If task gates are usedgofSS andaccompaying code,data, and taskegments are
required for eactexception hankkr calledwith a task gate.

If hardware allavs interrugds tobe generatedgate descriptors nust be provided inthe IDT for
one or more nterrupt hardlers.

Before the IDT can le used, tk base adéss andimit for the IDT must beloadedinto the DTR
regster uing an LIDT instruction. This operationis typically carried otiimmediately after
switching to protected mode.

8.7.3. Initializing P aging

Pagingis cantrdled by the PGflag in contiol register CRO. When this flagis clear ({ts state
following a herdware reset), th pagng mechanism is turned off; when it is st, pagng is
erabled Before setting the PG flag, tke following data strictures andregisters must be initial-
ized:
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* Softwaremust loadat |least one pa@ directory and ae page talbe into physical memoy.
The page tale can be elimiatedif the page dileciory contains a directy ertry pointing to
itself (here, the pge drectoryandpagetable reside irthe same pag), or if only 4-MByte
pages areused.

® Contrd regster (R3 (also c#ed the PDBR register) is loackd with the plysical base
addessof thepagedirectoy.

® (Optional) Software may provide one se of code and data descriptorsin the GDT or in an
LDT for supervisor modeandanoter set for user male.

With this paging ini tialization complete, paging is enabled ard the processar is switched to
pratecedmock at the same time Hpadingcontiol register QRO with animage inwhich the PG
andPE flags areset. (Pagng cannd be embled lefore the pocessolis switched topraecied
mock.)

8.7.4. Initial izing Multitas king

If the rrultitaskng mechaniam is not gaing to be used andchanges betweenprivilege levels are
not allaved, it is not recesaryloada TSSinto memay or toinitialize tre tak register

If the multitaskng mechansm is going to be used ard/or changesbetweenprivil egelevels are
allowed, sdtware initialization code must load at leastone TSS ard an accanparnying TSS
descriptor(A TSS is regiredto change privilege levels lecause paters tothe privilegeddevel
0, 1, and? stack segments and thtack pointers for thesetacks are obtainddom the TS
TSSdescriptors must nbbe marled as bsy when tley are ceated; they shad be marled by
by the piocesa only asa sde-efectof peiforminga task switch. As with desciiptorsfor LDTs,
TSS desciiptorsresde nthe GDT.

After the processr has swichedto protectedmodg, the LTR instructioncanbe usedto loada
segment slector for a TSSdescriptorinto the &sk regster This instruction marls the TSS
degriptor asbusy, but doesnat peform atask switch. The procesor can,however, usthe TSS
to locate pointersto privilege-level 0,1, and2 stacks. he segmat selecor for the TSS mat be
loadedbefore software performs its frst task switch in protectedmode, becage atak switch
copies the arrert tak state intothe TSS.

After the LTR instruction has beerexecuted,further operations onthe task register are
performedby task switching. Aswith other #@gmensand LDTs, TSSs and TSS deriptors can
be eithempreallocated o allocatedasneeded.

8.8. MODE SWITCHING

To use the pocesa in protecied male, amode svitch must be perbrmedfrom realaddress
moce. Oncein protectednode,software gnerally doesnot need toretuin toreal-adiressmock.
To run software writtento runin real-addess node (8@6 mode), it is generally more corveniert
to run the software invirtual-8086 mode, than toswitch back toreataddress mode.
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8.8.1. Switching to Protected Mode

Before swithing topraiectedmode, a minimun st of system dita dructures anedtode madules
must be loadedinto memory, asde<ribed in Sectim 8.7., “Sdoftware Initialization for Proected-
Mode Opemtion”. Once thes tables are created, sftware initialization code canwitch into
proteced male.

Protectednock is ertered by execuding a MOV CRO instructionthatsets the PE fagin theCRO
regster (In the same instruction, the PG flag in egister CRO can be setot enalbe paging.)
Execdion in pratected mode begnswith a GPL of 0.

The 32bit Intel Architecture praces®rs have slightly different requrements for switching to
protectedmode. To insure upvards anddownwards cale conpatibility with all 32-bit Intel
Architectue praecesors, it is recanmerded that the fdl owing steps be gformed

1. Disale interrugs. A CLI instruction disables mnaskable hardware irtermupts. NMI
interupts can be disabledwith extenal circutry. (Software must giaranee that ro
exceptions ointerupts are gneratedduring the moae switching agperation)

2. Execute the LGDTnstruction to loadthe GDTR register wih the bag addressof the
GDT.

3. Execue aMOV CRO instruction that sts the PE flag (ard optionaly the PG flag) in
control register CRO.

4. Immediately félowing the MO/ CRO instruction execute a far J® or far CALL
instrucion. (This operatim is typically a far jump or call to the nex instruction in the
instruction stream.)

The MP or CALL instructionimmediately aftethe MOV CRO instruction changes the
flow of executionandserializes the pocessar

If paging is enalbed, the code for he MOV CRO instruction and he JMP or CALL
instrucion must come from a pege that isidertity mapped (thet is, thelinear addess lefore
the jump is he same asthe fhysical addess after pging and potected mde is enabled
The trget instruction for the JMP or CALL instruction does rot needto be idertity
magped

5. If a local destiptor table is going to be ugd, execue the LLDT instruction © load te
segmenhselecta for the LDT in the LDTR regster.

6. Execute he LTR instruction to load the &sk regster with a segmenselecor to the initial
protectedmode task or to a writablearea of memay that can be used tdoge TSS
information on a taskswitch.

7. After entering potected mde, the segmémegisters cortinue to héd the contets they tad
in reataddress moae. The JMPor CALL instruction in gep 4 rese$ the CS regster.
Perform ore of the following operatonsto updat the conerts of the remaiing segnent
registers.

— ReloadsegmentregidersDS, SS, ES, FS, andGS. If the ES, FSandor GS regsters
are n¢ gang tobe wsed, loadthem with a nll selecbr.
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— Perform a MP or CGALL instruction to a rew task, which autanatically resetsthe
values ofthe segmentegisers and lvanchesto a rew code segrant.

8. Execue the LIDT instruction to load tre IDTR regster withthe adiressand limit of the
proteced-node IDT.

9. Execue the STI irstruction to erable naskalde hardware inerrupts and perform the
necessarydrdware operation toenalle NMI interrupts.

Rardomfailurescan accurif other instructions exst betweensteps3 and4 abowe. Failureswill
be ready seenin some sitations, sich as when istructions hat referene memoy are inserted
betveen seps3 and 4whilein System Maragemen mode.

8.8.2. Switching Back to Real-Address Mode

The pocessor switches badk real-address male if software clears the PEibin the CRO
register with a MOV ®O ingtruction. A procedue that reenters real-adress mod shoud
peform the following geps:

1. Disable interruts A CLI instruction disabes naskade hardware irterrupts. NMI
interruptscan bedisabled wih exterral circuitry.

2. If pagng is enalted, perform the following opestions:

— Transfer pragram contral to linear addessesthat ae idertity mapped to physical
addressegthat is linear adresgs eaqial plysicaladdesses.

— Insure tlatthe GDT andDT are in iderity mapped pges.
— Clear thePG hit in the QRO register
— Move OHinto the CR3 regiger to flush the TLB.

3. Trarsfer piogram cottrol to a eadable segmk that has a limit of 4 KBytes (FFFFH).
This operation loads the CS regster withthe segmert limit requredin real-addess node.

4. Load segmerregsters SSDS, ES, FS, an@&S with a selectofor a descriptor cantaining
the following values, whichare apropriate fa realaddress male:

— Limit =64 KBytes(OH-FFH)
— Byte gandar(G=0

— Expard up(E=0)

— Writable W = 1)

— Preent(P=1)

— Bas=anyvalue

The segment registers mist be loaded wih nonndl segmen selecors or the segment
regsters wil be inusable in ealaddress modk. Note that if the segméemegisters are rot
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reloaded exection contines using the descripor attributes loaded during protected
maode.

5. Execue an LDT instruction to point to a real-addess node interrupt tabe that iswithin
the 1-MByte real-aldress modk addessrange.

Clear the PEI&g in the CRO registerto switch to realaddress mock.

Execute afar JMP instruction to jump to a real-adéssmocke program. Ths opegtion
flushes the instructiorqueue ad loads he appropriate base and accesghts valuesin the
CSregiste.

8. Load he SS,DS,ES, F5, and GSegstersasneeded by the real-adessmocde cock. If ary
of the egisters are nd going to ke usedin real-adiress mod, write 0s tathem.

9. Execue the STI indruction to enalle maskabe hardvare interrupts and perform the
necesaryhardvare orationto enaltle NMI interrupts.

NOTE

All the coce thatis exectied in steps 1 through 9 must bein asinge page and
the linea addresesin that ppge must be dertity mapped to physical
addresss.

8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE

This ®ction provides an iitialization al made svitching exanple that can @incorporatedinto
anaplication. This caode wasoriginally writtento initi alize e Intel386™ procesar, but it will

execte siccesfully onthe Pentiurfi Pro, Pentium®, ard Intel486™ processors. The coatin this
example isintendedto reside in EPROM andto runfollowing a herdware reset fothe processo.
The function of the cock is to do the following:

® Establid a kesic realaddress male ogratingenvionmer.
®* Load thenecesary protected-nodesystem dita gructures intoRAM.

® Load thesystem registersvith the necesary pointers to the data sucturesand the
appopriate flag ttingsfor protected-node qoeratian.

® Switch the pocessor tgratected mde.

Figure 8-3 stowsthe ptysical memoy layout for the processr following a hadware esetard
the startig point of thisexanple. The EPFOM that cottainsthe iritialization cade resies at tte
upper enl of the pocessr’s physical memoy addessrarge, startingat address FFR-FA-H
and going down from there. The adiress d the first instruction to be executed isat FFFFH-FOH,
the cefault g¢artingaddessfor the pocesor following a haravare rest.

Themain seps carried ait in this exanple are sumiarized inTable 8-4 The urce listng for
the exarple (with the filename STARTUPASM) is given in Example 8-1 The line nunbers
given in Table 8-4refa to the saurcelisting.
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The Pllowing are some @ditional rotes corerningthis examfe:

When thke praessor is switched imo protected mde, the oiiginal coce segmeh base-
addessvalue ofFFH-0000H (locatedn the hiden part of the Sregister) isetained and
exection catinues from the curent offsetin the EIP redster The piocessr will thus
cortinue to exeute code in the ERBM until a fa jump a call is made to a new ced
segnent, at which time, the base addess inthe CS regster will be charged.

Maskable hartvare nterrugs are disbled after ahardware reet and stould remain
disabledurtil the recesaryinterupt hardlers tave keeninstalled. The NMI interryot is
not disalled fdlowing a rest. The NMI# pin must thus be nhibited from keing aseted
until an NMI handlerhas beetoadedandmadeavailable to tk pracesor

The use ofa temprary GDT allows smple transferof tables from the EPROM to
anywhere inthe RAM area. AGDT ertry is congructedwith its basepointing to address 0
anda limit of 4 GBytes. When theDS ard ES egisters are loadedwith this descriptg the
tempaary GDT isno longerneead andcanbe repaced ly the aplicationGDT.

This codeloads mne TSS an no LDTs. If more TSSsexid in the apflication, they nmust be
loaded intoRAM. If there are LDE theymay ke loaded as well

After Reset

FFFF FFFFH
[CS.BASE+EIP] —>»F — — — — — — — 1 FFFF FFFOHT T

64K EPROM

EIP = 0000 FFFOH
CS.BASE = FFFF 0000H FFFF 0000H
DS.BASE = OH
ES.BASE = OH
SS.BASE = OH
ESP = OH

[SP, DS, SS, ES] > 0

Figure 8-3. Processor State After Res et
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Table 8-4. Main Initi alization Steps in STARTUP.ASM Source Listing

STARTUP.ASM
Line Numbers
From To Descri ption

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
(1) - gllj\lll\/ data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CRO with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire
physical memory space

188 195 Perform specific board initialization that is imposed by the new protected
mode

196 218 Copy the application’s GDT from ROM into RAM

220 238 Copy the application’s IDT from ROM into RAM

241 243 Load application’s GDTR

244 245 Load application’s IDTR

247 261 Copy the application’s TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application’s TSS

287 287 Push EFLAGS value found in the application’s TSS

288 288 Push CS value found in the application’s TSS

289 289 Push EIP value found in the application’s TSS

290 293 Load DS, ES with the value found in the application’s TSS

296 296 Perform IRET; pop the above values and enter the application code
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8.9.1. Assembler Usage

In this exanple, the htel asemlber ASM386 ard build tools BLD386 ae used to assemble and
build the initialization code module. Thefollowing assmptions are sed whenusing the Intel
ASM386 and BLD386 tools.

® The ASM386 will generde the richt operard size opodes accading to the cale-segrent
attribute. The attritlute is asgjned eitter by the ASM36 invocation cortrols or in the
code-segnent definition.

* If a code sementthatis going o run in realaddes mockt is defned, it mug be set to a
USE 1 attribute. If a 32-bit operand is used in aninstruction in this code segmert (for
exanple, MOV EAX, EBX), the asembler automatically genetresan ogerandprefix for
the irstruction tha forces theprocesor to exectie a 32bit operation, eventhowh its
default code-segnent attribute is 16-bit.

®* Intel's ASM386 assembler abws specific use of the 16- or 32bit instructiors, for
exanple, LGDTW LGDTD, IRETD. If the gemric instructionLGDT is used, ta defailt-
segnentattribute will be used togererate the right opcode.

8.9.2. STARTUP.ASM Listing

Thesourcecock listing to mowve the piocessr into protectedmocde is providedin Example8-1
This listing does nd include ary opcode andoffset information.

Example 8-1. STARTUP.ASM
MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92 PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP

OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386t00Is\ASM386.EXE startup.a58 pw (132 )
LINE SOURCE

1 NAME STARTUP

2

3 B

4

5 ; ASSUMPTIONS:

6 ;

7 1. The bottom 64K of memory is ram, and can be used for
8 scratch space by this module.

9 ;

10 ; 2. The system has sufficient free usable ram to copy the
11 ; initial GDT, IDT, and TSS
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12 ;

14

15 ; configuration data - must match with build definition

16

17 CS_BASE EQU OFFFFOO00OH

18

19 ; CS_BASE is the linear address of the segment STARTUP_CODE
20 ; - this is specified in the build language file

21

22 RAM_START EQU 400H

23

24 ; RAM_START is the start of free, usable ram in the linear
25 ; memory space. The GDT, IDT, and initial TSS will be
26 ; copied above this space, and a small data segment will be
27 ; discarded at this linear address. The 32-bit word at
28 ; RAM_START will contain the linear address of the first
29 ; free byte above the copied tables - this may be useful if
30 ; a memory manager is used.

31

32 TSS_INDEX EQU 10

33

34 ; TSS_INDEX is the index of the TSS of the first task to
35 ; run after startup

36

37

38

39

40 ; STRUCTURES and EQU ---------------
41 ; structures for system data

42

43 ; TSS structure

44 TASK_STATE STRUC

45  link DW ?
46  link_h DW ?
47  ESPO DD ?
48  SSO DW ?
49 SSO_h DW ?
50 ESP1 DD ?
51 Ss1 DW ?
52 SS1 h DW ?
53 ESP2 DD ?
54  SS2 DW ?
55 SS2_h DW ?
56 CR3_reg DD ?
57 EIP_reg DD ?

58 EFLAGS reg DD ?
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

tel.

EAX_reg
ECX_reg
EDX_reg
EBX_reg
ESP_reg
EBP_reg
ESI_reg
EDI_reg
ES reg
ES_h
CS_reg
CS_h
SS_reg
SS_h
DS_reg
DS _h
FS_reg
FS_h
GS_reg
GS_h
LDT_reg
LDT_h
TRAP_reg
10_map_base

DD ?
DD ?
DD ?
DD ?
DD ?
DD ?
DD ?
DD ?
DW ?
Dw ?
DW ?
DW ?
DW ?
DW ?
DW ?
DW ?
DwW ?
DW ?
DW ?
DW ?
DW ?
Dw ?
DW ?
DW ?

TASK_STATE ENDS

; basic structure of a descriptor

DESC STRUC
lim_0_15
bas 0 15
bas_16 23
access
gran
bas_24 31

DESC ENDS

Dw ?
Dw ?
DB ?
DB ?
DB ?
DB ?

PROCESSOR MANAGEMENT AND INITIALIZATION

; structure for use with LGDT and LIDT instructions
TABLE_REG STRUC

table_lim
table_linear

DW ?
DD ?

99 TABLE_REG ENDS

100
101
102
103
104
105

; offset of GDT and IDT descriptors in builder generated GDT
GDT_DESC_OFF EQU 1*SIZE(DESC)
IDT_DESC_OFF EQU 2*SIZE(DESC)

; equates for building temporary GDT in RAM
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106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147
148
149
150
151
152

8-22

LINEAR_SEL EQU 1*SIZE (DESC)
LINEAR_PROTO LO EQU 00000FFFFH : LINEAR_ALIAS
LINEAR_PROTO_HI EQU 000CF9200H

: Protection Enable Bit in CRO
PE_BIT EQU 1B

: DYy 7:\SI=c] V] =\ p———

; Initially, this data segment starts at linear 0, according
; to the processor’s power-up state.

STARTUP_DATA SEGMENT RW

free_mem_linear_base LABEL DWORD

TEMP_GDT LABEL BYTE ; must be first in segment
TEMP_GDT_NULL_DESC DESC <>
TEMP_GDT_LINEAR_DESC DESC <>

; scratch areas for LGDT and LIDT instructions

TEMP_GDT_SCRATCH TABLE_REG <>
APP_GDT_RAM TABLE_REG <>
APP_IDT_RAM TABLE_REG <>

; align end_data
fil DW 2
; last thing in this segment - should be on a dword boundary
end_data LABEL BYTE

STARTUP_DATA ENDS

: (of0]p] =<1 =(c] V] =\ pmmm——
STARTUP_CODE SEGMENT ER PUBLIC USE16

; filled in by builder
PUBLIC GDT_EPROM
GDT_EPROM TABLE_REG <>

; filled in by builder
PUBLIC IDT_EPROM
IDT_EPROM TABLE_REG <>

; entry point into startup code - the bootstrap will vector



Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

153 ; here with a near JMP generated by the builder. This
154 ; label must be in the top 64K of linear memory.

155

156 PUBLIC STARTUP

157 STARTUP:

158

159 ; DS,ES address the bottom 64K of flat linear memory
160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA
161 ; See Figure 8-4

162 ; load GDTR with temporary GDT

163 LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,
164 MOV DWORD PTR [EBX],0 ; where we can address
165 MOV DWORD PTR [EBX]+4,0

166 MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO
167 MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI
168 MOV TEMP_GDT_scratch.table_linear,EBX

169 MOV TEMP_GDT_scratch.table lim,15

170

171 DB 66H ; execute a 32 bit LGDT

172 LGDT TEMP_GDT_scratch

173

174 ; enter protected mode

175 MOV EBX,CRO

176 OR EBX,PE_BIT

177 MOV CRO,EBX

178

179 ; clear prefetch queue

180 JMP  CLEAR_LABEL

181 CLEAR_LABEL:

182

183 ; make DS and ES address 4G of linear memory
184 MOV  CX,LINEAR_SEL

185 MOV DS,CX

186 MOV ES,CX

187

188 ; do board specific initialization

189 ;

190 ;

191 N

192 ;

193

194

195 ; See Figure 8-5

196 ; copy EPROM GDT to ram at:

197 ; RAM_START + size (STARTUP_DATA)
198 MOV EAX,RAM_START
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199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

8-24

ADD EAX,OFFSET (end_data)

MOV  EBX,RAM_START

MOV ECX, CS_BASE

ADD ECX, OFFSET (GDT_EPROM)
MOV  ESI, [ECX].table_linear

MOV  EDI,EAX

MOVZX ECX, [ECX].table_lim

MOV  APP_GDT_ram[EBX].table_lim,CX
INC ECX

MOV  EDX,EAX

MOV APP_GDT_ram[EBX].table_linear,EAX
ADD EAX,ECX

REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

; fixup GDT base in descriptor

MOV ECX,EDX

MOV [EDX].bas_0_15+GDT_DESC_OFF,CX
ROR ECX,16

MOV [EDX].bas_16 23+GDT_DESC_OFF,CL
MOV [EDX].bas_24 31+GDT_DESC_OFF,CH

; copy EPROM IDT to ram at:

; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
MOV ECX, CS_BASE

ADD ECX, OFFSET (IDT_EPROM)

MOV  ESI, [ECX].table_linear

MOV  EDI,EAX

MOVZX ECX, [ECX].table_lim

MOV  APP_IDT_ram[EBX].table_lim,CX
INC ECX

MOV  APP_IDT_ram[EBX].table_linear,EAX
MOV  EBX,EAX

ADD EAX,ECX

REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

; fixup IDT pointer in GDT
MOV [EDX].bas_0_15+IDT_DESC_OFF,BX
ROR EBX,16
MOV  [EDX].bas_16_23+IDT_DESC_OFF,BL
MOV  [EDX].bas_24 31+IDT_DESC_OFF,BH

;load GDTR and IDTR
MOV EBX,RAM_START

DB 66H ; execute a 32 bit LGDT
LGDT APP_GDT_ram[EBX]
DB 66H ; execute a 32 bit LIDT

LIDT APP_IDT_ram[EBX]

: move the TSS
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248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
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MOV  EDILEAX
MOV  EBX,TSS_INDEX*SIZE(DESC)
MOV ECX,GDT_DESC_OFF ;build linear address for TSS
MOV GS,CX
MOV DH,GS:[EBX].bas_24_31
MOV DL,GS:[EBX].bas_16_23
ROL EDX,16
MOV DX,GS:[EBX].bas_0_15
MOV  ESI,EDX
LSL ECX,EBX
INC ECX
MOV EDX,EAX
ADD EAX,ECX
REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

; fixup TSS pointer
MOV  GS:[EBX].bas_0_15,DX
ROL EDX,16
MOV  GS:[EBX].bas_24 31,DH
MOV  GS:[EBX].bas_16_23,DL
ROL EDX,16
:save start of free ram at linear location RAMSTART
MOV  free_mem_linear_base+RAM_START,EAX

;assume no LDT used in the initial task - if necessary,
;code to move the LDT could be added, and should resemble
;that used to move the TSS

; load task register
LTR BX ; No task switch, only descriptor loading
; See Figure 8-6
; load minimal set of registers necessary to simulate task
; switch

MOV  AX,EDX].SS_reg ; start loading registers
MOV  EDI,[EDX].ESP_reg

MOV  SS,AX

MOV  ESP,EDI ; stack now valid

PUSH DWORD PTR [EDX].EFLAGS_reg

PUSH DWORD PTR [EDX].CS_reg

PUSH DWORD PTR [EDX].EIP_reg

MOV  AX,[EDX].DS_reg

MOV  BX,[EDX].ES_reg

MOV DS,AX ;DS and ES no longer linear memory
MOV  ES,BX
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295 ; simulate far jump to initial task
296 IRETD
297

298 STARTUP_CODE ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)

299
300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

301
302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.

FFFF FFFFH
START: [CS.BASE+EIP] ———> FFFF 0000H
* Jump near start
» Construct TEMP_GDT
* LGDT
* Move to protected mode
DS, ES = GDT[1] <4GB
____Base__
Limit GDT_SCRATCH
GDT [1] | Base=0, Limit=4G
GDT [0] 0 TEMP_GDT

Figure 8-4. Constructing Tempor ary GDT and Switching to Protected Mode (Lines
162-172 of List File)
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FFFF FFFFH
— TSS
IDT
GDT
* Move the GDT, IDT, TSS
from ROM to RAM
* Fix Aliases
LTR > <
e TSS RAM
> IDT RAM
= GDT RAM RAM_START
0
Figure 8-5. Moving th e GDT, IDT and TSS from ROM to RAM (Lines 196-261 of List File)
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EIP
SS=TSS.SS EFLAGS
ESP = TSS.ESP .
PUSH TSS.EFLAG .
PUSH TSS.CS
PUSH TSS.EIP ESP
ES = TSS.ES .
DS = TSS.DS '
IRET ES ?
cs
SS
DS
GDT
TSS RAM
IDT Alias IDT RAM
GDT Alias GDT RAM
0 RAM_START

Figure 8-6. Task Switching (Lines 282-296 of Li st File)
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8.9.3. MAIN.ASM Source Code

The ile MAIN.ASM shown in Exampk 8-2 defines the dat ard gack segmeris for this appi-
cation ard can ke substituted with the main module taskwrittenin ahigh-level language tatis
invokedby the IRET instruction exectied by STARTUPASM.

Example 8-2. MAIN.ASM

NAME main_module
data SEGMENT RW
dw 1000 dup(?)

DATA ENDS

stack stackseg 800

CODE SEGMENT ER use32 PUBLIC
main_start:
nop
nop
nop
CODE ENDS
END main_start, ds:data, ss:stack

8.9.4.  Supporting Files

The batch file showvn in Exanple 83 can be used to asemble the source coce files
STARTUPASM and MAIN.ASM andbuild the firel application

Example 8-3. Batch File to Asse mble and Buil d the Appli cation

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) Bootload

BLD386 perfors ®veral operatinsin this exanple:

* It allocates pisicalmemoy locatin to segrentsand tales

® |t gererates takes wing the kuild file ard the input files.

® It links object files andesolves refrences.

® |t generaks a lootloadabk fileto be pogrammedinto the EFROM.

Exanple 84 shows the buld file ued as annput to BLD386 to perform the almve furctions.
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Example 8-4. Build File
INIT_BLD_EXAMPLE;

SEGMENT
*SEGMENTS(DPL = 0)
, Startup.startup_code(BASE = OFFFFO000H)

TASK
BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,
NOT INTENABLED)
, PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0,
NOT INTENABLED)

TABLE

GDT (

LOCATION = GDT_EPROM
, ENTRY =(

10: PROTECTED_MODE_TASK
, startup.startup_code
, startup.startup_data
, main_module.data
, main_module.code
, main_module.stack
)
)

IDT (
LOCATION = IDT_EPROM
)

MEMORY

(
RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from ROM
, 60000H..0FFFEFFFFH)
, RANGE = (ROM_AREA = ROM (OFFFFO000H..0FFFFFFFFH))
-- Eprom size 64K
, RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

);

END
Table 8-5showsthe relatimship of each build itemwith an ASM saurce file.
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Table 8-5. Relations hip Between BLD Item and ASM Source File
BLD386 Controls and

Item ASM386 and Startup .A58 BLD file Effect
Bootstrap public startup bootstrap Near jump at
startup: start(startup) OFFFFFFFOH to start
GDT location public GDT_EPROM TABLE The location of the GDT
GDT_EPROM TABLE_REG GDT(location = will be programmed into
<> GDT_EPROM) the GDT_EPROM
location
IDT location public IDT_EPROM TABLE The location of the IDT
IDT_EPROM TABLE_REG IDT(location = will be programmed into
<> IDT_EPROM the IDT_EPROM
location
RAM start RAM_START equ 400H memory (reserve = RAM_START is used as
(0..3FFFH)) the ram destination for

moving the tables. It
must be excluded from
the application’s
segment area.

Location of the TSS_INDEX EQU 10 TABLE GDT( Put the descriptor of the
application TSS ENTRY=( 10: application TSS in GDT
in the GDT PROTECTED_MODE_TA | entry 10
SK))
EPROM size size and location of the SEGMENT startup.code Initialization code size
and location initialization code (base= OFFFFO000H) must be less than 64K
...memory (RANGE( and resides at upper
ROM_AREA = most 64K of the 4GB
ROM(x..y)) memory space.

8.10. P6 FAMILY MICROCODE UPDATE FEATURE

P6 family processeos hawe the camlility to correctspecific erata through the loadng of an
Intel-suypplied data Hock This data Hock is referred toasamicrococe updte. This chager
describes the underlying mechanisnms the BIOS needsto provide in order toutilize this feature
during system initialization. It also describes aspecification that providesfor incorporating
future releasesf the microcale ydate ito a system BOS.

Intel cansiders the cmbinationof a paticular silicon revisionandthe micr@odeupdate aghe
equialent sieppng ofthe procesor. Intel doesnotvalidate pocesas withou the microcode
update laaded. Intl completes a fill-stepping level validation ard teging for new releasesf
microcale ydats.

A microcodeupdate is gsedto correctspecific erata inthe pocessor TheBIOS, whichincor-
poratesan update bader is responsible fo loadirg the apropriate uglate onall processors
during systeminitialization (refer to Figure 8-7). Thereare efectively two stefs tothis process.
The irst is to incoporate he necessary miococe upatesinto the BOS, the candisto actu
ally loadthe appopriate micrcwodeupdate into thegrocesor.
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UPDATE
_____ LOADER
Update
Blocks
New P6 Family CPU
Update
BIOS

Figure 8-7. Integratin g Proc essor Spe cific Updates

8.10.1. Microc ode Update

A microcock update cosaists of an Intel-suplied binay that cortainsa descriptive headand
data. No exectale code regdes wthin the uglate. This secion desribesthe updite and the
structure of its data format

Eachmicrocade update is tailoed for aparticular steping of a P6family processa. It is
designedsuchthat amismatchbetweera steppig of theprocesorandtheupdate will reault in
a fallure toload. Thus, agiven microcodeupdate is assciatedwith a particulartype, family,
model, ar steppng of the processr as eturned ty the CPUID instruction. In addlition, the
intended pocesa platform type nust be deerminedto properly tamget the microcade uplate.
Theintendedprocessr platform type is detemined by readinga malel-specific egister MSR
(17h) (referto Table 86) within the P6family processe. This is a 64-bit regiger that nmay be
read @ing the RDMSR instruction (refer to Secton 3.2, “I ngruction Reference” hapter3,
Instruction SetReference Volume 1 ¢ the Programmets Reérence Manual). The threeplat-
form ID bits, whenread as &inary coded decimal (BCD) number indicate tke bit position inthe
microcode uplake heades, Processo Flagsfield, thatis as®ciated with the instalkéd processar

8-32 I



Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

Register Name:BBL_CR_OVRD
MSR Address:017h
Access:Read Only

BBL_CR_OVRD is a 64-bit register accessed only when referenced as a Qword through a
RDMSR instruction.

Table 8-6. P6 Family Proce ssor MSR Register Com pone nts

Bit Descri ptio ns

63:53 Reserved

52:50 Platform ID bits (RO). The field gives information concerning the intended platform for the
processor.
52 51 50
0 O 0 Processor Flag 0 (See Processor Flags in Microcode Update Header)
0 0 1 Processor Flag 1
0o 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved

The microcade update isa data Hock thatis exactly 2048 bytesin length. The initial 48 bytes
of the updtecontain aheader withinformation used todentify the uglate. The update heaer
ard its regrved fields are interpreted ly sdftware basd upon the header ersion. The initial
verdon of the headeris 0000000Lh. An ercoding scheme ako guardsagang tampering of the
update dat and povidesa meas for deermining the auhenicity of any given updae. Table
8-7 defines each dhe fields ard Fgure 88 shows the format ofthe microcale uplate data
block
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Table 8-7. Microc ode Update Encodin g Format

Field Name

Offset
(in byt es)

Length
(in bytes)

Descrip tion

Header Version

0

4

Version number of the update header.

Update Revision

4

4

Unique version number for the update, the basis for the
update signature provided by the processor to indicate
the current update functioning within the processor.
Used by the BIOS to authenticate the update and verify
that it is loaded successfully by the processor. The value
in this field cannot be used for processor stepping
identification alone.

Date

Date of the update creation in binary format: mmddyyyy
(e.g. 07/18/98 is 07181998h).

Processor

12

Processor type, family, model, and stepping of processor
that requires this particular update revision (e.g.,
00000650h). Each microcode update is designed
specifically for a given processor type, family, model, and
stepping of processor. The BIOS uses the Processor
field in conjunction with the CPUID instruction to
determine whether or not an update is appropriate to load
on a processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum

16

Checksum of update data and header. Used to verify the
integrity of the update header and data. Checksum is
correct when the summation of the 512 double words of
the update result in the value zero.

Loader Revision

20

Version number of the loader program needed to
correctly load this update. The initial version is
00000001h.

Processor Flags

24

Platform type information is encoded in the lower 8 bits of
this 4-byte field. Each bit represents a particular platform
type for a given CPUID. The BIOS uses the Processor
Flags field in conjunction with the platform ID bits in MSR
(17h) to determine whether or not an update is
appropriate to load on a processor.

Reserved

28

20

Reserved Fields for future expansion.

Update Data

48

2000

Update data.
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32 24 16 8 0

Update Data (2000 Bytes)

Reserved (20 Bytes)

Processor Flags

Reserved: 24 P7:1 P6: 1| P5:1| P4:1 P3: 1 P2: 1 PI1:1

Loader Revision

Check sum
Processor
Reserved: 18 ProcType: 2 Family: 4 Model: 4 Stepping: 4
Date
Month: 8 Day: 8 Year: 16

Update Revision

Header Revision

32 24 16 8 0

Figure 8-8. Format of the Microcode Update Data Blo ck

8.10.2. Microcode Update Loader

This sedbn describes the pdate laderused toload a micraode update intoa P6 &mily
procesor It also discusses the ragiremerts placed upnthe BIOS to ensure poper loadng of
an pdat.

The update loaér catains theminimal instructions needd to load an update. The specific
instructionsequencethat isrequired toloadan ypdateis dependent yponthe lcademevision field
contaired within theupdate heagl. The revsionof the update loadris expectedo chame very
infrequenty, patertially only whennew processa models areintroduced
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Thecodebelow regresents the uglak loader with a loaderrevision of 0000000Lh:

mov  ecx,79h ; MSR to read in ECX

XOr eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

movax,cs ; Segment of microcode update

shl eax,4

movbx,offset Update ; Offset of microcode update

addeax,ebx ; Linear Address of Update in EAX
addeax,48d ; Offset of the Update Data within the Update
xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

8.10.2.1. UPDATE LOADING PROCEDURE

The simple loadr peviously described assimesthat Update is the adoess of a microcale
update (headr and d&) embedded within the code segmérof the BIOS. It also asumres that
the pocessr is operatingin real mode.The data mayeside arywhere in memoy that isacces-
sible bythe piocessr within its curent ogratingmock (real,protected.

Before the BOS executesthe micrococe updaatetrigger (WRMSR) instruction the fdlowing
must betrue:

® EAX contains the lineaaddess d the start othe pdate dta
®* EDX contains zero

® ECX contains 7%

Other lequirement to keep h mind ae:

®* The microcock update must be loadedo the pocessr eaty on in the P)ST, andalways
prior to the iritialization of theP6 family processors L2Zache cotrdler.

* |f theupdate isloadedwhile the rocessr is in real mode, then the yodate datamay not
cross a ggmentboundary.

* |If theupdate isloadedwhile the processr is in real mode, then the ypdate datamay not
exceed a segent limit.

® If pagng is enaked, pges that areurrently pesnt must maghe umlate dta

® The microcale update cata does not requre ary paticular byte or word boundary
alignmert.

8.10.2.2. HARD RESETS IN UPDATE LOADING

Theeffectsof a loaled \pdateare clearedrom the pocessor pona herd reset. Therebre,each
time a had reset isssserted dring the BOSPOST, the updite must be teadedon all poces-
sors thabbsened the reset. Theeffecs d aloadedupdateare, lowever maintainedacross a
proces®r INIT. There are nside effects casedby loading an wpdate into a procesa multiple
times
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8.10.2.3. UPDATE IN A MULTIPROCESSOR SYSTEM

A multiprocessr (MP) system rquires Iadingeachprocessr with update datappopriate for
its CPUID andplatform ID bits. The BIOS isrespamsible for esuring that this recuiremert is
met, andhatthe loader is located in a ndale that isexecuted ly all processors in the sysn
If a ystemdesign permits multiple steppings of P6family proces®rs toexig corcurrertly, then
the BOS must verify eachindividual procesoragninst the ypdateheackr information to ersure
appropriate loadng. Given these codderatias, it is most practical to lcadthe ypdate duing
MP initialization.

8.10.2.4. UPDATE LOADER ENHANCEMENTS

The updite loader presented i$ection8.102.1, “Update Lading Proedue” is a nminimal
implemenation thatcanbe emarced toprovide addtional functiorelity andfeatues Some
potertial erhanements areeabcribed below:

® TheBIOS can ircorporate multiple updates tosupport multiple gepgngs of the P6 family
procesa. This featue piovidesfor opeating in a mixed sepping ervironmer on an MP
sysem ard erables auser toupgrace to a later version of the piocessr. In this case,
modify the loadkr to checkthe CPUID and patform ID bits of the pocessr that it is
running onagainstthe awilable heades before loadng a paticular update. The nunber d
updates isonly limited by the available spada the BOS.

®* Aloadercan load the pdate ad teg the pocessr to deternne if the upcitewas loaded
corectly. This canbe dore asdescribedin the Section 8.10.3, “Update Signatte and
Verification”.

®* A loacker canvelify the integrity of the uplae data by performing a checkaim on the
doublewords ofthe ypdate suming to zerg andcan gjectthe upate.

® Aloader canprovide ppwer-on messages indicatirsyiccesful loadingof an pdate.

8.10.3. Update Signature and V erification

The P6 family proces®r providescapahilities to verify the auherticity of aparticular update
and to idetify the curent upditerevision. Thissection describes the nebdpecific extensbns
of the procesor that support this feaure. The uplate verificaion method below asumesthat
the BOS will only verify an ypdate that isnore recehthan the reision currently loadedinto
the pocessr.

The CPUID instruction retuns avalue in a malel secffic register in addtion to its usual
regster returrvalues. The amantics of the GPUID instruction catse it todeposit an update ID

value inthe @1-bit model-specifc register (MSR at addess BBh. If noupdate igpresent irthe
procesor, the value in the MSRremairs unnodified. Normally azerovalue is peloadednto

the MSR ly sdtware before executing the GQPUID instruction. If the MSRstill contains zero
after executingCPUID, this indcates that m update is pesert.

The pdatelD valuereturred inthe EDX regster afer a RDMSR instructionindicateshe rev-
sion of theupdate loadedin the pracesso. This value, in conmbinationwith the rormal CPUID
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valuereturnedin the EAX register, uniquely identifies a particularpdate. The signate ID can
be drectly conparedwith the ypdate evision field in the micococe upmlate heaer for velifica-

tion of a carect uplate load No casecutive pdates releasedifa gven steppig of the P6
family procesormay shage the same ghature. Updtesfor different steppigs are ifferenti-

ated ly theCPUID value.

8.10.3.1. DETERMINING THE SIGNATURE

An updatethat is successfulljoadedinto the pracessor provides a sigature thatmatches the
update reviion of the currenty functioning revsion. This signature is aailabe ary time after
the actual ypdate hasbeen laded and requeding this signature daes rot have ary negtive
impact yponanycurently loadedupdate. Theprocedue for deternining this sigrature is:

mov ecx, 08Bh;Model Specific Register to Read in ECX
Xor eax,eax ;clear EAX

xor edx,edx ;clear EDX

WRMSR ;Load 0 to MSR at 8Bh

mov eax,1

CPUID

mov ecx, 08BH;Model Specific Register to Read
RDMSR ;Read Model Specific Register

If there is an ugiate curently active in the pocessr, its uplate reisionis retunedin the EDX
register afer the RDMSR instruction has canpleted

8.10.3.2. AUTHENTICATING THE UPDATE

An update may be auhenticatedby the BIOS usng the dgnature primitive, desribed atove,
with the following algorithm:

Z = Update revision from the update header to be authenticated;
X = Current Update Signature from MSR 8Bh;
If (Z > X) Then
Load Update that is to be authenticated;
Y = New Signature from MSR 8Bh;
If (Z ==Y) then Success
Else Fall
Else Fall

Thealgorithm requres that the BOS onlyautheticate ypdates that catain a mmetically larger
revisionthan the curertly loadedrevision,where Qurrert Signature K) < New Uodate Rwvi-
sion (Z). A processor with no update loadedshould be camdderedto hawe a revision equal to
zera This autheficationprocedue reliesuponthe decochg provided bythe pocessr to veify
anupdate floma pdentially hostile souce. As anexamjpe, this nechanism ircorjunctionwith
other safeguardsprovides cuity for dynamcaly incorporating field updates into the BIOS.
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8.10.4. P6 Family Processor Microcode Update S pecificat ions

This sction describes He interface tht an apgication can use to dyamically integate
procesa-specific updatesinto the gystemBIOS. In this discussion, the application is referred
to as tle calling program or caller.

The real mode INT15 call specification desribed here isan Irtel exenson to an OEM BIOS.

This extensiorallowsan apfication toread ad modify the catents ofthe micocode uplate
data in NVRAM. The update loader which is part of the s/stem BIOS, camot be updated by

the interface All of the functions defird in the pecification must be implemead fora system
to be cosidered conpliant with the specification The NT15 functiors are accesible ory

from real node.

8.10.4.1. RESPONSIBILITIES OF THE BIOS

If a BIOS passs the peserce €st (INT 15h, AX=0D042h, BL=0h) it must implement all otthe
stb-funcions definedin the INT 15h, AX= 0D042h specfficaion. Thereare o optionalfunc-
tions. The BIOS must loadthe appropriate wpdatefor eachprocessr during system intiali za-
tion.

A headewersion of anupdate black containingthe valle OFFFFA-FFh indicatesthat the update
blockis unusedandavaiable for soring a nev update.

The BOSisresponsble for providing a2048 byte regon of nan-volatile siorage NVRAM) for
each ptential pra@esor seppng within asystem. Tis stora@ unt is refered to as anpdate
block The BIOS fa a s$ngle piocesa systemneed aly provide one pdate Hock 1 store the
microcode wpdatedat. The BIOSfor a multiple procesa capablesystemneedsto provide one
update block ér eachunique pracessor steppig supported ty the OEMS system. The BDSis
respomible far managng the NVRAM update blocks. This includesgatbage collectionsuch
as renoving update blocksthat exist in NVRAM for which a coregpording procesor does rot
existin the system.This specifcationonly provides tke meclanian for ensuringsecurity the
unigueness ofinentry andthat stak entries arenotloaded The atual update hock manag-
ment is impementation speci€ ona perBIOS basis As anexamplethe BOS mayuse uplate
blocks seqertially in asceding oder wih CPU signaturessated versis the first available
block In addtion, garbage collectionmay be impgemented a a setup option to clear all
NVRAM slots or as BOS caode thatsearclesand éiminates unused etriesduring boot.

The fdlowing algorithm desribesthe sepsperformed during BIOS initialization usedto load
the updtesinto the praesor@). It asumes thatthe BIOS ersuresthat no ugate contained
within NVRAM has a headewerson a loader verson that doesna match ore currertly
suppated bythe BIOS and that the updteblock conains a corectchecksum. It also assumes
thatthe BOS ersuresthatat maost one updteexistsfor eachprocessor ®ppang and hat older
updhte revisions are mallowed to overwrite moreaecent oes These requirenentsare checked
by the BIOS during the exection of the write uplate function of this interface. TheBIOS
seqienialy scansthroudh al of the update blocksin NVRAM startingwith index0. TheBIOS
scansuntil it fin ds an update where the pocesa fields in the header ratch the family, model,
andsteppngaswell as the fatform ID bits ofthe curent gocessr.
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For each processor in the system {
Determine the ProcType, Family, Model and Stepping via CPUID;
Determine the Platform ID Bits by reading the BBL_CR_OVRD[52:50] MSR;
for (I = UpdateBlock 0, | < NumOfUpdates; I++) {
If (UpdateHeader.Processor ==
ProcType, Family, Model and Stepping) &&
(UpdateHeader.ProcessorFlags == Platform ID Bits)) {
Load UpdateHeader.UpdateData into the Processor;
Verify that update was correctly loaded into the processor
Go on to next processor
Break;
}
}
Proganmmer’s Note: The patform ID hits in the BBL_CR_OVRD MSR are
ercodedas athree-ht binay coded decimal field. The platfom ID bits in the
micrococe pdateheaderareindividually bit ercoded. The algaithm must
do a trarslationfrom ore farmat tothe othe prior to doingthe canpaison.

When performing the INT 15h, 0D042h functions, the BIOSmust assme that the caller &s no
knowledge abaut platform specific requirements. It is the responsibility of the BIOS calk to
marege all hipset angplatform specific prerequsitesfor maregingtheNVRAM device. When
writing the yodatedatavia the writeupdate sub-function, the BIOS must maintainimplementa-
tion specific data reqirements suchas theupdate d NVRAM chedsum. The BIOS shoid
also attempt to erify the successf write operations o the storag devce used to ecordthe
updat.

8.10.4.2. RESPONSIBILITIES OF THE CALLING PROGRAM

This sction of the document lists the respnsibili ties d the calling programusing the interface
specifications to load microcode ypdate(s) irto BIOS NVRAM.

The caling piogramshould cal the INT 15h, 0D 2hfunctions from apure realmoce program
andshould be execting on a system that iginning in pure real mod. The caler should issue
the pregnce ést function (2ibfuncion 0) and veify the signature and rairn codes of hatfunc-

tion. It is important hat the callirg program provides he reqired scratch FAM buffers fa the

BIOS ard theproper stack size as specifiedtime inteface deihition.

The calling programshould read ag update datithatalready existsin the BIOS inorder to make
decisions abut the apropriateness ofoadng the ydate. The BIOS refuses to ovemrite a
newerupdatke with anolder version. Theupdatehea@r catainsinformaion abaut version ard
processr specifics fa the callirg programto make anintelligentdecison abaut loadng.

There canbe no amlguausupdaes. The BlIOSrefusesto allow multiple updaes for the sme
CPUID to exist at the same itme. TheBlOSalsorefusesto load anupdate for a pracesorthat
doesnat exist in the ystem

The calling application shalld implement averify function that is run afterthe uplate write
functionsuccesfully comgetes. This functionreads bck tre uplate ad verifies that theBIOS
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returnedanimage icnicalto the one that was written The following pseudo-code represetts
a caling program.

INT 15 D042 Calling Program Pseudo-code
1
/I We must be in real mode
1
If the system is not in Real mode
then Exit
1
/I Detect the presence of Genuine Intel processor(s) that can be updated (CPUID)
1
If no Intel processors exist that can be updated
then Exit
1l
/I Detect the presence of the Intel microcode update extensions
1
If the BIOS fails the PresenceTest
then Exit
1
/I If the APIC is enabled, see if any other processors are out there
1
Read APICBaseMSR
If APIC enabled {
Send Broadcast Message to all processors except self via APIC;
Have all processors execute CPUID and record Type, Family, Model, Stepping
Have all processors read BBL_CR_OVRDI[52:50] and record platform ID bits
If current processor is not updatable
then Exit

}
1l
// Determine the number of unique update slots needed for this system
1l
NumsSilots = 0;
For each processor {
If ((this is a unique processor stepping) and
(we have an update in the database for this processor)) {
Checksum the update from the database;
If Checksum fails
then Exit;
Increment NumSilots;

}

}

1l

/I Do we have enough update slots for all CPUs?

1

If there are more unique processor steppings than update slots provided by the BIOS
then Exit
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1l
// Do we need any update slots at all? If not, then we're all done
1
If (NumSlots == 0)
then Exit
1l
/I Record updates for processors in NVRAM.
1

For (1=0; I<NumSilots; I++) {
1
/I Load each Update
1
Issue the WriteUpdate function

If (STORAGE_FULL) returned {
Display Error -- BIOS is not managing NVRAM appropriately
exit
}
If INVALID_REVISION) returned {
Display Message: More recent update already loaded in NVRAM for this stepping
continue;

}

If any other error returned {
Display Diagnostic
exit
}
I
/I Verify the update was loaded correctly
I
Issue the ReadUpdate function

If an error occurred {
Display Diagnostic
exit
}
1
/I Compare the Update read to that written
1
if (Update read != Update written) {
Display Diagnostic
exit

}
I

8-42 I



Intel® PROCESSOR MANAGEMENT AND INITIALIZATION

/I Enable Update Loading, and inform user
1l
Issue the ControlUpdate function with Task=Enable.

8.10.4.3. MICROCODE UPDATE FUNCTIONS

Table 8-8 defines the current P6 family Processar microcode update functions.

Table 8-8. Microc ode Update Function s

Microcode Updat e Function
Function Number Descrip tion Required/Optional
Presence test 00h Returns information about the supported Required
functions.
Write update data 01lh Writes one of the update data areas (slots). Required
Update control 02h Globally controls the loading of updates. Required
Read update data 03h Reads one of the update data areas (slots). Required

8.10.4.4. INT 15H-BASED INTERFACE

Intel recomnends tlata BIOS interfice fe provided that allows addional micrococe ydates
to be adaed tothe systemlésh. The INT15 intefface is arintel-defined methal for doing this.

The pr@ramthat callsthis interfaceis respasible for providing three 64kilobyte RAM areas
for BIOSuse duingcals to the readandwrite functions Thes RAM scratch padscanbe wsed
by the BIOSfor any pupose, butonly for the duration of the fundion cal. The caling rodine
places real mie segmets pointing to the RAM blocksin the CX, DX andSl registers. @ls
to functiorsin this interfacemust be made witha minimumof 32 kilobytes ¢ stackavailableto
the BIOS

In general, eacHunction retuns with CF cleared ad AH cortains the eturned datus. The
gened return codes and other congant definitions arelisted in Secion 8.104.5, “Return
Codes’.

The OEMEtror (AL) is providedfor the OEMto returnadditional error information specific to
the datform. If the BIOS providesno additional information alout the error, the OEM Error
mug be &t to SUCCESS. TheOEM Erra field is unddinedif AH congins either SUCCESS
(00) or NOT_IMPLEMENTED (8®). In all other cassit must be €t with either SJCCESSor
a valite meaningul to the OEM.

The fllowing text detailsthe functions povided by theINT15h-basednterface.
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Function 00h -Presence &st

This function verifiesthat the BIOS hasimplemerted the requred mcrocode update furctions
Table 8-3liststhe mrameters ard return cades for the function.

Table 8-9. Parameters for th e Presence Test

Input :
AX Function Code 0D042h
BL Sub-function 00h - Presence Test
Output:
CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.
AH Return Code
AL OEM Error Additional OEM Information.
EBX Signature Part 1 'INTE’ - Part one of the signature.
ECX Signature Part 2 'LPEP’- Part two of the signature.
EDX Loader Version Version number of the microcode update loader.
Sl Update Count Number of update blocks the system can record in NVRAM.
Return Codes: (See Table 8-8 for co de definition s)
SUCCESS Function completed successfully.
NOT_IMPLEMENTED Function not implemented.

In order to assure that theBIOS functionis present, thesaller must veify the Carry Flag, the
Return Code, andthe @!-bit sigrature. Each ypdate bockis exacly 2048 bytes in lengh. The
update wunt reflectsthe number of update bbcks avaikble for storage within non-volatile
RAM. The update cant must retun with avalue greatethan or egal to the nmber d unique
processr steppings curertly instaled within thesystem.

The lbader vesion nunber regrs 1o the revision of the update loader pogram tatis included
in the gystemBIOS image.
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Function 01h -Write Microcade UpdateData

This function integraiesa new mérocade uglat into the BIOS dorage devece. Tble 84 lists
the paametersandretun codes for the function.

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 8-10. Parameters for th e Write Up date Data Function

Input:
AX Function Code 0D042h
BL Sub-function 01h - Write Update
ED:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is
2048 bytes in length
CX Scratch Padl Real Mode Segment address of 64 kilobytes of RAM Block.
DX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block.
Sl Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.
SS:SP Stack pointer 32 kilobytes of Stack Minimum.
Output:
CF Carry Flag Carry Set - Failure - AH Contains Status.
Carry Clear - All return values are valid.
AH Return Code Status of the Call
AL OEM Error Additional OEM Information.

Return Codes: (See T able 8-8 for cod e definiti ons)

SUCCESS

Function completed successfully.

WRITE_FAILURE

A failure because of the inability to write the storage device.

ERASE_FAILURE

A failure because of the inability to erase the storage device.

READ_FAILURE

A failure because of the inability to read the storage device.

STORAGE_FULL

The BIOS non-volatile storage area is unable to accommodate
the update because all available update blocks are filled with
updates that are needed for processors in the system.

CPU_NOT_PRES

ENT

The processor stepping does not currently exist in the system.

INVALID_HEADER

The update header contains a header or loader version that is
not recognized by the BIOS.

INVALID_HEADER_CS

The update does not checksum correctly.

SECURITY_FAILURE

The processor rejected the update.

INVALID_REVISION

The same or more recent revision of the update exists in the
storage device.

The BIOSis responsible for selectirg anappropriate ypdate Hock in thenon-volatile gorage for
storing the rew update. Ths BIOS is al responsible for enauiring theintegrity of the informa-
tion provided bythe calkr, including authenicating the proposedupdéae befaeincorporaing it
into staage.
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Before writing the ypdate Hock into NVRAM, the BIOS sould ersure that the update structire
meets tle following criteria in the following order:

1. The uplak heaer vesion stould be eqal to an pdate headerverdon recogrized bythe
BIOS.

2. The wdateloader version in the update keadershould be equal to the update loa@r
version cantainedwithin the BOS image.

3. The update block sould checlsum to zero. This checksumis computed asa 32-bit
summation o all 512 doube words inthe stucture, includng the heaer.

The BOS glect an pdat blockin nonvolatile storage fo storing the cadidake updaie. The
BIOS canselect anyavailable udate blockaslong as itguararieesthat aly a single upate
exists for ary given procesa stepping in non-volatile siorage. f the ypdae block selecied
alreadycortains an uplate, tle following addtional criteria aply to overwrite it:

®* The praesorsignature inthe poposed update $ould be egial to the pocessor sigature
in the headr d the curent update in NVRAM (CPUID + datform ID bits).

®* The updat revision in the popcsedupdat should be greaer than he updak revision in
theheaderof the curent ipdate inNVRAM.

If no unused updte blocls are availabland the above criteriaarenot met, he BIOS can over
write anupdate blocKor aprocessort®ming that § no longer present ithe system. This can
be dne ly scannig the ypdak blocks and ompaing the processor seppings, idenified in the
MP Specification talbe, to theprocesorsteppngs that ctrertly exist in the system.

Finally, before sbring the proposed update irto NVRAM, the BIOS should verify the aghen-
ticity of the ypdate via the nechaniam desribed in Secton 8.10.2, “Microcode Updaie
Loacer”. This incluces loadingthe umlate intothe curent procesor, executing the CPUID
instruction readingMSR 08Bh, andcomparing a caculated value withthe ypdaterevisionin
the prgposed update headr for equality.

Whenperforning the write uglate function, the BIOSshould recad the ertire update,including
the headr andthe update data.When writing anupdate,the original cortentsmay be over
written, assuning the atove ciiteriahave beenmet. It is the respnsibility of the BOS toensire
that mae recehupdates areat ovemrittenthroughthe use of tis BIOS call, ard that oy a
single updat exsts within the NVRAM for anyproes®r steppng.

Figure 8-9 showsthe processthe BIOS follows to choosean ypdate blockandensire the integ
rity of the data whenit soresthe new nicrococe upate.

8-46 I



PROCESSOR MANAGEMENT AND INITIALIZATION

Write Microcode Update

Does Update Match &
CPU in the System?
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Loader?
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INVALID_HEADER
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Space Available
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v
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I

Return
SUCCESS

Return
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Figure 8-9. Write Operation Flow Chart
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Function 02h - Microcodce Update Cortrol

This function erablesloadng of binary updates into theprocesar. Table 8-5lists the pararaters
and retun codes for the furction.

Table 8-11. Parameters for the Control Update Sub-func tion

Input :
AX Function Code 0D042h
BL Sub-function 02h - Control Update
BH Task See Description.
CX Scratch Padl Real Mode Segment of 64 kilobytes of RAM Block.
DX Scratch Pad2 Real Mode Segment of 64 kilobytes of RAM Block.
Sl Scratch Pad3 Real Mode Segment of 64 kilobytes of RAM Block.
SS:SP Stack pointer 32 kilobytes of Stack Minimum.
Output:
CF Carry Flag Carry Set - Failure - AH contains Status.
Carry Clear - All return values are valid.
AH Return Code Status of the Call.
AL OEM Error Additional OEM Information.
BL Update Status Either Enable or Disable indicator.
Return Codes: (See T able 8-8 for co de definition s)
SUCCESS Function completed successfully.
READ_FAILURE A failure because of the inability to read the storage device.

This contol is providedon a glotal basis forall updatesard pracesors. The caller caneler-
mine tre curent satws of update loathg (enabledor dsabled without changngthe gate. The
function dbesnotallow the caler to disabe loading of binary updates, aghis possa sectity
risk.

Thecaler specfifiesthe requestd operaton by placing one of the valuesfrom Table 86 in the
BH register After succesfully completing thisfunctionthe BL regster conains either the
erableor the dsable designator. Note thatif the function fails, the update statusreturnvalue is
undefined.

Table 8-12. Mnemonic Values

Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time

Query 2 Determine the current state of the update control without changing
its status.

The READ_FAILURE error codereturned by this function has meaning only if the control func-
tion is implemeted in the BOS NVRAM. The state ofhis featue (erabled/disabledyan also
be mplemened usng C(MOSRAM bits whereREAD failure erra's canna occu.
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Function 03h - Read Microcode Update Data

This furction reas acurrertly instaled microcale upmlate fom theBIOS gdorage io a caller
provided RAM buffer. Section8-13, “Parameterdor the ReadMicrococe Update Dad Furc-
tion” lists theparaméers ard return codesfor thefunction.
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Table 8-13. Parameters fo r the Read Microcod e Update Data Function

Input:

AX Function Code 0D042h

BL Sub-function 03h - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that will be
written with the binary data.

ECX Scratch Padl Real Mode Segment address of 64 kilobytes of RAM Block
(lower 16 bits).

ECX Scratch Pad2 Real Mode Segment address of 64 kilobytes of RAM Block
(upper 16 bits).

DX Scratch Pad3 Real Mode Segment address of 64 kilobytes of RAM Block.

SS:SP Stack pointer 32 kilobytes of Stack Minimum.

Sl Update Number The index number of the update block to be read. This value is
zero based and must be less than the update count returned
from the presence test function.

Output:

CF Carry Flag Carry Set - Failure - AH contains Status.

Carry Clear - All

return values

are valid.

AH Return Code Status of the Call.

AL OEM Error Additional OEM Information.

Return Codes: (See Table 8-8 for cod e

definiti ons)

SUCCESS

Function completed successfully.

READ_FAILURE

A failure because of the inability to read the storage device.

UPDATE_NUM_INVALID

Update number exceeds the maximum number of update
blocks implemented by the BIOS.

The readunctionenableshe calerto read any upate data that alreadyists in a BIOS and
make decisions abbthe addition of new updates. As a result of accesful call, the BIOS
copies exady 2048 bytes irto the Iacation pointed toby ES:DI, withthe canterts of the ypdate
block repeseted by update number

An updat block is consderedunused andavalable for storing a new pdat if its heaekr vesion
containsthe value OFFA-FH-Fhafter ieturn from this function call. The actal implementation
of NVRAM storage managment isna specified hexand is BIOS depedent. Asan exam[e,
the actualdata value used to reernt anenpty blockby the HOS may be zerpratherthan
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OFFR-FHA-Fh The BIOS sresmnsible for trarslating thisinformation into the header povided
by this function.

8.10.4.5. RETURN CODES
After the call has been nade, the retun cades listedin Table 88 are awilabe inthe AH regiger.

Table 8-14. Return Code Definitions

Return Code Value Descrip tion

SUCCESS 00h Function completed successfully

NOT_IMPLEMENTED 86h Function not implemented

ERASE_FAILURE 90h A failure because of the inability to erase the storage
device

WRITE_FAILURE 91h A failure because of the inability to write the storage device

READ_FAILURE 92h A failure because of the inability to read the storage device

STORAGE_FULL 93h The BIOS non-volatile storage area is unable to

accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system

CPU_NOT_PRESENT 94h The processor stepping does not currently exist in the
system

INVALID_HEADER 95h The update header contains a header or loader version
that is not recognized by the BIOS

INVALID_HEADER_CS 96h The update does not checksum correctly

SECURITY_FAILURE 97h The update was rejected by the processor

INVALID_REVISION 98h The same or more recent revision of the update exists in

the storage device

UPDATE_NUM_INVALID 99h The update number exceeds the maximum number of
update blocks implemented by the BIOS

8-50 I



Memory Cache
Control






Intel® MEMORY CACHE CONTROL

CHAPTER 9
MEMORY CACHE CONTROL

This chaptedescribes the tal ArchitectureS memay cacle andcache cotrol mechanisms,
the TLBs, ard the write buffer. It also desribesthe memay type rame registers (MTRRS)

found in the P6 family pre@esors andhow theyare used teontrd cachirg of physical memory
locations.

9.1. INTERNAL CACHES, TLBS, AND BUFFERS

The Intel Architecture suports cactes transhtionlook agde bufers (TLBs), and write luffers
for temporaryon-chip (and exernal) storage of hstructionsand dad (seeFigure 9-1). Table 9-1
shows he chaacteristics of these caclsard bufers forthe P6 family Pentiun®, and Intel486™

processors. The szes and claracteristics of these uiits are machire spedic and may

changein future versions of the processr. The CPUID instruction retunsthe szes and char
acterigics ofthe caches anduffers forthe pocessr onwhich tre instuctionis executed For

moreinformation, see “®@UID—CPU lderiification” in Chapter3 of the Intel Architecture ft-

ware Develger's Manual, \blume 2
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Physical
Memory
L2 Cache?® »| Data Cache
System Bus i Unit (L1Y)
(External) —
i Cache Bus
Inst. TLBs
:_—|—>
Bus Interface Unit
:——\—> Data TLBs
Instruction Fetch Unit | Instruction Cache (L1%) »| Write Buffer

1 For the Intel486™ processor, the L1 Cache is a unified
instruction and data cache.

2 For the Pentium® and Intel486™ processors, the L2 Cache
is external to the processor package and there is
no cache bus (that is, the L2 cache interfaces with
the system bus).

3 For the Pentium® Pro, Pentium® Il and Pentium® Ill processors,
the L2 Cache is internal to the processor package and there is
a separate cache bus.

Figure 9-1. Intel Arc hitec ture Caches

The Intel Architecture defies two separate cachethe kevel 1 (L1) cacte andthe level2 (L2)
cache(see Fgure 9-1). The L1 cacheis closely cowled tothe irstruction fetch wit andexecu
tion units d the pocessr. ForthePentiun® and P6 family processrs, the L1 cache islivided
into two sectns: one dedcated to cachinginstructions and oa to cachingdata. For the
Intel486™ processr, the L1 cabe isa unfied instructioranddata cacé.
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Table 9-1. Characteristic s of the Caches, TLBs, and Write Bufferin

Intel Architecture Processors

Cache or Buffer

Characteristics

L1 Instruction
Cache!

- P6 family and Pentium® processors: 8 or 16 KBytes, 4-way set associative,
32-byte cache line size; 2-way set associative for earlier Pentium® processors.
- Intel486™ processor: 8 or 16 KBytes, 4-way set associative, 16-byte cache line

size, instruction and data cache combined.

L1 Data Cache?

- P6 family processors: 16 KBytes, 4-way set associative, 32-byte cache line size;
8 KBytes, 2-way set associative for earlier P6 family processors.

- Pentium® processors: 16 KBytes, 4-way set associative, 32-byte cache line size;
8 KBytes, 2-way set associative for earlier Pentium® processors.

- Intel486™ processor: (see L1 instruction cache).

L2 Unified Cache??

- P6 family processors: 128 KBytes, 256 KBytes, 512 KBytes, 1 MByte, or 2
MByte, 4-way set associative, 32-byte cache line size.

- Pentium® processor: System specific, typically 256 or 512 KBytes, 4-way set
associative, 32-byte cache line size.

- Intel486™ processor: System specific.

Instruction TLB (4-
KByte Pages)!

- P6 family processors: 32 entries, 4-way set associative.

- Pentium® processor: 32 entries, 4-way set associative; fully set
associative for Pentium® processors with MMX™ technology.

- Intel486™ processor: 32 entries, 4-way set associative, instruction
and data TLB combined.

Data TLB (4-KByte
Pages)®

- Pentium® and P6 family processors: 64 entries, 4-way set associative; fully set
associative for Pentium® processors with MMX™ technology.
- Intel486™ processor: (see Instruction TLB).

Instruction TLB
(Large Pages)

- P6 family processors: 2 entries, fully associative
- Pentium® processor: Uses same TLB as used for 4-KByte pages.
- Intel486™ processor: None (large pages not supported).

Data TLB (Large
Pages)

- P6 family processors: 8 entries, 4-way set associative.

- Pentium® processor: 8 entries, 4-way set associative; uses same TLB as used
for 4-KByte pages in Pentium® processors with MMX™ technology.

- Intel486™ processor: None (large pages not supported).

Write Buffer - P6 family processors: 12 entries.
- Pentium® processor: 2 buffers, 1 entry each (Pentium® processors
with MMX™ technology have 4 buffers for 4 entries).
- Intel486™ processor: 4 entries.
NOTES:
1. In the Intel486™ processor, the L1 cache is a unified instruction and data cache, and the TLB is a unified
instruction and data TLB.
2. In the Intel486™ and Pentium® processors, the L2 cache is external to the processor package and
optional.
3. In the Pentium® Pro, Pentium® I, and Pentium® Il processors, the L2 cache is internal to the processor
package.
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The L2 cachés a unifiedcache fostorage of bothnstructiors and data. lts closel coupled to
the L1cache though the pracesors cache bs (for the P&amily processrs) orthe systmbus
(for the Pentium® ard Intel486™ processrs).

The cache linefor the F5 family and Pentiurfi processrs’ L1 and L2 cacbsare 32 byeswide.
The pocessr always reads aacte line from system memagrbegiming ona 32byte baindary.
(A 32-byte aligred cache line begs at an adrkesswith its 5 leassigrificant bitsclear) A cache
line canbe flled from memay with a4-trarsfer bust transactn. The caclesdo not support
pattially-fill edcache ling, so cahingeven asinge dowblewordrequires cachingn etire line.
(The cache lie d9ze for the Intel886™ pracesoris 16 bytes)

The L1and L2cachesre available in aléxecutionmodes. Umng these cachageatly impoves
the perfornance & the pracessr bath in single- and multiple-processr systens. Cachirg can
alsobeused n systemmanagerant mode SMM); howeve, it must be fandled carefuly. For

more information,see Section2.4.2., “SMRAM Caching, in Chapter 2, System Management
Mode GVIM).

The TLBs store the m& recently ged page-drectory ard page-table entries. They speeg
memay acceseswhen aging is erabled ly reducing the mmber of memay acessesthat are
required to read tke pa@ tables storedn system memay. The TLBs are dvided into four
groups: instruction TLBs for 4-KByte pages, daa TLBs for 4-KByte pages; instruction TLBs
for large pages (2MByte or 4-MByte page9, anddata TLBs for large pages (Only 4-KByte
pages are suported for Intel38™ andIntel48&™ procesors.) The TLBs are rormally active
only in pratectedmode with paing enabted. When pagng is disabledor the pr@esoris inreal-
addressmode, he TLBs maintain their cantents until explicitly or implicitly flushed. For more
information see Sedbn 910, “Invalidatingthe TrarslationLookadde Buffers (TLBs)".

The writebuffer isas®ciatedwith the processornstruction executiorunits. It allows writesto
sysemmenory and/or the interal caclesto be sved and in sme cass combied to optimize
the pocessals bus access. The write bufer is always endkd in all executionmodes.

The preesorscadesare forthe mospaitt transpagntto oftware. Whenerabled, instuctions
anddata flow through these caches wthout the need foexplicit software cotrol. However
knowledge 6 the behaior of these cachamay be useful in oppmizing software perbrmarce.
For exanple, krowledge & cache dimesions ard replacemet algorithms gives an indcaion
of how lage of adata structu can le operated a at axce withou causingcache thashing.

In mutiproces®r systems mairterence d caclke casistercy may, in rare circumstarces,
require intenention ly sysemsoftware. For these rare cases, thegassr provides privleged
cachecontrd instructions fa use influshingcaches.

9.2. CACHING TERMINOLOGY

The Intel Architecture(begnning with the Pertium® processoriiseshe MESI (nodified exclu-
sive, shared, inwlid) cache prtocol to maintain cagistency with internal caches and casim
other procesois. For mare information seeSecton 94., “Cache Control Praocol”. (The
Intel486 ™ processorusesan implemettation defined cachingpratocol that gerates in a similar
mamer tothe MESI potocd.)
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When the procesor recanizes that aroperard being read fom memay is cacleable,the
procesorreads an dire cache linento the apropriate cachgL1, L2, or bath). This operation
is caledacache line fill. If the memory locationcontainingthat gerard is stll cachedhe rext
time the pocessor attentpto acces theope@and, the pocessor caneadthe gerard fromthe
cache isteadof going backto menory. This operationis called acache hit

Whenthe pocessr attempts to write anopeand toa cacheable aa@f memay, it first checks
if a cachdine for that memoy locationexistsin the cache.fla valid cache line des exis, the
processor (depering on thewrite pdicy currerily in force) canwrite theoperandinto the cacle
insteadof writing it out to systemmemory. This operatian is calledawrite hit. If awrite mises
the cachethat is a valid cachéine is nat present fothe aea of nemory beingwritten to), the
procesa performsacacte line fill, write allocaion. Thenit writesthe gperand into the cacle
line anl (deperding on the write wlicy curertly in force) canalsowrite it out to memory. If the
operand is to be written out to memory, it is written first into the write buffer, ard thenwritten
from the write liffer tomemay when the systemus isavailable. (Note tlatfor the Irtel486™

and Petium® procesars, write missesdo not restt in a cacle linefill; they always result in a
write to menory. Fa these pocesas, only readmissesreallt in caclelinefills.)

When operatingin a mutiple-procesor system, Intel Architectue piocessrs (begnning with

the IntEl486™ procesa) have the ablity to snoop other procesors accesss to system
memay and to their internal cactes They use this snooping ahility to keeptheir internal cacles
consiséent bothwith system memry and with the caasin otherprocesors onthe bs. For

exampe, in the Fentium® andP6 family processrs, if through srooping one proessr detects

that anther pocessor intetls to write toa memoy locatin that it curently has cachedn

shared sate, thesnooping procesorwill invalidate its cadh line orcing it to pefform a cacle

line fill the rext time it accesss the samememay location.

Beginning with the P6 family processas, if aprocessor detects (through smooping) that another
processoris tryingto acces amemory location that it hasodified in its cache, buhas not yet
written back to syem memory, the snoping processr will signal the otherprocessr (by
means ofthe HITM# signal) that the cache linas held in modified state anl will prefam an
implicit write-backof the modified daia. The implicit write-back is trarsfered directly to the
initial requesing procesor ard srooped ly the menory contollerto asure that system nemory
has beempdated. Herethe pocessr with the \alid data maypasslie data tahe other proces-
sors without actwally writing it to system memory; however, it is the respnsibility of the
memay controller to sno this operaion andupdatememoy.

9.3. METHODS OF CACHING AVAILABLE

The pocessr allows anyarea ofsystem menary to be cackd in tke L1 arl L2 caches. Whin
individual pages or regiors of system menary, it al allows the type focaching(also called
memory type) to be specifed using a variety of systemflags andregsters For more informa-
tion, e Secton 95., “Cache ©ntrd”. The cacing mettods curently cfined for the htel
Architecture ag asfollows. (Table 92 lists which types of cacimng are awilable on spedit Intel
Architecture proesors.)

® Uncacleable (UG—System memuy locatiors are ot cachedAll reads andwrites appar
on the system busand are exeded in program oder, without reodering. No speulative
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menory accesss, ge-talle walks, @ prefetches bspecliated branchtargetsare mae.
This type of cacheeontiol is usefu for memay-mapped I/O devices. Wen used with
normal RAM, it greaty redwesprocesorperformarce.

Table 9-2. Methods of Caching Available in P6 Family, Pentiu m®,
and Intel486™ Processors

Cachin g Method P6 Family Pentium® Processor Intel486™ Processor
Processors
Uncacheable (UC) Yes Yes Yes
Write Combining (WC) Yes?! No No
Write Through (WT) Yes Yes? Yes?
Write Back (WB) Yes Yes? No
Write Protected (WP) Yes?! No No

NOTES:

1. Requires programming of MTRRs to implement.
2. Speculative reads not supported.

9-6

Write Combining (WC)—Systemmemoy locations ae rot cacled (as withuncackeable
memory) ard coherency is not enforced by the processa’s bus @mherency protocol.
Speclative read are allowed. \Wtes may be delayeahdcombinedin the writebuffer to
reduce memry acceses The writes may be delayedntil the next occurrenceof abuffer
or processor aialization event, e.g., ®UID execution a read or write to uncacéd
menory, interrupt occurence,LOCKed irstruction execution, etc. if the WC buffer is
partially filled. This type of cache-control is appropriate fa video frame huffers, wiere the
order of writesis unimportant aslong asthe writes updaie memay o they canbe £en m
the gaphics diplay. See ®ction 9.31., “Buffering of Write Combining Memogy
Locations”, for more information abait caching the WC memory type. The preferred
method is to use the new SFENCE (store fence) irstruction introducedin the Petium® 111
proces®r. The SFENCE instruction ersures weakly orderedwrites arewrittento memory
in order, i.e., it serialzes only the $ore eratians.

Write-through (WT)—Writes and readgo and fran systemmemay are cacted. Reads
come from cacle lineson cactle hits; readmissescatse cacle fills. Specuative read are
allowed All writes are witten to a cache line(when possible) and through to system
menory. Whenwriting through to memay, invalid cacte lines arenever filled, ard valid

caclelinesare eitter filled or invalidated Write canbining is alowed This type of cacte-
control is appopriate for frame bdifers or whenthere are devices on the sysem bus that
access ystem memay, bu do nat perform snoopng of memoy accesseslt enforces
cohererty betweencaches in th pracesors ard system meury.

Write-back (WB)—Writes andreads to anfrom system memy are cachd. Readscome
from cachelines on cachehits; read mises cawse cacle fills. Speculative reads are
allowed Write misses catse cacte line fills (in the 6 family procesers), ard writes are
performedentirely in the cacle, whenpossble. Write conbining is allowed.The write-
back memoy type rediceshbus traffic by eliminating nany umecesary writes to system
menory. Writes toa cache lie are ot immedately forwardedto system ramory; instead
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they areaccumulatedin the cacle. The malified cactelines arewrittento system nemory
later, when awrite-backopemtion is perbrmed. Write-back operatiors are triggeed when
cachelines needo be deallocatedsuchaswhennew cack lines ae beirg allocded in a
cache that isalreadyfull. They also ardriggeredby the mechaisms ugd to maintain
cacheconsisency. This type of cacheeontrd provides thebest perfrmance, lut it requires
that all devices hat accesssystem memy on the ystem hus be able to snoop memory
accesss toinsure system memy and cacle colerency

® Write praected (WP)—Reads cora from cache lies when possible, ard read misses
cause cache fdl Wites arepropagated to theystem busnd causecorrespading cacle
lines on all proessors on the os to be invalidated.Spectative reads are &wed. This
cachirg option is available in he F6 family proessors by pogrammingthe MTRRS
(seehble 95).

9.3.1. Buffering of Write Combining Memory Locat ions

Writes toWC menory arenotcachedn the tygdcal sense of theword cached They ae retained
in an interml buffer that issepaate from the intemal L1 andL2 caches. The bfer is not
snoopedand thusdoes notprovide datacoherency The write bufering isdone b allow sdtware
a gnall window of time to sipply more nodified data tathe buffer while remaining as ronintru-
sive to software asposdble. The sze d the bdfer is not arclitecturlly defined, Howevethe
Pentium® Pro and Pertium® Il processrsimplement ainge concurent 32byte buffer. Thesize
of this buffer was cheen by impgementatiorconwenienceln the Pentium® 11l procesor thee
are 4write combine bufers. Te sze is the samesdior the Rentium® Pro ard Pentium® |l proces
sors. Bufer size andquartity changes may occu in future generations o the P6family proces-
sasand sosoftware sioud notrely upon the curent32-byte WChbuffer $zeor the existence of
a shgle corcurrent buffer or the 4 buffers in the Renitum Il procesa. The WC huffering of
writes al® cawsesdata to be collapsed (for exanple, nultiple writesto the sarre location will
leawe thelast data witten inthe locaton andthe other writes will be lost).

For the Pentium® Pro and Pentium® Il procesors, orce ®ftware writesto a egion of memory
thatisaddies®d outside d therange ofthe curent32-byte kuffer, the datin the bufer is aub-
matically forwardedto the systemus and wittento memay. Theaefore sftware that writes
more thanore 2-byte huffers woth of data will ensurethat the datafrom thefirst buffers
address rarge is forwarded to memory. The lastbuffer writtenin the ssquencemay be delayed
by the pocessr longer unlesghe buffers are deliberatelymptied. Software deopelrs shoud
not rely on the facthat there isonly ore active WC buffer at atime. Software devefers
creatirg sdtware that issersiti ve todata beirg delayed must deliberately enpty the WC buffers
andnotasume the haravare wil.

Once he processr hasstarted ® move datarito the WC buffer, it will make abus transaction
style cecision bagd on how muchof the bufer cortains valid dat. If the buffer is full (for
exampe, all 32 bytesare \alid) the procesor will executea burstwrite transaction otthe bus
that will resut in all 32 bytesbeirng transnitted onthe dbta busin a sngle transacton. If one or
more of the WCbuffer'sbytes are imalid (for exanyple, have not beenwritten by software) then
the processar will start to move the data to memory using “partial write” transactons on the
system tus. There will be a maxmum d 4 partial write tansadbnsfor one WC buffer of data
sent tomemory. Once datin the WCbuffer hasstarted to ke propagatedto memory, the data is
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subjectto the weakordering £martics of its definition. Ordering is na maintained ketweenthe

succeswe allocatiordeallocation 8WC buffers (for exanple, writesto WC buffer 1 followed
by writes o WC buffer 2 may appear asuffer 2followedby buffer 1 on the sygem tus. When

a WC buffer is prgpagatedo memory aspatial writes there isnoguararteed oderingbetween
succeswe partial writes (fa exampe, a partial write for chunk 2may apgear onthe bus befre

the patial write for chunk 1 or vice ersa). The oty elementsof WC propagationto the system
bus that areguamanteed ag thase provided by transactioratomicity. For the P6 &mily proces-
sas, a conpletely full WC buffer will always be propagatedasa sirgle kurst transaction using

ary of the clunk orders. In a WC buffer propagation where the data will ke propagatedas
pattials, al data cantained n the sme chuk (0 mod 8 aigned) will be propagaed smulta-

neadly.

9.3.2. Choosing a Memory T ype

Thesimples system memoy modeldoesna use memeoy-mapped I/O with read @ write Sde
effects does not inclué a frame bifer, ard useghe write-back merory type foral memay.

An /O agent canperform direct menory acces§DMA) to write-backmemoy andthe cache
protocolmaintains cache terercy.

A system @n use unacheable @mory for othermemoy-magped IO, and shald always use
uncacheablenemoy for menory-mapped I/O with read side décts.

Dual-ported memoy can be cosidered awrite dde effect, makirg relatively prompt writes
desirable, bcause those writesmot be dservedatthe other prt until they reactthe memoy

agen. A system can us urcacheablewrite-through, or write-comining memay for frame
buffers or dual-ported menory that contains pixel valuesdisplayed on a sreen Frame biifer

memory is typically large @ few megabyteg andis usially written more than it is eadby the

processr. Using uncacleable merary for a frame bbffer geneates vey large amaints of bus
traffic, becaus®pemtions a the erire buffer areimplementedising partial writes ratter than
line writes. Using write-through memoty for a frame luffer can dsplacealmostall otheruseful
cachedines inthe pocessos L2 cacheandL1 data cahe. Therefae, systems shald use write-
conbining memay for frame luffers wheeverpossble.

Software caruse pag-level cache aatrd, to assgn appopriate effecive memaoy types when
sdtware will not accessdata strictures in ways that benefit from write-back caching. For
exanple, software ray reada lage data structure aice andna acces the structre againuntil
the gdructure is rewritten by arother agen. Such a large data structure should be marked as
uncacteable, or readng it will evict cacledlines ttat the processar will be refelencing again. A
similar exanple would be a write-only data stricture that is witten to(to export the data to
andher agent),but never read ly software. Sucha structwe canbe marked as ncacleable,
because sdtware rever reads the values hatit writes (though as uncacteable memay, it will be
written using partial writes while aswrite-back memory, it will be written usng line writes,
which may not occu until the aher agnt readghe stricture ard triggers inplicit write-baclks).

Onthe Petium® Il proces®r, new capaliiti es exst thatmay allow the praggrammer to perform
similar functions with the pregtch and streamig sore instructios. For more information am
these instructios) see SectiorB.2, “Instruction Refererce” in Chapter3, Instruction St Refer-
ence
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9.4. CACHE CONTROL PROTOCOL

The fdlowing secton describes the cache ¢ pratocol curently cefined for the Irtel Archi-
tecure praesors. Thisprotocd is usedby the P6 family andPentium procesors. The
Intel486™ processr uses animplemenation defned protocol that doesnot support the MES
four-state protocol, but instead ussa wo-gate prdocol with valid ard invalid statesdefined.

In the L1 chta cache ashthe F6 family procesors’ L2 cachethe MESI (nodified, exlusive,

shared,invalid) cacle protocol maintains constercy with cachesf otherprocesors. The L1
data cache and the L2 cache has MESI shtus flags per cache line. Each line cémdbe

marked asbeing in ane of the statedefined in Table 9-3. In gereral, the opration é the MESI
protocol is trarsparert to progrars.

The L1 nstruction cachemplementsonly the “SI” part of the MESI praocol, becase the
instruction cacheis not writable. The instruction cachemoritors chages inthe dita cacheto
maintain consisercy betweenthe caches whernnstructiors are malified. SeeSection9.7,
“Self-Modifying Code”, for more information on the inplications ofcachinginstructions.

MEMORY CACHE CONTROL

Table 9-3. MESI Cache Line States

Cache Line State M (Modified ) E (Exclusive) S (Shared) I (Invalid)
This cache line is valid? Yes Yes Yes No
The memory copy is... ...out of date ...valid ...valid —
Copies exist in caches of No No Maybe Maybe
other processors?
A write to this line ... ...doesnotgoto | ...doesnotgoto | ...causes the ...goes directly
bus bus processor to to bus
gain exclusive
ownership of the
line

9.5. CACHE CONTROL

The curent Irtel Architecure povides the fdlowing cacle-cortrol mechaisms fa use n
enablirg cacling ard/or resticting cacling to various pages ioregons inmemoy (see Figte
9-2):

® (D flag, bit 30 of cortrol regiser CRO—Contrds cacting of g/stem memaoy locatons.
For more information, see &ction 2.5., “Control Registers”, inChapter 2, System Ahi-
tectue Overvew. If the CD flag is clear cachingis enabledfor the whole d system
memay, but may be rdsctedfor individual pagesor regions of memoy by othercacte-
cortrol mechanisms. \Wwen theCD flag is set, cadingisrestrictedin the L1 ard L2 caches
for the P6family processrs andprevented ér the Rentium® ard Intel486™ processos
(see mte below). With the CD flag set, however, the cacleswill still respnd to snoop
traffic. Cachesshould be explicitly flushed to insure memory coherency. For highest
procesa perrmance, baoh the CD aml the NW flags in control register CRO should be
cleared Table 94 shavs the interactiorof the CD ard NW flags.
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NOTE

The efect of setting the€D flag is ®@mewhat diferert for the F6 family, Pentium®,
ard Intel486™ processrs (see Table 34). To insure memoy coherency after the
CD flag is st, the caches shéd be exlicitly flushed For mare information see
Sectin 9.5.2., “Preventing Cacling”. Seting the (D flag for the P6 family
processrs malifies cache line fill and update behaviour. Also for the P6family
processrs, stting the M@ flag does not foce drict ordering of memoy acceses
unless the MTRRs are dsabledandor all memay is refeencedas uncached For
more informaiton, see Secion 72.4, “Strergthering or Weakeling the Memory
Ordering Model’, in Chapter 7, Multiple-Processo Managemet.

CR4
P
G
E
—> Enables global pages
CR3 designated with G flag Physical Memory
5 FFFFFFFFH?
c|w
DT

Control caching of
l_‘—> page directory |
Page-Directory or
CRO Page-Table Entry [~~~ =~~~ 71 \
C|N Gic|w =

i IT| | L ______]
T T MTRRs control caching

of selected regions of
CD and NW Flags _ PCD and PWT flags physical memory
control overall caching control page-level

MTRRs?®

of system memory caching Memory Types Allowed:
—Uncacheable (UC)
G flag controls page- —Write-Protected (WP)
level flushing of TLBs o —Write-Combining (WC)
] —Write-Through (WT)
Write Buffer TLBs —Write-Back (WB)

1. G flag only available in P6 family processors.

2. If 36-bit physical addressing is being used, the maximum
physical address size is FFFFFFFFFH.

3. MTRRs available only in P6 family processors;
similar control available in Pentium® processor with
KEN# and WB/WT# pins, and in Intel486™ processor.

Figure 9-2. Cache-Control Mechanisms Avail able in the Intel Archite cture Processors
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Table 9-4. Cache Operating Modes

CD | NW Cachin g and Read/Write Policy L1 L2t
0 0 | Normal highest performance cache operation.
- Read hits access the cache; read misses may cause replacement. Yes Yes
- Write hits update the cache. Yes Yes
- (Pentium® and P6 family processors.) Only writes to shared lines Yes Yes
and write misses update system memory.
- (P6 family processors.) Write misses cause cache line fills; write Yes Yes

hits can change shared lines to exclusive under control of the MTRRs
- (Pentium® processor.) Write misses do not cause cache line fills; write Yes
hits can change shared lines to exclusive under control of WB/WT#.
- (Intel486™ processor.) All writes update system memory; write misses Yes
do not cause cache line fills.

- Invalidation is allowed. Yes Yes
- External snoop traffic is supported. Yes Yes
0 1 | Invalid setting.
A general-protection exception (#GP) with an error code of 0 is NA NA
generated.
1 0 | Memory coherency is maintained.
- Read hits access the cache; read misses do not cause replacement. Yes Yes
- Write hits update the cache. Yes Yes
- (Pentium® and P6 family processors.) Only writes to shared lines Yes Yes
and write misses update system memory.
- (Intel486™ processor.) All writes update system memory Yes
- (Pentium® processor.) Write hits can change shared lines to exclusive Yes
under control of the WB/WT#.
- (P6 family processors.) Strict memory ordering is not enforced Yes Yes

unless the MTRRs are disabled and/or all memory is referenced as
uncached. For more information, see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model".

- Invalidation is allowed. Yes Yes
- External snoop traffic is supported. Yes Yes
1 1 | Memory coherency is not maintained. This is the state of the processor

after a power up or reset.

- Read hits access the cache; read misses do not cause replacement. Yes Yes

- Write hits update the cache. Yes Yes

- (Pentium® and P6 family processors.) Write hits change exclusive Yes Yes
lines to modified.

- (Pentium® and P6 family processors.) Shared lines remain shared Yes Yes
after write hit.

- Write misses access memory. Yes Yes

- (P6 family processors.) Strict memory ordering is not enforced Yes Yes

unless the MTRRs are disabled and/or all memory is referenced as
uncached. For more information, see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”.
- Invalidation is inhibited when snooping; but is allowed with INVD and Yes Yes
WBINVD instructions. No Yes
- External snoop traffic is supported.

NOTE:

1. The P6 family processors are the only Intel Architecture processors that contain an integrated L2 cache.
The L2 column in this table is definitive for the P6 family processors. It is intended to represent what could
be implemented in a Pentium® processor based system with a platform specific write-back L2 cache.
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9-12

NW flag, bt 29 of control register CRO—Controls the write plicy for system memory
locaions. For more information see Sction 2.5., “Control Registers”,in Chaper 2
System Achitectue Overiew. If the NW and M flags are cleamrite-backis erabled fa
the whole d system memoy (write-through for the Ineld86™ pracessr), but may be
restricted for individual pages oregions ¢ memory by other cache-catrol mechaisms.
Table 9-4 shows how tke othercombinations ¢ CD and NW flags afects caching

NOTE

For the Penium® procesor, when thel 1 cache is tsabled(the CD ard NW
flags in cortrol register CRO ae set), eternal snamps areacceptedn DP
(dual-processor) systems andinhibited in uniprocessr sysenms. When
snmps are intbited, addess paity is nd checked ad APCHK# is nat
aserted fa a corrypt addess however, when snops are acceptedgddress
parity is checled andAPCHK# is asertedfor corupt adiresses

PCD flag in the pagedirectoy and pagetabe entries—€ontrols caching for individual
page talbes aml peges, respectivelyFor mare information see Sectior8.64., “Page-
Directay and Page-abe Entrie$, in Chapter 3, Protected-Moéd Menory Management
This flag orly haseffect when paing iserabled andhe (D flagin cortrol register Q0 is
clear The P flag enables cachingf the pag table orpage wken clear ad preverts
caching when set.

PWT flag in the pagelirectoly and pagetable ertries—Contrds the write pdicy for
individual page tables and pages, regecively. For mare information, see Se¢bn 3.6.4.,
“PagebDirecry and Page-Table Eiries’, in Chapter 3, Protected-Mode Memory
Managemenh This flagonly has effectwhenpagirg is erabled ad the NW flag in cortrol
register CRO is clear The PW flag enabes write-back cacing of the pag table orpage
when clear a write-through catiingwhen t.

PCD ard PWT flags in cantrol regster CR3. Control the dobal cachirg andwrite policy

for the page drecory. For more informaton, seeSection 25., “Control Registas”, in

Chapter 2, SystemArchitecure Ovewiew. The PM flag enalbes caching of the age
directory when clearand preventscachingwhen set. Tke PWT flag enables write-ick
caching o the pag directoy when clearand wite-through cachingwhenset. These flags
do not afectthe cachig and writepolicy for individual page table3heseflags only have

effect when @gingis erabled ad theCD flag in control register CRO is clear

G (gldhal) flag in the pagrdirectay andpage-talbe ertries (intraducedto the Intel Archi-
tecure in the F6 family pracessrs)—Controls the flushing of TLB enties for individual
pages SeeSecton 37., “Trandation Lookasde Buffers(TLBs)”, in Chapter 3, Proteded-
Mode Memory Management, for mare infarmationabaut this flag.

PGE page global enalte) flag in contiol regster CR4—Enalbes the establisment d
global pages withthe G tag.See Sction3.7., “Trarslation Lookaside Buffers TLBs)”, in
Chapter 3, Proteced-Mode Memory Managementfor more information about this flag.

Memay type range regsters(MTRRS) (introduced inthe P6 family procesas)—Cortrol
the type of cachimgy used in pecific regiors of physical memoy. Any of the cacimg types
described in Section 9.3, “Methads of Caching Available”, can le sekected SeeSecton
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9.12., “Memory Type Rang Regsters (MTRRS)", for a deéiled desription of the
MTRRs

®* KEN# ard WB/WT# pinson Fentium® processr and KEN# pin alone onthe Irtel486™
processr—These pins &w external hadware to cotrol the cachig methal used fo
specificareasof memay. They perform smilar (bu nat identical) furctions to the MTRRs
in the Pefamily procesas.

® PCD and PWT pins on the Pentium® and htel486™ procesors—These pns (which are
as®ciated with the PM andPWT flags in caontrd register QR3 andin the mge-drectory
andpage-table entries) gmit cachingin an exernal L2cache to b contolled ona pag-
by-page basis consisert with the cantrol exercised on the L1cache bthese pocessrs.
The P6 family preesorsdo not prozide thesgins becausehie L2 cacle in interral to the
chip paclage.

9.5.1. Precedence of Cache Controls (P6 Family Processor)

In the P6 family pocessrs, the cack contrd flags and MTRRs opeste hierarchically fa

resticting cachig. That is, if the O flagis set, cachings preventedglobally see &ble 94).

If the CD flag isclear either the FZD flags andor the MTRRs canbe usedto restrict caching

If there is aroverlap d page-lewel cachingcortrol ard MTRR cachingcortrol, the meclanism

that preverts cachinghas precedenceFor exanple, if an MTRR makes aregon of system
memay uncachabe, a PO flag camot ke used teenalbe cachingfor a paye in that regia. The

conwerse § alo true; thatis, if the FCD flag isset an MTRR camot be sedto make a region
of system nemory cacheale.

In cages whee therds aoverlapin the asigmrment d thewrite-backandwrite-throughcaching
policiesto a page and regio of memay, the write-through policy takegrecedene. The write-
comhining policy (which canonly be asiggned though an MTRR) takespreceance oveeither

write-through or write-back

Table 95 describes the mapjng from MTRR memoy types and @age-leel cachingattributes
to effective memoy types, whennomal cachings in effect ¢the CD andNW flags incontiol
register QRO are clegr Combinations hat appeain grayare implemetation-definedand may
be implemeted difererily on future Intel Architecture pocessrs. S/stem designers are
encouagedto awid thee implementatiordefined canbinatiors.

When normal cachingis in effect, the efectivememoy type is dterminedusingthefollowing
rules

1. If the PCD andPWT attribuesfor the page are lib 0, then the éctive memoy type is
identcal to te MTRR-defined memory type.

2. If the PO flagis set, then theeffective memoy type is UC

If the PCD flagis clear andhe PWT flag is set, he efective memoy type is WI for the
WB memay type amnl the MTRR-defined mamory typefor all othermemoy types.

4. Setting the RCD ard PWT flagsto opposte valuesis conddered nodelspeific for the WP
and WC memoy types ard archtectually-defined for the WB, WT, ard UC memory

types
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Table 9-5. Effective Memory Type Dependin g on MTRR, PCD, and PWT Settings

MTRR Memory Type PCD Value PWT Value Effective Memory Type
uc X X uc
wcC 0 0 wC

0 1 wcC
1 0 wC
1 1 uc
WT 0 X WT
1 X uc
WP 0 0 WP
0 1 WP
1 0 wC
1 1 uc
WB 0 0 WB
0 1 WT
1 X ucC

NOTE:

This table assumes that the CD and NW flags in register CRO are set to 0. The effective memory types in the
grey areas are implementation defined and may be different in future Intel Architecture processors.

9.5.2. Preventing Caching

To prewent the L1 and L2 cacles from performing caching opegtions afterthey hawe been

enabed andhavwe receivedcachdfill s, perform thefollowing steps:

1. Enter the no-fill cache male. (Set tke CD flag in control regsterCRO to 1 and the NW flag

to 0.

Flush all cachsusing the WBINVD instruction.

Disable the MTIRs andset the default menory type touncacked o set all MTRRs for the
uncachedmemoy type.For more information see thediscussion ofthe TYPE field ard
theE flagin Secton 9122.1, “MTRRdefType Regider”.

The cacksmust beflushed whenthe CD flag is cleared to insure sy@hmemory coherermy. If
the caclesare rot flushed in step2, cacte hts on read will still occur and data will be readfrom

valid cachdines.
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9.6. CACHE MANAGEMENT INSTRUCTIONS

The INVD and WBNVD instructions are used to walidate he contets of the L1 and L2
caches. The INVD ingtction invalidatesall internal cachertries, then geneates a gecial-
function bus cycle that indicatesthat exernal caches atsshould be invalidated. The INVD
instruction should be usedwith care.It does mt force a write-kack of modfied cacle lines;
therefae, dita staedin the cacles aml not written back to system memoy will be lost Unless
there isa specific requiremert or benefit to invalidating the cacteswithout writing back the
modfied lines (such as,udng teging or fault recowery where cach coheency with nain
memay is nd a cortern) software shald use the WBINVD instruction.

The WBINVD instruction first writes back anymodified lines in allthe intermal cactes then
invalidatesthe contentsof both L1 and L2 caches. #rsuresthat cache cohency with main

memory is maintained regardless d the write pdicy in effect (thatis, write-through or write-

back) Followingthis operation the WBINVD instructiongeneatesone (P6family processrs)

or two (Pertium® and Ineld86™ processorsgpeciatfunction bus cycles toindicate toextenal

cache catrollers that write-bck of modfied data éllowed by invalidation of exterral caches
should occu.

9.7. SELF-MODIFYING CODE

A write to amemory locaion in acode £gment thatis currenly cached in the poesorcatses
the assciatedcachdine (or lines) tobe invalidated. Ths check is basednthe plysicaladdess
of the instruction. In addition, the P6 family and Pertium® pracessois checkwhether awrite to
a cale segmeinmay madify aninstruction that has kenprefetcted for executio. If the write
affectsa preétched instructionthe prefetchgueue isinvalidated. Ths latter check isbased on
the linearaddress o the instruction.

In practice, tle checkonlinear adiresseshauld not cleate comatibil ity problems amag Intel
Architectureprocessors. Appications that include self-nodifying cade wse the same linear
addess for madifying ard fetching theinstruction. Systems softwaresuch as a delgger, that
might pasdbly modify aninstruction using a diferert linear adressthan that usedto fetch te
instruction, will execute aserializing operatian, sichasa CPUD instruction, befae the modi-
fied instuction is exected, which wil automatically resynalonize the instructioncacte and
prefetch queue.SeeSecton 7.13., “Handling Sif- and Cross-Modifying Code”, in Chaptr 7,
Multiple-Processr Management for more information atout the ue of self-nodifying coce.

For Intel486™ proces®rs, awrite toaninstruction in the cacle will modify it in both the cacle
and memaoy, but if the instruction wasprefetched befoe the write, the old version of the instruc-
tion coud be the one exected. To prevent he old instuction from beirg executedflush he
instruction prefetch uit by codng a jump instration immediately aftearny write that modifies
an instrction.
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9.8. IMPLICIT CACHING (P6 FAMILY PR OCESSORYS)

Implicit cachirg occus whena memory element is mack potentially cacheale, athoudh the
element mayeverhave beeraccesed in the armd von Neunann seqgence. Imficit cachirg
occuson the P6 family pocessorslue to agressve prefetcling, tbranchprediction and TLB
miss hardling. Implicit caching is an exension of the kehavia of existing Intel386™,
Intel4d86™, aml Pentium® processosystems, since stfare runningonthese pocessr families
also has ot been ake todeterministically predict the behavior of instruction prefetch.

To awoid problems elated to implicit caching, the geratirg system nust explicitly invalidate
the cache en changs are made teacleabledata that thecade cohererty mecharmsm does
not auomatically hande. This includes writesto dual-ported or physically aliased memory

boards tkatare rot detected ly the snoping mectanisms of the pocessarandchanges tpage-

tade entiesin memory.

The co@ in Exampe 9-1 shaws theeffect of implicit cachirg on pagetable ertries. The linear
addes FMOH pontsto physical locaion BOMH (the page-able enty for FOOCH cortains the
value BOOOH), andthe pag-table etry for linearaddess FO® is PTE_F000

Example 9-1. Effect of Implicit Caching on Page-Table Entries

aov EAX, CR3 ; Invalidate the TLB

aov CR3, EAX ; by copying CR3 to itself

aov PTE_F000, AOO0OH, Change FOOOH to point to AOOOH
aov EBX, [FOOOH);

Because of speclative exection in the P6 farmly procesors, the lag MOV instruction
performed wouldplacethe value atphysical location B)OCH into EBX, ratherthan the value at
the new fhyscal addres AOOOH. Ths dtuation is remedied ty placing a TLB invalidation
betweerthe loadandthe sbre.

9.9. EXPLICIT CACHING

The Petium® Ill procesa introduced a newristruction deggnedto provide some contrd over
cachirg of data. The prefetchnstruction isa“hint” to the pocessr thatthe data recegted by
the pefetch irstruction shodd be ead into cach, eventhowgh it is not nee@d yd¢. The
proces®r assimesit will be needed on.

Explicit cacting occurs whenthe ajpplication pogram executes a m@fetch irstruction. The
programmer nust be judcious in tke use ofthe pefetchinstruction. Ovewuse can leado
resouce corilicts anchence educe the prformarce of an aplication. Formore atailedinfor-
mationonthe poper wse d the preetch instrution, refer to Chapter6, “Optimizing Cache Utili-
zdion for Penfum® Il Procesas”, in the Intel Architecture Ogimization Refeence Maual
(Order Nunber 245127-001).

Prefetctcan ke used taead d@ta into the cache por to theapplicationacually requiring it. This
helpstoreduce tre long latercy typically ass@iatedwith readirg data frommemory and causing
the processar to “stall”. It is important toremember that prefetch isonly a hirt to the pracessr
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to fetch the da now orassan aspossible. It will be ugd on The prefethinstruction has
differen variationsthatallow the grogrammer tacontrol into which cacte level the data will be
read. For mare information onthe variationsof the pefetch instruction reer to Secton 9.5.3.1,
“Cacheallity Hint Instructions’, Chapter 9, Programming with the Steaming SMD Exten-
sions, if the Intel Architectue Sdtware Develogr's Manual, \blume 2

9.10. INVALIDATING THE TRANSLATION LOOKASI DE BUFFERS
(TLBS)

The gocessr updates i addesstrarslation caches (TLB) transparethy to software Several
mechaisms areavailablehowever that allow software ah hardwatre to invalidate theTLBs
either exlicitly or asasideeffectof arotheroperation.

The INVLPG instruction invalidateste TLB for a specific pag. Thisinstruction is the most
efficient in caseswvhere software onlpeedsto invalidate a pecific page, becausetimproves
performarce owr invalidating the whole TIB. This instruction is nd affected bythe state ofhe

G flag ina pag-directory or page-talbe entry,

The following opegtionsinvalidateall TLB ertries excepglobal ertries (A global ertry is one
for which the G(global) flag i set in its corregponding pagedireciory or page-table enty. The
global flag was mtroduced irto the Irtel Architecture in th F6 family processors, seeeStion
9.5, “Cache ©@ntrd".)

®  Writing to cantrol regiger CR3.

® A task swichthat chages cotrol regster CR3.

The following operations invalidateall TLB enties irrespective of the settimg of the G flag:
® Assering or de-aserting the LUSH#pin.

® (P6family processrs anly.) Writing toan MTRR (with a WRMSR instruction).

®  Writing to cantrol regiger CRO to modify the PG o PE flag.

® (P6 family processrs only.) Writing to control register CR4 to madify the PE, FGE, o
PAE flag.

See Secion 3.7, “Trarslation Lookasde Bufers (TLBs)”, in Chaper 3, Protected-Mod
Memay Managemet) for additional information atout the TLBs.

9.11. WRITE BUFFER

Intel Architectue processors temparily store each write (ske) to menory in awrite bufer.
The wite kuffer improves pra@esor performance ly allowing the pocessr to contine
execuing instructions without having to wait until a write to menory and/or to a cacle is
compete. It also allowswrites tobe delagd for more eficient use & menory-accesdus cycles.
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In general, the exigence of the write huffer is trarsparert to sdtware, even insysterns that use
multiple processrs. The pocessr ensurs that write ogrations are always carrieditoin
program orgbr. It also insures that the contsof the write bufer are always draindd memoy
in the fdlowing situatons:

® Whenan excetion a interrupt is generagd.

® (P6 family processos anly.) Whena serializig instruction is execued
®* Whenan I/O instrgtion is exected.

® Whena LOK operationis performed

® (P6 family procesors only.) When a BNIT opestion is periormed.

® (Pentium® Il processrs only.) When wsing SFENCE to ordergores

The dicussion of write ordeling in Secton 7.2., “Memory Ordeing”, in Chaper 7, Multiple-
Processor Management, givesadetailed description of the operation of the write huffer.

9.12. MEMORY TYPE RANGE REGISTERS (MTRRS)

Thefollowing sec¢ion petains only to the F6 family procesors.

The memory type rage regsters (MTRRS) provide a nechanism foassociatingthe memoy
typeswith physical-addess rangs insystemmemory. For more information, see Sectin9.3.,
“Methods of CachingAvailable”. Theyallow the processoto optimize geratiors for different
types ofmemory swch as AM, ROM, frame-buffer memoy, and memaey-mapped I/O devices
Theyalsosimplify systermrhardwae design by eliminaing the menory cortrol pins wsedfor this
functionon ealier Intel Architecture processrs andthe exernal logc neededo dive them.

The MTRRmechansm allows up © 96 memoy ranges b bedefinedin physical memay, and
it defines a st of model-specifc registers(MSRs) for specifying the type of memoy thatis
cortained in eachrarge. Table 9-6 shows thememorytypes thatcanbe ecified and theiprop-
erties; Figure 9-3 shows the mgping of physical memory with MTRRs See Section 9.3,
“Methods of CachingAvailable”, for a mae detailed dscription d eachmemay type.

Following a hardrare reset a P6 family processr disablesall the fixed and vaable MTRRS
whichin effect makes all ofphysical memoy uncactable. hitializationsoftware shold thenset
the MTRRs to a specific, syem-defined memoy map Typically, the BIOS (basicinput/ouput
sysem) software cafigures the MTIRs. The opeating system orexective is then free to
modify the memeoy map using the rormal page-level cacleablity atributes

In a multiprocessor system differert P6 family processrs MUST wse the identical MTRR
memay map sothat sdtware hasa comistent view of memoy, indepemlert of the pocesa
execuing a pogram.
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Table 9-6. MTRR Memory Types and Their Properti €s

Cacheable in Allows
Encoding in L1 and L2 Writeback | Specul ative Memory Orderi ng
Mnemonic MTRR Caches Cacheabl e Reads Model
Uncacheable 0 No No No Strong Ordering
(UC)
Write Combining 1 No No Yes Weak Ordering
(WC)
Write-through 4 Yes No Yes Speculative
(WT) Processor Ordering
Write-protected 5 Yes for reads, No Yes Speculative
(WP) no for writes Processor Ordering
Writeback (WB) 6 Yes Yes Yes Speculative
Processor Ordering
Reserved 2,3,
Encodings* 7 through 255
NOTE:

* Using these encoding result in a general-protection exception (#GP) being generated.
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Physical Memory

FFFFFFFFH

Address ranges not
mapped by an MTRR —S <
are set to a default type

8 variable ranges
(from 4 KBytes to
maximum size of
physical memory) \N | _ _ _ _ _ _ _ _ |

100000H

i FFFFFH
gimedrmaes o[ o keyes | 0
16 fixed ranges BFFFFH
(16 KBytes each) > 256 KBytes 80000H
7TFFFFH

8 fixed ranges

(64-KBytes each) > 512 KBytes

0

Figure 9-3. Mapping Physical Memory With MTRRs

9.12.1. MTRR Feature ldentification

The awailahility of the MTRR feature ismodel-specific Software can determire if MTRRs are
supmrted ona piocessr by execting the (PUID instruction andreadng the sate ofthe MTRR
flag (bit 12) in the featwe informationregiger EDX).

If the MTRR flag is set (indicating thatthe pocessr implementdMTRRs), addtional informa-
tion alut MTRRs canbe dtained fom the 64bit MTRRcapregister The MTRRcapregister
is a readonly MSR thatcanbe read with the BMSR instrudion. Figure 94 showslie contets
of the MTRRcapregister The unctinsof the flags andield in this register arasfollows:

VCNT (variable range registers count)field, bits Othrough 7
Indicatesthe nunberof varialie rargesimplemented o the processor The P6
family procesas have eght pars of MTRRs for setting up eight variable
ranges
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63 11109 8 7 0

Reserved ‘(’;V

—m

VCNT

WC—Write-combining memory type supported J
FIX—Fixed range registers supported
VCNT—Number of variable range registers

D Reserved

Figure 9-4. MTRRcap Register

FIX (fixed range registers sypported) flag, bit 8
Fixed rarge MTRRs (MTRRfix64K_00000 through MTRRfix4K_0F8000)
are suported whenset; no fixed range egisters are supportedwhen clear

WC (write combining) flag, bit 10
The wite-combining (WC) memoly type i sypported when t; the WC type
is not suported whenclear

Bit 9 and hits 11 throuch 63 in the MTRRcap egister are eserved.If softwareattemptsto write
to theM TRRcapregsters, a gneralprotectionexcepion (#GP) is geneated.

For theP6 family processors, tle MTRRcap egister always contains the alue S08H.

9.12.2. Setting Me mory Ranges with M TRRs

The memoy rangesandthe types of memay specified in each rargare seby threegroups of
registersthe MTRRdefType regster, the fixedrange MTRRs, andthe variabe range MTRRs.
These registers can bead andvrittento usingthe RDMSR ard WRMSR instructions, espec-
tively. The MTRRcapregisterindicates tle availahlity of these regiters onthe pracesso. For
more information,seeSection9.12.1.,, “MTRR Featue Idenificaion”.

9.12.2.1. MTRRDEFTYPE REGISTER

The MTRRlefType regster (®eFigure 9-4 sesthe default properties of the regons ofphyscal
memay thatare nat encompssed byMTRRs. For more nformation, £eSection 9.4.“Cache
Control Prdocol”. The functiors of the fags andield in this register are as fows:

Typefield, bits0through 7
Indicatesthe deéult memoy type wsed for those physical memory addess
rarges that dana hawe a menory type specified for them byanMTRR. See
Table 96 for the erodingof this field. If the MTRRs are dsabled thisfield
definesthe memory type for all of physical memory. Thelegal valuesfor this
field ae 0, 1,4, 5,and 6 All other vdues esut in a generalprotecion excep
tion ¢#GP) being generagd.
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Intel recanmend the ug ofthe UC(uncached)menory type for all physical
menory addressesvhee memoy does na exist. To assgn the UCtype to
nonexstent nemory locatiors, it caneither ke specified as tke defult typein
the Type ield or be eylicitly assgned with the fixedand \ariable MTRRs

63 1211109 8 7 0

Reserved E E Type

E—MTRR enable/disable ;

FE—Fixed-range MTRRs enable/disable
Type—Default memory type

D Reserved

Figure 9-5. MTRRdefType Register

FE (fixed MTRRs enabled) flag, bit 10
Fixedrange MTRRs are erabled when sefixed-rarge MTRRs are digbled
whenclear Whenthefixed-range MTRRs are erabled,theytake priority over
the variable-rangeMTRRs when overlaps in rangesoccu. If the fixedramge
MTRRs are disbled, the variale-range MTRRs can $ill be used aml canmap
the range ordnariy coveredby the fixed-rangeM TRRs

E (MT RRs erabled) flag, bit 11
MTRRs areenabledvhenset; all MTRRs aredisabled wten clearard theUC
memory type is appied to all of physical memory. Whenthis flagis set, tle FE
flag can disable the fed-rarge MTRRs; when the flags clear the FE flag has
no affect WhentheE flag is set thetype specifiedin thedefault memory type
field is usedfor areas of ramory nat alreadymapped byeither dixed or vari-
able MTRR.

Bits 8and9, andbits 12through 63, in the MTRRdefType rgister are eserved;the pocessr
generatesa general-protection exception (#GP) if sdtware atterpts to write nonzerovaluesto
them

9.12.2.2. FIXED RANGE MTRRS

The fixed memay ranges are mamed with 8 fxed-range egisters of 64 kits each. Eachf these
regsters s dividedinto 8-4t fields that are used tpecify the memuoy type for each othe sub
rargestheregister omntrols. Table 97 showstherelationship betveenthefixedphydcaladdess
rargesard the corespndng fields of the fixed-range MTRRS Table 96 stowsthe encoding
of these field:

®* Regster MTRRfix64K _00000. Mapsthe 512-KByte adires range from OH © 7H-FFH.
This rangeis divided nto eight 64-KByte sib-rarges
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®* Registers MTRRfix16K_80000 and MTRRfi x16K_A0000. Maps the two 128-KByte
addess rangesfrom 80000H to BFFFFH. This rarge isdividedinto sxteen16-K Byte sib-
rarges 8ranges f&r regster

®* Registers MTRRfix4K_C0000. and MTRRfi x4K_F8000. Mapseight 32-KByte addess
rarges from CO0MH to FFFFFH. This range is divided into sxty-four 4-KByte sub-
rarges 8ranges fer regster

See the Pertium® Pro BIOS Writer's Gude for exampesof asignng menory types wth fixed-
range MTRRs.

Table 9-7. Addre ss Mapping for Fix ed-Range MTRRs
Address Ran ge (hexadeci mal) Register
63 56 |55 48 (47 40 |39 32 31 24 |23 16 (15 8 7 0

70000- | 60000- |50000- | 40000- |30000- |20000- | 10000- |00000- | MTRRfix64K
7FFFF | 6FFFF | SFFFF | 4FFFF | 3FFFF | 2FFFF | IFFFF | OFFFF | _00000

9C000 |98000- |94000- |90000- |8CO00- |88000- |84000- |80000- | MTRRfix16K
OFFFF | 98FFF |97FFF | 93FFF |8FFFF |8BFFF |87FFF |83FFF | _80000

BCO0O |B8000- |B4000- |BO00D- | ACO00- | A8000- |A4000- |AO0000- | MTRRfix16K
BFFFF |BBFFF |B7FFF |B3FFF | AFFFF | ABFFF | A7FFF | A3FFF | _A000O

C7000 | C6000- |C5000- |C4000- |C3000- |C2000- |C1000- |CO0000- | MTRRfix4K_
C7FFF | C6FFF |CSFFF | C4FFF | C3FFF |C2FFF | C1FFF | COFFF | C0000

CF000 | CE000- |CDO000- |CCO00- |CBOOO- |CA000- |C9000- |C8000- | MTRRIfix4K_
CFFFF | CEFFF |CDFFF |CCFFF |CBFFF |CAFFF |COFFF | C8FFF | C8000

D7000 |D6000- |D5000- |D4000- |D3000- |D2000- |D1000- |DO00O- | MTRRfix4K_
D7FFF |D6FFF |DSFFF | D4FFF | D3FFF | D2FFF | DIFFF | DOFFF | D000O

DFO00 | DEO0O- |DDO000- | DCO0O- | DBOOO- | DA00O- | D9000- | D8000- | MTRRfix4K_
DFFFF |DEFFF |DDFFF |DCFFF |DBFFF |DAFFF | DOFFF | D8FFF | D8000

E7000 |E6000- |E5000- |E4000- |E3000- |E2000- |E1000- |E0000- |MTRRfix4K_
E7FFF |E6FFF |ESFFF | E4FFF | E3FFF | E2FFF | EIFFF | EOFFF | EO000

EF000 |EE000- |EDO0O- |ECO000- |EB000- |EAO000- |E9000- |E8000- |MTRRfix4K_
EFFFF |EEFFF |EDFFF |ECFFF |EBFFF | EAFFF | EOFFF | ESFFF | E8000

F7000 |F6000- |F5000- |F4000- |F3000- |F2000- |F1000- |FO0000- |MTRRfix4K_
F7FFF | F6FFF | FSFFF | F4FFF | F3FFF | F2FFF | FIFFF | FOFFF | FO000

FFOO0 |FEO000- |FDO000- |FCO00- |FBOOO- |FAO00- |F9000- |F8000- |MTRRfix4K_
FFFFF |FEFFF |FDFFF | FCFFF |FBFFF | FAFFF | FOFFF | F8FFF | F8000

9.12.2.3.  VARIABLE RANGE MTRRS

The F6 family processrs pemit software to specify the nemory type fa eight variable-3ze
addessranges, ugg a pair of MTRRs for each rang. Thefirst of eachpair (MTRRphysBasen)
defines the base addess and memoy type for the rang, ard the seconl (MTRRphysMaska)
contairs a mesk thatis usedto detemine the addess range. The “n” suffix indicatesregsters
pairs Othrough 7. Fgure 96 shows flagsandfieldsin thes registers. The functions of the flags
andfields in these ragters areasfollows:
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Type field, bits 0 through 7

intgl.

Specifiesthe memoy type fa the rang. See Table 9-6 for the encothg of this

field.
MTRRphysBasen Register
63 36 35 1211 87
Reserved PhysBase Type
PhysBase—Base address of range J
Type—Memory type for range
MTRRphysMaskn Register
63 36 35 121110
Reserved PhysMask \ Reserved

PhysMask—Sets range mask J

V—Valid

D Reserved

Figure 9-6. MTRRphysB asen and MTRRphys Maskn Variable-Range Register Pair

PhysBase field, bits 12 through 35

Specifies tk baseaddess d the adiressrarge. This 24bit valueis extenckd
by 12 hits atthelow erd to form the bas addres, whch auomatically aligns

the addeesson a 4KByte tourdary.

PhysM ask field, bits 12 through 35
Specifies a 2-bit mas that determines the angeof the regon being mapped
accading to thefollowing relationship

Address Within_Range AND PhysMask = Pls§8ase AND PhysMask

This 24-bit value isextendedby 12 bits atthe low end to form the mask value.
SeeSectin 9.12.3., “Example Bas ard Mask Calculations’, for more infor-
mationandsome examples obase addrs andmask conpuations.

V (valid) flag, bit 11

Enablesthe regster @ir whenset; disables regster pair whenclear

All othe bits in the MTRRphysBasen and MTRPhysMaskn registers are resrved; the
processr generates agereral-protectionexcegion (#GP) if oftware atempts to write to them

Overlapping variable MTRR ranges are not supported genericaly. However, two variable
rarges are allowetb owerlap,if the bllowing condtions are peert:

® If bah ofthem ae UC (uncacled).
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® If onerarge isof type UCand the dher is of type WB (write bach.

In both cases abay the eflective type for the ovelapping regin is UC. The praesors
behavor is undefined for all other cagsof overlapping variabe ranges.

A variade range ca owerlap a fixed rarge (povided he fixedrange MTRRs are eabled).
Here, tle memoy type specifiedn thefixed range redster werrides the ore specifiedn vari-
able-range egister patr.

NOTE

Same mask values can resut in discontinuous rarges In a discatinuous
range, the area ot mapped by the nmesk value is set tothe default memory
type. Intel doesnot encouage the usef discontinuousranges, becae they
coud requre physical memoy to be pesen throughou the ertire 4-GByte
physical memoy map If memay is na provided for the canplete menory
map, the behaviour of the processa is undefined.

9.12.3. Example Base and Mask Calculations

Thebase ad mask valuesenterednto thevariablerange MTRR pairs ar€24-bit values thathe

procesorextendsto 36-bits. For exampe,to erter a base adéis of 2 MBytes (2@000H) to the

MTRRphysBa®3register the 12least-significahbits are trurated and thealue 00@0MH is

enkeredinto the fhysBas field. The sane opesgtion must be erformed on maesk values For

instarce, to nap the adress rang fran 200000H to FFFHA-H (2 MBytes to 4MBytes),a mag

value & FHFEOOOOM is requred. Here agin, the 12leastsignificart bits of this mak value
are truncated, so thathe value etered in thePhysMask field of the MTRRphysMask3register
is FFFEOOH. This mak is chosen ® that whenanyaddresin the 2M00H to 3FFFFFH range
is ANDed with the mesk value it will return the same value as whenthe bese adlress iSANDed
with the ma& value @which is 200000H).

To mapthe addessrange from 400M00H 7H-FFFH (4 MBytesto 8 MBytes) a bas value o
004 00H isenkred in the FhysBa< field and a madsvalue of FFFCOOH is ertered in the Plys-
Mask field.

Here isa real-life eanple d setting up the MTRRsfor an etire system Assume that the system
has the dllowing characteristis:

® 96 MBytes ofsystem memory is magped aswrite-back memoy (WB) for highed system
performance.

® A custom 4MByte I/O card is mapd to uncacled memoy (UC) at a lase addressof 64
MBytes This redriction forces he 96 MBytesof system memoy to be addzssed fran O
to 64 MBytesand fom &8 MBytesto 100 MBytes leaving a 4-MByte hok far the 1/0
card

®* An 8-MByte grapics cardis maped b write-combning memoy (WC) begihning at
addess ACOOCOOCH.

® The BIOS aredrom 15MBytesto 16 MBytesis mappedto UC memay.
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The following settings for the MTRRs will yield the groper mapping of the physical adires
space fothis system cofiguration. The X0 Ox notationis used lelow to addclarity to the lage
numbers epresented.

MTRRPhysBase0 = 0000_0000_0000_0006h

MTRRPhysMask0 = 0000_000F_FCO00_0800h Caches 0-64 MB as WB cache type.
MTRRPhysBasel = 0000_0000_0400_0006h

MTRRPhysMask1l = 0000_000F_FEO00_0800h Caches 64-96 MB as WB cache type.
MTRRPhysBase2 = 0000_0000_0600_0006h

MTRRPhysMask2 = 0000_000F_FFCO0_0800h Caches 96-100 MB as WB cache type.
MTRRPhysBase3 = 0000_0000_0400_0000h

MTRRPhysMask3 = 0000_000F_FFCO_0800h Caches 64-68 MB as UC cache type.
MTRRPhysBase4 = 0000_0000_00F0_0000h

MTRRPhysMask4 = 0000_000F_FFF0O_0800h Caches 15-16 MB as UC cache type
MTRRPhysBase5 = 0000_0000_A000_0001h

MTRRPhysMask5 = 0000_000F_FF80_0800h Cache A0000000h-A0800000 as WC type.

This MTRR setip uses the abilty to overlap ay two memory ranges (as lag as tlerangesare
mapped to WB ard UC memay types) tominimize the nunberof MTRR regsters ttat are
requredto corfigure the nemory ervironment. Thi setyp als fulfills the requiremert that two
regster @irs are left fa operatingsystemusage.

9.12.4. Range Size and Ali gnment Requirement

The ramge thatis to be maped to avariable-ramge MTRR must meet he following “power of
2" size aml alignnent rdes

1. The minmumrang size is KBytes andthebase adressof this mengemust le on atleag
a 4KByte baindary.

2. For ranges greater tlan 4KBytes, eachrange must be blengh 2" ard its base adéss
must be alignedon a2" bowndary, wheren is a value equal to or greatetthan 2. The base-
addressalignment value cannt be les than its length. For examle, an 8-KByte rarge
camot be alignedon a 4KByte boundal. It must be aligned on at leastan 8-KByte
bourdary,

9.12.4.1. MTRR PRECEDENCES

If the MTRRs are not enalbed (by seting the E flag in the MTRdefType register), theall
memay accesesare ofthe UCmemoy type. If theMTRRs are erabled, then the memptype
used br a memoy access igleterminedasfollows:

1. If the physcal addessfalls within the first 1 MByte of physical menory andfixed MTRRs
are enabledthe ppcessr usesthe memoy type stored fa the apropriate fixedrange
MTRR.
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2. Otherwise, the pessor attempts to match theysital adaesswith amemorytype rang
set wth a mir of variadle-range MTRRs

a. If one variable memory rarge metches, therocesorusesthe menory type storedin
the MTRRphysBasen regster for that rang.

b. If two or nore variable memoy rarges match andhe memoy types are identical,
thenthat memory type isused.

c. If two or moevaiade menory rarges math and oe of the memoy types s UC, the
UC memay type wsed

d. If twoor more varable memay ranges math andthe memaoy types are WT and WB
the WT memory type isused.

e. If two a more variable memory rarges matclandthe memoy types aretherthan UC
ard WB, the befaviour of the procesa is undefined

3. If nofixed or variable menory rarge netches, theproces®r usesthe default memory type.

9.12.5. MTRR Initialization

On a hardiare reset, a@family processr clears he valid flag in the \ariable-ange MTHRs
andclears theE flag in the MTRRdefTyperegster todisableall MTRRs. All otherbits inthe
MTRRs are undefined. Pria to initializing the MTRRs, sdtware (normally the systemBIOS)
must initialize all fixedrange andvariable-angeMTRR registers fields to 0.Software can then
initialize the MTRRs accading to the types ofmemay known to it, including memoy on
devices that it auo-configures. Thsinitiali zation is expectedto occur prior to booting the @er-
ating system

See Sectbn 9.12.8., “Multiple-Procesa Consideratins’, for information on initializing
MTRRsin multiple-processo systens.

9.12.6. Remapping Memory Types

A system designer may re-map memory typesto tune peformance obe@usea future pocesa
may not implementall memay typessupported by the P6 family procesors. The following
rulessupport ccherernt memoy-type remappngs:

1. A memolry type shaold na be maped nto anoher memoy type that has a wealer
memay ordering modsl. For example, the ucacheable typcamot be maped into any
other type, andhe write-backwrite-through, ard writeprotectedtypes canrot be mapped
into the weakly orabredwrite-combning type.

2. A memay type that doesnot delay writes sroud na be mappel into a memaoy type that
does delay writes, because applications of such a mgntgpe mayrely on its write-
through behavior. Accadingly, the write-back type camot be napped into the write-

throudh type.
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3. A memay type that views write data asnot necesarily stored andread backby a
sutsequent ead,such as tle write-potected tpe,can aly be mappedto another type with
the same behaiour (and there are no others for the P6 family procesas) or to the
uncacheatle type.

In mary specific casesasystendesigner can hag additional informationabout how a memar
type isused, allaving additional mappings. For exanple, write-thraugh memory with no as®-
ciated write side &fcts carbe mapedinto write-back menary.

9.12.7. MTRR Maintenance Programmi ng Interface

The eratingsystem mainains the MTRRs after bating ard sts upor charges he memoy
types for memay-mappeddevices The ogeratingsystemshould provide adriver and applica-
tion pragranming interface (API) toaccessand set the MTRRs. The furttion calls
MemTypeGet() ad MemTypeSet() @fine this interace.

9.12.7.1. MEMTYPEGET() FUNCTION

The MemTypeGet()function returns the memory type d the physical merory rarge specified
by the paameters base arsize. Tte base ad@ssis the sarting physical addess andthe skeis
the number of bytes for the memory range. The function auomatically aligns the bag addres
and sze to 4-KByte baindaries. Pseudocale for the MeniTypeGe() function is given in
Exanple 92.

Example 9-2. MemType Get() Pseudo code
#define MIXED_TYPES -1  /*0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;

IF (BASE + SIZE) wrap 64-GByte address space
THEN return INVALID;

Fl;

IF MTRRdefType.E=0
THEN return UC;

FI;

FirstType < Get4dKMemType (BASE);

/* Obtains memory type for first 4-KByte range */

/* See GetdKMemType (4KByteRange) in Example 9-3 */

FOR each additional 4-KByte range specified in SIZE
NextType « Get4dKMemType (4KByteRange);
IF NextType # FirstType

THEN return MixedTypes;

Fl;

ROF;

return FirstType;
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ELSE return UNSUPPORTED;
Fl,

If the procesa does nd support MTRRS, the function retuns UNSUPPORTED. If the MTRRs
arenot emabled, then th&C menory type isreturred. If more than onenemay type core-
sponds to the specifiedange, astatus & MIXED_TYPES s returned. Otherwise, the nemory
type dfined for the mnge(UC, WC, WT, WB, or WP) is returred.

The pseudaodefor the GedKMemType() function in Examplke 93 obtains the memory type
for a sihgle 4-KByte rang at a giverphysicaladdress.The smple code determiaswhetheran
PHY_ADDRESSfalls within a fixed rame by compaing the addres with the known fixed
ranges 0 to7H-FFH(64-KByteregions), 80000H to BFFFFH (16-KByteregions), ard CGO00H
to FFFFFH (4-KByte regians). If an addessfalls within one of trese ranges, the gmropriate bts
within one o its MTRRs determine the memory type.

Example 9-3. Get4dKMemType() Pseudo code

IF MTRRcap.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range
return MTRRfixed.Type;
FI;
FOR each variable-range MTRR in MTRRcap.VCNT
IF MTRRphysMask.V =0
THEN continue;
Fl;
IF (PHY_ADDRESS AND MTRRphysMask.Mask) = (MTRRphysBase.Base
AND MTRRphysMask.Mask)
THEN
return MTRRphysBase.Type;
Fl;
ROF;
return MTRRdefType.Type;

9.12.7.2. MEMTYPESET() FUNCTION

The MemTypeSet() Einctionin Exanple 94 setsa MTRR for thephysical memaey rangespec-
ified by the @rameters base drsizeto the type specified ly type. The base adésss andsizeare
multiples d 4 KBytesandthe sze is rot O.

Example 9-4. MemTypeSet Pseudoc ode

IF CPU_FEATURES.MTRR (* processor supports MTRRS *)
THEN
IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID;
Fl;
IF (BASE + SIZE) wrap 4-GByte address space
THEN return INVALID;
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FI;
IF TYPE is invalid for P6 family processors
THEN return UNSUPPORTED;
FI;
IF TYPE is WC and not supported
THEN return UNSUPPORTED;
FI;
IF MTRRcap.FIX is set AND range can be mapped using a fixed-range MTRR
THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();
FI;

ELSE (* try to map using a variable MTRR pair *)

Fl,

IF MTRRcap.VCNT =0
THEN return UNSUPPORTED;
FI;
IF conflicts with current variable ranges
THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available
THEN return VAR_NOT_AVAILABLE;
Fl;
IF BASE and SIZE do not meet the power of 2 requirements for variable MTRRs
THEN return INVALID_VAR_REQUEST;
FI;
pre_mtrr_change();
Update affected MTRRS;
post_mtrr_change();

pre_mtrr_change()
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing
THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()
BEGIN

9-30

flush caches and TLBs;
enable MTRRs;



Intel® MEMORY CACHE CONTROL

enable caches;

restore value of CR4;

enable interrupts;
END

Thephysicaladdess tovariade rarge mappirg agorithm in the MenTypeSet finctiondetects
conflictswith curentvariade range regstersby cycling through them and dermining wheher

the plysical addessin queston matches anyfahe curent rangs During this scan the alge

rithm candetect wiether ary curentvariable enges e@erlapandcan ke conaterated intoa
single range.

The premtrr_changy) function disables interrupts prior to chamging the MTRRs, to avdd
executig code with a partially valid MTRR setup.The algaithm disablescaching by seting
the D flag and clearinthe NWflag in contol register CRO. The cactesare invalidatedising
the WBINVD instruction The algaithm dsables thepageglobal flag (PGE) in cantrol register
CR4, if necesary, then flushesall TLB enties by ypdatng contol register CR3. Finally, it
disablesMTRRSs by clearirg the Eflag inthe MTRRdef Typeregister

After the menory type is upated the mst_mtrr_changy() functionre-erablesthe MTRRs and
again indlidates the caches and@iLBs. This secounl invalidationis requred becaee of the
procesor's agresive prefetch d bah instructons and dta. Thealgorithm redoresinterrupts
ard re-erablescachng by setting the CD flag.

An operatirg system canbatch multiple MTRR updatesso that mly a sirgle pair of cacte inval-
idationsoccur.

9.12.8. Multiple-Processor Consi derations

In multiple-processr systens, thke operatig ystems must maintain MTRR corsistercy
between althe pocessrsin the gstem.The P6 fanily processrs provide no hatdiware sippat
to maintain this consistency In general, all procesars nust have the ime MTRR values.

This reqiiremen impliesthat wherthe qeratingsygeminitializes a nalti ple-processr sysem
it mustload the MTHRs of the oot piocessr while the E flag iregiser MTRRdefType isO.
The operating system theriréctsother procesors to loadheir MTRRs with the @me memory
map. Ater all the pocessrs have loadd their MTRRs, the ograting systemignals them to
enable their MTRSs. Barrier syrchronization is used to prevent furtker memory accesseantil
all processors indicate that the MIRRare enaled. Ths synchionization islikely to be a shob
downstyle algorithm, with sharedvaliades and intermprocessr interrupts.

Any charge to the valle  the MTRRs in a multiple-processo systemrequires the operatirg
system torepeat théoadingandenablingproces to mantain corsistency, using tte following
procedue:

1. Broad@d toall processors to ecute thdollowing code sequence.
2. Disable interrugs.
3. Wait for all processrsto reachthis point.
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4. Enter the ro-fill cache male. (Set the CD flag in control regsterCRO to 1 and the NW flag
to 0.

Flush all cachsusing the WBINVD instruction.
Clear the PGHE&gin cantrd regiser CR4 (if set).

Flush al TLBs. (Execue a MOV from caotrol register CR3 to anoher register andthen a
MOV from thatregister backo CR3.)

8. Disable all rage rgisters (by clearingthe Eflag in register MTHRdefType). If only
variable anges arebeing modfied, sofware may clear thevalid hits for the affected
register pairsinstead.

9. Update tle MTRRs.

10. Enable al rang regiters by <tting the E fag in regster MTRRdefType) If only
variable-rangeregisteravere nodified andtheirindividual valid bits werecleaed,thenset
thevalid hits for theaffectedrarges instad

11. Flush all caches and all TlsBa secod time. (The TLB flush is required for P6 family
processrs. Executingthe WBINVD instruction is not neededwhen usihg P6 family
processrs, bu it may ke neeed infuture sysens.)

12. Enter the normal cache mode to re-abie cacting. (Setthe D and NWflagsin cortrol
register CRO to 0.)

13. Set PGE flagn cortrol regster CR4, if previously cleared.
14. Wait for all processrs to reactthis pant.
15. Enable interrupts.

9.12.9. Large Page Size Considerations

The MTRRsprovide memaoy typing for alimited numberof regions that have a4 KByte gran
ularity (the same gmularity & 4-KByte pages). Tle memoy type for a givenpageis cachedn
the pocessr’'s TLBs. Whenusing lamge pa@s (2 or 4 MBytes), a Bigle pagetable entrycovers
multiple 4KByte ganues, each with a single memaype. Becawse the memory type fa a
large page iscached ine TLB, the processr canbehawe in an un@finedmamer if a lage page
is mapped to aregon of memory thatMTRRs have mapped with multiple memory types.

Undefinedbehavior canbe awided by insuring that all MTRR memay-type rarges within a

large pag are d the same typ If a lage pag@ maps to aegion of memory cortaining different
MTRR-defined memory types the P ard PWT flags in thepage-talle ertry should be setfor

themost cmservativememay type for that enge.Forexanple, a lage page used for memoy

mapped I/O and regar memoy is mappged asUC memay. Altematively, the operatingsystem
canmapthe region using multiple 4-KByte pages eachwith its own memay type. The reaiire-

mert that all 4-KByte rangsin a lage page areof the ssme memoy type implies that lage

pages with different memaoy types may siér a grformarce penaltysince they nust be marked

with the lowest conmon denominator memory type.
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The P6 émily processrs provide special supmt for the physical memaey rangefrom 0 to 4
MBytes, wheh is potentially mapped by bath the fixed ard variable MTRRs This sipport is
invokedwhena P6 &mily processor etectsa lage ppge overlapping the first 1 MByte d this
memory range with a memory type that corflicts with the fixed MTRRs. Here, the processr
maps the memory range as noltiple 4-KByte pages within the TLB. THs operationinsures
correct belavior at the cost 6 perfaomarce. 1o avdd this performarce penalty, operating
system dftware sroud resewve the laige page opion for regonsof memay ataddreses geatr
thanor eqwl to 4 MBytes.

9.13. PAGE ATTRIBUTE TABLE (PAT)

The Pag Attribute Table (FAT) is an exension to Intel’s 3-bit procesar virtual memory archi-
tecture for cetain P6 family processrs. Specificallythe AT is an exensbn of thepagetable
format, whichallowsthe specificatiorof memoy typesto regons d physical memaoy based
on linear adres mappngs. The PAT provides the equvalent funcionality of an urnimited
number d Memay Type Range Regsters(MTRRS).

Using the AT in conjunction with the MTRRs of the P6 family of procesas extends the
memay type information preent in the curert Intel Archtectue pag-table brmat. It
combinestheexterdable ard programmable qualities d the MTRRs with the flexibility of the
page ables alowing operaing g/stens or applicationsto selectthe bes memoy type fa their
needs. The abity to apdy the kest memory type in a flexible way erables higher levelsof
performarce.

NOTE

In multi ple processor sysirs, the orating system(s) mustaintain MTRR
congstercy between all the pocesas in the gstem The P6 family
procesas provide no hardwaresyppat for maintaining this congstency. In
general, all praessrs nmust have the sane MTRR values.

9.13.1. Background

The P6family of processrs support the asgyjnment d specific merory types to pysical
addes®s. Memoly type sippat is provided trough the ug of Memory Type Range Regsters
(MTRRS). Currently there ae two inteacting mechanisms that whkitogetherto set theffective
memory type: he MTRRs andthe pag tales. Refer tdheIntel Architectue Sdtware Devel-
opers Manud, \blume 3 SysemProgramming Guide.

The MTRRs define the memay types forphysicaladdess rarges. MTRRs hawe specific align
mentand length requrementsfor the memay regiors they describe. Therefe, they areiseful
for statically desciibing menory typesfor physicalranges andare typically setupby the g/stem
BIOS. Howewer, they are iwapable 6 describiy memay types forthe dynamic, linealy
addesseddata stuctures 6 programs. TheMTRRs are an epandible an programmalbe way
to ercode memay types, but arenflexible becase they can onlyapgdy thosememay types to
physical adiress rangs
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The pagetablesallow memoty types to be asgineddynamically to lineaty addes®d pages of
memay. This gives the opeating sygem the maximum amout of flexibility in applying
memay typesto anydat sructure. Howeer, the pag tablesonly offer three ofthe five besic
P6 processr family memory type encothgs Write-back (WB), Write-thraugh (WT) ard
Uncacled (UQ. The FAT extend the exising page-table brmat toenable tk gecification d
additional memory types.

9.13.2. Detecting Support for the P AT Feature

The ge attribute table @) featue is detected Y an ograting system the@hthe ue d the
CPUID instruction. Specifically, the geratingsysem exectesthe CPUID instruction with the
value lin the EAX regiger, ard thendetemmines sipport for the featwe byinspecting hit 16 of
the EDXregister returnvalue. If thePAT is supported, anoperating systemis permittedto utilize
the malel specific reggter (MSR) specifiedfor programrming thePAT, aswell as make se o
the RAT-index bit (PATE), whichwasformelly a reserved hit in the @ge tables.

Note that thex isnat a eparate flag @ cortrol bit in anyof the contol registers hat enables the
use of thisfeatre. The RT is adways enalbed on all processorghat sugpott it, and the table
lookup always occus whenevempagng is enakted andfor all pagng modes (&y., PSE, RE).

9.13.3. Technic al Description of the PAT

ThePage Attribute Table is a Mo@l Specific Register (MSR at addess 277H (for information
about the MSKs, refer to Apperdix B, Model-Secific Regisers. The malel gecific register
addessfor the AT isdefined andwill remain at the ssme address ontfture Intel pracesors that
support this feaure. Fgure 97 showsthe format of the 64bit regster cantaining the FAT.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
| Rsvd ‘ PA3 | Rsvd ‘ PA 2 | Rsvd ‘ PA 1 ‘ Rsvd ‘ PAO ‘

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
| Rsvd ‘ PA7 | Rsvd ‘ PAB | Rsvd ‘ PA5 ‘ Rsvd ‘ PA4 ‘

NOTES:
1. PAOD-7 = Specifies the eight page attribute locations contained within the PAT

2. Rsvd = Most significant bits for each Page Attribute are reserved for future expansion

Figure 9-7. Page Attrib ute Table Model Specific Register

Each & the eight pagattribute fieldscancontain anyof the available menmg type encodngs,
or indexes, asspecifedin Table 9-1.
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9.13.4. Accessing the PAT

Acces to the memy types tha have beermprogramned into the RT register fieldss accom

plished with a 3-bit index condsting of the PATi, PCD, ard PWT bits. Table 98 showshowthe

PAT register fields are indexed. The last colummf the table siows which memoy type the

processor assgns to eachPAT field at poocessr reset andinitialization Thes initial values
provide camplete kackward campatibility with previous Intel procesars ard exsting oftware
that use the previoudly existing page-table memory typesard MTRRS.

Table 9-8. PAT Indexing and V alues After Reset

PAT/ PCD PWT PAT Entry Memory Type at Reset
0 0 0 0 WB
0 0 1 1 WT
0 1 0 2 uc-?
0 1 1 3 ucs
1 0 0 4 WB
1 0 1 5 WT
1 1 0 6 uc-2
1 1 1 7 ucs
NOTES:

1. PAT/ bit is defined as bit 7 for 4 KB PTEs, bit 12 for PDEs mapping 2 MB/4 MB pages.

2. UC- is the page encoding PCD, PWT = 10 on P6 family processors that do not support this feature. UC-
in the page table is overridden by WC in the MTRRs.

3. UC is the page encoding PCD, PWT = 11 on P6 family processors that do not support this feature. UC in
the page-table overrides WC in the MTRRs.

In P6 family processrs that do rot supprt the PAT, the PO ard PWT bits are wedto deter
mine the page-table menory typesof a givenphysicalpage. The RAT feaure edefines hese two
bits and commes tlem with a newl defined PAT-index bt (PATi) in the @age-directory and
pagetable entries. Thedtiree bitscreate an ingk into the 8entry Page Attribtie Table. The
memay type from the FAT is used in place ofPCD ard PWT for comnputing the efective
memay type.

Thebit usedfor PATi differsdepending upon the level of the paging hierarchy PATi is bit 7 for
pagetable enties, and bt 12 for page-direciory enties that map b large pagesRe®rved bt
faults are dsabled for nonzerovalues ér PATi, but remain presen for all ather resened hts.
This is truefor 4 KB/2 MB pages whn FAE is enaled. The PAT index schemdor eachlevel
of the pagng hierarcly is stown in Figure 98.
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31 4 3

PCD| PWT —
Page-Direciory Base Register ((R3)
31 4 3

PCD and PNT provide 2 bit
PCD| PWT — index into the AT, allowing use
of first 4 ertries

Page-Directay Pdnter Table Ertry

31 4 3
PCD PWT —

4 KB PgyeDirectory Entry

31 13 12 4 3
PATi | PCD| PWT

2 MB/4 MB Page-Directory Entry PATi, PCD, andPWT provide 3 hit
—» indexinto the AT, allowing use o
31 8 7 4 3 all 8 ertries

PATi | PCD| PWT |
4 KB Page-Tale Entry

Figure 9-8. Page Attrib ute Table Index Scheme for Paging Hierarc hy

NOTE:

This figure only shows the format of the lower 32 bits of the PDE, PDEPTR, and PTEs when in PAE mode
Refer to Figure 3-21 from Chapter 3, Protected-Mode Memory Management of the Intel Architecture Soft-
ware Developer’s Manual, Volume 3: System Programming Guide. Additionally, the formats shown in this
figure are not meant to accurately represent the entire structure, but only the labeled bits.

Figure 9-8shows that the FAT bit is nat defined in CR3, the Pag-Directory-Pointer Tableswhen
PAE isemabled, o the Rige Direciory whenit doean't describe a lage pa@. In these casesnly
PCD ard PWT are ugdto index into the FAT, limiting the operatng systtmto usng only the
first 4 ertries d PAT for describing the memory attributesof the paging hierarchy. Note thet all
8 PAT ertriesare available dér describinga 4 KB2 MB/4 MB page.

The memory typeasnow defined by PAT interactswith the MTRR memory typeto detemine
the efective memory type as atlined inTable 9-9. Compatre this to Table 9-5
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Table 9-9. Effective Memory Type Depending on MTRRs and PAT

PAT Memory Type MTRR Memory Type Effective M emory Type
ucC- WB, WT UC_PAGE
wcC wcC
uc UC_MTRR
WP Undefined
uc WB, WT, WP, WC UC_PAGE
uc UC_MTRR
wcC X wcC
WT wB, WT WT
uc UC_MTRR
wcC Undefined
WP Undefined
wp WB, WP WP
uc UC_MTRR
WC, WT Undefined
wB wB wB
uc UC_MTRR
wcC wcC
WT WT
WP WP
NOTES:

» This table assumes that the CD and NW flags in register CRO are set to 0. If CR0.CD = 1, then the effec-
tive memory type returned is UC, regardless of what is indicated in the table. However, this does not force
strict ordering. To ensure strict ordering, the MTRRs also must be disabled.

» The effective memory types in the gray areas are implementation dependent and may be different
between implementations of Intel Architecture processors.

* UC_MTRR indicates that the UC attribute came from the MTRRs and the processor(s) are not required to
snoop their caches since the data could never have been cached. This is preferred for performance rea-
sons.

* UC_PAGE indicates that the UC attribute came from the page tables and processors are required to
check their caches because the data may be cached due to page aliasing, which is not recommended.

» UC- is the page encodng PCD, PWT = 10 on P6 family processorstha do not sugport this feature. UC- in the
PTE/PDEIis owerriddenby WC in the MTRRs.

¢ UC is the page encoding PCD, PWT = 11 on P6 family processos that do not support this feature. UC in the
PTE/PDE overidesWC in the MTRRs.

Whereverthe MTRRs are dsabled viabit 11 (E) in the MTRRDefType egister, theeffective
memay type isUC for all menory ranges.

An operatingsystem canprogram the RT andselect the 8 mat useful attribute canbinations.
The RAT allowsan ogerating gstem to ofer peformance-eharcing memoy typesto apgica-
tions.
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Thepag atribute far addreses containing a pa@ direciory or page table supports only the first
four entriesin the PAT, since a FAT-index bit is not defined for these nappings The pag
attribute isdeternined by using the two-bit value pecifiedby PCD ard PWT in CR3 (for page
directay) or the page-drectoryenry (for page tables The sme apfies to Page-Directory
Pointer Bbleswhen FAE is erabled.

9.13.5. Programmingt he PAT

ThePage Attribte Tableis read/write accedldeto sotware operatingat ring O through the use
of ther dnsr and wr msr instructions. Accessearedirectedto the FAT through use ofmadel

specific register adds 277H. Refer to Figure 97 for the fomat of the 64bit register
cortaining tre FAT.

The FAT implementation on processaos that suypport the featue defines only the 3leag signifi-
cant bits for page attribties These bits aresed to specifythe menory type with the same
encaling as wed for the P6family MTRRs as showrin Table 9-6. Pracesorsthat supjort the
PAT featue modfy those erodngs slightly in that ercoding0 is UC andencaling 7 is UG,
asindicatd in the Table 9-10. Enamding 7 renains indefned for the fixed andvariable MTRRS
andanyatenypt to write anundefined menory type eroding continuesto geneete a GPfault.
Attempting to write anundefined nemory type ercodng into the AT generates a GP fault

Table 9-10. PAT Memory Types and Their Prope rties

Allows
Writeback Specul ative Memory Order ing
Mnemonic Encodi ng Cacheabl e Cacheabl e Reads Model
Uncacheable 0 No No No Strong
(UC) Ordering
Write Combining | 1 No No Yes Weak
(WC) Ordering
Write-through 4 Yes No Yes Speculative
(WT) Processor
Ordering
Write-protect 5 Yes for No Yes Speculative
(WP) reads, no for Processor
writes Ordering
Write-back (WB) | 6 Yes Yes Yes Speculative
Processor
Ordering
Uncached (UC-) | 7 No No No Strong Ordered,
but can be
overridden by WC
in the MTRRs
Reserved 2,3, 87-255

The @eratingsystem isresponsible forensiring that changes to a AT ertry occu in a maner
that mairtains the corsistencyof the plocessr caches atrarslationlookasde bufers (TLB).
This is accomfishedby following the pr@edue as pecified in he Intel Architectuie Sftware
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Devebper's Manwal, Volume 3 SystemProgrammning Guide, for changingthe valle d an
MTRR. It involvesa specific seqgnce 6 operatins that inclues flushiy the procesor(s)
cacles anl TLBs. An operatirg system mstensure that the PAT of all procesars inamultipro-
cesingsystem have the same values.

The FAT allows aly menory typeto bespecified inthe ge talbes, an therefae it is pasible
to have a sige phydcal page mappedby two differentlinear addesgs with differing memory
types. This practice is grongly discouraged by Intel and should be avoided as it may lead to
undefinedreaults. In particular a WC page nast never be aliased to a cacable pagedrause
WC writes may not check thprocessor cache®Vhen remapimg apage that was previously
mapped as a&acheale memay type toa WC page,anopegting system camvdd this type of
aliasng by:

®* Removing the previous maping to a cacheale menory type in the pag tades; that is,
make them nat present.

®* FHushingthe TLBs d procesas that mayhawe used he mappng, even pecuatively.

® Creatng a new mappip to the ssme plysical addresswith a new memory type, fa
instance, VC.

® Flushingthe cachesmall processrsthat mayhaveused the mapping previously.

Operatingsystemghat use a Rge Diectory as @ag Table amd enalbe Page Sizé&xtensbns
must careflly scrutinize theise of tle PATi index bit for the 4 KBPage-Tabe Ertries. The RTi
indexhit for a FTE (bit 7) coresponisto the page sizéit in a PDE. Therafre, the operating
system caronly utilize PAT ertries FAO-3 when seting the cacling type for a page talle thatis
also used as pagedirectoy. If the @eratingsysem attempts to se PAT entries PA4-7 when
using this memagrasa pag table, iteffectively setsthe PS bit for the acceds this memay as
a pag directay.
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CHAPTER 10
MMX™ TECHNOLOGY SYSTEM PROGRAMMING

This chapterdescribes thse featuesof the MMX™ techology thatmust be considexdwhen
desgning or enhawing anoperatng yystem o suppot MMX™ techaogy. It coversMMX™

instructionset errulation,theMMX™ state, aliaisig of MMX™ registers, savig MMX™ state,
task andcortext switching corsideratons excepton handing, ard debugging.

10.1. EMULATION OF THE MMX™ INSTRUCTION SET

The Intel Architecture desnot supmrt emuation of the MMX™ techology, asit does for
floating-point instructions. The EMflagin cortrol register GRO (provided to invoke emulation
of floaing-point instructiong camot beusedfor MMX™ techrology emuhtion. If anMMX™
instructionis executed wheithe EM flagis set, an inglid opcode (UD#) excepion is genested.

10.2. THE MMX™ STATE AND MMX™ REGISTER ALIASING

The MMX ™ stateconsigs of eight @1-bit registerfMMO through MM7). The< registers are
aliased to the 64-bit mantissas (bits 0 through 63) of floating-point regiders FO through R7 (see
Figure 10-2). Note trat the MMX™ regsters aremapped to the physical locatins of the
floating-point registers (ROthrough R7), na to the relatie locations of the regsters in the
floaing-paint register stack (S through ST7). As a resilt, the MMX™ register mappig is
fixed and isnat affectedby value in the ®dp Of Stack (TO9) field in the flaating-point gatus
word (bits 11 through 13.

When a value is witten into anMMX™ regider ushg anMMX™ instruction, the value also
appearsin the caregonding floating-point register in bits 0 through 63. Likewise, wten a
floating-point value writteninto a floaing-point register ly a floating-point instruction, the
martissa of thatvalue also apears ima the corespoling MMX™ register.

Theexecudion of MMX™ instructions tave severhside effectson the FPUstate cantainedin
thefloating-pant regsters,the FPU tagvord, andthe FPU the statis word. These side féects
are as flows:

® When anMMX ™ instruction writes a value intanMMX™ register, atthe same time, lts
64 through 79 of the carregponding floaing-paint register (the expaert field and the sgn
bit) are set tall 1s

®  When anMMX™ instruction(otherthan the BIMS instructian) is executedeach 6 the
tagfields in the FRJ tag wad is st to 00B (valid). (See als®ection 10.2.1., “Effect of
MMX™ and Floating-Pant Instructions on the FPU Tag Word”.)

®* When the EMMSinstruction is exectied, each tag field in the EPtag wordis set to 11B
(empty).
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Eachtime anMMX™ instructionis executedthe TOS value isset to 000B.

FPU Tag ina-Poi i
Register 79 64 63 Floating-Point Registers 0
00 ! Mantissa | R7
T T
00 ) .| R6
00 /l 1| Rrs
]
00 N I | R4
7
00 ! , |Rs3
00 , " |Rr2
; 1
00 , 1 |R1
00 J , RO
] ) ! !
FPU Status Register ! / ! I
13 11 i , ; /
!
| |ooo] ) _ ;oo
63 | MMX™ Registers g !
TOS ! !
! !
, MM
! MM6
/ )
! MM5
/ i
/ MM3
1 ]
! MM2
7
, fos
TOS =0
ey 'MMO

Figure 10-1. Mappin g of MMX™ Registers to Floati ng-Poi nt Registers

Execuion of MMX™ instructions d@snot affectthe dher bits inthe FPUstatus wod (bits 0
through10ard hits 14 and15) or the cantents of the other FPU reg stersthatcomprisethe FPU

state (he FPU contrd word, instruction pointer data poirter, or opcoce regsters).
Table 101 summarizes the &cts oftheMMX™ instructions onthe FPUstate.
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Table 10-1. Effects of MMX™ Instruc tions on FPU State

MMX™ TOS Field of Exponent Bits
Instruction FPU Status Other FPU and Sign Bit of
Type FPU Tag Word Word Registers Rn Mantissa of Rn
Read from All tags set to 000B Unchanged Unchanged Unchanged
MMn register 00B (Valid)
Write to MMn All tags set to 000B Unchanged Settoall 1s Overwritten with
register 00B (Valid) MMX™ data
EMMS All fields setto | 000B Unchanged Unchanged Unchanged
11B (Empty)
NOTE:

MMn refers to one MMX™ register; Rn refers to corresponding floating-point register.

10.2.1. Effect of MMX™ and Floating-Point Inst

FPU Tag Word

ructions on the

Table 102 summaizesthe efect of MMX™ and floating-point instructions on the tagsin the
FPU tag word and he corespndngtagsin an image ofthe tag word stored n memoy.

Table 10-2. Effect of the MMX™ and Floating -Point Instru ction s on the

FPU Tag Word

all other tags are set according to the
value in the corresponding floating-
point register: 00B (nonzero), 01B
(zero), or 10B (special).

Instruction Image of FPU Tag Word
Type Instruction FPU Tag Word Stored in Memory
MMX™ All (except All tags are set to 00B (valid). Not affected.
Instruction EMMS)
MMX™ EMMS All tags are set to 11B (empty). Not affected.
Instruction
Floating-Point | All (except Tag for modified floating-point Not affected.
Instruction FXSAVE/FSAVE, | register is setto 00B or 11B.
FSTENV,
FXRSTOR/FRST
OR, FLDENV)
Floating-Point | FXSAVE/FSAVE, | Tags and register values are read Tags are set according to the
Instruction FSTENV and interpreted; then all tags are set | actual values in the floating-
to 11B. point registers; that is, empty
registers are marked 11B
and valid registers are
marked 00B (nonzero), 01B
(zero), or 10B (special).
Floating-Point | FXRSTOR/FRST | All tags marked 11B in memory are Tags are read and
Instruction OR, FLDENV set to 11B; interpreted, but not modified.
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The valesin the fields of theFPUtag worddo not afectthe contets of theMM X™ registers
or the executon of MMX™ instructions However the MMX™ ingtructions do madify the
cortentsof theFPU tag wad, asis describednh Sectionl02., “The MMX™ State andMMX™
Register Aliasing”. These mdifications mayaffect theopestion of the FPU whenexecting
floating-point instructions, if the FPU stae is rot initialized or restoed gior to begnning
floating-point instruction executon.

Note that the FXSA/E/FSAVE andFSTENYV instructons (which save FPU gate irformation)
readthe FPU tag register ard contems of eachof the floatingpaint registers, deermine the
actual tag glues foreach refgter (empty nonzeo, zeo, a special), andstore the pdatedtag
word in memory. After execuing these instructions all the tagsin the FPU tagword are &t to
empy (11B). Likewise, theEMMS instructionclearsMMX™ state fran the MMX™/floating-
point registers ly setting all the tags in the FRJ tagword to 11B.

10.3. SAVING AND RESTORING THE MMX™ STATE AND
REGISTERS

Therecomnendedmetod of saving andregoring the MMX™ techology state isasfollows:

* Execute an FXSAVE/FSAV/E/FNSAVE instriction to write the entire state ofthe
MMX™ /FPU,the SMD floating-point registersand the SMD floating-point MXCSR to
menory.

®* Execute anFXRSTOR/FRSTOR instruction to read the mtire savedstate of the
MMX™/FPU, the SIMD floating-point regiders andthe SIMD floating-point MXCSR
from memory into the FPU regiters, tle aliassedMMX ™ regigers, the SIMD flating-
point regstersard the SMD floaingpoint MXCSR.

This save ard resbre mnethod is reqiired for operating systems (refr to Sectim 104.,
“Designing Operatirg System Task ard Context Switching Facilities”).

Applicatiors can insome casesave andrestoreonly the MMX™ registers, in th fdlowing
way:

® Execute eigt MOVQ instructiors to write the conens of the MMX™ registersMMO
through MM7 to memory. An EMMS instruction may then (ptionally) be executed to
clearthe MMX™ state in thé-PU.

®* Execute eighMOVQ instructions to ead the savedortentsof theMMX ™ regsters fran
menory into the MMO thiough MM7 regiders

NOTE

Intel does rot support scaming the FPU tag ward ard then anly saving valid
ertries
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10.4. DESIGNING OPERATING SYSTEM TASK AND CONTEXT
SWITCHING FACILITIES

When switching from ore task orcontext to anothr, it is oftennecesary to save th¥IMX ™
state just asit is often recessaryo saethe state bthe FPU). As a general ule, if the existing
task switching code for an @erating systemincludesfacilities for savng the sta¢ of tre FPU,
these facilitiescan alsobe relied umn to save the MMX™ date, without rewriting the tak
switch cade. Thsreliance is pssible becagetheMMX™ state isaliased to the FPUstate (redr
to Section D.2., “The MMX™ State andMMX ™ Regster Aliasing”).

When daesigning new MMX™  (andor FPU) statesavng facilities for an operatirg system,
several approaclesareavailable:

® The operating system can redre that applications (which willbe run astasks) éke
respamsibility for saving the sate of the MMX™FPU prior to a task aspersion duling a
task swith and for restoring the MMX™/FPU state when the tak is resumedThe
apgication can use dier of the state aving andredoring tecmiques givenin Section
10.3., “Saving ard Resoring the MMX™ State and Rgisters”. This approach b saving
MMX™ /FPU state isappopriate for cogerative multitasking operatirng systems, where
the application has catrol over (or is able todeermine) when a tak switch is abait to
occu ard cansave state pior to the task switch.

® The operatirg system can take the responsbility for aubmatically savng the
MMX™ /FPU stak as part ofthe task swich process (using an FXSAVE/FSAVE
instructior) andautamaticdly restoing the MMX™/FPU state whna suspetiedtak is
resumed (using an FXRSTOR/FRSTOR instruction). Here, the MM X ™/FPU state nustbe
savedas part of the task state. Thapproach is apmpriate for preemptive multitasking
operating systns, whee the appication camot krow when it is gang to be preemped
andcamot prefre h advane for task svitching. The opegting system isrespomsible for
savingandresbring the task add MMX™/FPU state whemecesary.

® The erating system can take the responsibility for saving the MMX™ /FPU state agart
of thetak switch process but delay the saving of the MMX™/FPU state otil anMMX ™
or floating-point instruction is actually execued by the new tsk. Using this approach,the
MMX™/FPU state is sawed only if an MMX™ or fl oating-point instruction need o be
exectedin the new task(Referto Sectbn 10.4.1., “Using the TSFlagin Control Register
CRO to Control MMX™/FPU State Saving’, for more information on this MM X™/FPU
stak sving tecique)

10.4.1. Using the TS Flag in Control Regis ter CRO to Control
MMX™/FPU State Saving

Savng the MMX™ /FPU statausing the FXSAVE/FSAV E ingtruction is arelatively high-over-
headoperation. If a task being switched towill not accesshe FRJ (by execuiting anMMX™ or
a floating-paint instruction), this overheadcan be avaded by na automatically saving the
MMX™ /FPU stak ona tak switch.
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The TS flagin control register CRO is provided to allow the goerating systemto delay savng
the MMX™ /FPU state unil the FRJ is actually accessed in the new kasVhenthis flag isset,
the pracesso monitors the irstruction greamfor MMX™ or floating-paint instrucions. When
the pr@esor detectan MMX ™ or floating-point instruction, it raisesa device-nd-available
excepion (#NM) prior to executing the instructiarThe devce-nd-available excetpon hardler
can tlen be gedto save the MMX™ /FPU state for the previous sk (Using anFXSAVE/FSAVE
instruction) andloadthe MMX™/FPU state forthe current task sing anFXRSTOR/FRSTOR
instruction). If the tasknever encounters anMMX™ or floating-point instruction, the device-
not-availabe exception will not be raised andthe MMX™/FPU state will not be saved unnec-
essrily.

The TS flagcanbe %t either explicitly (by execuinga MOV instruction to control register CRO)
or implicitly (using the proces®rs native tak switching mechaism). When the nafive task
switching mectaniam is used, tk processor aiomatically sets the TS flag ora sk swith.
After the cvicenot-available fandler hassaved the MMX™/FPU state, it slould execute tle
CLTS instruction to clearthe TS flag inCRO.

Figure 10-2 gives an exanip of an peratingsystem that implemets MMX™ /FPU statesavirg
using the TS flag. In tis exanple, tak A is the curertly running task and taskB is the task

being switched .
MXTM/FPU @

Application State Owner

Operating Sy stem l

CRO0.TS=1 and
Task A Floating-point or Task B
MMX™/FPU MMX™ Instruction| ~MMX™/FPU
State Save Area is encountered. State Save Area

k Operating System /
Saves Task A Task Switching Code Loads Task B
MMX™/FPU State - - MMX™/FPU State

~___| Device-Not-Available S —
Exception Handler

Figure 10-2. Example of MMX™/FPU State Saving Durin g an Operating
System-Controll ed Task Switch

The eratirg sysemmaintains an MMX™FPU save aga foreach task andefines a variable
(MMX™ JFPUStateOwner}hat irdicateswhich task“owns” the MMX™/FPU state. h this
exanple, task A is the quent MMX™/FPU gate avner

On a task svich, the orating system taskwtching coce must execte the following pseude
cocktosettheTsS flagaccading to whois thecurent MMX™/FPU state avner If the new task
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(tak B in thisexample)is not thecurrentMMX™ /FPU state avner, the TSflag is seto 1; other
wise, it is seto 0.

IF Task_Being_Switched_To # MMX/FPUStateOwner
THEN
CRO.TS « 1;
ELSE
CRO.TS « 0;
FI;

If a new tak attenpts touse an MMX™ or floating-point instruction whilethe TS flagis setto
1, a avice-nd-available exeption #NM) is geneated and tle devicenot-awailalle exception
hander executesthe fdlowing psewdo-mde.

CRO.TS « 0;

FSAVE “To MMX/FPU State Save Area for Current MMX/FPU State Owner”;
FRSTOR “MMX/FPU State From Current Task's MMX/FPU State Save Area”;
MMX/FPUStateOwner « Current_Task;

This hardler code peformsthe fdlowing tasks:
® C(Cleasthe TS flag.

®* Saves tie MMX™/FPU date in the wte swve area forthe currem MMX™ /FPU state
OWner.

® Restoresthe MMX™ /FPU state fron the rew tak’s MMX™ /FPU state save &a.
® Updates thecurentMMX™ /FPU state owneto be the curert task.

10.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
MMX™ INSTRUCTIONS

MMX™ jnstructions do not geneate floaing-point excepions, nor do they afect the
procesor's statis flags inthe EFLAGSregister or the FPU &atus word. The fllowing excep
tions can le gererated diring theexecutionof an MMX™ instruction:

®* Exceptions dting memay accesses

— Stack-segment falt (#SS).

— Gereral potecton #GP).

— Page fault(#PF).

— Alignment cleck (#AC), if alignment checlng is erabled.
® System excejons:

— Invalid Opcode (#UD), if the EMflag in contral register QRO is setwhenanMMX ™
instruction is executed(Refer toSecton 10.1., “Emulation of the MMX™ [nstruction
Set”).
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— Device not aailable (#NM), if an MMX™ instructionis exectied when tk TSflagin
contrd register CRO is set. (See Refer to Secton 104.1, “Using the TSFlag in
Cortrol Register CRO to Cortrol MMX ™/FPU State Saving”.)

®* Hoatingpaint erra (#MF). (See Refetto Sectbn 10.5.1., “Effectof MMX™ Instructions
on Perting Floating-Pdnt Excepions”.)

® Otherexcepions can acurindirectly due tothe faulty executionof the excetion handlers
for the above exception. For example, if a dacksegment fault (#SS) occus due to
MMX™ instructions, tle interrypt gate for the stack-segamt faut can drectthe pocessr
toinvalid TSS, caumg aninvalid TSS exeption (#TS) tobe gererated

10.5.1. Effect of MMX™ [nstructions on Pendi ng Floating-Point
Exceptions

If a floating-point exceptionis pending and the pucessr encoutersanMMX™ instructon, the
procesa generatesa floating-point erra (#MF) prior to executinghe MMX™ instruction, to
allow the exception to be tanded by the floaing-point error excepion hardler. While the
handler is execting, the FPUstate is naintainedandis visible tothe fandler. Upon returning
from the exepion hardler, the MMX™ ingtruction is exected, which will alter the FRJ state,
asdegribedin Section 0.2, “The MMX™ State andMMX ™ Regster Aliasing”.

10.6. DEBUGGING

The delnig facilities of the Intel Architecture opete in the samemamer when exeding
MMX™ instructions aswhen executing ather Intel Architecture instructions. These facilites
enalbe debwggersto detug MMX™ techndogy coce.

To correctlyinterpret the catentsof the MMX™ or FPU regsters fromthe FXSA/E/FSAVE
image in memory, adelugger needsto take accaunt of the relationship betweenthe floating-
point regsterslogical locatiors relative to TOS andthe MMX™ register's physical locations.

In the floaing-point conext, STn refersto a floating-point registerat locatiom relative to the
TOS. Howeverthe tagsn the FPUtag wod are asociated wih the physical locations of the
floaing-paint regsters (RO through R7). The MMX™ registers always refer to the physical
locations of the regsters (with MMO through MM7 being mappedto RO through R7).

In Figure 102, the innercircle refersto the physcal locaion o the floating-point and MMX™
registers. Tle ouer circle efers tothe floating-paoint registers’s relative location to the curent
TOS.
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FP “push

FP “push” sto P pop” ST6
R A

ST2

Case A: TOS=0 Case B: TOS=2

Quter circle = FP register’s logical location relative to TOS
Inner circle = FPU tags = MMX™ register’s location = FP registers’s physical location

Figure 10-3. Mapping of MMX™ Registe rs to Floating-Po int (FP) Registers

Whenthe TOS equls 0 (ca® A inFigure 162), STO poirts to the pysical bcation RO onthe
floating-point sack MMO mapsto STO,MM1 maysto ST1, anl s on.

Whenthe TOS equls 2 (case Bn Figure 102), STOpoints to the plsical locationR2. MMO
mapsto ST§ MM1 mapsto ST7,MM2 mapsto STO, ad 0 on.
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CHAPTER 11
STREAMING SIMD EXTENSIONS SYSTEM
PROGRAMMING

This chaper describesthose feattes ofthe Streamig SIMD Extensions thamnust beconsidered
when degning or enlancing an operatng system D sypat the Pentium® 11l procesor. It
covers extersions emnulation, the rew SIMD floating-point architectiral state,similarities to
MMX™ techndogy, task andcontext switching corsideratons excepion hardling,and delug-

ging.

11.1. EMULATION OF THE STREAMING SIMD EXTENSIONS

The Intel Architectus doesnot sugoort emuation of the Steaming SIMD Extensions, &does
for floaing-point instructions. The EM flgin contol register CRO(provided to invoke emuia-

tion of floaing-point instructions) canna be used for Streamihg SMD Extensonsemuhtion.

If a Sreamng SIMD Extengonsinstruction is exectied when e EMflagis set (CRO.EM), an
invalid opcade (UD#/INT6) exceptionis geneated instead ba cevice rot availalbe exception
(NM#/INT7).

11.2. MMX™ STATE AND STREA MING SIMD EXTENSIONS

The SIMD-integeinstructions of the Streamin§IMD Extersions use the same registeas he
MMX™ techndogy instructions. In adition theyhave beerimplementedo the same fes for
MMX™ techology instructiors apgy to the StreamingSIMD Extersions. Hence evsithing
refelencedin chapterlOrelating to MMX™ techrology ard systemprogrammingis agplicable
to theSIMD-integer irstructions in theStreamng SIMD Exensbns.

11.3. NEW PENTIUM® Ill PROCESSOR REGISTERS

The Peium® Il Pracesorintroduced a setf 128bit gereral-purpose regsters. These regsters
are directly adressable and cabe used to ¢ld data @ly. In addtion, the Pentiufh IlI

Processr also introdiced a neveontrol/statis regster (MXCSR) that is used to flag excefptions
reallting from computationsinvolving the SMD floating-point registers, maskunmaskexcep
tions, ard caontrol the raundng and flush-to-zeromodes. The® regsters are desribed mare
completely in the following sections.
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11.3.1. SIMD Floating-point Regi sters

Streaming SIMD Extendons provides eight 128-hit gereral-purpose regsters each o which
can ke directly addessed. Tlese regsters are new ate, ad requre uppat from the opeating
sysemto use them

The SMD floating-pant registers can hold packed128bit dat. The SMD floating-point
instructiors acces the SIMD floating-point registersdirectly using the registeramesXMMO
to XMM7 (Table 11-1). These regists canbe usedto perform calculations odata. They caniot
be wed toaddressmemory, addressing isaccanplished ly using the integ registersard
existing IA addessng mods.

Thecontens of SIMD floatingpaint regsters are clead yponreset.

There is a iBw control/sttus register MXCSR whichis usedto mask/unmasknumerical excep
tion handing, to setrourding mocks, to set the flush-to-zer male, aml to view staitus flags.

Table 11-1. SIMD Floati ng-po int R egister Set
128 97 96 64 63 32 31 0

XMMO
XMM1
XMM2
XMM3
XMM4
XMM5
XMM6
XMM7

11.3.2. SIMD Floating-point Control/Stat us Regist ers

Thecortrol/status register is sedto enalle maskeflinmasked numeicalexcepion handing, to
set rounding mades to set the flush-to-zero node,andto view gatusflags The cortents of this
regster can béoaded wih the LDMXCSR and FXRSTOR instructiors andstored in memoy
with the STMXCSR andFXSAVE instructions. Hgure 11-1 showsthe brmat aml encaing d
the fieldsin the MXCSR.
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3116 15 10 5 0
Rerved FIR|R|P|U|O|Z |D|I |[R|/P|U|O|Z |D]|I
Zz | C|[C/I M|MM(IM|M|M|s |E|E|E|E|E]|E
\'
d

Figure 11-1. Streaming SIMD Extensions Control/ Status Registe r Format

Bits 5-0 indcate whetler a Sreaning SIMD Extensios numerical excepion has beenelected
Theyare “sticky” flags, and can be clearely usingthe LDMXC SR instruction to write zeroes
to theseiklds. If a LDMX CSR instruction clears anak bit ard setshe corespomling excep
tion flag bit, an exeption will na be geneated because of thishange.This type of exception
will occur aly upon the rext Streanng SIMD Extensons instrucion to cawse t. Streanng
SIMD Extensions use onlyne excefion flag for eachexception There is no pvision for indi-
vidual exception reporting within a packed data type. In situations where multiple idertical
exceptims occur within thesame instructiorthe assciatedexceptiorflag is updatedand ind-
catesthatat leas one ofthese coditions hapened These flags are clearegipon rest.

Bits 12-7 configure numerical exeptionmasking an excepion type is nasked if the corre-
sponding bit is set anl it is unmasked if the bit is clear These lits are set pon reset, nearing
that all nunerical excefpions are nasked.

Bits 14-13 encale he rownding cortrol, which provides for the comnon raund to nearesmodk,
as wel asdireced ourding ard true chop (refer to Secion 11.3.2.1., “Roundng Control
Field”). The rownding control is set to roundto nearesupon rest.

Bit 15 (FZ) is wsed to turn on the flush-to-zeromode (refer to Sectiom 11.3.22., “Flushto-
Zero"). This hit is clearedupm reset disabing the flush-to-zeromode

The oher bis of MXCSR (bits 3116 and hi6) are defhedasresrvedand cleaed;attempting
to write a ron-zero value tothese lits, wusing either the FXRSTOR or LDMXC SR ingtructions,
will result in a general potection excepion.

11.3.2.1. ROUNDING CONTROL FIELD

The rounding contol (RC)field of MXCSR (bits13 and 14 controls how theresuts of floaing-
point instructionsare romded Four rounding modes are sppoited round to nearest rourd up
round cown, and purd toward zero(seeTable 11-2). Raundto neaestis the defalt rounding
mock andis suitable fo most apgicatiors. It providesthe nostaccurateandstatigically unh-
asedestmate ¢ thetrue result.
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Table 11-2. Roundin g Control Field (RC)

Rounding RC Field
Mode Setting Descri ption
Round to 00B Rounded result is the closest to the infinitely precise result. If two values
nearest (even) are equally close, the result is the even value (that is, the one with the
least-significant bit of zero).
Round down 01B Rounded result is closest to, but no greater than the infinitely precise
(toward —) result.
Round up 10B Rounded result is closest to, but no less than the infinitely precise result.
(toward +)
Round toward 11B Rounded result is closest to, but no greater in absolute value than the
zero (truncate) infinitely precise result.

Theround Y and rourd down madesare ermeddirectedroundng and carbeused b imple-
ment interval arithmetic. Interval arithnetic is tsedto deternine ugper ard lower bounds for the
true resut of a multistep conmputation, whenthe intermediate resuts of the canputation are
subjectto rounding.

The rownd towardzero mode (sometimes called the “chog maode) iscommaly usedwhen
performing integer arthmetic with the pracessr.

Wherever posdble, the procesa producesaninfinitely precise resut. However, it is oftenthe
casethat the infinitely preise resilt of an aiithmetic or store ogration canat be encoedd
exactly in the fomat of the destinatiooperard. For exarple, the followingvalue @) hasa 24
bit fraction. The leastsignificant bit of this fraction (the underlined bit) camot be encoded
exactlyin the sindge-real famat (whch has oty a 23-bit fraction):

(a) 1.0001 000010000011 10010111F, 101

To round this resut (a), the pocessr first selectdwo represertable fiacionsb and ¢ that most
closely lvacketa in value b<a<c).

(b) 1.0001 00010000011 1001011E, 101
(e) 1.0001 00001000 0011 1001 10CE, 101

The processr thensetsthe resilt to b or to € accoding to e rounrding mode slected inthe RC
field. Rounding introducesanerra in areallt that islessthan ae wit in the last place tavhich
the result is roinded

The ourded result ialled the ineact resit. Whenthe praesor poducesaninexact result,
the floating-paint precison (inexact) 1ag (PE)is set inMXCSR.

Whenthe irfinitely precise resli is betweenthe larged positiv e finite value allovedin apartic-
ular formatand+oo, the procesa rourdsthe resilt asshownin Table 11-3.
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Table 11-3. Rounding of Positive Numbers Greater than the
Maximum Positive Finite Value

Rounding Mode Result
Rounding to nearest (even) +00
Rounding down (toward —o) Maximum, positive finite value
Rounding up (toward +o) +00
Rounding toward zero (Truncate) Maximum, positive finite value

When tte infinitely precie result is betweenthe lagest regative finite value allovedin a partic-
ular formatand-co, the pocesa roundsthe resit asstownin Table 11-4.

Table 11-4. Roundin g of Ne gative Numbers Smaller than the
Maximu m Negativ e Finite Value

Rounding Mode Result
Rounding to nearest (even) -00
Rounding toward zero (Truncate) Maximum, negative finite value
Rounding up (toward +co) Maximum, negative finite value
Rounding down (toward —o) -00

The raundng modes hawe no effect on comparison operations, opetions that produce exact
resuts, or operatimsthat produce NaNrestts.

11.3.2.2. FLUSH-TO-ZERO

Turningonthe Hush-To-Zero made hasthe following effects whentiny resiltsoccur (i.e. when
the infinitely preci® resut roundedto the desination precison with an tnbounded exponent, is
smaller in ab®lute valie than the smallest rormal number thatcanbe represerd thisis sinilar
to the underflow cordition whenunderflow traps are umasked):

® Zero resits are returad with the sigh of the trie result
® Precison ard urderow excepion flags are set

The IEEE mandted maked reporse to uncerflow is to deliver the denormalized reslt (i.e.,
gradual urderflow); congquently, the flush-tozero male isnot compatible with IEEE Sardard
754 Itis provded pimarily for performance reasaAt the cost of a dight precison loss, faster
executim can be achievefr applicatiors where uderfiow is conman. Undeflow for flush-
to-zerois defnedto occurwhenthe exmnent for acomputedresult, pior to derormalization
scaling fall sin thederormalrange; this is egardess ofwhether alossof accuacyhasoccured
Unmaskingthe indefflow exceptiontakes prece@nce wer flush-tozero node; this means that
an exception hardler will be invoked for a Strearing SIMD Extensions instruction that gener-
ates an ndeflow cordition whie this excepion is unmasled, egardess of wheter flush-to-
zerois erabled.
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11.4. ENABLING ST REAMING SIMD EXTENSIONS SUPPORT

This sectiondescribes the interface ofhe Irtel Architectue Streamiy SMD Extensions with
the geratingsydem

11.4.1. Enabling Streaming SIMD Extensions Support

Certain steps must be taken inboththe apfication andthe OS o checkif the CPU supports
StreamingSIMD Extersions ard asociated amasked egeptions. This ectiondescribesthis
proces, which is condicted usng the bits descibedin Table 11-5 andTable 11-6.

If the OSwartsto use FXSAVE/FXRSTOR, it will first check CPUID.FXSRto determineif the
CPU supportsthese instructions. If the CPU does support FXSAVE/FXRSTOR, thenthe OScan
set CR4.OFXSR without fauting ard enatle cade fa context switching that uilizes
FXSAVE/FXRSTOR insteadof FSA/E/FRSTOR.

At this paint, if theOSalsosupports unmasked SIMD flo ating-point exceftions, it should check
CPUID.XMM to see if ths is a Strearmg SIMD Extensonsenabled proceser. If
CPUID.XMM is sgt, this verifies that the OS caset CR4.0SXMMEXC PT without faulti ng.

The pr@es by which an applicatiordetectsthe existence of eaming SMD Extensionsas
discussedin Secion 9.51., “Detecing Sippat for Streamng SMD Extendons Using the
CPUID Instruction” Chapter 9, Programmig with the Steaming SIMD Extensions, in the Intel
Architectue Softvare Developr's Manud, Volume 1. For additionalinformation ard exanples,
see AP-90, Idertifying Support for Steaming SMD Extensons in the Proces®r and Oper-
ating System.

Table 11-5. CPUID Bits for Strea ming SIMD Exte nsio ns Su pport

CPUID bit (EAX = 1) Meaning
FXSR If set, CPU supports FXSAVE/FXRSTOR. The OS can read this bit
(EDX bit24) to determine if it can use FXSAVE/FXRSTOR in place of
FSAVE/FRSTOR for context switches.
XMM If set, the Streaming SIMD Extensions set is supported by the
(EDX bit25) processor.

Table 11-6. CR4 Bits for Streaming SIMD Extensions Support

CR4 bit Meaning
OSFXSR Defaults to clear. If both the CPU and the OS support FXSAVE/FXRSTOR for
(bit9) use during context switches, then the OS will set this bit.
OSXMMEXCPT Defaults to clear. The OS will set this bit if it supports unmasked SIMD floating-
(bit10) point exceptions.

11.4.2. Device Not Available (DNA) Exceptions

Streaming SMD Extensions will catse a DM\ Exception (#\NM) if the proces®r attenpts to
execte a SIMD foating-pointinstruction while CRO.TS is set. ICPUID.XMM is clear, execu
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tionof any Streanng SIMD Extensionsinstruction will causean invalid opcode fault regardless
of the stite d CRO.TS.

11.4.3. FXSAVE/FXRSTOR as a Replacement for FSAVE/FRSTOR

The FXSAVE amd FXRSTOR instuctions are ddgned to be areplacement fo
FSAVE/FRSTOR, to be usedy the OS for comext switches Thes hawe beenoptimized tobe
faster than FSAVE/FRSTOR, while ill savng/redoring the adlitional SIMD floating-point
state. D meet this goalFXSAVE differs from FSAVE in that it ebesnot case anFINIT to be
performed, nor does FXSAVE initialize the SIMD floating-point regigersin ary way. While
FEXSAVE/FXRSTOR doessave/restore #x87-FP stat, FSAVE/FRSTOR doesnot affect the
SIMD floating-point state.This allows fa FXSAVE/FXRSTOR ard FSAVE/FRSTOR to be
nested. State saved wWiBKSAVE andredored with FRSTOR (andvice wersa) will result in
incorrect restoration of state in tle processr. FXSAVE will not sawe the SIMD floating-point
state (SIMD floaing-point registers and MXCSR regster) if the CR4.0OSEXSR bit is nat set

11.4.4. Numeric Error flag and IGNNE#

Streaming SMD Extensonsignae CRO.NE (reasit as f it were alvaysse) andthe IGNNE#
pin ard alwaysuse the vecbr 19 sdtware exeption for errorreporting.

11.5. SAVING AND RESTORING THE STREAMING SIMD
EXTENSIONS STATE

The ecommeded method of savng ard restoring the Steamng SIMD Extensonsdateis as
follows:

® Execue anFXSAVE instrucion to write the entire stateof the MMX™/FPU, the SIMD
fl oating-point regsters ard the SIMD floaingpoint MX CSR to memoy.

®* Execute an FRSTOR instruction to read the dire saved tate of theMMX™ /FPU, he
SIMDP floating-point regsters andthe SMD floating-point MXCSR from memory into
the FPU reipters andhe aliasd MMX™ registers.

This save ath restore methal is requiredfor operatingsysens (see Secton 10.6., “Designing
Operatirg System Task ard Context Switching Facilities”).

Applicaionscan n sane cass swve am resore aly the SMD floaing-point registers, in the
following way:

®* Execue eiht MOVAPS instructons to write the conerts o the SIMD floating-point
regstersXMMO through XMM7 to menory. Exectie aSTMXCSRinstruction to swve the
MXCSR register to memory.

®* Execueeight MOVAPSInstructionsto readthe saed conterts of the SIMD floating-point
regsters fom menory into the XMMO through XMM?7 registers. Execute a DMXCSR
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instrucfon to read tk saved contents of the MXCSR regster from memory into the
MXCSR registe.

11.6. DESIGNING OPERATING SYSTEM TASK AND CONTEXT
SWITCHING FACILITIES

When svitching from ore task or cotext to arother it is often necesary to sve the SIMD
floating-paint stak (just as it isoftennecesary to save the state othe FPU). As meionedin
the prevous chapter the MMX™ date isaliased onthe FRJ state. The 8MID floating-point
registersin the Rentium® Il procesa introdwce anew date. When desgning new 3SMD
floating-point statesaving facilities for an operatirg system, several aproachesare awailade:

®* The operating system can requre that applications (which will be run as tasks) tale
responsibility for saving the SIMD floating-point state pior to a tasksuspersion during a
task switch and for regoring the SIMD floating-point state when the task is resumed. The
application can e either 6 the gate swving ard resbring techiques given in Secion
10.5., “Saving and Restoring the Streaning SIMD Extensbns sate”. This appoachto
savng the SIMD foating-paint state isapgopriate for cogerative multitaskng operating
systems where he application has contloover (a is able b determine) when a task
switch isabout to occur andcan swve sate prig to the taskswitch

®* The operatirg system can take the responsibility for auomatically saving the SIMD
floating-point stateas part of the task switch proces (using an FXSAVE instruction) and
auomatically regoring the SIMDfloatingpoint sate whena supended task is resuned
(using an FXRSTOR instruction). Here, the SMD floating-point state mt be saveds
part of the task stae. This approachis appropriate for preenptive multitasking operating
systemswhete the application canno know when itis going to be preeipted and carot
prepae in adiance br task switching. Theopeiting system is respaible for saving ard
restoring the task andSIMD floaing-point state whennecesary.

®* The geratirg system can talke the respnsibility for saving the SIMD floating-point gate
aspart of the task switch process but delay the saung of the SMD floaing-{oint state
until a Strearing SIMD Extensonsinstruction is actwaly executedby the newtask Using
this approach the SMD floating-point stae issawed only if a Streaning SIMD Extersions
instruction needs to b exected in the new task.feeSection10.6.1, “Usingthe TS Flag
in Control Regster CRO to Control SIMD FloaingPant State Saving”, for maore
information on this SIMD floating-point state saing techique.)

11.6.1. Usingthe TS Flag in Control R egister CRO to Co ntrol SI MD
Floating-Point S tate Saving

Saving the SIMD floaing-paint sate usng the FXSAVE instruction is not as high-overhead
operation asFSAVE. Howewer an opeating system maychoose to vait to save the SIMD

floating-point state toawoid this overhead If a tak being switchedto will not accesshe SIMD
floating-point regsters(by execting a Strearimg SMD Extersions instruction), this overhead
canbe avadedby not auomaicaly savingthe SMD floaing-paint sate on atak switch.
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The TSflagin control register CRO is provided to allow the gperating systemto delay saving

the IMD floating-point stateuntil the SIMD floating-pointregigers are actally accesedin the

new task Whenthis flag is set, the pres®r monitors tte instruction streamfor Streaning

SIMD Extensbns instructions. When the praesor dtects aStreaming SIMD Extensbns
instruction, it raises adevice-nd-avaiable excefion (#NM) prior to execting the instruction.

The deveenot-available excepion hamller can hen be ued tosave the SMD floaing-point

state br the pevioustak (usinganFXSAVE instructior) and load thke SIMD floating-point state
for the curent tak (using an FXRSTOR instructior). If the task rever ercourters a Streaming
SIMD Extendons instruction, the device-nd-availade excepion will not be raised and the

SIMD floating-point state will not be saved unnecesarily.

The TS flagcanbe set eiher explicitly (by execuing aMOV instruction to cortrol register CRD)
or implicitly (usng the processo's native task switching mechaism). When the retive tak
switching mecharsm is used, therpcessr autanaticadly setsthe TSflag on a task swvich.
After the devce-nd-available landlerhas savetheSIMD floating-point state,it shoud execute
the A_TS instruction toclearthe TS fagin CRO.

Figure 102 givesan exampk of an opratng g/stemthatimplemens SIMD floaing-point state
saving using the T3ag. In this exampe, task Ais the curently runningtask andask Bis the
tak being switched to.

IMD floating-point @

Application State Owner

Operating Sy stem ’
CRO0.TS=1 and

Task A extensions TaskB
SIMD floating-point instruction SIMD floating-point
State Save Area is encountered. State Save Area
k Operating System /
Saves Task A Task Switching Code

: _ Loads Task B
SIMD floating-point State SIMD floating-point State
\

Device-Not-Available c
Exception Handler

Figure 11-2. Example of SIMD Floating-Point State Saving During an Operating System-
Controlled Task Switch

The @eratingsysem maintains a SIMDIbatingpoint save area ér each task ad defnes a
varialie (SIMD-fpStateOwner}that indcateswhich task “ovns’ the SIMD floating-point state.
In this example task A is thecurren SIMD floating-point state avner.

On a tak switch, the gperating systemtask switching code must eectte the following pseudb-
code to sethe TSflagaccading to the currert SIMD floatingpoint sate ownerlf the new tals
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(task Bin this exanple) isnot the curent SIMD floatingpoint state ownerthe TS flag iset to
1; otherwise, it is set toO.

IF Task_Being_Switched_To # SIMD-fpStateOwner
THEN
CRO.TS « 1;
ELSE
CRO.TS « 0;
Fl;

If a new taskattenpts to use a Sreaning SIMD Extensonsinstruction while the TS flagis set
to 1, a device-ot-available exception (f7AM) is generatedand the device-rot-available excep
tionhander exectes the following pseud-code.

CRO.TS « 0;

FXSAVE “To SIMD floating-point State Save Area for Current SIMD Floating-point State
Owner”;

FXRSTOR “SIMD floating-point State From Current Task’s SIMD Floating-point State Save
Area”;

SIMF-fpStateOwner « Current_Task;
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This hardler code peformsthe fdlowing tasks:
® C(Cleasthe TS flag.

® Saves lte SIMD floating-point gtate in the &te swve area forthe curert SIMD floating
point state owrer.

®* Restores he SIMD floating-point sate fran the new &sk’s SIMD floaingoint Sate sae
area.

¢ Updates the curert SIMD floating-point stateowner to be the curert task

11.7. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
STREAMING SIMD EXTENSIONS INSTRUCTIONS

Streamng SIMD Extensonscangeneate two kinds of excepions:
®* Non-numeric exeptions
®* Numeic excepions

Streaming SIMDExtensionscan geneste the samdype of memoy accessexcepions as he
Intel Architecturanstructions @. Some examples ag: page faut, segmenhnat presert, andlimit
violations. Existing exceptionhanders can fande these typesfoexceptions withat any code
modification. The SIMD flceting-point PREFETCHinstruction hintswill not generate ap kind
of exceptionandinsteadwill be igrored

Streamhg SIMD Extersions cangererate the ssme $x numeric exceptonsthat x87-FP instruc-
tions cangenerate. AllStreamiig SMD Extersions numeric excepions are reprtedindepen
denty of x87-FP nuneric excepions. Independcentmaking and unmasing of Sreamhg SMD
Extersions numeric excegions is achiewved by settirg/resettig specific bits in the MXCSR
regiger.

The applicatiormust ensure thathe OScan supprt unmakedSIMD floating-point exceptions
before unmasking them Fa more detais, €fer to Sectiom 9.5.1., “Detectirg Support for
Streamng SIMD Extensons Using the CPUID Instruction” Chapter 9 Programming vith the
Streaming SIMD Extensons in the Intel Architectue ®ftware Develper's Manual, \blume 1
and AR9QO, Identifying Sipport for Streaming SIMD Extendons in the Piocesa and Oper-
ating Sytem. If an appicaton unmasks egeptionsusng either FXRSTOR or LDMXCSR
without the reqiired OS support being enaked, then aninvalid opcode &ult, insteadof a SMD
floating-point excepion, will be generatedbn the first fauting SIMD floating-point instruction.
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11.7.1. SIMD Floating-point Non-N umeric Except ions

* Exceptiors during memaoy acceses

— Invalid opcode §UD).
— Stackexceptim (#SS).

— Gereral potection(#GP).

— Page faut (#PP).

— Alignment cleck ¢AC), if alignment cteckingis erabled.

® System egeptions:

— Invalid Opcade (#UD), if the EMflag in control register CRO is st, the CPUID.XMM
bit is not set, or the CR4.OSFXSR* hit is not set, wiena Strearing SIMD Exensions
instruction isexected (see %ction10.1., “Emulation of the 8eaming SMD Exten-

sions”).

— Device ot available (#NM), if a Streaning SIMD Extersions instructionis exected
whenthe TSflag in contrd registerCRO is set. $ee Section 10.6.1., “Using the TS
Flagin Control Regster CRO to Control SIMD Floating-Point State Saving'.)

® Otherexcepions can acurindirectly due tothe faulty executionof the excetion handlers
for the above exception. For example, if a dacksegment fault (#SS) occus due to
Streaning SIMD Extersions instructions, the interrupt gate for the stacksegnent fault can
direct the pocessr to invalid TSS, causig an nvalid TSS excepion (#TS) to be

generated.

Table 11-7 lists the cawsesfor Interrupt 6 ard Interrupt 7 with Streaning SMD Extensons.

Table 11-7. Streaming SIMD Extensions Faults

CRO.EM CR4.0SFXSR CPUID.XMM CRO.TS EXCEPTION
1 - #UD Interrupt 6
0 - #UD Interrupt 6
- 0 #UD Interrupt 6
0 1 1 1 #NM Interrupt 7
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11.7.2. SIMD Floating-point Numeri ¢ Exceptions

Thereare sk clases onumeic exceptim corditions that caroccurwhile execting Streaming
SIMD Extensons:

® Invalid operatian (#)

® Divideby-zero §¢2)

®* Denamal qerard (#D)

® Numeic owerflow #O)

®* Numeic underflow (#U)

® Inexact resdlt (Precidon) (#P)

Invalid, Divide-by-zero and Bnormal exceptimsarepre-conputationexcepions,i.e., they are
detected bef@ anyarithnmetic opestion occurs.Underflow, Overflow and Pecison excepions
are @st-computation exceptiors.

Whennumeric excefions occuya pocessr supporting Strearming SIMD Extersions takes or
of two possile courses of action:

®* The pracesor carhardle the excption by itself, producing the mat reasonable result and
allowing numeric program executionto continue undisturked (i.e., maked exception
response)

® A sdtware excepbn hander can be rivoked to handle the excepion (i.e, unmaged
exceftion response).

Eachof the 9x excepion corditions desribed alove hes caregponding flag and mask hits in
the MXCSR. If an exceptio is masked(the corregpondng mask bit in MXGR = 1), the
procesortakes an ggropriate deéult actionand catinues with the compitation. If the excep
tion is unmasked (mask bit =0) andthe OSsuports SIMD floating-point excepions (i.e.
CR4.OSXMM EXCPT = 1), a oftware exepton hander is invoked immediately through
SIMD floating-point exceptioninterrupt vector19.If the exeptionis unmasked (nask kit = 0)
andthe OSdoesnot suypport SIMD fl oating-point excepions (i.e. CRA.OSXMM EXCPT = 0),
an invalid opcode exceptim is sgnaled insteadfoa SIMD foatingpoint exception

Note that lecause BMD floating{point exceptioms are pecise anl ocar immediately, the stu-
ation daesnot ariee whee an xg-FP hstruction, anFWAIT instruction or arother Streaming
SIMD Extersions instrucion will catcha pemling unmasked SIMD floating-point excegion.

11.7.2.1. EXCEPTION PRIORITY

The procesor handes exceptios accordng to a pedeternmed prece@nce. When a sub
operand of a paclkd instrucion generatestwo or more exceptian corditions the exepion
prece@nce smetimesresultsin the highe-priority exceptionbeing handed ard the bwer
priority excepions being ignaed. Far exanple, dviding an SNaN by zeo coud pdentially
signal aninvalid-arithmetic-gerard exception(dueto the SNaN oprand ard a divide-by-zero
exceptim. Hee, if both exceptios are maskedheprocesorhardlesthe higher-priority excep
tion only (the invalid-arithmetic-operand excepion), retuning the quiet version of the SNaN o
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the desination. The priaitization policy alsoapplies for umasked exeptons; if both invalid
and dvide-by-zero are umasked fa the prevous exanple, ally the invalid flag will be set.
Prioritizaion d excepionsis perfbormedornly on an ndividual sub-operandbass, and rot
betweensiboperands; for exanple, aninvalid excepion generated by one sub-operandwill not
preventthe repating of adivide-by-zero exepion geneated by andher sib-operand

Theprece@nce fo SIMD floating-point numeiic exceptios is as folows:
1. Invalid operaion excepion due o NaN opeands(refer b Table 11-8).

2. QNaN opeand. Thowgh tis is na an excepton, the handing of a QNaN opeand has
precedene overlowerpriority exaeptions. For eample, a QNaN dided by zero esults
in aQNaN, not azerodivide exception

3. Any other invalid operation exception not mentioned above or a divide-by-zero exception
(refer © Table 11-8).

4. Derormal operard excepion. If maked, theninstuction execution continues, ard a
lower-priority excepion canoccu as wel.

5. Numeric oveflow and uncerflow exaeptions posibly in corjuncion with the inexact
result exception

6. Inexact esult exception

11.7.2.2.  AUTOMATIC MASKED EXCEPTION HANDLING

If the processor éects an excdjon cordition for a masked eoeption én excepion with its

mask bit sét it delivers a predfined (defaut) respose andcortinuesexecutinginstructions.
The nesked (cefault) lesponses @ excepions havebeen chsen to dliver a reasoable result
for eachexcepion condtion ard ae germrally satisfactory for most application coce. By

making or unmaking speific floaing-point exceptonsin the MXCSR, progranmers can
delegat resnsibility for most excegions to the pracesso and reserve the nost seere excep-
tion condtions for sdtware excption handers.

Becawsethe excetionflags are “sticky they provide a cunulative recad of the excefions that
hawe occured shce they were lastleared A progamner can thus mask adixceptiors, run a
calculation,andtheninspect tle excefion flags to see iiny excepions weredetected dring
the calcletion.

Note thatwhenexcepgionsare masked the pocessr may detect multiple exceptiansin a sihgle
instruction becase:

® |t continuesexecuting the instiction after peiorming its maged respose; for exanple,
the processor coud detecta demrmalized operand perform its maskedespamse to this
exception,andthen atect an ndeflow

®* Exceptiors may occur naturallyin pdrs, such as nmeric wnderflow and inexact result
(precisn)

® Packednstructiors canprodiwce indegndent excepions foreach pir of operandg.
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Updatng of excepion flags is generaed by a logicatOR of excepton corditionsfor all sub-
opeiand canpuatiors, where the ORis done ingperdently for each type of excepion; for
packedcompuations thismeans 4uboperand andfor scalar compuatiors this means 1sub
opeind (the bweg ore).

11.7.2.3. SOFTWARE EXCEPTION HANDLING - UNMASKED EXCEPTIONS

An application must esure thatthe geratirg system suports unmasked exceptionsbefae
unmasking any ofthe excepionsin theMXCSR (refer to ®ction9.5.1., “DetectingSupport for
Streamng SIMD Extensons Using the CPUID Instruction” Chapter 9 Programming vith the
Streaming SIMD Extensons Volume 1 o theProgrammers Reference Manual).

If the pracessr detectsa cordition for anunmasked SIMD floating-point application excegtion,
a sofware handleris invokedimmediatelyat the erd of the exceping instruction The hander
isinvoked troughthe SMD floaing-point excepton interrupt (vecor 19), irrepecive of the
state of he CRO.NE flag. If anexcepton is unmasled, bu SIMD floaing-point unmaged
exceptims are rot enalbed CR4AOSXMMEXCPT = 0), aninvalid gocode fadt is generated
However, the corresmpnding exception bit will st ill be set in the MXCSR, asit would be if
CR4.0SXMM EXCPT =1, sincethe invalid opcodehander or the uer needsto determine the
cause othe exeption.

A typical actio of the excepion handeer is tostae x87-FP andSIMD floating-point state infa-
mation in memory (with the FXSAVE/FXRSTOR instructions) so that it can evaluae the exep-
tion andformulate an apmprate response. Oher typical excegion hardler actiors can inclue:

® Examine $ored x&-FP and SMD floating-point gate infamation (control/status) b
detemine the nature of the error

® Taking actionto corect the cadition that cased the eror.

® Clearthe excepon bits in the 87-FP $atus word (FSW) or the SIMD floatingpoint
cortrol register (MXCSR)

® Returnto the interrupted program andresimenormal execuion.

In lieu o writing recovery procedires, the eseption tandler cando e or nore of the
following:

®* Incremenin software arexcepion counterfor later display @ printing.
® Print or display diagrostic information (suchasthe SMD fl oating-point register state).
® Halt further pogram execution

When anunmasked exceion occus, the processr will not alter the cantentsof the saurce
register opeandsprior to invoking the unmaked hander. Similarly, the integer ERLAGS will
aln na be modified if an tnmaskedexcepion occus while exectding the COMISS a
UCOMISS indructions. Exeptionflags will be uplatedaccordng tothe fdl owing rules

® Updating of excepion flags is gererated ly a logcalFOR of excepion corditions for all
subopeand conputatiors, whee the OR is dore indepemently for each type D
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exception; fao pacled conputatiors this means 4 subpelnds andor scalar comptations
this mears 1sub-opernd the bwed ore).

In the cae of only masked excepton corditions all flags will be updated,

In the caseof an utmaked precompuaton type d exaption condtion (eg., denamal
input), all flags relating to all pre-computation conditions (masked or unmasked) will be
updakd, andno sibsequentcampufation is performed {.e., nopog-conputation condtion
can acur if there isan unmasked pre-computation cordition).

In the cag o anunmasked post-computation excegion condition, all flags relating to all
post-computation corditions (masked or unmasked) will be updated; all pre-conputation
conditions, which must be masked-only will alsobe repaoted

11.7.2.4. INTERACTION WITH X87 NUMERIC EXCEPTIONS

The Streaning SMD Extersionscontol/statusregister wasserated from its x87-FP courter-
parts toallow for maximum flexibility . Consequently, the Strearing SIMD Extensonsarchitec-
ture is independen of the x87-FP architecure, hut hasthe following implicatons for x87+P
apgicatiors that call Sreaming SIMD Ktensions-eabled libraries

The x87-+P rounding modespecified in FGV will nat apply to cals in a StreamingsIMD
Extersions library (unlessthe rownding control in MXCSR is exlicitly set tothe sane
mode).

x87-FP excepton observablity may rot aply to a Sreamhg SIMD Extensonslibrary.

* An application that epectsto catch xg-FP exceptins that occurin an »87+P
library will not be natified if an excepton occusin a Sreaning SIMD Extensions
library, urlessthe excepion masks enabledin FCW have als beenerabled in
MXCSR.

* An application will not be able tounmask excegtions after returring from a
StreamingSIMD Extensions ibrary callto detect if an erroroccured. A SIMD
floating-paint exceptionflag hatis akeady setvhen the comgpondng excepion
is unmasked will not generate adult; only the next occurence of that exepton
will geneate anunmasked faut.

* An appication which clecks FBW to determir if any maskedexcepion flags
were &t during anx87-FP library call will also needto check MXCSR in order to
observe asimilar occurrerte d a maskedexceptionwithin a StreamingSIMD
Extensonslibrary.

11.7.3. SIMD Floating-point Numeric Exception Conditions and

Masked/ Unmasked Responses

The following sectons describe the various corditions that case a $MD floating-point
numeric exceptionto begeneated aml the maskedesponse & the piocessr whenthes cordi-
tions aredetected.
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11.7.3.1. INVALID OP ERATION EXCEPTION(#IA)

The invalid operation excepion occursin regonse to aninvalid arithmetic operand, or to an
invalid combiration of operand.

If the invalid gerationexception ismasked the preesor setsthe IE flag in MXCSR and
returrs the sngle-precisionQNaNindefinite value or artber QNaN value (érived fran aNaN
inpu opeland) to the desination opeiand. This value overwrites the desination register speck
fied by the instruction.

If the invalid operationexceptim is nd maskedthe pocessosets the E flagin MXCSR and
an exceptio hander is invoked (®e Sectn 11.7.23., “Software Exeption Hanting -
UnmaskedExcepions”) andthe gerards remairuncranged

The pocessor cardetect a ariety of invalid arithmetic operations that cate caed ina
program Theseopemtions generaly indicae a piogramming error, such asdividing « by co.
Table 11-8 liststhe IMD floaing-pointinvalid arthmetc opestionsthat the procesor deecs.
This group includestheinvalid operatiors definedin IEEE Std. 84.

The flag (IE) for this exceptionis bit 0 of MXCSR, andthe mask hit (IM) is hit 7 of MXCSR.
The invalid operationexcepion is not afected by the flush-to-zeo made.
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Table 11-8. Invalid Arith metic Operations and the Masked Responses to Them

Condition Masked Response
ADDPS/ADDSS/DIVPS/DIVSS/ Return the Signaling NaN converted to a quiet
MULPS/MULSS/SUBPS/SUBSS with a SNaN NaN; Refer to Table 7-18, in Chapter 7,
operand. Floating-Point Unit, for more details; set #IA
flag.

CMPPS/CMPSS with QNaN/SNaN operands Return a mask of all 0’s for predicates "eq", "It",

(QNaN applies only for predicates "It", "le", "nlt", "le", and "ord", and a mask of all 1's for

"nle") predicates "neq", "nlt", "nle", and "unord"; set
#IA flag.

COMISS with QNaN/SNaN operand(s). Set EFLAGS values to 'not comparable’; set
#IA flag.

UCOMISS with SNaN operand(s). Set EFLAGS values to 'not comparable’; set
#IA flag.

SQRTPS/SQRTSS with SNaN operand(s). Return the SNan converted to a QNaN; set #IA
flag;

Addition of opposite signed infinities or Return the QNaN Indefinite; set #IA flag.

subtraction of like-signed infinities.

Multiplication of infinity by zero. Return the QNaN Indefinite; set #IA flag.

Divide of (0/0) or( o0 / o) Return the QNaN Indefinite; set #IA flag.

SQRTPS/SQRTSS of negative operands (except Return the QNaN Indefinite; set #IA flag.

negative zero).

Conversion to integer when the source register is Return the Integer Indefinite; set #IA flag.

a NaN, Infinity or exceeds the representable

range.

NOTE:

RCPPS/RCPSS/RSQRTPS/RSQRTSS with QNaN/SNaN operand(s) do not raise an invalid exception.
They return either the SNaN operand converted to QNaN, or the original QNaN operand.
RSQRTPS/RSQRTSS with negative operands (but not for negative zero) do not raise an invalid excep-
tion, and return QNaN Indefinite.

11.7.3.2. DIVISION-BY-ZERO EXCEPTION (#2)

The pocessr reports adivide-by-zeo excepion when&er an instrutton atempts to divide a
finite non-zero gerard by 0. Thisis possible with DIVPS, DIVSS.

The meskedrespnse fa DIVPS, DIVSSis toset he ZE flagin MXCSRard retun aninfinity
signed with the exclusive R of the $gns of the ogerand. If the divide-by-zero exceptionis not
maskedtheZE flagis set, a softwareexceftion handlerisinvoked(see Sectin 11.7.2.3., “Soft-
ware Excefion Handing - Unmasked Eseptiors’) and the surce ogrand remain unchanged

Note thet the respnse for RPPS, RSQRTPS RCPSS anl RRTSS is toreturn aninfinity of
thesame signastheopeiand. Thes instructiors do not set any exceptionflags andthus ae rot
affected ly the exceptia masks.

Theflag (ZE) for the divide-by-zero exceppion ishit 2 of MXC SR, and the mask bit (ZM) is bit
9 of MXCSR.

Thedivide-by-zero exeptionis not affectedby the flushto-zeromoce.
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11.7.3.3. DENORMAL OPERAND EXCEPTION (#D)

The pocessr signalsthe denomal operandexceptionif an arithnetic instruction attemptsd
opewrte ona demrmal operard.

Whena cenormal qoerard exceptionoccuis andthe exeptionis masked,the processr setsthe
DE flag in MXCSR, thenproceed with the nstruction. Opeating ondenomal numigrs will
produce esults at leasas god as, anaftenbetter thapwhat can b obtainedwhen énomal
numbers ae flushedto zero.Programmers camaskthis exceptionsothat a canpuation may
proceed, tlen arlyze anylossof accuacywhen tte final result is deliveed.

Whenadenomal operard exceptioroccurs and the excépn is nat maskedthe processr sets
the DEbit in MX CSR ard a softwareexceptiorhardler isinvoked GeeSection 11.7.2.3, “Soft-
ware Excepion Handing - Unmasked Exceptions”). he urce gerards remain ochanged
When denomal operand haveredicedsignificancedueto loss of low-order bits, it may be
advisable to not opesite on them. Precluding denomal operards from computations can be
accompti shedby anexcepion hander that espondsto unmaskedderormal opeiand excepions.

Note that the respnse for RCPPS, R®RTPS RCPSS anl RSQRTSS isto returnaninfinity of
thesame signas tle gperard. These instructions do not set any exceptionflags andthus ae rot
affected ly the exceptionmasks.

Conversion ingtructions (CVTPI2PS CVTP2PI, CVTTPS2PI, WTSI2SS CVTS=SI,
CVTTSSZI) do nat signal denormal exceptions.

The flag(DE) for this exceptonis bit 1 of MXCSR, ard themask bit (DM) is bit 8 of MXCSR.
The dcenomal operandexcepion is nd affected bythe fush-to-zero node.

11.7.3.4. NUMERIC OVERFLOW EXCEPTION (#O)

The pra@esor repotrts a floating-point nuneric overflow exception wheever the resulof an
instruction roundedto the destination precison with unbaunded eyonent exeeds the lgest
allowale finite value thatwill fit into the destination operand This is passble with ADDPS,
ADDSS, SUBPS, SUBSS,MULPS, MULSS DIVPS, DIVSS.

Whenanumeric owerflow excepion occus andthe exception ismaskedthe processor as te
MXCSR.OE andVIX CSR.PE flags and retas one ofhe valuesshawn in Table 11-9 accading
to the curentroundingmode & the pracessr (see Setion 11.3.2.1., “Rourding Control Field”).

Whena rumelic overflow exceptionoccusandthe exeptionis unmaskedtheopeands ae left
unalteredand a software eeption landler is nvoked (see Seitin 11.7.23., " Software Excep
tion Handling- Unmasked Exceptiors’). The MXCSR.OE flag is set; the MXCSR.PE flagis
only set ifaloss of accuracyhas occuredin addtion to overflow when rourding the resultto
the destination precsion, with urboundedexponert.

The 1ag (OE)for the numeric oerflow exceptionis bit 3 of MXCSR, ard the nask bit (OM) is
bit 10 of MXCSR.

The rumeiic overflow exaeption is na affected ly theflush-tozeromode.
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Note that the overflow statusflagis nat set by RCPPSRCPSS since these nstructions are
conbinatoiial and ae nd affecied by excepion masks.

Table 11-9. Masked Responses to Numeric Overflow

Round ing Mode Sign of True Result Result
To nearest + +00
_ —o0
Toward —oo + Largest finite positive number
— —o0
Toward +oo + +00

- Largest finite negative number

Toward zero + Largest finite positive number

- Largest finite negative number

11.7.3.5. NUMERIC UNDERFLOW EXCEPTION (#U)

Theprocesormight report a floatingpoint numeric urderfiow excepion whereverthe raunced
resut of anarithmetic instruction is tiny; thatis, the resit rounded to the destination precison
with unbounded exponert is lessthanthe amallestpassble normalized finite value that will fit
into the destination @yand The Underflow exceptioncanoccur in the executioaf the instruc-
tions ADDPS, ADDSS SUBPS, SUBSS, MULPS, MULSSDIVPS andDIVSS.

Two related everis contribute to underflow:

® Creationof a tiny reault which, because it is so small, m&@ause somether excepion
later (such asoverflow upan division).

®* Creatim of aninexact reslt; i.e. the delveredresut differs fom what wauld hawe been
compuedwere loth the exnert andprecsion unbaunded.

Which of these evets triggersthe underflow excepton depends on wheter the indeiflow
exception is masked:

® Underflow exceptios mased. The urderfiow excepion is sgnaled wten the esult is bath
tiny andinexact.

* Underflow exceptiors nat masked: The uderfiow exceptionis signaled wherthe result$
tiny, regardless of inexactnes.

Theregonse to an indeflow exception also eperds onwhether tle excefion is masked:

®* Maskedresponse: The result is narmal, demrmal or zer. The pecision exception isalso
triggered The OE andPE flags are set in MXGR.

® Unmasked esponse: ThaJE flagis set inMX CSR. If the orignal conputationgeneated
an imprecise nantissa, tte inexact (#) statusflag FE will alsobeset inthe MXCSR. In
eitherca® (et impreciseor nat), the indeflow (#U) status flag is &, the gerards are
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left undtered, and a software excdin hardler is invoked (see Section 1.72.3,
“SoftwareExceptionHanding - UnmaskedExceptiors”).

If underflow is masked ard flush-to-zero node is erabled an wnderflow cordition will set the

uncerflow (#U) andinexact (#) status flags B and PE in MXCSR ard a corectly signed zero
resut will be retuned this will avoid the performanceperelty assaiatedwith generatirg a
denamalizedresut. If undeflow is unmasked, the flush-to-zeromodeis ignoredandan wnder

flow cordition will be handled as ascribed above.

Note hat the underflow status flag is not set by RCPPIRCPSS since thesénstructions are
comhbnatorial aml arenot afectedby exceptim masks.

The flag(UE) for the numeric urderfow exceptim is bit 4 of MXCSR and the nask bit (UM)
is bit 11 of MXCSR.

11.7.3.6. INEXACT RESULT (PRECISION) EXCEPTION (#P)

The irexact result exceijon (also called the gecison exaeption) occusif the result banoper

ation is nd exactly epresentable ithe datinationformat. For @ample the fracion 1/3canrot

be precisely remserted in binaryform. This exception occus frequently and indcates that
some fromally accepable)accuracyhas beenlost. The exceptionis supprtedfor applications

that reed topeform exactarithmetic mly. Because theoundedresult is gnerally satisfactory
for most appicatiors, this exceptionis commaly masked.

If the inexactresult excefion is maskedvhenan inexact result codition occus and anunmeric
overflow or underflow cordition has ot occurred, tie processr sets the inexact (#P) stausflag
(PE flag) and doresthe raunded esut in the dedination opeand. The current rournding mock
determines he mehod used b roundthe resut (refer b Setion 11.3.2.1., “Rourding Control
Field").

If the inexact result exceptias na maked wheran inexactresult occurs anchumeiic overflow
or uncerflow hasna occured, the operandsare left unaltered,the PEflag s set in MX CSR, the
inexact ¢P) satusflag isset, ard a sofware excepion hardler is invoked(see $ction 11.7.2.3,,
“Software ExeptionHandling- Unmaked Exeptions”).

If an inexactresult occus in conjundion with numeric overflow or uncerflow, one of the
following operatonsis carried out

* If an inexact result ocas along with masked werflow or underflow, the OE o UE flag
andthe PE flag e st in MXCSR andthe result istered as describefibr the owerflow or
underfiow exceptions (seeSection 11.7.34. “Numeric Oveflow Exception (#O)'. or
Sectbn 11.7.35., “Numeric Underfow Exception(#U)"). If theinexactreallt exception is
unmaskedthe pocessr also invokes thesoftware exceppion handler.

* If aninexactresut occus along with unmaskedoverflow or urderflow, the OEor UE flag
andthe PE fagare set anthe sofware excepion handleris invoked

Note that the inexact esult flagis not set ly RCPPS, RRTPS RCPSS ad RSQRTSS, sice
these insuctions arecombnatorial aml arenot afectedby the excepon masks.

The inexact result excejon flag (PE) is bit 5 of MXCSR, ard the mask ib (PM) is hit 12 of
MXCSR.
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In flush-tozeromock, the irexact result excéjon is remrtedalong with the underfow excep
tion (the latter nust be nasked).

11.7.4. Effect of Streaming SIMD Extensi ons Instructions on
Pending Floating-Point E xceptions

Unlike MMX™ instructions which will generate a foating-point error (#MF) prior to execuing
the MMX™ instriction, exection of a Sreaming SIMD Exensions instruction does not
generate dloating-point error ¢MF) prior to execting the instruction. Hence tky will not
catchpending x87 floating-point excepions In addtion, theywill not caise as®rtion of FERR#
(indeperdent d the \elue d CRO.NE) andtheyignore the asation/deassertion of IGNNE#

11.8. DEBUGGING

The delng facilities of the Intel Architecture opete in the samemamer when exeding
StreamingSIMD Extersions as when escuting ther Intel Architectue instructions. These
facilities enale debuggers todehug code dilizi ng thes ingructions.

To correctly interpret the catents 6 the Pentiurfi lll procesa registers from the FXSAVE
image in memory, adelugger needsto take accaunt of the relationship betweenthe floating-
point regster's logical locations elative to TOS andthe MM X™ regster's physicallocations
(refer to Section10.6., “Debuggng”, Chapter10, MMX™ Techology Sys¢m Pogrammng).
In addition it need © have kiowledge ofthe SMD floating-point registersandthe state sve
data aea used pthe FXSAVE instruction.

Compaisons d the Steamng SMD Extensonsandx87 results can be pdormed within the
Pertium® Il processr at the interal single precision fomat and/o externallyat the memar
single precisian format. The nterral format canparison is requred to allow the partitoning of
the dita gace to educetest time.
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CHAPTER 12
SYSTEM MANAGEMENT MODE (SMM)

This chapter descrigs the Irtel Architectue’s SysemManagememn Mode (SMM) architecte.
SMM was irtroduced irto the Intel Architecture in the Intel386™ SL processr (a nobile
specializedversion of the Intel386™ processor)lt is also availablein the Inteld86™ processors
(begiming with the Intel486™ SL and Intek86™ entancedversons) ard in the IntelPertium®
and P6 family proessors. For adetailed degiption of the hardware thasupports SMM, refer
to thedevelomr’s manals for eachof the Intel Architecture pocessors.

12.1. SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-prpose operatingmoce provided fa hardling system-wide foctions |ke
powermanagerent, systemhardvare contol, or proprietary OEM-designed cale. Itisintended
for use mly by system irmware, no by apgicationssoftware or gereral-purpose systemsott-
ware. The main befit of SMM is that itoffers a disinct and eady isolated processor envron-
ment that opetestranspagently to the opeting system orexecutive angoftware applications.

WhenSMM isinvoked troughasystem managmentinterrupt (SMI), the procesor savesthe
current stag of the piocessr (the processr’s context), thenswitches toa separate perating
environmern containedin system managenent RAM (SMRAM). While in SMM, the piocesor
execues SMI hander code b peform opegetions suchas peveringdown urused dsk drives @
moritors, execting proprietary code, or placing tle whole system in a suspeddstae. When
the SMI handler hascompleted is qeratians, it execues a resume (RSM) instruction. This
instruction cawes the preessorto reload the savedontext ofthe processor, switch backto
protecied or real mod, ard resumeexecutingthe interuptedappication or opegting-system
programor tak.

The fdlowing SMM mechaisms make it transpant to apficatiors programs and perating
systems:

® The only way b ener SMM is by meansof an 1.

® The piocessr executesSMM codein a separate adress spaceSMRAM) that can ke
mack inaccesible from the dher operatingmodcks.

® Upon ertering SMM, the praesor savesthe conext of the interuptedprogram or task.

¢ All interrupts normally hardled by the operting sysem are dsabied upon enty into
SMM.

® The RSM instructioncan e exectied orly in SMM.

SMM is similar to real-addessmode in that there are o privilege levels or addessmapping.
An SMM program caraddressupto 4 GBytesof memay and can executel&O andapplicable
system instructions. Refer toSection 12.5., “SMI Hardler Execuion Environment” for more
informationabou the SMM exection ervironment.
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NOTE

The physical addess extenson (PAE) mechanism available irhé¢ P6 fanily
processrs isnot sugported whena pracesorisin SMM.

12.2. SYSTEM MANAGEMENT INTERRUPT (SMI)

The aly way © erter SMM is by sgnaing an SMithrough the SMI# pin onthe pracessr or
through an SMI messageeceivedthroughthe APIC bus. The SMI is a mnmaskable exernal
interrupt that operaes indepadertly from the praessr’s interrupt ard excetion-handing
meclanisn andthe local APIC. The 31 takes preceshce ovean NMI and amaskableinter-
rupt. SMM isnorreentraty that is the SMI is disabled wile the praesoris in SMM.

NOTE

In the P6 family procesors, whena piocessr that is desgnated asthe
apgication procesa during an MP initialization protocol is waiting for a
startuplPl, it is in a node wtere SMIs are asked.

12.3. SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR
OPERATING MODES

Figure 2-2 in Chapter 2, System Athitectue Ovewiewshows how the pracessr movesbetveen
SMM and the other processr opegating modes (protecied, reataddess, and \rtual8086).
Signaling anSMI while the processr isin real-address protecied,or virtual-8086 modesalways
causes therpcessr to switch to SMM. Uponexection of the RSM instruction, the pocessr
always retuns to the modeit was in when theSMI occured.

12.3.1. Entering SMM

The pocessor always hdles an SMI on anarchitectually defined “interruptible” pant in
program exection (which is commaly at anintel Architecture instructionboundary). When
the pocessoreceives aisM|, it waitsfor all instructions toretire aml for all storesto canplete.
The processorthensaves itcurrent cortext in SMRAM (referto Section124., “SMRAM”),
entersSMM, ard begnsto execute the SMI ander.

Upon enteing SMM, theprocesor signals external tardwarethat SMM handing has begun
The signalig mechaism usedis implemeneation dependert. For the P6 family pocessrs, an
SMI acknowledge transction is gereratedon the systembus ard the multiplexed gatus signal
EXF4 is asertedeach time a s transaction is gerated wiil e the praesoris in SMM. For
the Peium® ard Intel486™ processrs, the SMIAQ# pn is aserted.

An SMI has a geaer priority thandebug exceptios andexternal intempts. Thus, if an NMI,
maskable &rdwar interrug, ora debyg excepion occurs at an instructiomoundary alorg with
an I, only the M is handled Swbseqient SMI requess are notacknowledged whie the
procesor isin SMM. The firg SMI interript reqied that occus whil e the pracesor isin SMM
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(that is, afer SMM has leen ackowledyedto extenal hadware)is latched ard seniced when
the rocesa exits SMM with the RSVl instruction. The roces®r will latch only one SMI while
in SMM.

Réfer to Section 12.5., “SMI Hander Execuion Ervironment” for a detdied description of the
executiom envronment whenin SMM.

12.3.1.1. EXITING FROM SMM

The mly wayto exit SMM is to execue the R9M instruction. The RSM instructionis only avail-
able tothe SMI hamller; if the procesa is nat in SMM, attenpts toexecue the RSM instruction
reallt in aninvalid-opcale excepton (#UD) being geneated

The RSM instruction resbres the pocessr’s contest by loading the state ave imagefrom
SMRAM backintothe piocessr’sregisters. The pocessothenreturns anSMIACK trarsaction
onthe sysembus ard retuns pogram cotrol back tothe interuptedprogram.

Upon succeskil completionof the RSM instruction the piocessr sigrals exernalhardvare
that SVIM has beenexited. Forthe F6 family processrs, an SMI acknowledge transaction is
geneated on the gystem tus ard the mdtiplexed status signal EXF4 is no longer generaed on
bus cyles. Forthe Pentiurf ard Intel486™ processrs, the SMIAQ# pin is deserted.

If the processr detectsinvalid state inbrmation savedn the SMRAM, it enters theshutdown
state adl gereratesa Pecial bus cycle tandicate it has entereshutdowvn siate. Shutdown
happers aly in the fdlowing situations:

®* A resrvedbit in control register CR4 is st to 1 on a writeto CR4. This error $ould not
hapenunless SMI handlercode modifies reservedareasof the SMRAM saved stamap
(refer toSection12.4.1., “SMRAM State Sae Map”). Note thatCR4 is not distinctly part
of the savedtate ma.

® An illegal combination of bits is writtento contra register CRO, in particular PG set tol
andPE st to 0,or NW setto 1 ard CD setto O.

¢ (For thePentium® ard Intel4&™ processors only If the addess gored in the SMBSE
regiger whenan RSM instruction is execuedis nat aligned on a 2-KByte boundary. This
restrictin does rot agply to the P6 family procesars.

In shudown state, he praesor stops execting instructiors until a RESET#, INIT# or NMI#
is as®erted The pocessr al recogizesthe FLUSH# sgnal while in the $utdowvn gate. In
addition, the Rentium® processr recogiizesthe SMI# signal whileri shitdownstate, but the &
family ard Intel486™ procesas  not (It isnotrecanmenatd hat the SMI pin be aseted
on aPentium® processr to kring the pocessor ut of shutdevn state, becae the actionof the
procesa in this circunstanceis nat well defined.)

If the pracessoris in the HALT stae whenthe SMI isreceivedthe processr handesthe return
from SMM slightly differertly (refer to Section 1210, “Auto HALT Restart’). Also, the
SMBASE addess canbe chagedona returnfrom SMM (rder to Section12.11., “SMBASE
Relocation”).
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12.4. SMRAM

Whilein SMM, theprocesor execues code am gdoresdatain theSMRAM space. Tie SMRAM
space is mamedto thephysical adiress pace é theprocesorandcanbe p to4 GBytes in size.
Theprocessr uses this spaceo save thecorntext of theprocessr ard to storethe SMlhardler
cock, data andstack. t canalso ke usedto store gstem mamgemern information (such as the
sysemconfigurationandspecific information atout ppwereddowndevices) an@EM-specific
information.

The deéult SMRAM sizeis 64 KBytesbeginning ata bae phwicaladdessin physicalmemoy
caled the SUBASE (refer to Figure 1241). The SVIBASE defaut value following a hardvare
resetis 30000H. The procesa looks for the firstinstruction of the SMI handler atthe adires
[SMBASE + 8@OH]. It storesthe pocessals state in the areadm [SMBASE + FEOM] to
[SMBASE +FFFH]. Refer to Secton 12.4.1., “SMRAM State &ve Map” for a description of
the mapping of the state ave area.

The system Iagic is minimally equired to decoe the fhysical addessrangefor the SMRAM
from [SMBASE +8000H] to [SMBASE + FFA-H]. A larger aea can bdecaledif needed.The
size of this SMRAM canbe letween 32KBytes anl 4 GBytes.

The locatiorof the SMRAM can be chagedby changng the SMBASE value (refer to Segbn
12.11., “SMBASE Relocation”). It should be natedthat all procesars in amultiple-processr
system are intialized with the sane SMBASE \alue (000H). Initialization software must
sequetially place eachnqocessor irBMM and change its SNBASE so that it does niboverlap
those of other processors.

The actal physicallocation of the SMRAM canbe in system menory or in a €parate RFAM
memay. The preessr gererates an SMI acknavledge tansacion (F6 famiy procesas) or
asers the SMIACT# pin (Penium® andIntel486™ processrs) whenthe rocessoreceivesan
SMI (referto Secion 12.3.1., “Entering SMM”). System logic canuse theSMI ackhowledge
transaction pthe assertion othe SMIACT# pin to decde accesstothe SMRAM andredirect
them(if desired to specific SVRAM memory. If a sefarate FAM memoy is ussdfor SMRAM,
system logic should provide a pogramnmable mehod of mappng the SMRAM into system
memay space wkenthe processr is not in SMM. This mectanism will eralle sart-uyp proce-
dures to intialize theSMRAM space that is, loadthe SMIhander) before exectiing the SMI
hander during SMM.
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SMRAM

SMBASE + FFFFH
Start of State Save Area

SMI Handler Entry Point

SMBASE + 8000H

Figure 12-1. SMRAM Usage

12.4.1. SMRAM State Save Map

Whenthe processor initialy ertersSMM, it writesits stae to the tate sve area of the BRAM.
Thestate savarea legins at [SMBASE + 8000H + 7FFFH] andextend downto [SMBASE +
8000H + 7EMH]. Table 12-1 shavs the sta¢ save maprhe ofset in colunm 1 isrelative to the
SMBASE value pus 80@H. Reservedspacesshaild not be used ly software.

Some d the registersin the SMRAM state savarea(marked YES in cdumn 3) may be read
and clangedby the SMI hardler, with the changd values regoredto the pracessr registers by
the RSM instruction. Some reigter images are reaahly, andmust not be modfied (modfying
these regiters will reslt in unpredictable kehavior). An SMI hardler should not rely on ary
values storedh anarea that is madd as resend.

Table 12-1. SMRAM State Save Map

Offset
(Added to SMBASE + 8000H) Register Writabl e?

7FFCH CRO No
7FF8H CR3 No
7FF4H EFLAGS Yes
7FFOH EIP Yes
7FECH EDI Yes
7FE8H ESI Yes
7FE4H EBP Yes
7FEOH ESP Yes
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
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Table 12-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE + 8000H) Register Writable?

7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TR* No
7FCOH LDT Base* No
7FBCH GS* No
7FB8H FS* No
7FB4H DS* No
7FBOH SS* No
7FACH Ccs* No
7FA8H ES* No

7FATH - 7F04H Reserved No
7FO2H Auto HALT Restart Field (Word) Yes
7FO0OH I/O Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7TEOOH Reserved No

NOTE:

* Upper two bytes are reserved.

Thefollowing regsters are save@ut na readabe) andrestoredupm exting SMM:
® Control regster CR4 (CR4 is setto “0” while in the SMM haller).

®* The hidden £gmen desciiptor information sbred n segmentregistersCS DS, ES, F5,
GS, andl SS

If anSMI reqied is issued for the purpose ofpowering down the procesor, the values 6 all
resened Iccationsin the SMM shte sae must ke sawed to nonvolatile memory.

The fdlowing date B not automatically saved andestored followingan SMI andthe RSM
instruction, resgctively:

® Dehug registers DRO throuch DR3.
®* The FRJ registers.

® The MTRRs.

® Control register CR2.

®* The modail-specific registers (fothe P6 fanily andPentium® procesors) or test regsters
TR3 through TR7 (for the Rentium® ard Intd486™ processors).
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® The gate d the tap corroller.

®* The machie-checkarchitectue registers.

®* The ARC interral interrpt state (ISRIRR, etc.)
®* The microcale ypdate state.

If an SV is used to power dovn the piocesor, a paver-on reset will be reuired befae
returring to SMM, which will reset muchof this sate tack to itsdefault values So an SMI
handler that isgoing to trigger ppwer down should first readthese regsterdlistedatbove drectly,
and sawe them(along with therest of RAM) to nonvolatile starage. Aterthe power-onreset, he
coninuaion d the VI hardler shoud regore e valies, along with the re$ of the systems
state. Anyime the SMI hadler changes these registersthe pocessr, it must also save and
resore them

NOTE

A small subset of the MSRs (such as the time-stamp couer and
performance-nonitoring caunter) are no atbitrarily writabe amd theefore

canrot be sved am retsored SMM-based powerdown aml regoration

shoud only be performed wih operatng systtmsthat do notuse or rely on

the values of thesegisters. Opeating system deelopers $ould be aware of
this factand ensue that ther operatingsystem asiged pwer-down and
restoration software s immure to unexpected chnges m thes register

values.

12.4.2. SMRAM Caching

An Intel Architecture processo sypporting SMIM doesnot unconditionally write back aml inval-
idate itscacle kefore erteringSMM. Therefae,if SMRAM is in alocationthatis “shadowed”
by any existing systemmemory that is viible to thke apfication or operating system thenit is
necesary for the gystem to fush the cache upn ertering SMM. Thismay be acamplished by
assertirg the HLUSH# pin atthe sme time as tle reqied to enter $1M. The priorities of the
FLUSH# pin ard the SMI# are sich that the FLUSH# will be servicedfirst. To guaranteethis
behavor, the procesor requresthat the following condraints on the interacion of SMI# and
FLUSH# be met.

In asystem whee the FLU$I# pin ard SMI# ins are synatonous andhe set uaind fold times
are met, then the FLUS# and SMI# pins may be asgedin the same clockln ag/nchronaus
systems, the FLUB# pin must be asserted deastone clockbefore the SMI# pin to guaantee
that the FLUSH#pin is serviced first. Nae thatin Pertium® processr systems that se the
FLUSH# pin to writeback and inalidate cache contentsbefore enteing SMM, the pocessr
will prefetch at leasone cache he in between whethe Hush Acknowledg cycle isrun, and
the subsequentrecogiition of SMI# andthe as®rtion of SMIACT#. It is the obligation of the
system to enswe that these linesare not cached $ returring KEN# inactive to the Pentiufim
processor.
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Intel Architectureprocessors @ not write bak or invalidate their inernal cackesupm leavirg
SMM. For this rea®n, referemesto the SMRAM area musnot be cackd if any @rt of the
SMRAM shadows (overlays) nonSMRAM memay; thatis, system DRAM or video RAM. It
is the doligation of the system t@nsue that allmemoy referercesto overlapged aeasare
uncached; thtis, the KEN# n is samped inactive dring all referercesto the SMRAM area
for thePentium® procesor. The WBINVD instruction $ould beusedto ensure cacheohererty
at theendof a cachedSMM exection in systems thahavea piotected SMM memry regian
providedby the chipsd.

The P6 émily of processors hano extenal equvalent of the KEN# pin. All memay accesss
are typed via the MTRRs. It is not pacticaltherefae to hae memoy accesso a cetain addes
be cachedn one accessrd not cacled inanotter. Intel does nd reconmendthe cacing o
SMM space in ag overlappng memory emvironment a1 the P&family of processrs.

12.5. SMI HANDLER EXECUTION ENVIRONMENT

After savingthecumrentcontex of the rocessr, theprocessr initializes its coe registersto the
valuesshown in Table 12-2. Upon enteringSMM, the PE and PGlags in contrad regster CRO
are clearedwhich placeshe praesor is h an enwonment smilar to realaddress mock. The
differercesbetween the SMM exetion environment am the rehaddress moadk exection
environment areasfollows:

® The addesable SMRAM addes Pace rangsfrom 0 to FFIFFFA-FH (4 GBytes). The
physical addessextension(enalbed with the FAE flag in contrd regster CR4) is not
supported in SMM.)

®* The namal &4-KByte sgment limit for red-address male is increased t GBytes

®* The detult operandandaddesssizes are set t@6 bits, which restricts theaddessable
SMRAM addressspace tahe 1-MByte real-adressmode limit for native realaddress-
mode co@ However, operard-size ard addess-size overiide prefixes can be used to
access the adelssspace beymdthe 1MByte.

® Nearjumps andcalls canbe mack to anywhere inthe 4GByte addessspace ifa 32bit
operard-size werride prefix is used Due tothe real-address-male styleof base-adkss
formation a far call or jumpcanna transfer cotrol to a £gment with a bas addressof
more than 2 bits (1 MByte). However, since tte segnent limit in SMM is 4 GBytes,
offsets irto a segnent that gobeyond the 1-MByte limit are dlowed when wsing 32-bit
operard-size oerrideprefixes Any program cortrol transfer that des na havea 32bit
operard-size oerrideprefix truncatesthe EIP vale to thel6 lowv-order hits.
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Table 12-2. Processor Register Initialization in SMM

Register Contents
General-purpose registers Undefined
EFLAGS 00000002H
EIP 00008000H
CS selector SMM Base shifted right 4 bits (default 3000H)
CS base SMM Base (default 30000H)
DS, ES, FS, GS, SS Selectors 0000H
DS, ES, FS, GS, SS Bases 000000000H
DS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS and PG flags set to 0; others unmodified
DR6 Undefined
DR7 00000400H

¢ Data and thetack can be located anywére in the 4-GByte addressspace, bucan be
accesed only with a 32-bit addess-size oerride if they arelocated abve 1 MByte. As
with the co@ segment, tte base adess fora data or stack segntaanna be more than 20
bits.

The vale insegnent regster GSis auomatically set tothe default of 30000H for the SMBASE
shifted 4 bits to the right; that is 3000H. The EIPregisteris set b 8000H. When the EIP value
is added to shifted CS value (the SMBASE), the resulting linear adres points to the first
instruction of the I handler.

The dher segmenregistergDS, SS, ES, FS, anS) are cleared t® andtheir segmenlimits
are &t to 4 Bytes.In this state, the SMRM addressspace may be treated asigle flat 4-
Ghyte linear adress pace. If a segmdirregisterisloaded with a 16bit value, that value isthen
shifted left by 4 bits andloaded irto the segnent kase hidden part d the segment register). The
limits andattributes arenot nodified.

Maslkable hardvare interupts excepions, NMI interrupts SMI interrugs, A20M interrpts

single-step traps, breakmint traps, ad INIT opemtions areinhibited whenthe rocessoenters
SMM. Maskable hadware irterrugts, exceptiois, single-step trap, andbrealpointtraps can &
eradedin SMM if the SVIM executon environment providesard initializesaninterrupt tade
and the mcesary interupt ard exceptio handers (refer to Section 12%6., “Exceptiors and
InterruptsWithin SMM”).
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12.6. EXCEPTIONS AND INTERRUPTS WITHIN SMM

When theprocesor entersSMM, all hardvare interuptsare dsabled in the following mamer:

® The IF flag in the EFLAGS register is cleared,which inhibits maskake hardvare
interrupts from keing geneated

®* The TF flagin the EFLAGS register is clearaghich dsables single-step aps

®* Dehug regster DR is cleaed, whichdisables breagoint traps. (This actionprevers a
debugger from accidetally breakinginto an $4M handler if a debg breakpant is st in
normal aldress gace that verlays code a data iInSMRAM.)

® NMI, SMI, and A20M inerrupts are hbcked by internal SMM logic. (Rekr to Section
12.7., “NMI Handling While in SMM” for further irformation alout how NMls are
handledin SMM.)

Sdtwareinvoked interrupts ard excegions can $ill occu, ard maskable hardvare irterrupts
canbe embled by settirg the IF flag Intel recanmends that SMM cale ke written in sothat it
doesnot invoke sdtware interrupts (with the INT i, INTO, INT 3, orBOUND ingtructiors) or
gererate excepons.

If the SMM hamller requres irterrupt and excegtion handling, anSMM interrug table and the
necessaryexcepion and interrypt handlers nust be creaed am initialized fromwithin SMM.
Until the interrupt tableis carrectly initialized (ugng the LIDT instruction), exceptions ard oft-
ware irterrupts will resut in unpredctalde processr behavior.

The following regrictions aply when designing SMM interrupt and excetion-handing
facilities:

®* The interrypt table shald be located at lineaaddess 0and nust contain eal-addess
mode dyle interrupt vecors (4 bytes cataining CSard 1P).

® Dueto the ealaddress moct style of tase addessformation, an interrug or excepion
camot tranger control to a segmetnwith a base adéssof mare that @ bits.

* Aninterrypt o exceptioncanrot trander cantra to a segmenoffset of mare than16 bits
(64 KBytes.

® When anexcepion or interrypt oaurs, oty the 16 leastsignificant hits of the retun
address(EIP) are pshed ontathe gack If the offset of the interrypted pr@eduk is greater
than 6 KBytes, itis not pasdble for the interrupt/excepion hardler to retun cantrol to
that pracedue. One solution to this problemis for a handler to adust the returnaddesson
the dack)

®* The SMBASE relocation feateraffectsthe way the proessor will retun from an interrpt
or excepion gererated whie the VI hander is executing.For exampe, if the SMBASE
is relccated toabore 1 MByte, hut the excetion handers arebelow 1 MByte, a namal
return to the SMlhandler is not possble. One sdution is to provide the exceftion hander
with a meclanian for calcdating aretum address abee 1 MByte from the 16-bit retum
addressonthe sack thenuse a 3-hit far call to eturnto the inerruged pocedire.
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* |If an SMI handler needs acces tothe debug trap facilities, it must insure that anSMM
accesible cebughander is available andave the currem contents of dougregisters DRO
throuch DR3 (br later regoraton). Debugregisters DROthrough DR3and DR7must then
be nitialized with theappopriate values

® If an SMI hander needs acceds the sinte-step mechanism, it musinsure that an SMM
accesiole single-step lander is availalbe, and then set theTF flag in the BFLAGS
regster

* If the SMI deggn reqgures the procesa to respnd to maskable lardware irterupts or
software-genentedinterrupts while in SMM, it mud ersure that SMM accesible interrypt
hardlers areavailable ad thenset the I flag in the EFLAGS register @ing the STI
instruction). Software intewptsare not blockd upn erry to MM, so theydo not need
to be enalted.

12.7. NMI HANDLING WHILE IN SMM

NMI interrupts ae bbckedupm enty to the VI hardler. If an NMI reques occus during the
SMI handeer, it is latched ard seniced afterthe praesso exits SMM. Only one NMI request
will be Btched duing the SMI handler. If an NMI requestis pendng whenthe piocesa
execues he RSM instructon, the NMI is serviced before the rext instruction of theinterupted
code gquence.

Although NMI reqieds ae blocled whenthe CPU erters SMM theymaybeenabledhrough
software by execting an IRET/IRETD instruction If the SM hander requresthe usef NMI
interrugs, it should invoke adummy interrupt senice routine for the purpose of executing an
IRET/IRETD instructon. Once an IFET/IRETD instriciton is executed NMI interrupt requr-
eds are sefieed in the same “real male” mannerin whichthey ae hamlled autside of SMM.

A special case caoccurif an SMI hander nests insideanNMI hardler andthenandher NMI
occus. During NMI interrupt handiing, NMI interrupts are dsabbed so normally NMI inter-
rupts are srviced am canpleted withan IRET instructionone at a time. Wenthe piocessr
enters SMM while executingn NMI hander, the pracesor saves the SMRAM state save map
but does nd sawe the attribute tokeepNMI interrupts dsabed Pdertially, an NMI could be
latched (while in SMM or uponexit) andservicedupon exit of SMM eventhough the previous
NMI handler hasstill nat conpleted One @ more NMIs codd thus be neded insde the first
NMI hander. The NMI interrupt hardler should talke this possibility into consideration

Also, for the Petium® processo, excepions that invoke a trap or &ult handler will enade NMI
interrugs from inside of SMM. This behavior is implemertation specific for the Pemtium®
processorandis not pat the Irtel Architecture.

12.8. SAVING THE FPU STATE WHILE IN SMM

In some instances (foexanple piior to powerirg down system memgy when eneringa 0-\olt
suspendstate),it is necesary to save the sate d the FRJ while in SMM. Catre shoud be taken
when perforning this operaion to insure that relevant FPU stake information is not lost. The
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safes way to prform this sk is b place the proesorin 32-bit pratectedmode lgfore savirg
the FPU gate. The reasorfor this isas fdlows.

The FSAVE instruction sawes the FPU context in ary of four differentformats, depending on
which mode the pocessr is in when FSA/E is executed (eferto Figues7-13 throuch 7-16in
the Intel Architecure Softvare Devebper's Manual, Vblume 1). Whenin SMM, by defadut, the
16-bit real-adiress made famat is usd (hrownin Figure 7-16). If an M| interrypt occus while
the procesa is in a node other than 16-bit real-addessmode, FSA/E ard FRSTOR will be
unable to sawe ard restaoe all the relevab FPU information, ard this situation may resut in a
malfunction when te interrupted program is resumed. D avdd this problem, the procesa
shoud bein 32-bit protecied node when execuing the FSAVE andFRSTOR instructions.

Thefollowing guidelinesshould be wsedwhengoing into prateced mode from anSMI hardler
to save ad restore the FPU tate:

® Use the ®UID instruction toinsure tlat the pocessr contains an FPU

® Create a 3-bit codesegment in SMRAM space thatontains pocedires orroutines to
save andestore the FRJ using the FBVE and FRSTOR instructions, respectively. A
GDT with anappopriate coe-segment dscriptor (D bit is st to 1) for the 32bit code
segmehmust als beplaced inNSMRAM.

® Write a praedue or routine that can be called liie SMI handler to save antegore the
FPU gate. This procedire should dothe fdlowing:

— Place he processr in 32-bit protected mod asdescribe in Section 8 R, “Switching
to ProtectedVlode” in Chapter 8 Processr Managemnent and Initializaion.

— Execute a@ar JMPto the 32bit cade segmeinthat contains the FPUage andresbre
procedues.

— Place the pocessr back in16-bit red-address moa before returring to the SMI
hander (referto Secton 8.8.2.,“Switching Backto RealAddress Made” in Chapter 8
Procesa Managemern and Initialization).

The SMI tandler maycontirue to exectein protectednode affer the FPU state fas beensaved
ard returnsafely to the interruped programfrom protecedmode. However, it is recommended
that the handler execute pimatrily in 16- or 32bit real-adiress mode.

12.9. SMM REVISION IDENTIFIER

The SMM revisim identifier field is used to indicate the versionrof SMM ard the SMM exten-
sions that aresupported by the processo(referto Fgure 12-2). The SMM revision identifier

is written during SMM entryand canbe exarmedin SMRAM space at dfset 7EFCH. The
lower word ofthe SMM revision identifierrefersto the version of the base SMMrchitecture
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Register Offset

7EFCH

31 181716 15 0
Reserved SMM Revision Identifier

SMBASE RelocationQ

1/O Instruction Restart

D Reserved

Figure 12-2. SMM Revision lden tifier

The pperword of the SMM revisionidentifier refers to theextensions ailable. If the 1/10
instruction restrt flag (bit 16) is set, the pces®r supports the I/O instruction restart (eferto
Section 12.12., “I/O Instrwction Restart”); if the SMBASE rela@ation flag (bt 17) is set,
SMRAM bas addessrelocation is sypparted (referto Section 12.11.,“SMBASE Relocaion”).

12.10. AUTO HALT RESTART

If the pracesso is in a HALT state (due to the prior execuion of a HLT instruction) when it
receives an SMI, therpcessor reords the dct in the auto HAOD restart flag in the saved
procesorstate (refer to Figure 123). (This flagis locatedat offset 7702H andbit 0 in the state
save area 6 theSMRAM.)

If the processr ses the autoHALT restart flag upn ertering SMM (indcating that the SMI
occuredwhen the pracesorwasin the HALT state) the SMI tandlerhas two gtions:

® It can kavethe auo HALT restart flag setwhich instructsthe RSM instruction to return
program control to the HLT instruction. This option in effect cagesthe praesso to re-
enerthe HALT state afer handing the SMI. (This isthe dfault operation.)

® It can clear theauto HALT restart flag with instructs the BM instruction to return
program contral to the instruction following the HLT instruction.

15 10

Register Offset
7F02H

D Reserved

Auto HALT Restart J

Figure 12-3. Auto HAL T Restart Field
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These ptions are sumarized inTable 123. Note that if the pocessor was ton a HALT dtate
when the SVl wasreceiwed (the auo HALT resart flag is cleaed), settirg the flagto 1 will
cause upredctable belvior when tle RSM instructionis executed

Table 12-3. Auto HALT Restart Flag Values
Value of Flag After E ntry Value of Flag When

to SMM Exiting SMM Actio n of Processor W hen Exiting SMM
0 0 Returns to next instruction in interrupted program
or task
0 1 Unpredictable
1 0 Returns to next instruction after HLT instruction
1 1 Returns to HALT state

If the HLT instruction is redarted, the processr will generate anemay acces tofetchthe HLT
instruction(if it is not inthe interral cache)and execute a HIL bus transactn. This behavior
resuts in multiple HLT bus trarsactions for the same HLT instruction.

12.10.1. Executing the HL T Instruction in SMM

TheHLT instruction should not ke exectied during SMM, urless interuptshawe beenenaled
by setting the IF flag in the EFLAGSregster If the processr is helted in SMM, the orly evert
that can remee the proesor from this gate isa maskable hdaware interrpt or a hardiare
rest.

12.11. SMBASE RELOCATION

The default base address for the SVRAM is 30000H. This value is contaired in aninterral
processr regster caled the IMBASE register The operating gstem or executig can relocate
the SMRAM by setting the SMBASE fieldin the savedstatemap(at dfset 7EF8H)to anew
value (refr to Figure 12-4). The RSM instruction reloadsthe internal SMBASE regider with
the \elue in the SMB\SE field eah time it exitsSMM. All subsequehSMI requeds will use
the rew SMBASE value tofind the garting addessfor the SM hardler (at SMBASE + &®00H)
and the SMRAM state save area (bm SMBASE + FEOOH to $MBASE + FFFFH). (The
procesa reststhe vdue in itsinternal SMBASEregister to 30000H ona RESET, but does rot
change it on anINIT.) In multiple-processo systens, intialization sdtware nust adust the
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SMBASE value br eachprocessr so that tk SMRAM state save aasfor each pocessr do
notoverlap. (For Pentium® ard Intel486™ pracessrs, the SVIBASE values nustbe algned on
a 2-KByte urdaryor the rocessowill entershutdowvn state dring the edxecutionof aRSM
instruction.)

31 0

Register Offset
SMM Base 7EESH

Figure 12-4. SMBASE Relocation Field

If the SVIBASE relocaton flag in the SVIM revision identifier field is set, it indicatesthe alility
to relaccae the SMBASE (lefer toSection129.,“SMM Revision Idertifier”).

12.11.1. Relocating SMRAM to an Addres s Above 1 MByte

In SMM, thesegmentbase reigters caronly be updatedby changirg the valie inthe segrant
registers The ssgmentregisters cortain only 16 bits, which allows only 20 bitsto be usedfor a
segment base adires (the segnent regster is shifted left 4 bits to determine the £gmert base
addess). If SMRAM is relccated toan addessabow 1MByte, softwareoperatingin real-
address mode cannolonger initializethe segnent regigers topoint tothe SMRAM basaddress
(SMBASE).

The SMRAM canstill be accesed by using 32-hit addresssize override prefixes togenerate an
offset to the correct adiress For exanple, if the SMBASE hes teenrelocatedto FFFFA-H
(immediately below the 16-MByte oundary) andthe DS ES, FS and GS regiders are il
initializedto OH, data in SMRRM canbe accessl by using 32-bit displacement reigters, asri
the fdlowing example:

nmov esi, O0FFxxxxH, 64K segment inmmedi ately bel ow 16M
nov ax, ds: [esi]

A stacklocated abve the 1IMByte boundaly canbe accessl in the ssme manrer.

12.12.1/0 INSTRUCTION RESTART

If the I/O irstruction restart flagin the SMM revision identifier fieldis set(refer toSection 12.9.,

“SMM Revision Identifier”), the I/O instructiorrestrt mechaism is presentmthe gocessr.

This mechanism allows an nterrugted I/O instruction to be re-excuted upon returring from

SMM mode. Fo exampe, if an YO instruction is used to accespowereddown 1/O devce, a
chip st suppating this device canriterceptthe accessandrespmd by asertingSMI#. This
acion invokes he SMlhardler to powerup the device.Uponreturning fromthe SVl hardler,

the 1/0 nstruction restart mech&m canbe used to rexecute the 1/O instructiothat cawsed

the SMI.
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The VO instructian restart field (at déet 7FOOH in the SMMtate-save ama, refer td-igure

12-5) cortrols I/Oinstructionrestart. WienanRSM instruction is executedjf thisfield contains
the value FH, then he EIP registeris modified to poirt to the I/O instruction thatreceived the
SMI request The pracesso will then autanatically re-execue the 1/O istruction that the SMI

trapped. (The praesor saves the recesary nachine sta to irsure that re-egcution ¢ the

instruction is hardled ccherertly.)

15 0

Register Offset
7FO0H

1/0 Instruction Restart Field

Figure 12-5. 1/O Instruc tion Re start Field

If the I/O instuction restart field contairs the \alue 0(H when theRSM instruction is exected,
then te procesa begins program execution with the instruction following the 1/O irstruction.
(When a repeaprefix is being used, he rext instruction may be the rext 1/0 instructon in the
repeatloop.) Not re-executing the interupted I/O instruction is the default betavior; the
processr aubmatically initializesthe /O instruction restart ifield toOOH upon entering SMM.
Table 12-4 summarizes thatatesof the 1/O instructiorrestart field.

Table 12-4. 1/O Instructio n Restart Field Values

Value of Flag After Value of Flag When
Entry to SMM Exitin g SMM Action of Processor W hen Exiting SMM
00H O0OH Does not re-execute trapped I/O instruction.
00H FFH Re-executes trapped /O instruction.

Note that the I/O instructioregart mechanism desna indicate the cause ofdtgMI. It is the
respasibility of the SVl handler to examine the tate ofthe processor to deterime the causef
the SMI andto deternine if anl/O instruction wasinterruged ard should be resarted upon
exiting SMM. If an M| interrupt issignaled ona nan-1/0 instuction boundary, setting the 1/O
instruction resart field to FFH prior to execuing the R3M instruction will likely resut in a
program erre.

12.12.1. Back-to-Bac k SMI Interr upts When 1/O Instruc tion Restart
Is Being Us ed

If an SMI interrupt is signaled whle the pocessor isevicing anSMI interrupt that occurred
onanl/O instruction baindary, the processor wil service the new SMI reqes befae regarting
the orignally interrupted 1/O instruction. If the 1/O instruction resar field is set to FFH prior to
returning from the secad SMI handler, the EIP will point to anaddres differert from the orig-
inally interrupted 1/O nstruction, which will lik ely lead b a programerror. To awid this situa-
tion, the SMIhander must be albe to recogrize the @curenceof back-tebackSMI interupts
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when I/O instruction resttt is being used andinsure that the handler setsthe 1/O irstruction
restrt field to O0H prior to returring from the secord invocation of the SMI haller.

12.13. SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be roted when deggning multiple-procesa systens:

Any procesorin a multiprocessor system caaspowl toan SMM.

Eachprocesorneed its ownSMRAM space. Tlis spacecan ben system memy or ina
separate RM.

The SMRAM s for different pocessrs can e oveltappedin thesame memory space. Ta
only stipulationis that eachprocesor needs its owrstate savearea ad its owndynamic
data storag area. (Al®, for the Rentium® ard Inteld86™ proes®rs, the SMBASE
addessmust be loated on a 2-KByte baindary) Code and static dita canbe shared
amang pocessrs. Ovellapping SMRAM spacescan be doamore eficiently with the F5
family procesors becasethey dona require that the SMB\SE addess be @ a 2-KByte
boundary.

The SVl handler will needto initialize the SMBASE fa eachprocesar.

Processors camrspondto local SMIs hrough their SMI# fns or to SMis receive thraugh
the APICinterface. TheAPIC interface can idtribute SMisto different pracesors.

Two or more [rocessrs can le execting in SMM at the ssme time.

When operating Pentium® processors in dual processng (DP) modk, the SMIACT# pin is
driven only by the MRM procesa ard should be sampled with ADS# For addtional
details, refe to Chapter 14 of thePertiunm® Processr Family User's Marual, Volume 1

SMM is na re-entran, becausehe SMRAM State Save Map ifixed relative to the SMB\SE.
If there isa needo suppat two a more procesors in SMM mode at tle same time then each
procesor shalld have dedcated SMRAM spaces This canbe dore by using the SMBASE
Relocationfeatue (refer toSection12.11., “SMBASE Relocation™).
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CHAPTER 13
MACHINE-CHECK ARCHITECTURE

This chapter escribesthe F6 family’s machineeheck achitecture ad maclhne-checkexcep
tion mechanian. Refer to Chapter 5,Interrupt and Excefion Handing for more information on
the macine-cteck exeption.A brief descriptionof the Petium® procesor's mactine check
caphility is al® given

13.1. MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE

The P6 family of processrs implemert a maclne-check achitecturethat piovides a mecla-
nism for detectingandreporting hardvare (machine)erras, sich assystem bus erras, ECC
erras, paity erors,cacheerrors, andTLB erors. It consists of aset of modelspecffic regsters
(MSRs) that are used toet up mackne checkingand additional barks of MSRs for recading
the erras that are detected:he processor gjnals the detection of a machinesheckemror by
geneating amachne-chreck exceptiotf#MC). A machineeheck excefpon isgeneally an abat
class exeption The imdementationof the maclne-check architecture does rot ordinaily
permt the pr@esor to be restarted reliably after geatielg a machine-cleck excepon;
howe\er, the machineeheckexception hardler can cdiect information abaut the machire-
checkerra from themachineeheckMSRs.

13.2. COMPATIBILITY WITH PENTIUM® PROCESSOR

The P6 family ppcessrs support ard extendthe machinecheck exeption mechnismusedin
the Peium® processr. ThePentium® processorrepats the following machne-cteck erors:

® Data paity erras duing read cgles
® Unsuccedsl canpletion d a hus cycle.

These ewrs ae reprted through the P5_ MC_TYPE and P5_MC_ADDRMSRSs which are
implemenation specific fa the Fentium® procesor. These MSR can e readwith the RDMSR
instruction. Referto Table B-1 in Appendx B, ModelSpecific Registers for the regiser
addesses forthese MRs.

The macime-cleck erre repating mechanism that the Penti@nprocesors use isimilar to
thatusedin the P6 family pocessrs. That is, when an errois detected, iis recoraed in he
P5 MC TYPE ad P5 MC_ADDR MSRs ard then tre processr generdes amachne-check
exceptim (#MC).

Réfer to Section13.3.3., “Mapping of the Pentiur® PracesorMachineCheck Erorsto theP6
Family Machne-Check Architecture” and Section13.7.2., “Pentium® ProcessomMachine-
Check Excetion Hardling” for information on comptibility between madhe-cteck coe
written torun onthe Rentium® procesars andcode writtento run on P6family procesas.
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13.3. MACHINE-CHECK MSRS

The machie checkMSRs in the P6 family praesors consis$ of a set of global cortrol ard
status registers andseveral eror-reporting register baks (refr to Figue 134). Each erro-
reporting bank is as®ciated with a spcific hardvare unit (o group d hardvare unit$ within
the pocessr. The RDMSR and WRMSR instructiors are used toread ad write these
registes.

Global Control Registers Error-Reporting Bank Registers
(One Set for Each Hardware Unit)
63 0 63 0
MCG_CAP Register MCi_CTL Register
63 0 63 0
MCG_STATUS Register MCi_STATUS Register
63 0 63 0
MCG_CTL Register* MCi_ADDR Register
* Not present in the Pentium® Pro 63 0
processor. - -
MCi_MISC Register

Figure 13-1. Machine-Check MSRs

13.3.1. Machine-Check Global Control MSRs

The machinesheck globalcontrd registersinclude he MCG_CAP, MCG_STATUS, ard
MCG_CTL MSRs Referto Appendx B, Model-Specific Regsters for the adiresgs of these
registes.

13.3.1.1. MCG_CAP MSR

The MOG_CAP MSRis a readnly register that pvides informaion abait the macime-chreck
architectue implemetation in the pocessor refer toFigure 13-2). It contains the flowing
field ard flag

Count field, bits 0 through 7
Indicatesthe nunber d hadware wit errar-repating banls awailable in a @rticular
processr implemertation.

MCG_CTL _P (register present) fag, bit 8
Indicatesthatthe MOG_CTL regiser is present wheset andabsent wheiclear

Bits 9 through 63 are resrved The efect of writing o the MCG_QAP register is undefined
Figure 5-1 shows the bit fields of MCG_CAP.
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63 98 7 0

Reserved Count

MCG_CTL_P—MCG_CTL register presentJ
Count—Number of reporting banks

Figure 13-2. MCG_CAP Register

13.3.1.2. MCG_STATUS MSR

The MGG_STATUS MSR describes the curent date of the proesor after a maclne-check
exceptim has ocurred (efer toFigure 13-3). This register cortains the following flags:

RIPV (redart 1P valid) flag, bit O
Indicates(whenset) thatprogramexection can ke restartedreliably at the instruction
pointed to by the instructimm pointer pushed on the stack when the machne-check
exceptim is geneasted. When clear the prayram canrot be elialdy restartedat the
pudhedinstruction panter.

EIPV (error | P valid) flag, bit 1
Indicates (when set) that the instruction pointedto by the instruction pointer pushed
ontothe gack when the rachineeheck exeption is geerated is directly asgiated
with the error. When thisflagis cleared, the instructigmointedto may not be assci-
ated with theerra.

MCI P (machine checkin progress) flag, bit 2
Indicates (when ségtthat amachineeheck excefpon was genegted. Software canset
or clearthis flag.Theoccurenceof asecand Machine-Geck Evert while MCIPis set
will cause the piocesorto erter a shutdwn state.

Bits 3 throudh 63 in the MCG_STATUS redster ae reserved

63 3

Reserved

MCIP—Machine check in progress ﬂag4

EIPV—Error IP valid flag
RIPV—Restart IP valid flag

Figure 13-3. MCG_STATUS Register

v—-0g|N
<UT—m|~
<v—3; (O
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13.3.1.3. MCG_CTL MSR

The MCG CTL regider is preent if the capabity flag MCG_CTL_Pis set in the MCG_CAP
regstet The MCG_CTL regster corirols the repating of machie-checkexceptions. If present
(MCG_CTL_P flagin the MCG CAP regigeris set), writing all 1s to this regider emaldes all
machne-checkfeatures and writing all Gdisables allmactline-check features. Albther values
are inddinedandbr implemertation specffic.

13.3.2. Error-Reporting Register Banks

Eacherrorrepating register bark cancontainsanMCi_CTL, MCi_STATUS, MG_ADDR, ard
MCi_MISC MSR. The P6family processars providefive banks of error-reporting registass. The
first erra-reporting regiger (MQ0_CTL) always darts 4 addres 40(H. Refer to Table B-1in
Appendix B, Model-Secific Regitersfor the addes®s ofthe dher error-reporting regsters.

13.3.2.1. MC/_CTL MSR

The MG_CTL MSR contrds erra repotting for specific erros produwced by goarticular hard
ware it (or group of hadware wits). Eachof the & flags (EEj) represeits a paoertial error.
Seting anEEj flag enables reqrting of the assciatederra andclearingit disablegepating of
the error. Writing the 64-bit vaue FFFAFFFRFFHFFH-FH to an MCi_CTL regster enabes
logging of all errors. The pocessor des na write chamges to kts that a¢ nd implemened.
Figure 134 showsthe bit fieldsof MCi_CTL

NOTE

Opeating sysemor exective sotware mustnot modfy the coterts of the
MCO_CTL regster The MCOQCTL register is intemally diasedto the
EBL_CR POWERON register andas such cortrols system-specific error
handling featues These éatures areplatform specific. System specific
firmware (he BIOS) is responsible for the appropriate irtialization of
MCO_CTL. The 6 family procesors only allows the writing of all 1s or all
Osto the MGi_CTL regiders

[
@
[
R
o
=
w

womm
Nomm
Romm

-

-

-

-

N
rnomm|N

romm |~
ocomm|o

EEj—Error reporting enable flag
(where jis 00 through 63)

Figure 13-4. MCj_CTL Register
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13.3.2.2.  MC/i_STATUS MSR

The Md_STATUS MSR contains inbrmation relatedto a macime-check eror if its VAL
(valid) flag is =t (referto Figure 135). Software is reponsible for clearilg the MG_STATUS
regster ly writing it with all 0s, writing 1sto this registerwill cau® a general-protection excep-
tion to be gneratedTheflags andields in this regster ae asfollows:

MCA (machine-check architecture) error code field, bits Othrough 15
Specifies the machinezheck achitectureeefinederra coce for the mache-check
errar cordition deteced The machinecheck achitecturedefined erra codes are
guamnteed tobe thke same for all Intel Architectue processrs that implemen the
machire-checkarchtectue. Refer to Secton 13.6., “Interpeting the MCA Error
Codes for information on machineheck errocodes.

63 62 6160 5958 5756 32 31 16 15 0
\ P . _ .
AlO g E c Other Information Model-Specific MCA Error Code
L c Error Code

L PCC—Processor context corrupt
ADDRV—MC/_ADDR register valid

MISCV—MCi_MISC register valid
EN—Error enabled
UC—Uncorrected error
OVER—Error overflow
VAL—MCi_STATUS register valid

Figure 13-5. MCi_STATUS Register

M odel-specfic error code field, bits 1&hrough 31
Specifies the modelspecific error code that uniquely identifies the madhe-check
erra cordition detected. Tl moad-specific eror cades mayiffer anonglintel Arch-
tecure processrs forthe same m@chine-cleck eror condtion.

Other information field, bits 32 through 56
The furctions of the bitsin this field are mplementatiorspecific andarenat part of the
machire-checkarchitectue. Softwarethat is intended to be portable amag Intel
Architecture procesas stould na rely on the valuesin this field.

PCC (processor cantext corrupt) flag, bit 57
Indicates (wlen set) that thatate ofthe pocessr might hawe beencormuptedby the
erra cordition detected ath that reliable restartingof the pracesor may not be
possble. When ckar, this flag indicatesthat the errordid not affect the pracesors

state.

ADDRV (MCi_ADDR register valid) flag, bit 58
Indicates (when sej that the MEC ADDR register cotains the addess where tk errg
occured fefer toSection133.23., “MCi_ADDR MSR’). When clearthis flag ind-
catesthat the Md_ADDR register @es nat cortain the addes whee theerra
occured.Do nd readthese registers if theare ot implemened inthe piocessr.
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MI SCV (MCi_MISC register valid) flag, bit 59
Indicates(when set) that the MCi_ MISC register conains additional information
regarding the eror. When clear this flag indcatesthat the MG_MISC register does
nat contain addtional information regading the error. Do nd read theseegisters if
theyare ot implemened inthe piocessr

EN (error emabled) flag, bit 60
Indicates(when set) that the eror was enabledby the associated EHjit of the
MCi_CTL register.

UC (error uncorrected) flag bit 61
Indicategwhen set) that thernpcessr did not a wasnot able tocorred the erra cordi-
tion. When cleay this flag indicatesthat te processor wasible to corectthe erro
condition.

OVER (machine check oveflow) flag, bit 62
Indicateqwhenset) ttat amachineeheckerror occuredwhile the results baprevious
errorwere still in the errorrepating regiger bank (that is the VAL bit was alreadset
in the MCi_STATUS register). The pocessor setsthe OVER flag and sofware is
respamsible for clearirg it. Enalbed erra's are written overdisabled erras, and acor-
rectederrors are writterover carectederrors. Uiorrectederrors are ot written over
previousvalid uncorre¢ederras.

VAL (MCi_STATUS register valid) flag, bit 63
Indicates(whenset) that the information within the MCi_STATUS register is valid.
When this flag is set, tle processr follows the rulesgiven for the OVERflag in the
MCi_STATUS regider when overwriting previoudy valid ertries. The procesa set
the VAL flag andsoftware is resposible for cleaing it.

13.3.2.3. MC/_ADDR MSR

The MG_ADDR MSR contains thaddess ofthe cale ordata nemory locationthat poduced
the machinesheck erroif the ADDRYV flag inthe MCi_ STATUS register isset (refer to Secton
133.22.,“MCi_STATUS MSR’). The addessretumned is eiher 32bit offsetinto a segnent,
32-bit linear adres, or 36-bit physical addess depanding uponthe type of error encaintered
Bits 36 through 63 of this regdsterarereservedfor futureaddess exparsion ard ae always ead
as zeros.

63 36 35 0

Reserved Address

Figure 13-6. Machine-Check Bank Addres s Register
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13.3.24. MCi_MISC MSR

The MO_MISCMSR cortains additional information describingthe maclhne-checlerra if the
MISCV flag in the MG STATUS registeris set This register is notimplemenéd in ary of the
erra-repating regider barks for the B family procesors.

13.3.3. Mapping of the Pentium ®Processor M achine-Check Errors
to the P6 Family Machine -Check Architecture

The Pemium® processoraports madine-check erors wsing two regsters: P5_MCTYPE and
P5 MC_ADDR. The P6 family processrs map these régters into the MC STATUS and
MCi_ADDR registers ofhe eror-reporting register bark that reports onthetype d exernal us
errasrepatedin theP5_MC _TYPE andP5_MC_ADDRregisters. The irformation in these
registers can timebeaccesed ineither d two ways:

®* By readingthe MCi_STATUS and MG _ADDR registers agat of a gereralized machie-
checkexcepion handlerwrittenfor a P6 émily processr.

®* By readingthe B5_MC _TYPE ard P5_MC_ADDR registerswith the RDMSR instruction

The secod access caiility permits a machme-check excegtion handler writtento run on a
Pentium® procesar to be run on a P6family proces®r. There isalimitation in that information
returred ty the P6 &mily procesor will be encoed differently thanit is for the Pentiurfi
procesa. To run the Pertium® processomachire-checkexceptionhardler on a P6 family
procesar, it must be rewritterto interpret the PS5 MC_TYPE regiser encodings correctly.

13.4. MACHINE-CHECK AVAILAB ILITY

The macime-chek architectue ard maclhne-check exception (#MC) are modl-specific

features. Software can exetaithe GPUID instruction to determine whethea pracesorimple-

ments these feattes Foll owing the execttion of the CRJID instruction, the ttingsof the MCA

flag (bit 14) andMCE flag (kit 7) in the EDXregister indcatewhether the ppcesorimplements
the macine-cteck arclitecture ard macline-cteck exeption, respectively

13.5. MACHINE-CHECK INITIALIZATIO N

To use the prcessrs machine-tieck artitecture, software mastinitialize the pocessr to acti-
vate the madine-checkexceptionand theemor-repotting mectanian. Exampe 13-1 gives
pudaodefor performing this initializaion. This pseudcode checls for the exstenceof the
machire-checkarchitectue andexcepion on the procesor, then enaltes the maclne-check
exceptim andthe erra-reporting register baks. The geudocale assmesthat the machire-
checkexcepion (#MC) hander hasbeeninstalledon the system This initialization procedire
is conpatible with the Petium® andP6 family pracesors.
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Example 13-1. Machine-Check Initi alization Pseudo code

EXECUTE the CPUID instruction;
READ bits 7 (MCE) and 14 (MCA) of the EDX register;
IF CPU supports MCE

THEN
IF CPU supports MCA
THEN
IF MCG_CAP.MCG_CTL_P =1 (* MCG_CTL register is present *)
Set MCG_CTL register to all 1s; (* enables all MCA features *)
FI;
COUNT « MCG_CAP.Count;
(* determine number of error-reporting banks supported *)
FOR error-reporting banks (1 through COUNT) DO
Set MCj_CTL register to all 1s;
(* enables logging of all errors except for the MCO_CTL register *)
oD
FOR error-reporting banks (0 through COUNT) DO
Set MC/_STATUS register to all 0s; (* clears all errors *)
oD
FI;

Set the MCE flag (bit 6) in CR4 register to enable machine-check exceptions;
Fl;

Theprocessr canwrite valid information (suchas anECC error) into theMCi_STATUS regis-
ters while it is being poweredup. As part of theinitialization of the MCE excepion handler, soft-
ware mght examne all tre MCi_STATUS registersandlog the conerts of them thenrewrite
them all to zercs. This procedure is rot included in the initiali zation pseudocode in Exanple
131.

13.6. INTERPRETING THE MCA ERROR CODES

Whenthe praesso detecs a nachire-checkerror cordition, it writesa 16bit error codein the
MCA Error Cade field of one ofthe MCi_STATUS registersandsetsthe VAL (valid) flag in
that register The pocessr may also writea 16-bit Model-specific Erra Code in the
MCi_STATUS register dependng on the implemeation of the machinesheck archectue of
the pocessar

The MCA errar codesare architectually definedfor Intel Architecture proesors; howeve, the
specific MG_STATUS register thata coek is written into is model specific. To detemine the
cause ba machineeheckexception themachineeheckexcepion handlermust reaghe \AL
flag for each M@ _STATUS registerand if the flag isset,then read the M& eror cale field
of the registerlt is the excodng of the MCACOD value that detanines he type é erra beirg
reportedandnot the register bark reporting it.

There are twaypes ofMCA error codes: gnple erra codes anccompmund eror codes.
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13.6.1. Simple Error Codes

Table 13-1 shows thesimple errar codes. Thee wique codes indicate dobal eror information

Table 13-1. Simple Error Co des

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM Parity 0000 0000 0000 0010 Parity error in internal microcode ROM

Error

External Error 0000 0000 0000 0011 The BINIT# from another processor caused

this processor to enter machine check.

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check)
master/slave error

Internal Unclassified 0000 01XX XXXX XXXX Internal unclassified errors

13.6.2. Compound Error Codes

The compurd erra codesdescribe erros related to the TLB, memoy, cacles bus andinter-

conrect logc. A set ofsubfields iscomman to all of thecompmund eror encalings. These sub
fields describ¢he type d access, leveh thememay hierarcly, andtype of request Table 13-2
shows the gneral brm of the conpound erra codes. Theinterpretation column indicatesthe
name of acompound err@. The name icongdructed by sigituting mnemorics from Tables
13-2 thraugh13-6 for the aib-field nanes given within curly braces. For exanhg, the error coce
ICACHEL1 RD _ERRis cangructedfrom the fam:

{TT}CACHE{LL} {RRRR} ERR
where{TT} isreplacedby |, {LL} is replacedy L1, and{RRRR} is regacedby RD.

The 2bit TT subfield (referto Table 13-2) indicates the typof transactn (data, instruction
or gereric). It apgies b the TLB, cacheand intercomect erro condtions The geneic typeis
repated when theprocesorcanna determire the trasactiontype.

Table 13-2. General Forms of Com poun d Error Code s

Type Form Interpretatio n
TLB Errors 0000 0000 0001 TTLL | {TT}TLB{LL} ERR
Memory Hierarchy Errors 0000 0001 RRRR TTLL | {TT}CACHE{LL} {RRRR}_ERR
Eus and Interconnect 0000 1PPT RRRR IILL BUS{LL} {PP} {RRRR} {lI} {T} ERR
rrors
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Table 13-3. Encoding for T T (Transaction Type) Sub-Field

Transactio n Type Mnemonic Binary Encod ing
Instruction | 00
Data D 01
Generic G 10

The 2-ht LL subfield (refer to Table 13-4) indicatesthe level inthe memoy hierarcly where
theerroroccurred(level 0,level 1, level 2, orgeneic). The LL sub<ield alo appliestothe TLB,
cacte, ard intercanect eror conditions. The F6 family proces®rs support two levels in the
cache hierathy andone levelin the TLBs. Again, the gemric type is repated when the
processr canrot detemine thehierarcly level.

Table 13-4. Level Encoding for LL (Memory Hierarc hy Level) Sub-Field

Hierarchy Level Mnemonic Binary Encoding
Level O LO 00
Level 1 L1 01
Level 2 L2 10
Generic LG 11

The 4bit RRRR subfield (referto Table 13-5) indicatesthe tyge of action asociated with the
erra. Actions inclug read ad write qeratiors, prefetctes cade evictiors, ard snmps.
Generic errois returred when the type @firor canmt be determinedSeneric read andjeneric
write are eturned whenthe pocessr camot determinethe typeof instruction or daareques
that caused the mar. Eviction and Snoop reqieds applyonly to the caches. Albf the dher
requess aply to TLBs, caclesand interconrects

Table 13-5. Encoding of Request (RRRR) Sub-Field

Request Type Mnemonic Binary Encoding
Generic Error ERR 0000
Generic Read RD 0001
Generic Write WR 0010
Data Read DRD 0011
Data Write DWR 0100
Instruction Fetch IRD 0101
Prefetch PREFETCH 0110
Eviction EVICT 0111
Snoop SNOOP 1000
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The kus ard intercannect erras are afined with the 2-hit PP (participation), 1-bit T (time-aut),
and 2bit Il (memay or 1/0O) sub-fields in addition o the LL andRRRR sub-fields (refer to
Table 13-§. The b erra condtionsare mplementtion dependert andrelatedto the type of
bus implemeted by the preesor. Likewise, the interconecterror corditi ons are predicated on
a ecific implementatiordependent intercomect mo@l that desribes he conmctions
between the dirent levelsof the sorage hierachy. The tyge of bus is implementatiordepen
dent,andassuchis not specifedin this document. A hus orintercomect tragactionconsiss of
a reqiestinvolving anaddessard a esponse.

Table 13-6. Encoding s of PP, T, and Il Sub-Fields

Binary
Sub-Field Transaction Mnemonic Encoding
PP (Participation) Local processor originated request SRC 00
Local processor responded to request RES 01
Local processor observed error as third party OBS 10
Generic 11
T (Time-out) Request timed out TIMEOUT 1
Request did not time out NOTIMEOUT 0
Il (Memory or I/O) Memory Access M 00
Reserved 01
/0 10 10
Other transaction 11

13.6.3. Interpreting the Machine-Check Error Codes for External

Bus Errors
Table 137 gives adlitional information for interpreting the MCA erra code, modal-specific
erra code, ad other inbrmationeror code fieldsfor machire-checkerrors that occumon the

exterral bus. This informationcanbe usedto designamachire-checkexceptionhandlerfor the
procesorthat ofers greater ganudarity for theexternal lois erras.

Table 13-7. Encoding of the MCj_STATUS Register for External Bus Errors

Bit
No. Bit Function Bit D escri ption
0-1 MCA Error Undefined.
Code
2-3 MCA Error Bit 2 is set to 1 if the access was a special cycle.
Code Bit 3 is set to 1 if the access was a special cycle OR a I/O cycle.

4-7 MCA Error 00WR; W = 1 for writes, R = 1 for reads.

Code
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Table 13-7. Encodin g of the MCi_STATUS Register for Ex ternal Bus Errors (Contd.)

Specific Error
Code

Bit
No. Bit Functio n Bit Descripti on
8-9 MCA Error Undefined.
Code
10 MCA Error Set to O for all EBL errors.
Code Set to 1 for internal watch-dog timer time-out.
For a watch-dog timer time-out, all the MCACOD bits except this bit are set to
0. A watch-dog timer time-out only occurs if the BINIT driver is enabled.
11 MCA Error Set to 1 for EBL errors.
Code Set to O for internal watch-dog timer time-out.
12-15 | MCA Error Reserved.
Code
16-18 | Model- Reserved.
Specific Error
Code
19-24 | Model- 000000 for BQ_DCU_READ_TYPE error.
Specific Error 000010 for BQ_IFU_DEMAND_TYPE error.
Code 000011 for BQ_IFU_DEMAND_NC_TYPE error.
000100 for BQ_DCU_RFO_TYPE error.
000101 for BQ_DCU_RFO_LOCK_TYPE error.
000110 for BQ_DCU_ITOM_TYPE error.
001000 for BQ_DCU_WB_TYPE error.
001010 for BQ_DCU_WCEVICT_TYPE error.
001011 for BQ_DCU_WCLINE_TYPE error.
001100 for BQ_DCU_BTM_TYPE error.
001101 for BQ_DCU_INTACK_TYPE error.
001110 for BQ_DCU_INVALL2_TYPE error.
001111 for BQ_DCU_FLUSHL2_TYPE error.
010000 for BQ_DCU_PART_RD_TYPE error.
010010 for BQ_DCU_PART_WR_TYPE error.
010100 for BQ_DCU_SPEC_CYC_TYPE error.
011000 for BQ_DCU_IO_RD_TYPE error.
011001 for BQ_DCU_IO_WR_TYPE error.
011100 for BQ_DCU_LOCK_RD_TYPE error.
011110 for BQ_DCU_SPLOCK_RD_TYPE error.
011101 for BQ_DCU_LOCK_WR_TYPE error.
27-25 | Model- 000 for BQ_ERR_HARD_TYPE error.
Specific Error 001 for BQ_ERR_DOUBLE_TYPE error.
Code 010 for BQ_ERR_AERR2_TYPE error.
100 for BQ_ERR_SINGLE_TYPE error.
101 for BQ_ERR_AERR1_TYPE error.
28 Model- 1if FRC error is active.
Specific Error
Code
29 Model- 1if BERR is driven.
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Table 13-7. Encoding of the MCj_STATUS Register for External Bus Errors (Contd.)

MACHINE-CHECK ARCHITECTURE

Bit

No. Bit Function Bit D escri ption

30 Model- 1 if BINIT is driven for this processor.

Specific Error
Code
31 Model- Reserved.
Specific Error
Code
32-34 | Other Reserved.
Information

35 Other 1 if BINIT is received from external bus.
Information
BINIT

36 Other This bit is asserted in the MCi_STATUS register if this component has received
Information a parity error on the RS[2:0]# pins for a response transaction. The RS signals
RESPONSE are checked by the RSP# external pin.

PARITY
ERROR

37 Other This bit is asserted in the MCi_STATUS register if this component has received
Information a hard error response on a split transaction (one access that has needed to be
BUS BINIT split across the 64-bit external bus interface into two accesses).

38 Other This bit is asserted in the MCj_STATUS register if this component has
Information experienced a ROB time-out, which indicates that no microinstruction has been
TIMEOUT retired for a predetermined period of time. A ROB time-out occurs when the 15-
BINIT bit ROB time-out counter carries a 1 out of its high order bit.

The timer is cleared when a microinstruction retires, an exception is detected
by the core processor, RESET is asserted, or when a ROB BINIT occurs.
The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide
by 128 of the bus clock (the bus clock is 1:2, 1:3, 1:4 the core clock). When a
carry out of the 8-bit PIC timer occurs, the ROB counter counts up by one.
While this bit is asserted, it cannot be overwritten by another error.

39-41 | Other Reserved.

Information

42 Other This bit is asserted in the MCj_STATUS register if this component has initiated
Information a bus transactions which has received a hard error response. While this bit is
HARD asserted, it cannot be overwritten.

ERROR

43 Other This bit is asserted in the MCi_STATUS register if this component has
Information experienced a failure that causes the IERR pin to be asserted. While this bit is
IERR asserted, it cannot be overwritten.

44 Other This bit is asserted in the MCj_STATUS register if this component has initiated
Information 2 failing bus transactions which have failed due to Address Parity Errors (AERR
AERR asserted). While this bit is asserted, it cannot be overwritten.
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Table 13-7. Encodin g of the MCi_STATUS Register for Ex ternal Bus Errors (Contd.)

Bit
No. Bit Functio n Bit Descripti on
45 Other Uncorrectable ECC error bit is asserted in the MCi_STATUS register for
Information uncorrected ECC errors. While this bit is asserted, the ECC syndrome field will
UECC not be overwritten.
46 Other The correctable ECC error bit is asserted in the MCi_STATUS register for
Information corrected ECC errors.
CECC
47-54 | Other The ECC syndrome field in the MCj_STATUS register contains the 8-bit ECC
Information syndrome only if the error was a correctable/uncorrectable ECC error,
SYNDROME and there wasn't a previous valid ECC error syndrome logged in the
MCi_STATUS register.
A previous valid ECC error in MCi_STATUS is indicated by MCi_STATUS.bit45
(uncorrectable error occurred) being asserted. After processing an ECC error,
machine-check handling software should clear MCi_STATUS.bit45 so that
future ECC error syndromes can be logged.
55-56 | Other Reserved.
Information

13.7. GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE

Themachineeheckarchitectureanderrorloggng can beused intwo differert ways:

® To detect machine ermrs during normal instruction executia, usng the machne-cteck
exception (#MQ.

® To peridically checkandlog machineerras.

To use the rachine-beckexception the operatingsystem @ executivesoftware must provide
a machineeheck excetpon hander. This handler can be designexpecifically for P6family
procesasor be apartable handler that also handes Pentium® procesor machie-checkerrors.

A special pogramor utility is required to log machire erors.

Guidelines or writing a mahine-cleck exeptionhardler or a machine-eror loggng utility are
givenin the fdlowing sectons.

13.7.1. Machine-Check Exception Handler

The machineeheck exeption (#MC) comregonds to vector 18. To service madhe-check
exceptions, atrapgate must be addedto the IDT, ard the pointer in the trapgate must point to a
machne-checkexceptionhandler Two appoactes can be takeno designing the excefion
hardler:

® The hanller can nerely log all the machinestatus anderror information, then call a
debuggeror shut downthe gstem.

®* The hamler can aalyze the eported erra information and in some casesattempt to
carect theerrar andrestart the pcessar
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Virtually all the maclne-check canditions detectedwith the P6 family processrs caniot be
recowered fom (theyreailt in abat-type exceptios). Thelogging of status ad eror informa-
tion is thereore a badline implementation. Refer to Section 13.7., “Guidelines for Writing
MachineCheckSoftware” for moreinformation o logging erras.

For future P6 fanily processor implemeations, where recoery may be pesible, the following
things shald be corsidered whenwriting a machie-checkexcepion hardler:

To determine the natte of the eror, the haudler must read eachf the eror-reporting
regster kanks The coun field in the MCG_CAP regster gvesnumber of register barks.
The first regster of regster bank 0 is ataddess400H.

The VAL (valid) flag in each MCi_STATUS regisér indicates whether the ermo
information in the registeris valid. If this flag is clearthe registers in that bark do nat
cortain valid erra informationanddonot reed tobe clecked.

To write a portalde excepion hander, only theMCA error cock field in the MCi_ STATUS
regster shailld be clecked Refer to Secion 136.,“Interpreting the MCA Ertor Codes for
information that can le used towrite an algrithm to interpret this field.

The RIPV, PQC, and OVERflags in each M€ STATUS register indicate whether
recovery from theerroris possble. If either of these fields iset, recovey is nd possble.
The OVER field indicatesthat two ormore maclkne-che& erra occured. \When receery
is not passible, the hadler typcally recods the erra information anl signals an abud to
the geratirg sysem

Correctederrors will hawe been caected autmatically by the pre@esor The UC flagin
each MG _STATUS register indicatewhether the preesor auomatically corected the
error.

The RPV flag in te MCG_STATUS register indicateswhether the pogram can b
restartecat the irstruction painted toby the instruction pointer pushed on the stackwhen
the excefion was gnerated If this flag is clear the pracessr may ill be ade to be
regarted (for dehuggng purposes),but not without loss of program cantinuity.

For unrecoveralle erors, the EIPV flag in the MG_STATUS register indicateswhether
the instruction pointedto by the instruction pointer pushed on the gackwhenthe excetion
wasgererated s relatedto the erra. If this flagis clear the pushed instruction may not be
relatedto the eror.

The MCP flag in the MCG_STATUS regiser indicates whether a machine-check
excefpion was genested. Before retuning from the madine-check exceptionhardler,

sdtware stould clearthis flag so thatit can be usedrelially by anerror logging utility . The
MCIP flag also detectsrecusion. The machine-cleck arclitectue does not suppat

recusion. When the processor dects machia-checkrecusion, it enters he sutdovn

stae.
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Exanple 132 gives typical steps caedou by a machie-checkexceptio hardler:

Example 13-2. Machine -Check Exception Ha ndler Pseudoc ode

IF CPU supports MCE

THEN
IF CPU supports MCA
THEN
call errorlogging routine; (* returns restartability *)
FI;

ELSE (* Pentium(R) processor compatible *)
READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;
Fl,
IF error is not restartable
THEN
report RESTARTABILITY to console;
abort system;
Fl,
CLEAR MCIP flag in MCG_STATUS;

13.7.2. Pentium®Processor Machi ne-Check Except ion Handling

To malke the macine-cteck excetion hander potable to the Pentiurfiand B family proces
sors, cheks can I made(usingthe CPUID instrudion) to determire the pocessr type. Then
basedn the piocessr type, mactine-checkexcepions carbe randledspecifically for Pentiun®
or P6family processrs.

When machinesheck excefions are enaled for the Pentiun® processr (MCE flag is sé in
cortrol regster GRO), the macme-cteck excefion hardler uses the ®MSR instruction to read
the eror type fom the P5_MCTYPE regster an the nachine clkck adiressfrom the
P5_MC_ADDRregister The hauller then nomally repotts these registevaluesto thesystem
corsole befare abating executim (refer toExampe 132).

13.7.3. Logging Correctable M achine-C heck Errors

If a maclne-check eroris correctake, theprocesordoes ot generate anachire-checkexcep
tion for it. To detect correctable mehine-cleckerrors, a uility programmust be witten that
reads each ofthe machineeheck eror-reporting register bank and logs the results in an
accainting file or data gructure. THsutility canbeimplemenedin either o the following ways:

* A system chemonthat polls the register barks on aninfrequen bass, swch ashouly or
daly.
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* A userinitiated application that pdls the regster kanks and record the exceptions. Here,
the actuabolling service is provided by an gerating-system driver or thtrough the system
call interface.

Exarmple 13-3 gives psewdocode for anerror logging utility .

Example 13-3. Machine-Check Error Log ging Pseudoco de

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers
DO
READ MC/_STATUS;
IF VAL flag in MC/_STATUS =1
THEN
IF ADDRYV flag in MC/_STATUS =1
THEN READ MCj_ADDR;
Fl;
IF MISCV flag in MC/_STATUS =1
THEN READ MCi_MISC;
FI;
IF MCIP flag in MCG_STATUS =1
(* Machine-check exception is in progress *)
AND PCC flag in MC/_STATUS =1
AND RIPV flag in MCG_STATUS =0
(* execution is not restartable *)
THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;
Fl;
Save time-stamp counter and processor ID;
Set MCi_STATUS to all Os;
Execute serializing instruction (i.e., CPUID);
FI;
OD;

Fl;

If the pracesso supports the machine-checkarchtecture, the utility reads through the kanks of
erra-repating registers looking for valid register ertries, ard then saves the valies of the
MCi_STATUS, MG_ADDR, MCi_MISC andMCG_STATUS regsters foreachbankthat is
valid. The raitine minimizeprocesingtime byrecading theraw data into asystem datatruc-
ture or file, reducing the overhead assciated withpolling. User ulities amalyze the wllected
data inan off-line ervironmert.

When the MCIP flag is set inthe MOG_STATUS regiser, a maclne-checkexceptionis in
progressand the mackme-chreck excepion hardler has called the egeption loging rouine.
Once the loging process haseen comleted the egeptionhanding routine must deternine
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whetherexecutioncanbe estarted which is wsually passible when dimagehas mt occurred
(The PCC flag isclear in the MG_STATUS register) andshen the pocessr can garantee that
exection is restartable (tle RIPV flag issetin the MCG_ STATUS register). If execuion canrot
be restarted, theystem isnot recoerable andhe excetion-handlingroutine $iould signal the
corsole appopriately before returning the error stitus to the Operating System kenel for subse-
quentshutdown.

The macime-checkarchitecture allowsbuffering of exceptions froma giveneror-repotting
bark althoughthe P6family procesasdonotimplementhisfeatre. Theerra logging routine
should provide campatibility with future processrs by readng eachhardware eror-reporting
bark’s MCi_STATUS regster andthenwriting 0s to clearthe OVER an VAL flags in this
register The eror logging utlity should rereadthe MCi_STATUS regster for the bak
ensuing that the validhit is clear The pocessr will write the nex error into the register bda
andset the VAL flags.

Additional information that slould be stared by the exepion-logging routine includes the
processr’s time-stamp conter \alue, which povidesa mechanism to inidate the frequency o
exceptions. A multi processing operatirg systemstaresthe idertity of the processo node incur-
ring theexcepion using a unigue idertifier, such asthe piocessr’s APIC ID (refer to Secton
7.5.9., “Interrupt Destination and APIC ID").

The lasic agorithm given in Exanple 133 can bemodifiedto provide mae rohust recovey
techiques. For exanple, sdtware has the fexibility to attenpt recowery usng information
unavailableto the hardware Specifically the machinesheck exceptio handler can, after
logging carefully analyze tk erra-reporting registers when therra-logging routine repets an
errar that doesot allow execution to be restarted. & recwery techriques can usexternal
bus related model-sgecific information provided with the eror report to localize the source of
the eror within the system ahdetemine theappopriate recovey strategy
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CHAPTER 14
CODE OPTIMIZATION

This chapter desribesthe more importart code optimization techiques for htel Architecture
procesarswith and without MMX ™ tecindogy, as well aswith andwithout StreamingSIMD
Extersions The chapter begins with gereral code-optimization guidelines aml cortinues witha
brief overview o the more importart blenrdedtecmiquesfor optimizing integer, MMX ™ tech-
nology, floating-point, ard SMD fl oating-point code. A canprehensve dscussion d cade ofi-
mizationtecmiquescan ke foundin the Intel Architecture Ogimization Manual, Order Numier
242816.

14.1. CODE OPTIMIZATION GUIDELINES

This sectbn containggeneral guialines for optimizing applicationscode, aswell as specific
guidelines for optimizing MMX™ | floating-point, ard SIMD floaing-point code. Devebpers
creatng apgicaions that use MMX™ andbr floating-point instructions shoud apply the first
set of gudelines inaddition tothe MMX™ andor floating-point code gtimization guidelines.
Devebpers creaing applicaionsthatuse SMD floating-point cade $1oud aply thefirst setof
guidelines aswell as te MMX™ andor floating-point code gotimization guidelines in addi-
tion to the SIMD floating-point code qgotimizaion guidelines.

14.1.1. General Code Optimi zation Guide lines

Use the following guidelinesto optimize cod to run efficiently acioss several fanilies of Intel
Architecture proesors:

® Use a cumnt gerration ompiler that prauces ofimized co@ to insue that eficient
coce isgeneated from te start of code development

® Write cock that carbe gtimized ty the @mpiler. Forexamjpe:
— Minimizethe use bglobal vaiades pointers, andcomplexcortrol flow statements.
— Do notusethe “regster” modifier.
— Use the “cost” modfier.
— Do notdefeatthe typing system
— Do notmake ndirectcals.

— Use minimum dzes br integer ard floating-point data types to erable SIMD paral-
lelism.

I 14-1



CODE OPTIMIZATION Int9|®

® Payattertion to the brarch predction algorithm for the target processr. This optimization
is particularly important for P6family procesas. Code that optimizes brach predct-
ability will sperd fewerclocks fetching instructions.

® Take ad/artage of the SIMD capmhbilities of MMX™ techrology and Streanng SIMD
Extensons

® Avoid partial regster stdb.

® Align all data.

® Orgarize codeto minimize irstruction cacte misgs andoptimizeinstruction prefetches
¢ Schedile cock to maximize paiing on Pentium® processrs.

* Avoid prefixed opcodesother than OFH.

® When psdble, load am sbre data tdahe sme area ofmemoy usingthe ssme data stes
ard adlress alignrants that is, aeid small Iads aftedarge stores tdhe samearea
menory, ard awid lamge loads aftesmall stores to th same area & menory.

® Use sdétware pipelining.

® Alwayspar CALL and RET (return) instructions.
* Avoid =if-modifying mde.

®* Do not dace data ithe cod segment.

® (Calculate sore addes®s as soomspossble.

®* Avoid ingtructions that contiin 4 ormore micro-ops orinstructions tat are moe than 7
byteslong. If possible, u® instructionsthat requre 1 micro-op.

® C(Cleanse partial reégiers bebre caling callee-save qpcedires.

14.1.2. Guidelines for Optimi zing MMX ™ Code

Usethe following guidelines tooptimize MMX™ code:
® Do not intermix MMX™ instructions and floating-point instructions

® Use theopcode reg, mem instruction format wheneverpossible. This fonat hels to free
registers awl recduce claks without generatingumecesary loacks.

® Put an EMMS inguction at the ed of all MMX™ coce secions that you know will
transtion to floating-point coce.

® Optimize dta cache andwidth to MMX™ registers.

14.1.3.  Guideline s for Optimizing Floating- Point Code

Use tte following guidelines tooptimize floating-point cock:
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® Understand how he comppler handlesfloaing-point coce. Look at the asembly dump and
see what transfars are alreadyperfamed on the pogram. Stug the lo@ nestsin the
apgication that @minatethe exection time.

®* Determine whythe conpiler is not creating the fasst code. For exanlp, look for
dependences that cabe resoled byrearangirg code

® Look for ard carectstuationsknown o cau slow executon of floaing-oint cade, sich
as:

— Largememory bandwidth requirements.
— Poor cacte locality.
— Long-latency floaing-point arithmeic operatons

®* Do not usemore recigon than is necessy. Single pecidon (32-bits) is faster onsome
operations ancconsumes onlyhalf the memory space as daible precsion (64-bits) or
double exended(80-hits).

® Use aibrarythat povides fasffloating-point to integer rodines. Mauy library routines do
more wok thanis necesary

* Insure whermver msdble that conpuations stay in range. Out ofrang nunbers cause
very high overhead.

® Schedude coce in asemity language sing the FXCH instruction. When possible, unoll
loops andpipeline cale.

* Perfam trarsformatiors to improve memoy access patterns. &sloop fusion or
conpresson tokeepasmuch d thecomputation in the cack aspossble.

®* Break apencencychains.

14.1.4. Guidel ines for Optimizi ng SIMD Floating-point Code

Gererally, it is importart to understam andbalance pat utilization to create dfcient SIMD
floating-point code. U the following guidelines tooptimize SIMD floating-point code:

¢ Baance the limitations ofhe achitecture.
® Schedule instructionsto resdve degndercies.
® Schedule uilization of the tiiple/quadruple rule (pat O, pat 1, port 2, 3, and4).

® Grouw instructons that uili ze the ame regstersas cleely as ssibe. Take into consider-
ationthe reslution of truedepemencies

* Intermix SIMD-fp operatians thatutili ze port 0 ard port 1.
* Do not issue corsecuive instructions that tilize the same port.

® Usethe recipraal instructions followedby iterationfor increagd accuracy These instric-
tions yield redued accuacy but execie much faser. If reducedaccuacy isaccepeble,
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use them with noiteration. If near ful aacuracyis needed,use a NewtorRaphson
iteration If full acculcy is neededhenuse divideand sqare rot whichprovide mae
accuacy bu dow downperformance.

® Exceptiors: mask exceptionto achiee higher performance Unmagked excefions may
cause areduction inthe retiremenrate.

® Utilize the flush-to-zer mode for higher perfornance toawoid the perlty of dealng with
denomals ard undeflows.

®* Incomorate the preetch instructionwheneer pasible (for details, refer to Chapter 6
“Optimizing Cache Utilzation for Perium® Il processrs’).

®* Try to emulate caditional moves by masked cmpares andogicals instead ofusng
conditional jumps.

® Utilize MMX™ techology instructions if the canputations can ke done in SIMD-integer
or for shuffling data a copying datathatis not used later in SIMD floating-point computa-
tions

* If the algrithm requiresextended pecigon, then cowerdon o SIMD fl oaing-point code
is na advised lkcause the SIMDOdating-point instructions are singlgrecision.

14.2. BRANCH PREDICTION OPTIMIZATION

The P6family and Pertium® processrs provide dyramic brarch prediction wsing the brarch
target buffers (BTBs) on he procesas. Underganding the flow of banchesand mproving the
predctahility of branches carincrease cde execution speedsignificantly.

14.2.1. Branch Prediction Rules

Three elements alyramic banchpredction areimportant to undestand

® If the instruction address is nat in the BTB, execuion is predcted to cortinue without
branching (fall through).

®* Predctedtakenbrarches hag a 1 clak delay.

®* The BTB stores afour-bit history of brarch predictions on Rentium® Pro processrs, the
Pertium® Il processr family, ard thePentium® 11l processr.

® The Petium® Il and Pentium® 111 processr’s BTB pattem mathesonthe drection of the
last faur brarchesto dynamically predct whether a branch will be taken.

During the procesof instruction prektch, themstruction addess of acondtional instruction is
checkedwith the erriesin the BTB. Whenthe adiressis nat in the BTB, execuion is predcted
to fall through to the nex instruction.

On P6family procesors, banclesthat donat hawe a historyin the BTB are pralicted sing a
static predction algorithm. The satic predction algorithm doesthe fdlowing:
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® Predcts wnconditiona brarnches tobe talen.
® Predcts backwerd corditional branctes tobe talen. This rue is sutable for loops.

* Predicts foward caditiona brarches to b not taken

14.2.2. Optimizing Bra nch Predictions in Code

To optimize branch predictiors in an aplication cale,applythe fdlowing techmques:

®* Reduce or eliminatéranches(seeSection 14.3, “Eliminating and Reducingthe Numler
of Branches”).

® Insure that each G\LL instruction hasa matchingRET instruction. The B family of
processrs have a retun stackbuffer that keepstrack of the tamget addessof the next FET
instruction. Do not use pops and jumps to return from a CALL instruction; always use the
RET instruction.

®* Do nat intermingle data with instructions in a cale £gmert. Uncorditional jumps, when
not in the BTB, afe predcted to be not taken If dat follows aunconditional branch the
datl mightbe ftched,causngthe lossof instruction fetch cyclesandvaluabe instruction-
cache space. Wéndata must be storedin the code egment, mowe it to the endwhere it
will not be inthe instruction fetch stream

® Unrall all very short loops Loopsthat execut for lessthan 2clockswage loop overhead

® Write cock to follow the shtic prediction algorithm. The datic predicton algorithm
follows the ratural flow of program code Fdlowing this algorithm redwces he nunber d
branch migredictiors.

14.2.3. Elimina ting and Reducing the Numbe r of Br anches
Eliminatingbrarches imprees praesor peformance ly:

® Removing the possibility of branch mispredictions

® Redicing the number o BTB ertries requred.

Brarnches can be eliminatday usingthe SETec instruction, o by using the B family proces-
sas conditionalmove CMOVec or FCMOVec) instructions.

The following C codeexampé shows condtionsthat aredepemlert upan on of the congants A
and B:

/* C Code /*
ebx=(A<B)?Cl:C2

This code conditionally compares he valuesA and B. If the candition istrue, EBX is setto C1,
othemwise it is set to C2. The asembly-langwage equivalent of the C codeis shownin the
exampe below:

; Assembly Code
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cmp A B ; condition
jge L30 ; conditional branch
mov ebx, CONST1
jmp L31 ; unconditional branch
L30:
mov ebx, CONST2
L31:

By replacingthe JGE instructionasshownin the previous example with a &Tec instruction,
the EBX register § set to either C1 or C2. Thiscode canbe optimized to eiminatethe banches
asshown in the fdlowing cale:

xor ebx, ebx ;clear ebx
cmp AB
setge bl ;Whenebx=0or1

;OR the complement condition
dec ebx :ebx=00...00 or 11...11
and ebx, (CONST2-CONST1) ;ebx=0 or(CONST2-CONST1)
add ebx, min(CONST1,CONST2) ;ebx=CONST1 or CONST2

Theoptimizedcode sets register BBto 0 then canpares A andB. If A is greater tharor equal
to B thenEBX is st to 1. EBXis then decreranted andANDed with the difererce of the
corstant \elues. This sts EBX to either O o the dfference 6 the alues By adling the
minimum of the twocorstantsthe carect value iswrittento EBX. WhenCONST1or CONST2
is equal to zerq the lastinstruction can ke deletedas the correct vale alreag has been written
to EBX.

When ABS(CONST1-CONST2)is 1 of {2,3,5,9, the following exampe appies:

xor ebx, ebx
cmp A, B
setge bl ; or the complement condition

lea ebx, [ebx*D+ebx+CONST1-CONST2]
whereD standsfor ABS(CONST1- CONST2)- 1.

A secondway © remove brarcheson B family procesas is to use the new CMO\&c ard
FCMOVecinstructions. The fdlowing exanple shovs how to use the ®1OVec ingtruction to
eliminate the tanchfrom a st andbrarch instructionsequence.If the test sts the eqd flag
thenthe \alue inregister EEX will be maedto register EAX. This branchis data @épendent,
andis representative foa wnpredictable banch

test ecx, ecx

jne 1h

mov eax, ebx
1h:

To changthe co@, the NE and the MDV instructionsare combinedinto one @10OVecinstruc-
tion, which checks the egal flag Theoptimizedcode is showibelow:

test ecx, ecx ; test the flags
cmovegeax, ebx ; if the equal flag is set, move ebx to eax
1h:

14-6 I



Intel® CODE OPTIMIZATION

The lakel 1h: is no longer neeckd unless it is the target o andher branch instruction. These
instructions will gererate invalid opcodes whenused o previous gereration Intel Architecture
procesors. Therefae, wse the CPUID instructionto check featue bit 15 of the EDX reggster,
which wten set inttates peerce ofthe MOVecfamily of instructions Do notuse the family
andmodel codes rettnedby CPUID to test forthe pesence o$pecific featues

Additional information on branchoptimization canbe faind in the Intel Architecture Ogimiza-
tion Manual.

14.3. REDUCING PARTIAL REGISTER STALLS ON P6 FAMILY
PROCESSORS
On P6family processrs, whena large (32-bit) generalpurmpose egister is readimmediately

after asmall regiger (8 or 16-bit) thatis cortained in the large regsterhasbeenwritten, the
readis staled urtil the write retires (a mimum o 7 clocks).Consider the example lelow:

MOV AX, 8
ADD ECX, EAX ; Partial stall occurs on access of
; the EAX register

Here, te first instruction moves the value 8into the gmall regster AX. The rext instruction
acceses the lage register EAX. This coe sequene resultsn a partia regiser stall.

Pentium® ard Intel486™ procesas donot generate tis dalll.

Table 141 liststhe gioups of small regstersard their correspndng large register for which a
partialregister stall canoccur For example, writhg to regster BL, BH, or BX and sibsequetty
readng regider EBX will result in a stall.

Table 14-1. Small and Large General-Purpos e Register Pairs

Small Registers Large Registers
AL AH AX EAX
BL BH BX EBX
CL CH CX ECX
DL DH DX EDX
SP ESP
BP EBP
DI EDI
Sl ESI

Because the P6 family proesols can execte code ou of order, the instuctions need ot be
immediately aghcent fa thestall to occur The following example also cdmins a patial stall:

MOV AL, 8
MOV EDX, 0x40
MOV  EDI, new_value
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ADD EDX, EAX ; Partial stall occurs on access of
; the EAX register

In addition, any micro-ops thatfollow the stalledmicro-op will also wait urtil the clock cycle
after the stlled micro-op coniinuesthrough the pipe. In geeral, to awid dalls, do notread a
large regster after writinga gnall regiser that is cotained inthe laige regster.

Specialcases of writing andreadingcorrespading small andlarge regsters have beemple-
mertedin the P6family procesas to simplify the blendng d code aarss piocesa genea
tions. The special casdaclude the XORard SUB instructions whernusing EAX, EBX, ECX,
EDX, EBP, ESR EDI and ESI asshown inthe fdlowing examples

xor eax, eax
movb  al, mem8

add eax, mema32 ; no partial stall
xor eax, eax

movw  ax, meml6

add eax, mem32 ; o partial stall
sub ax, ax

movb  al, mem8

add ax, mem16 ; no partial stall
sub eax, eax

movb  al, mem8

or ax, meml16 ; ho partial stall
xor ah, ah

movb  al, mem8

sub ax, mem16 ; o partial stall

In general, whenimplemenrting this sequernce, alwayswrite all zerosto the laige regiser then
write tothe laver haf of the regiser.
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14.4. ALIGNMENT RULES AND GUIDELINES

The fdlowing secion givesrules and guidelines for aligning of code ad datfor optimum coce
executim speed.

14.4.1.  Alignment Penalties
The following are canmonperelties foraccesss to nisaligneddata o code:
® On aPentium® procesor, a msalignedaccessosts 3clocks.

®* On aP6 family processara misalignedicces that cosss a cach line baundary cogs 6to
9 clocks.

®* On aP6 family preesor, unaligred acceses that cawse a data cacle split swll the
processr. A data cachesplit is a memay acces thd crossesa 32byte cacheline
boundary.

For best performarce, male sure tlat data structes andarrays greaterthan32 bytes, ag 32
byte algned ard that accesgatterngo data $ructuresard array do not breakhe alignnent
rules

14.4.2. Code Alignment

The P6 family and Pentiurfi processors have @acte line sze of 32 byes. Snce the preétch
buffers fetch on 16-byte boundaries, code algnmenthas a drectimpacton prefeth buffer effi-
ciency

For optimal perbrmance acres thelntel Architectue family, it is reconmended that:

®* Aloopertry label stould be 16-byte aignedwhen i is less than 8 byesaway fran that
boundary.

® Alabel thatfollowsa canditional branch stould not be aligned

® A label that follows an uncorditional brarch a function cal should be 16-byte alighed
whenit is lessthan 8bytes awayfrom that baindary.

14.4.3. Data Alignme nt

A misaligned access in théata cacher on thebus costsit leas 3 extra claks onthe Pentiurfi
procesor A misalignedaccessn the data cache, which crossesacte line baundary, costs 9
to 12 docks on the P6 family processes. It is recanmended that data be aligied on the
following boundaries fa optimum code executon on all processrs:

® Align8-bit data onanybouwnday.

® Align 16-bit data tobe cantainedwithin an aligned4-byte word.
® Align 32-bit data an arny boundary that isamultiple of 4.

® Align 64-bit data an arny boundary that isamultiple of 8.
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® Align 80-bit data ona 128-bit boundary (that is, any boundary that is a multiple of 16
bytes).

® Align 128bit SIMD floating-point data ona 18-hit boundayy (that is, anyboundaly that is
a multiple of 16 bytes).

14.4.3.1. ALIGNMENT OF DATA STRUCTURES AND ARRAYS GREATER
THAN 32 BYTES

A 32-byte a greater dta stucture orarray shaild be aligred such thatthe keginning of each
structureor aray elemehnis aligned on a 2 byte bowndaly, andsuch that eaclstructure @ array
element des na cross a 3zbyte cache line bundag.

Does ths general dscussion adequately cover the differencesbetween8, 16.and 32 bit
alignments?

14.4.3.2. ALIGNMENT OF DATA IN MEMORY AND ON THE STACK

On the Rentium® processaraccessig 64-bit variables hat are not 8-byte aigned will cost an
extra 3 clocks. On the P6family processes, accedsg a 64-bit variable will cause a dtacacle
sdit. Sane commercial compilers donat align double precison variales a 8-byte baindaries.
In such cases, theflowing techiquescanbeused to érce optimum alignment ofdata:

® Use satic variables instadof dynamic (stackyariales.
®* Use inlineasenbly code that explicitly aligns data.

®* InC cale use “malloc” to explicitly allocate variakes.
Thefollowing setionsdegribe these échmiques.

Static Variables

When a conpiler allocatestack space fora dyramic varialbe, it may na align the \ariable (see
Figure 14-1). However in most cass, when the gopiler allocatespace in meny for static
varialles the variablesarealigned
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static float a;
float b; b
static float c; b
Stack
a
Memor
y c

Figure 14-1. Stack and Memory Layout of Static Variables

Alignment Using Assenbly Language

Use in-line asembly cock to explicitly align variables. The following exanple alighsthe staick
to 64-hits.

; procedure prologue

push ebp
mov esp, ebp
and ebp, -8
sub esp, 12

; procedure epilogue
add esp, 12
pop ebp

ret

Dynamic Allocation Using MALLOC

Whenusing ¢/rnamic allocation, check that tie compler aligns dodleword or quadvord values
on 8byte bourdaries. If the canpiler daesnot implement this afjnmen, then use the following
techniqie to align daublewads andguadwords for optimum coce exection:

1. Allocat memay equalto the gze ofthe aray or sructureplus 4 bytes
2. Use “bitwise” ard tomake sue that the anayis aligned, for example:

double a[5];

double *p, *newp;

p = (double*)malloc ((sizeof(double)*5)+4)
newp = (p+4) & (-7)
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14.5. INSTRUCTION SCHEDULING OVERVIEW

On all Intel Architecture pocessrs, te scheduling of (arrangement of) instructions in the
instructionstream can hava sgnificant afect on the executiorspeedof the processarFor
exanple, when execting code ora Pentiun® or later Irtel Architecture processr, two 1-clock
instructions that do not hawe register or dat dependercies betveen hem can genelly be
exected inpa@ll el (in a shgle clock) if they ae pared—placedhdjacento one anotherin the
instructionstream. Likewisea longlatency instructiorsuchasa floatingpoint instruction can
often be exectedin parallel witha segence of 1-clak integer insructions or storterlatency
floating-point instructions if the ingructions are sclduled appropriately in the indruction
stream.

The following sections describe two aspects of scheduling that can provide improved pefor-
mancein Intel Architectureprocessars: pairing andpipelining. Pairing is generall y usedto opti-
mize the execution of integer andMMX ™ instructions; pipelining is generally used to optimize
the exection of MMX™ ard floating-point instructions.

14.5.1. Instruction Pairing Guide lines

The microachitecture ér the Pentiurfi family of procesars (with ard without MMX ™ tech
nology) cortaintwo instruction executiorpipelines: the U-jpe andhe \fpipe.These pipelines
are capale of execting two Intel Architecture instructios in parallel (during the sime clock
or clocks) if the twoinstructions arepairable. Paralde instructions are those instructions that
whenthey appear agacert to one arother in the instruction sream will rormally be executedin
parlel. By orderinga code se@nce so that whewer mssble paiable instuctions occu
sequetially, cade canbe @timized totake adwantageof the Rentium® processr’s two-pipe
microarchitecture.

NOTE

Pairing of instructions improves Pertium® procesor performance signif
cartly. It does rot slow am sometimes improves theperformance of P6
family procesas.

The fdlowing subsecionsdegribe he Petium® processr pairing rulesfor integer, MMX ™,
ard, floating-point instructions. The pairirg rules are graped into types asfollows:

® General giring rules
® Integer instruction pairing rules.
® MMX™ jnstruction pairing rules.

® Floating-point instruction pairing rues.
145.1.1. GENERAL PAIRING RULES

The following are gereral rulesfor instruction pairing in code written to run on Pertium®
procesas:
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® Unpairable instructiosare always exeted inthe U-pipe.

® For pairedinstructionsto executein parallel, he firstinstruction of the pair must fall on an
instruction boundary that forcesthe instruction to be executd in the U-dpe. The fdlowing
placenents of an instruction in the nstruction gream will force an instuction to be
execuedin the U-pipe:

— If thefirst instruction of a pair of pairabbe ingructions is the first instruction in a Hock
of cade, tre first instuction will be exectted in the U-pipe andthe secod of the fair
will be executed inthe V-pipe, reslting in parallelexecttion of the twoinstructions.

— If the first ingtructon of a pair of pairabe instructions follows an unpairabe
instruction in the instruction stream the first of the pairable instructions will be
execued in the U-pipe ard the scord of the pair in the V-pipe, resiting in parallel
execution

— Afterone pair of instructions hasbeenexecuedin parallel, sibseqent pairs will also
be executedin parallel until an unpairable indruction is ercountered

® Parallel eecuion of paired instructionswill not occur if:
— The rext two instructions are rot pairable instructions.

— The rext two instructions have sme type of regster cotention (implicit or exdicit).
There are some special exceptidsee “Special Birs’, in Section 4.5.1.2,, “Integer
Pairing Rules’) to this rue where r@ister contenton can @cu with pairing.

— Theinstructions are not kb in the instuction cacle. An exceptiorto thisthat pernits
pairing is if the first instruction is aone byte instruction.

— The procesa is opesting in single-stepmock.

® Instructions that have dta depeencies shoud be ®paraed by at least one oher
instruction.

® Penium® procesas without MMX™ techndogy do nat execue a setof paired instruc-
tions if either ingruction is longer than 7 bytes; Rntium® processos with MMX™
tecmology do not execute asetof pairedinstructions if the first instruction is longer than
11 bytesor thesecand irstruction is longer than 7 bytes. Prefiesare nd courted.

®  On Rentium® procesas without MMX ™ techology, prefixed instructiors are paiable
only in the U-pipe. OnPertium® processrs with MM X™ techology, instructions with
OFH, 8H or 67H pefixes arealso airable inthe \-pipe.For this andthe pevious rie,
stals at he entrane b the instuction FIFO, onPentiunf processos with MMX™
tecalogy, will preventpairing.

®* Hoaing-point instructionsarenot pairable with MMX ™ instructions

14.5.1.2. INTEGER PAIRING RULES

Table 142 showsthe integer nstructionsthatcanbe paied The &ble isdividedinto two halves
onefor the U-pipe andonefor the V-pipe.Any instruction in the U-ppelist can ke paredwith
anyinstruction in the \-pipe list, ard viceversa.
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Table 14-2. Pairable Integer Instruct ions

intgl.

Integer Instruction Pairable in U-Pipe

Integer Instruction Pairable in V-Pipe

MOV reg, reg ALU reg, imm PUSH reg MOV reg, reg ALU reg, imm PUSH reg
MOV reg, mem | ALU mem, imm PUSH imm MOV reg, mem | ALU mem, imm PUSH imm
MOV mem, reg | ALU eax, imm POP reg MOV mem, reg | ALU eax, imm POP reg
MOV reg, imm | ALU mem, reg NOP MOV reg, imm | ALU mem, reg JMP near
MOV mem, ALU reg, mem | SHIFT/ROT by MOV mem, ALU reg, mem Jec near
imm 1 imm
MOV eax, mem | INC/DEC reg SHIFT by imm | MOV eax, mem | INC./DEC reg OF Jcc
MOV mem, eax | INC/IDEC mem | TEST reg, /m MOV m, eax INC/DEC mem CALL near
ALU reg, reg LEA reg, mem | TEST acc, imm ALU reg, reg LEA reg, mem NOP
TEST reg, /m | TEST acc, imm
NOTES:

ALU—Arithmetic or logical instruction such as ADD, SUB, or AND. In general, most simple ALU instructions

are pairable.

imm—Immediate.

reg—Register.

mem—Memory location.
r/m—Register or memory location.
acc—Accumulator (EAX or AX register).

General Integer-Instru ction Pairability Rules

Thefollowing are general ruks for parahility of integer ingtructions. These rués summarize tre
pairing of instructionsin Table 142.

® NP Instructions—The following integer irstructions camot be paired

The shft and rotate irstructions with ashift count in the CL regiser.
Longarithmetic instructions, sucrasMUL and DV.
Extenced indructions, such asRET, ENTER, PUSHA, MOVS, STOS and LOOPNZ.
Intersegmeninstructions, suchas RJSH sreg ad CALL far.

® UV Instructions—The following ingtructions canbe paired when isued tothe U- or \-

pipes:

— Mog 8/32bit ALU operatons suchasADD, INC, ard XOR.
— AllI 8/32 kit compare instructios, such as GAP ard TEST
— All 8/32 kit stackopegtions usngregisters, sich asPUSH reg andPOP reg.

® PU instructions—The fdlowing instructions whenissiedto the U-pipe canbe mired with
a suitablanstruction inthe \APipe. These instructions neer execute in tle \-pipe.

— Carry ard barow instructions, suctasADC andSBB.

14-14




Intel® CODE OPTIMIZATION

— Prefixed instructions.
— Shift with immediateinstructions.

® PV instrucions—The fllowing instructionswhen issiedto the \tpipe can be pairedith
a alitable instruction in the U-Pige. The sinple cantrol transfer irstructions, swch as he
CALL near JMP rear or Jc instrwctions, canexecte in eitherthe U-gpe a the \V-pipe,
but theycan bepairedwith otherinstructions aly when theyare inthe \fpipe Since these
instructions change the irstruction pointer EIP), they camot pair in the U-pipe since the
nex instructionmay not be agacen. The PVinstructions in¢ude both Jec short and Jec
near(which hawe a OFH prefix) verdonsof the Ecinstruction.

Unpairability Due to Regster Dependencies

Instruction paring is also affected byinstruction opeends The fdlowing instruction pairings
will not result in parallel executionbecause ofegister catention Exceptions tadhese riesare
givenin “Specal Pairs’, in Secion145.12., “IntegerPairing Rules’.

®* Flow Dependence—The firstinstruction writesto a register thathe sscand ore reads
from, & in the fdlowing example:

mov eax, 8
mov  [ebp], eax

® OQutput Dependence—Both instructions write to the sane register, as inthe fdlowing
exanple.

mov eax, 8
mov eax, [ebp]

This output deperdence imitation does not apdy to a pair of instructions that write to the
EFLAGS register (for example,two ALU opegtions that clangethe cadition codes). Tl
condition cade after tle paired instructions execue will have the cordition from the V-pipe
instruction.

Note thata mir of instructions in which the first reads a regster aunl the cord writesto the
same register (ati-depenlence) maybe mired, asin the fdlowing example:

mov eax, ebx
mov ebx, [ebp]

For pumposesf determirning register conteion, a refeence b abyte or wordregisteris treaed
asa refrence to the cdaining 2-bit regster. Theefore,the following instruction pair d@snot
executan pamllel because obutput dependerties on the contets of the EAX register.

mov al, 1
mov ah, 0
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Specid Pairs

Same integer instrucions can be pairedh spite of the prevoudy desribed general ineger
instruction rules. These special pirs overcome regster dperdencies ard mostinvolve implicit
readswritesto the ESP regiser or inplicit writes tothe condition codes:

® StackPanter.

push reg/imm ; push reg/imm
push reg/imm ; call
pop reg » Ppop reg
® Condtion Codes
cnp ; Jjcc
add ; jne

Note thathe special pairs that neig of PUSH/POPInstructions mayhaveonly immediate o
regster gerards, nd memay operards.

Redrictions On Pair Execution
Same integerinstruction pairs may be issued simultaneously but will nat execte in parallel:

* Data-Gache @nflict—If both instuctions accesthe same data-caememory bankthen
the secord request (V-pipe) must waitfor the first reged to conplete. A bak corflict
occurs when hits 2 throuch 4 of the twophysical adlressesrethe sameA bark canflict
resutsin al-clock peralty onthe \-pipe instruction.

® Inter-Pipe Concurercy—Parallel execuion of integerinstruction pairs preservesmemory-
accessordering. A multiclock instruction in the U-dpe will execue abne wntil its lag
menory access

For exampe, the following instuctions add the conté&nof the register ard the value at the
memay location,thenput the esult in theregister An add with a memoy operard takes 2
clocks to execte. Tte first clockloads the \elue from the dita cache,andthe secod clock
performs the adlition. Since tlere isonly one memey accessn the U-pipe istruction, the ad
in the V-pipe carstart in the same clek.

add eax, meml
add ebx, mem2 i1
(add) (add) ;2 2-cycle

The fPllowing instructions add tk contents of thregister to the mewrny location andstore the
resultat the memar location.An addwith amemory result takes3 clocks to execte. The first
clock loads the value, the scord perfams the adiition, ard the hird staes tle resit. When
paired, helastclock of the U-pipe instruction overlaps with the firstclock of the \-pipeinstruc-
tion execution

add meml, eax i1
(add) ;2
(add) add mem2, ebx ;3
(add) 14
(add) ;5
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No other instructios may begin exection urtil the indructions alreadyexecuting hae
competed.

To expose the goportunities for scheduling ard pairing, it is betterto issue a segience d simple
instructions rather thana complex instruction that takes the sane number of clocls. The sinple
instruction sequece can take advartage of more issue slots. The load/sbre gyle coa genes-
tion requresmotre regstersard increasesode &ze. Thisimpactsintel4&™ processr peffor-
mance although anly as a secathorder effect. To campersate for the extraregisers needed
extra efort should be put into register allocation and instruction scheduling so that exra regis-
tersare oty usedwhen prallelism increases

14.5.1.3. MMX™ INSTRUCTION PAIRING GUIDELINES

This sction specifies giidelinesand restrictions for pairing MM X™ instructiors with each
otherandwith integerinstructions

Pairing Two MM X™ I|nstructions
The fllowing regrictions apply whenpairing of two MMX ™ instructions:

®  Two MMX™ instructions thatbath use the MMX™ shfter unit (pack, wpack andshift
instructiors) are not pairable becase there isony one MMX™ shifter unit. Shift
operatons may be issued in either the U-pipe or the \-pipe, bu canrot exewted n bah
pipesin the sane clock.

® Two MMX™ instructions that both use the MMX™ multiplier unit (PMULL, PMULH,
PMADD type irstructions) ae nd pairablebecause the is onlyone MMX™ mullti plier
unit. Multiply operaticns may be issued in either the U-pipe or the V-pipe, but camaot
exected in both pipesin the sane clock.

* MMX ™ instructions hat acces either nemory or a gnerd-purpose regster carbe isued
in the U-pipe only. Do not schedule these istructionsto the V-pipe as ttey will wait and be
issued inthe rext pair of instructions (and to the U-pipe).

® The MMX™ destination register d the U-gdpe instruction should not match the saurce or
deginationregister ofthe V-pipe instruction (dependemry check).

®* The EMMSinstruction isna pairalde with otheringructions

* If eitherthe TSflag or the BM flag in contrd regster CRO is set, MMX ™ instructions
canrot be exected in theV-pipe.

Pairing an Integer Instruction in the U-Pipe With an MM X™ Instruction in the V-Pipe

Use the fdlowing guidelinesfor pairing aninteger irstruction in the U-pipe andan MMX™
instruction in the \-pipe:

® The MMX™ instruction is not the first MMX ™ instruction following a floating-point
instruction.

® The \-pipe MMX™ instruction does not access either emory or a generalpurpose
regster
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® The U-ppe integer instruction is a pairake U-pipe integer irstruction (see &ble 142).
Pairing an MM X™ Instruction in the U-Pipe with an Integer Instruction in the \-Pipe

Use the following guidelines fa pairing an MMX ™ instruction in the U-pipe am aninteger
instruction in the V-pipe:

® The U-pipe MMX™ instruction dbes not accesgither memoy or a genedl-pumpose
register.

®* The V-pipe hstruction is a fairable integer V-pipe nstruction (see Tble 142).

14.5.2. Pipelining G uidelines

The termpipelining refersto the practice bscheduling instructionsin the irstruction strearrto
reduceprocessortalls due toregister, dataor data-cache depelercies. The dectof pipelining
oncodeexecutionis highly depement on the family of Intel Achitecture proesors the code is
interdedto run on. Pipelining cangreatlyincrea® the performance of cale writtento run on the
Pertium® family of procesas. It is less importart for code written torun on the P6family
processrs, becausehe dynarnic execution mael that these piocessrs use desa sgnificant
amaunt of pipelining adomaically.

The fdlowing subsecions degribe geneal pipelining guidelines for MMX ™ and fbaing-
point instructions. These ddelinesyield significant improvemerts in execution speetbr cade
running on the Petium® proces®rs ard may yield additional improvements in execution speed
on the P6family procesors. Spcific pipelining guidelines fa the P6 fanly processrs are
given in Secion 145.3,, “Scheduing Rules for P6 Family Procesers’

14.5.2.1. MMX™ INSTRUCTION PIPELINING GUIDELINES

All MMX ™ instructions can & pipeliined on F6 family and Rntium® (with MMX ™ tech
nology) proces®rs, ircluding the multi ply instructons. All MMX ™ ingructions take a shgle
clock to exeaute except the MMX™ multi ply instructions which take 3clocks.

Since MMX™ multiply instructionstake 3 clocksto execug, the result of a rrultiply instruction
can ke usedonly by aher instructions issued3 clocks later. Far thisreasm, awid scheduding a
deperdent instruction in the 2 irstruction pairs following the multiply.

The store of a kgister after witing theregister mst wait for 2 clocks after theupdate ofthe
regster. Scheduling the sbre 2clocksafter the uplate awidsa ppdline stall.

145.2.2. FLOATING-POINT PIPELINING GUIDELINES

Many of the floaing-point instructions haw a latency geaer than 1 cbck, therefore on
Pertium® processors the neat floatingpoint instruction canmt acces the result uiil the first
operatin has finished executon. To hide this latercy, ingructions should be irsertedbetween
the @ir that causeshe pipe stdl These instructions can kinteger instrutions or flating-point
instructiors that will not cause aew stallthemselves. Téa number of instructiors that shold
be insertedlepens on thelength o the latencyBecau® of the aut-of-order execution cap-
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bility of the P6 family processrs, stalls will not necesarily occur on aninstruction or micro-op
bass. Howeverif an irstruction hasavery longlatency such asanFDIV, thenschediling can
improve the throughput of the overall application. Thefollowing sectims list corsideratiansfor
floating-point pipelining on Perium® procesas.

Pairing of Floating-Point Instructions

In aPertium® processr, pairing floating-point instructionswith one arother (vith one excep-
tion) doesnot resulin aperformance enancememnbecage theprocessor hasnly one floating
point unit (FPU). However, same floating-point instructionscanbe ired with integer irstruc-
tions or the FX® instructionto improve exection times The following are ®me gewral
pairingrules ard regrictions for floating-point indructions

* All floating-point instructions can be executed in the V-pipe ard paired with sutable
instructions (generallyinteger instructions) in the U-pipe.

® The only floating-paint instruction that canbe execued in the U-ppe is the FXCH
instruction The FXCH instruction, if execded in the Upipe can b paired with anotter
floating-point instruction executing in the V-pipe.

® The floating-point ingructions FSCALE, FLDCW, and FST canrot be pairedwith any
instruction (integer irstruction or the FXCH instruction).

Using Integer Instructionsto Hide Latenciesand Schedile Floating-Point I nstructions

When a floatingpoint instruction depenls ontheresult ofthe inmediately pecediry instric-
tion, andthat instruction is also a floating-point instruction performarce canbe improved by
placing one ormare integer instructions beiveenthe two floating-point instructions This istrue
even ifthe integer istructions perfem logp cortrol. The followingexampe regructures a loop
in this manner:
for (i=0; i<Size; i++)
arrayl [i] += array?2 [i];

; assume eax=Size-1, esi=arrayl, edi=array2
PENTIUM(R) PROCESSORCLOCKS
LoopEntryPoint:

fld reald ptr [esi+eax*4] ;2 -AGI

fadd reald ptr [edi+eax*4] i1

fstp reald ptr [esi+eax*4] ; 5 - waits for fadd
dec eax 71

jnz LoopEntryPoint

; assume eax=Size-1, esi=arrayl, edi=array2

jmp LoopEntryPoint

Align 16
TopOfLoop:

fstp reald ptr [esi+eax*4+4] ; 4 - waits for fadd + AGI
LoopEntryPoint:

fld reald ptr [esi+eax*4] i1
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fadd reald ptr [edi+eax*4] i1
dec eax i1
jnz TopOfLoop

fstp reald ptr [esi+eax*4+4]

By moving the integer instructions between he FADDS ard FSTPS irstructions, the ineger
instructiors can be executedhile the FADDS instructionis completing in the floating-point unit
andbefore theFSTPS irstruction begins executon. Note that this newloop structure requiresa
separate entrgoint for the irst iterationbecause the loopeed to begin with theFLDS instruc-
tion. Also, thee needs ¢ be an adidional FSTPS nstruction after the cortitional jump to finish
the final loop iteration.

Hiding the One-Clock Latency of a Floating-Point Store

A floaing-paint store mus wait anextra clock for its floaing-point opeand. After anFLD, an
FST must wait 1clock, as shown in the fdlowing exanmple:

fld meml ;1 fld takes 1 clock
; 2 fst waits, schedule something here
fst mem2 ; 3,4 fst takes 2 clocks

After the canmon alithmetic goeratims, FMUL ard FADD, which normally have a laency of
3 clocks, FS waits anextra clo& for a total ¢ 4 (see followirg exanple).

fadd meml ; 1 add takes 3 clocks

; 2 add, schedule something here

; 3 add, schedule something here

; 4 fst waits, schedule something here
fst mem2 ; 5,2 fst takes 2 clocks

Other irstructions such asADDP and FSUBRP also exibit this type of latercy.

In the next exampe, the stag isnot dependent onthe previous load:

fld meml i1
fid mem?2 02
fxch st(l) ;2
fst mem3 ; 3 stores values loaded from meml

Here, aregister maybe tsedimmediatelyafter it has ben loaéd (withFLD):

fld mem1l i
fadd mem?2 12,34

Use of a register by afloating-point operation immediately after it fas been writtenby arother
FADD, FSUB, or FMUL causes 2clock delay. If instructiors are irserted between these oy
then laency anda pdertial stal can ke hidden.

Additionally, there ae multiclock floating-point instructions (FDIV andFSQRT) that execte in
the floaing-point unit pipe (the U-ppe). While exeuting these instructions in the floating-point
unit pipe, irnteger ingructions can ke executedin parallel. Enitting a rumber of integer instruc-
tions after such aninstruction will keepthe integr executionunits busy (the exact umbe of
instructions depends on the floating-point instruction’s clock count).
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Integer irstructions generally overlap with the floating-point operatians excep when the last
floaing-point operaton was=XCH. In this case thar isal clockdelay

U-pipe V-pipe
fadd fxch 71

; 2 fxch delay
mov eax, 1 inc edx

Integer and Floating-Padnt Mu ltiply

The integer multiply operations, the MUL andIMUL instrwctions, ae exected by the FRJ's
multiply unit. Therebre, far the Rentium® processor, these instructions canot be executedin
parallel with a floating-point instruction. This redriction doesnot agply to the P6family proces-
sors, becase these rocessors hatwo intenal FRU executionunits.

A floating-point multiply instruction (FMUL) ddays for 1 clockif the immediately peceding
clock exected anFMUL or an FMUL-FXCH pair. The mutiplier canonly accepta rew pair of
opeandsewery aher cbck.

Floating-Point Operations with Integer Operands

Floating-point operatonsthat take integer gerards (the FIADD or FISUB instruction) should be
awoided These irstructions should be sdit into two instructions: the FILD instruction and a
floaing-point operaton. The number of clocks befae anoher instruction can be issued
(throughpu) for FIADD is 4, whle for FILD ard dmple floating-point operations it is 1, as
shown inthe example lelow:

Complex Instructions Better for Potential Overlap
fiadd [ebp] ; 4 fild [ebp] ;1
faddp st(l) ;2
Using the FILD and FADDP instructiors in place of FIADD yields 2 fre clocks folexecuting
otherinstructions
FSTSW Instruction

The FSTSW instruction that wsually appears after a flating-point comparison instruction
(FCoMm, FCOMP, FCOMPP delays for 3 clocks. Other instructions may be inserted after te
comparison instruction to hide ths latercy. On the P6 family processrs the ECMOVcc instruc-
tion canbe sedinstead.
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Transcendertal Instructions

Trarscerdental instuctions execute in the U-pipe andthing can be ovéappedwith them, so
aninteger instrucion following a tanscemental ingruction will wait urtil the prevousinstruc-
tion completes.

Trarscerdental instructios execute a the Pentium® procesa (and later Intel Architecture
processrs) muchfaster tharthe software emuatiors of thes instructions faundin most math
libraries. Theradre, itmay beworthwhile in-lining transcendwaliinstructiors in place of math
library cals to transcendental functions. Software enulationsof transendental instructions will
execte faser thanthe eqivalent instrgtions onlyif accuacy is sacrificed.

FXCH Guidelines

TheFXCH instruction cost noextra claks on tle Fentium® procesorwhen all ofthe fdlowing
conditions occur, allowing the instruction to execte in the \-pipe in parallelwith arother
floating-point instruction executng in the U-pipe:

* A floating-point instruction follows the FXCH instruction.

* A floating-point instruction from the fdlowing list immediately precedes the FXCH
instructon: FADD, FSUB, FMUL, FLD, FCOM, FUCOM, FCHS, FTST, FABS, or FDIV.

® An FXCH instruction has aleadybeen ercuted.Thisis becage the instuction toundaies
in the cache are niagd the firsttime the instuction isexecuted, so pairingnly hagpens
thesecand timethis instruction is exected from the cache.

When tte abwe condtions aretrue, the irstruction is almeat “free” andcanbe wsedto acces
elementsn the deepelevelsof the floatingpoint stackinstead of soring them and then loadin
them again.

14.5.3. Scheduling Rule s for P 6 Family Processors

The P6 family proesors have 3 dedersthat translaténtel Architectue macro instuctions
into micro operatians (micro-ops, alsocalled “wops’). The decaler limitations areasfollows:

® The first decoderdemder0) can acock instructionsup to 7 bytesin length andwith upto
4 micro-ops in me clockcycle. The secondwo decalers (&codes 1 and2) candecale
instructons that ae 1micro-op instructions, andthese instructions will also be cecodd in
one clockcycle.

®* Three nacio instructions in an ingruction seqierce that fall into this ervelope will be
decodedn one clockcycle.

® Macro instrucions outside this ervelope will be decodd through decoder 0 alore. While
decoderO0 is decodng a bng maco instruction, decalers1 ard 2 (secad and hird
decodes) are gliescer.

Appendix C of the Intel Architecture Optimizaion Manual listsall Intel macro-instructions and
the cecodes on which theycan e decaled.
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The macroinstructiors enteringthe decoar travel though the gpe in order; theefore, if a
macroinstruction will nat fit in the rext available decaler henthe instruction must wait until
the nextclock to be decodd. Itis possible to schedile instructionsfor the decoderswch that the
instructions in the in-order pipeline are lesdikely to be galled

Congder thefollowing exampes

* If the nextavalable decodr for a multimicro-op instruction is not decodr O, the
multimicro-op instruction will wait for decaler 0to be avdible, wsualy in the rext clock,
leaving the otter decodes empty during the current clak. Hence, thke fdlowing two
instructionswill take 2 clocks to decock.

add eax, ecx ; 1 uop instruction (decoder 0)
add edx, [ebx] ; 2 uop instruction (stall 1 cycle wait till
; decoder 0 is available)

® During thebeginning o the decoding clock, if two consecutive instructions are more than
1 micro-op, decaler Owill decade me instruction and the rext instruction will not be
decodd until the next clock.

add eax, [ebx] ; 2 uop instruction (decoder 0)

mov ecx, [eax] ; 2 uop instruction (stall 1 cycle to wait until
; decoder 0 is available)

add ebx, 8 ; 1 uop instruction (decoder 1)

Instructions of the opcade reg, memform produce two micro-ops: theload fom memoy and
the opeation micro-qp. Scheduing for the decader emplate (4-1-1) canimprove the decoding
throughput of your applcaton.

In geneadl, theopcodereg, mem formsof instructionsareused b reduceregister piessirein coce
that is nd memoy bourd, and whenthe dda is in the cabe. Use simple siructions fa
improvedspeed a the Petium® ard P6family processors.

The fdlowing rues should be obsrved while using the opode kg, meminstruction on
Pentium® processors with MMX ™ techndogy:

® Schedule for minimal stalls in the Rentium® processr pipe. Use as mag simple instric-
tions aspassble. Generally 32-bit asserhly coce that iswell optimized for the Petium®
processr pipeline will execute well orthe P&family processrs.

® When ghediling for Pentium® processors, keeim mind the pimary stall corditions and
decaler(4-1-1) template a theP6 family processors, as shovimtheexample Blow.

pmaddw mm6, [ebx] ; 2 uops instruction (decoder 0)
paddd mm7, mm6 ; 1 uop instruction (decoder 1)
ad ebx, 8 ; 1 uop instruction (decoder 2)
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14.6. ACCESSING MEMORY

The following subsections describe optimizatiors that canbeobtainedwhen shediling instruc-
tions that access memyo

14.6.1. Using MMX™ I|nstructions That Access Memory

An MMX ™ instruction may have wo regster operand (opcode Eg, reg) or one register ad

one menory operand(opcode reg, mem), wheie opcoderepresentghe nstruction opcode,reg

repeserts the regster, andmemrepresrts memay. The opcode eg, meminstructions are
usefu in some case® reduce register pressire, increase the mberof operations per clogk
andredice coe size.

The fdlowing discusin asumes thathe memoy opeind ispresent in the data cache. If isi
nat, thenthe resilting penaly isusually large enaughto obviate the scleduling effects discussed
in this secton.

In Pertium® processor with MMX™ techology, the opcode reg, mem MMX ™ instructions do
not have longer latencythantheopcode eg, reg instructions (assuming cacle hit). They
have nore limited pairing apportunities, however. In the Pentium® Il andPentium® IIl proces
sass, the opcode reg, mem MMX ™ instructions trarslate into twomicro-gps, as ogosed to ore
micro-op for the epcode reg, reg instructions Thus, they tendto limit decaling bandwidth and
occyy moreresources thartheopcode reg, reg instructions.

The reconmerded usage othe opcode reg, reg instructions depend on whetherthe MMX™
cock is memoy-bourd (that is exection speed idimited by menory accessesAs a rule of
thumb, anMMX ™ codeseqience iscongderedto be memory-bound if the following inequality
hadds:

Instruzc'uons< MemoryAccesss + NonMMX Igstrucnons

For memoy-bourd MMX™ codg, Intel reconmerds meging loads whenewer the same
memay addresss usedmore tharonce to redce memoy accesss. For exenple, the fdlowing
cock sequence can be speed up ly using a MOWQ instructionin placeof theopade g,
memforms of the MMX™ instructions

OPCODE  MMO, [address A]

OPCODE MML, [address A]

; optimized by use of a MOVQ instruction and opcode reg, mem forms
; of the MMX(TM) instructions

MOVQ MM2, [address A]
OPCODE  MMO, MM2
OPCODE  MM1, MM2

Another altertive isto incorporate tte prefetchinstruction introduced in the Rentium® il
processr. Prefetchingthe dita preloadthe cacherior to actuallyneeding the dta. Progr use
of prefetch canimprove peformance f the appicaion is na menory bandvidth bound a the
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data @es rot alreaq fit into cache.For more information on proper usage of the prefetch
instruction seetheIntel Architecure Optmization Manual order numter 245127-001

For MMX™ cade hat is not memay-bound, load meging is recomnendedonly if the same
memay addessis used mee than twice. Were loadmeging is na possble, usage otthe
opcode reg, maminstructions is recommendedo minimize instructiorcount and cod size.For
exampe, thefollowing codesequencecanbe shotenedby renoving the MOVQ instructiorand
using anopcode eg, memform o the MMX™ ingruction:

MOVQ mmoO, [address A]

OPCODE  mm1, mmO

; optimized by removing the MOVQ instruction and using an
; opcode reg, mem form of the MMX(TM) instructions

OPCODE  mml, [address A]

In manycases, 80VQ reg, reg andopcodereg, memcan be refacedby aMOVQ reg, memand
the opcode reg, reg. This should be done wtere wssible, sinceit sawes one micro-op on the
Pentium® 1l and Perium® 11l procesas. The following exampe is ore where theopcodeis a
symmetric operatian;

MOVQ mm1, mmO (1 micro-op)
OPCODE  mml, [address A] (2 micro-ops)
One cbck can e savedby rewriting the codeas bllows:
MOVQ mm1, [address A] (1 micro-op)
OPCODE  mm1, mmoO (1 micro-op)

14.6.2. Partial Memory Acce sses With MMX™ [nstruct ions

TheMMX™ registers dbw large quartities d datto bemoved without stalling the pracessr.
Insteadof loadingsingle aray values thatire 8, 16-, or 32-bits long, thevalues carbeloaded
in a singlequadvord, with the structee orarraypainter beirg incrementedaccordngly.

Any data tkat will be manipulatedby MMX™ instructions should be lcaded using either:
® The MMX ™ instructionthat load a 64-bit operand(for exanple, MOVQ MMO, m64), or

® The regstermemay form of any MMX™ instruction that ogrates ona quadword
memay opeand (forexampe, PMADDW MMO, mé4).

All dain MMX™ reggsters siodd be sbred usng the MMX™ instruction that stores a 64bit
opeind (far exanple, MOVQ m64, MMO).

The goal of theserecanmerdatons istwofold. First, theloadng andstaing of data inMMX™

registersis more efficientusing the larger quadvord datablock szes Secand, usng quadword
datablock sizeshebs to avoid the nmixing of 8-, 16-, or 32-bit loadandstore gperatonswith 64-
bit MMX™ load ard stae goeratians on the sane data. Thk, in turn, preverts situations in
which amall loadsfollow large goresto the same areaf memoy, or large loadsfollow small
storesto thesame area & memory. The Petium® Il and Pentium® 11l procesors will stal in
these guations.
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Consider tte following exanples

Thefirst exampe illustrates the fects d a lage load afer a series ofmall stores tahe same
area 6 menory (begnning at menory addess men). The lage load will stall the pracesso:

MOV mem, eax ; store dword to address "mem"
MOV mem + 4, ebx ; store dword to address "mem + 4"
MOVQ mmO, mem ; load gword at address "mem", stalls

The MOVQ instrucion in this exanple nmust wait for the storesto write memory befae it can
accessll the data it reqees This stall can als occurwith other daa types(for example, wbn
bytes or words are $ored and therwords or doudewords areread fran the same areaf
memay). By changirg the code seance agollows, the processor caaccesshe data without

delay:

MOVD mm1, ebx ; build data into a qword first before storing it to memory
MOVD mm2, eax

PSLLQ mm1, 32

POR mm1, mm2

MOVQ mem, mm1 ; store SIMD variable to "mem" as a qword

MOVQ mmO, mem ; load gword SIMD variable "mem", no stall

The secoad exanpleillustrategheeffect d aseries 6 small loads after alarge stae tothe sane
area & menory (begnning at memoy addressmem). Her, the snall loads will stall the
procesa:

MOVQ mem, mmO ; store qword to address "mem"
MOV bx, mem + 2 ; load word at address "mem + 2" stalls
MOV  c¢cx, mem+4 ; load word at address "mem + 4" stalls

The wad loads must wait for the MOVQ instructionto write tomemory befae theycanacces
the dita theyrequre. This stdlcan also occuwith cther dita types (6r examplewhen duble-
words or words are stoed aml thenwords o bytes arereadfrom the same aa ofmenory).
Changirg thecodesequence asdllows allows theprocesorto accesshe data withat a stal:

MOVQ mem, mmO ; store qword to address "mem"
MOVQ mml, mem ; load gword at address "mem"
MOVD eax, mml ; transfer "mem + 2" to ax from

; MMX(TM) register not memory
PSRLQ mm1, 32

SHR eax, 16

MOVD ebx, mm1 : transfer "mem + 4" to bx from
; MMX register, not memory

AND ebx, Offffth
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These tansfomations, in geneal, increasehe number the instuctions reqired to peform the

desiredoperation. Fa the Petium® Il and Pentium® Il procesas, the peformance pnatty due

to the increagd numberof instrictions ismore than dfset by the nunber of clocks savedFor

the Pemium® procesor with MMX ™ techndogy, howe\er, the ircreagd number d instruc-

tions can egatively impct perbrmarce. Forthis rea®n, caretil andefficient codng of these
trangormaionsis necesary to minimize any patrtial negatve impactto Pentium® procesa

performarce.

14.6.3. Write Allocation Effects

P6 family processors have é&write allocate ly readfor-owneship” cache, whreas e
Pentium® procesorhas a “newrite-allocate; write thsugh on write mis$ cache.

On P6 &mily processrs, whera write occus andthe write misgs thecache, tk entire 2-byte
cache Ineis fetched. On the éhtium® processr, whenthe samevrite missoccus, the writeis
simply sert out to memory.

Write allocate is gendlty advartiageows, since sequéral stores are mgedinto burst writes,
andthe dita remains inthe cack far use by later loads. Tis is why P6 family processors
adoptedthis write grategy and why some Pertium® procesor system designs implement it fo
the L2cache.

Write allocate can ba disadantage ircodewhere:

® Justonepiece ofa cachéine is written.

® The entire cach line is notead.

® Strides are lajerthanthe 32byte cache line.

® Writesto a lage rumber ofaddesses (geater thar80).

Whena large nunber ofwrites occur within an applcaion,and bot the gride islongerthan tre
32-bytecache lineandthe arayis large, evel storeona P&amily processowill causean ettire
cacleline to be fetched. In adlition, this fetch will probally redace me (sometimes twQ dirty
cacte lineg(s). The resilt isthat ewery store casesanadiitional cacte line fetchard dows down
the executionof theprogram Whenmanywrites ocurin aprogram thepeformance acrease
can ke significant.

The fdlowing Sieve of Erastothessexanple prgram cemorstratesthes cacle effects. In this
exampe, alarge arrayis stepped throughin increasng strides while writing a singlevalue d the
arraywith zera

NOTE

This is a very smplistic example used ¢y to demorstrate cache &cts
Many otheroptimizations are pasble in this cade.

I 14-27



CODE OPTIMIZATION Int9|®

boolean array[max];
for(i=2;i<max;i++) {

array = 1,
}
for(i=2;i<max;i++) {
if( array[i] ) {
for(j=2;j<max;j+=i) {
array[j] = 0; /*here we assign memory to 0 causing
the cache line fetch within the j
loop */
}
}

}

Two optimizations are aailable fa this gecific exanple:

® Optimizationl—In “booleari in this examplethereisa “chaf array. Herg it may well be
better to make the “bolean” arrayinto an aray of bits, therely redwcing the &e of the
aray, which in turnreduceesthe numberof cache line fetches. Theray ispacked so that
read-madlify -writes are dme @ince the cack piotocol makes ever read intoa read
modify-write). Unfortunately, in this examfe, the vastmajaity of strides are greatéhan
256 bits (onecache line bhits), sothe peformance inceag is not significant.

® Optimization 2—Another optimization is to check if the valueis alreag zero befae
writing (as shown in the following example), therebyredicing the rumber of writes to
menory (dirty cachdines)

boolean array[max];
for(i=2;i<max;i++) {
array = 1,

}

for(i=2;i<max;i++) {
if( array[i] ) {
for(j=2;j<max;j+=i) {
if(array[j] '=0) { /* check to see if value is
already 0 */
array[j] = 0;

}

The exteral bus actwity is reduced byhalf becase mostof the time in the Sieve prgram the
data is alreaglzera By checkingfirst, you need oty 1 burst bus cycle r the readandyousave
the turst bis cycle foreveryline you d not write. The actual write backf the mdlified lineis
nolonger reededtherefae savinghe exra cycles.
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NOTE

This operation berefits the P6family procesars, but it may nat erhance the
performance 6 Perium® proes®rs. As such it should not be cosdered
gereric.

14.7. ADDRESSING MODES AND REGISTER USAGE

On the Petium® processr, when a egister is used asthe base comgnen, an adiitional clock
is usedif that register is the destinatiorof the immediatelypreceding instruction (assuming all
instructions arealreadyin the pefetchqueue).For exanple:

add esi, eax ; esi is destination register
mov eax, [esi] ; esiis base, 1 clock penalty

Since tte Pentiurfi procesa hastwo integer pipelines aregister used asthe bag or index
compnert of an efective addess catulation (in either pifg) causesn addtional clock if that
register is the ektination of either instriction from the immediatelyprecedng clock (see Figue
14-2). This effect is known asAddres Gerration Interlock (AGI). To avoid the AGI, the
instructionsstould be separtedby atleas 1 clock by placing other instructions beiveenthem
The MMX™ registers caniot be used asbhase or hdexregisters sothe AGI doesot apply for
MMXT™ register desinations.

No penalty occurs inthe P6 family procesars for the AGI condition.

AGI Penalty
PF

DI | PF]

D2| DI | PF
AGI—at £ I p2| DI

m
7

w}

N

wWB

wB| E

WwB

Figure 14-2. Pipeline Example of AGI Stall
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Note that me instructions have implicit reads/writesto regigers. Irstructions that generate
addes®s implicitly through ESP(such asPUSH POR RET, CALL) also sufer from the AGI
perdty, asshavn in the following exanple:

sub esp, 24

; 1 clock cycle stall

push ebx

mov esp, ebp

; 1 clock cycle stall

pop ebp
The PUSH ard POP instructionsalsoimplicitly write tothe ESRegister. Thegwrites, havever,
do na cause a\Gl whenthe rext instruction adiresseghrough the ESP reigter Pentiun®
processrs “rename” the ESPregster from PUSH andPOP instructions to awoid the AGI
perdty (see thedllowing exampe):

push edi ; no stall
mov ebx, [esp]

On Perium® processors, instructierthat incluce bah an imnediateanda displacemenfield

arepairable in the U-pipe. Whenit is necessaryo use corstarts, it is usualy more efficientto

use immedhte data insteadfdoadng the constant int@ regster first. If the ssmeimmediate
data is used ore than orte, lowever it is faster to loadthe comstart in a regster ard then use
the register multiple times, as iligrated inthe following exanyple:

mov result, 555 ; 555 is immediate, result is
; displacement
mov word ptr [esp+4], 1 ; 1 is immediate, 4 is displacement

Since MMX™ ingructions have 2-byte opcodes (OFH opcode map), any MMX™ ingtruction
that wses tase @ index addressihg with a 4-byte dspgacemen to access memmg will have a
length of 8 bytes. Instructionsover 7 bytes canslow macio instruction decodng andshould be
avoided where posdble. It is oftenpossible toreducethesize d swchinstructions by adding the
immedate \dlue tothe valle in thebase oindexregisterthus remeing the immedhte field.

14.8. INSTRUCTION LENGTH

On Pertium® processors nistructionsgreater thary bytesin lengthcamot be exected in the V-
pipe. Inaddtion, two instructions camot be pushedinto the instructon FIFO unlessbath are 7
bytesor lessin length. If only one instrucion is pushed into the instruction FIFO, gairing will

not occu unless the instructionFIFO alreagt contains at least @ninstruction In code where
pairing is very high (as is dtenthe cas in MMX ™ code)or aftera migredicted banch the
instruction FIFO may be enpty, leadng to a lassof pairing whene\er the instruction length is
over 7bytes

In addition, the P6family procesars can aly decale ae instruction at a time whenaninstruc-
tionis longer than 7 bytes.

So, for beg performarce on dlintel procesors, ue smpleinstructionsthatare essthan8 bytes
in lengh.
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14.9. PREFIXED OPCODES

On the Rentium® processe, aninstruction with a refix is pairable in the U-pipe (PU) if the
ingtruction (withoutthe prefix) is paralde in both pipes(UV) orinthe U-ppe PU). The pefixes
are ssued to the Ypipe andget decded in 1 obck for eachprefix andthenthe instructionis
issuedto the Upipe aml maybepaired.

For the P6family ard Perium® processrs, theprefixesthat shold be avdded for optimum
code executiospeedsre:

®* Lock.

® Segmert overide.
®* Addresssize.

® Opeand size.

* 2-byte ogode ma{OFH) prefix. An excepion is the Sreamng SIMD Extengonsinstruc-
tions introduced with the Fentium® 1l procesa. The first byte d these irstructions is
OFH. ttisnot used as argfix.

* 2-byte qpcode map(OFH) prefix.

On Pentium® processos with MMX™ tecology, a prefx on aninstruction can @lay the
parsng andinhibit pairing d instructions

The following list highlights the effects d instruction prefixeson the Pentium® procesa
instruction FIFO:

® There isno penaty on OFH-prefix instructions

® An instruction with a 661 or 67H prefix takes 1 clock for prefix detcton, andher cbck
for length cakulation, andanoter clock to ener the instruction FIFO (3 clocks total). It
must be thefirst instruction to erter the irstruction FIFO, anl asecand instruction can ke
pushed with it.

® Instructions with other prefixes (n@ OFH, 66H, or 67H) take ladditional clack to detect
each pefix. These insuctions arepushedinto the instructionFIFO only as the first
instruction. An instruction with two prefixes wil take 3 clocks to be pushed into the
instruction FIFO (2 clocks forthe prefixes and 1 clocKor the instuction). A second
instruction canbe pushed with the first irto the irstruction FIFO in the sane clock.

The impact o performarce exsts oy when the instructiom FIFO des rot hold at leag two
ertries. Aslong asthe decocer (D1 gage) hastwo instructionsto decale there is no penalty. The
instruction FIFO will quickly became empty if the instructions arepulled from theinstruction
FIFO atthe rate 6 two per clock. Sq, if theinstructionsjust before the prefixedinstrucion suffer
from a wrformarce loss(for exanple, ro pairing, stalls die to cghe misss, misalignments,
etc.), then theperfamarce pemlty of the pefixedingtruction may ke masked.

Onthe P6 family processrs, instructions longer than 7 bytes in length limit the number of
instructions aecodel in eachclock. Prefixes ad 1to 2 bytes to tle lendgh of aninstruction
possibly limitingthe decaer

I 14-31



CODE OPTIMIZATION Int9|®

It is recommendedthat, wherever pasible, prefxed instuctions not be used or thttey be
schedued belind instructionswhich themslvesstall the dpe fa some dherreasm.

14.10. INTEGER INSTRUCTION SELECTION AND OPTIMIZAT IONS

This ®ction describes kb instuction seqences to avid andsequences to use wheyeneating

optimal

asserhly coce. The nformation apgies to the B family proces®rs andthe Peium®

processrs with and without MMX ™ tecmology.

® LEA Instruction. The LEA instruction canbe wsed in the following situatons to gptimize
code execution:

The LEA instruction may be usd saneimes as a tteefour opeand addtion
instruction for exampe, LEA ECX, [EAX+EBX+4+a]).

In many cass,an LEA instruction ora squene of LEA, ADD, SUB and $HIFT
instructions may be used to dege cagart multiply instructions. For the F5 family
procesas the corstant multiply is faster relatie to other instructions than on the
Pentium® processr, therefore the trade of between the taoptiors occus somer. It is
recanmended that the integer multiply instruction be wsed in code desgned for P6
family processor excution.

The abee techmgue canalso ke usedto avad copying a regster when bdah opeands
to an ADD instruction are stll needed afterthe ADD, since the LEA instruction need
not overwrite its gerards

The disadvartageof the LEA instructionis thatit increases thposshbility of an AGI
stall with previous instructios LEA is useful for shiftsof 2, 4, and8 because wthe
Pertium® procesor, LEA canexecute in eithethe U- orV-pipe, bu the shift can orly
execte in the U-pipe.On the F6 family processrs, boththe LEA and SHIF instruc-
tionsaresingle micro-op instructionsthat execue in 1 clock

® Complex Instructiors. For greater egcution speedavoidusing compex insructions (fa
example,LOOR ENTER or LEAVE). Use segences ofsimpleinstructions insteado
accanplish the @inctionof a conplex instruction.

® Zero-Extersion of Short Integers. On the Petium® procesar, the MOVZX instruction has
a pefix andtakes 3 clocks to execte totaling 4 clocks. t is recommeded that the
following sequence e usedinsteadof the MOVZX instruction:

Xxor
mov
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eax, eax
al, mem

If this cade occurswithin a loop, it may be possble to pull the XORinstruction out of
theloopif theonly asignmert to EAX isthe MOV AL, MEM. This hasgreaterimpor-
tance fo the Rentium® processor sice he MOVZX is not pairabe ard the new
sequene maybe mired with aglacent instructios

In orde to avad a partial regster stdlon the P6 farily processors, special haware
has been impleanted that &bws this code ®quence to exede without a stal. Even
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so, the MOVZX instruction is a better ctoice fa the F6 family procesars than the
alternative segances.

® PUH Mem The PUS$ meminstruction takes 4 clocks for the Inel486™ procesar. It is
recanmeneckd that the bllowing sequerce beused inplace ¢ a PUSH meminstruction
becase it takesonly 2 clocks for the Intel486™ procesor and increass pairing
opportunity for the Pentium® procesar.

mov reg, mem
push reg

® Shot Opcales Use lbyte lorg instructions as mah aspossble. This will redwe coe
size andhelp increa® instruction dersity in the instruction cache.The most canmon
exanple is wing the INC ard DEC instructions ratherthan addng or subtacing the
corstart 1 withan ADD or SUB instruction. Another conmonexample isusing the BSH
andPOP instructionsinstead of the eaiivalent sequence.

® 8/16 Bit Operand. With 8-hit operand, try to use the bye opcodes rather than usng 32
bit operatiors on signandzeroextencbd lytes Prefixes fa operandsize overide aply to
16-bit operards na to 8-bit operand.

Sign Extersion is usually quite expersive. Often the emantics canbe maintained by
zeroextendirg 16-bit operards. Specificallythe Ccodein the bllowing example des
notneed §gn extendon nor does it need pefixesfor operandsze overides

static short int a, b;
if (a==b) {

}
Code fa camparirg these 1@it operards migh be:
U Pipe V Pipe
Xor eax, eax xor ebx, ebx 01
movw ax, [a] ; 2 (prefix) + 1
movw bx, [b] ; 4 (prefix) + 1

cmp  eax, ebx ;6

Of caurse, this camnly be done wnder certaincircumstances, i the circumstances
tend to ke quite comnon. This woud na work if the caonpare was fogreater thanles
than,greater tlanor equal, ard so on, or if thevalues inEAX or EBX wereto be used
in andher geration whee dgn extersion was regired.

The P6 familyprocessors prades pecial suport for the XORreg, reg instruction
where loth opeands pant to the sme registerrecogizing that clearinga regster cbes
notdependonthe old value ofthe regster. Additionally, specialsupport is provided for
the abwe specificcode segence toavoidthe partial stall.
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Thefollowing straight-forwardmetod maybe $oweron Rentium® processos.

movsw eax, a ;1 prefix + 3
movsw ebx, b ;5
cmp ebx, eax ' 9

However the P6 family procesors hawe improvedthe peformance of he MOVZX
instructionsto reduce the prewalence 6 partia stals. Code written specifically for the
P6family procesars should use the MOVZX instructions

® Compares. Use th@EST instructionrwhen compaing avalue ina redster with 0. TEST
esentially ANDs the gperards together without writing to a destination regster If avalue
is ANDed with itself ard the result setsthe zerocondition flag the value waszem. TEST
is prekrredoveran AND instructionbecause AND writethe result register which ag
stbglently caug an AGI @ an artificial output deperdence an the F6 family processaes.
TEST isbetterthan QMP .., Obecase the ingruction size issmaller.

Use the TEST instructiowhen compringthe result of a boleanAND with animme-
diate comstant for equality or inequality if the regiseris EAX (if (avar & 8) { }).

Onthe Petium® processr, the TEST instructionis al clock pairable irstruction when
theform is TESTEAX, immor TEST reg, reg. Otherformsof TEST take 2 clocks ard
donat pai.

® AddressCalkulations. Pull addesscalcuationsinto load am stae instructions. Interrally,
menory refelence irstructions canhave4 operards: a relocatale loadtime corstant, an
immediate constant, base registeand ascaledindexregister (In the segmeted model, a
segnent regster may congitute anadlitional gperand in thelinearaddress catulation.) In
many casesse\eral integer instructons can be elirmated byfully using the ogrand of
menory refeences

® C(Clearing a Rgister. The préerredsequence to mwee zeroto a register is XOR reg, reg.
This seaqierce saes cale space hut setsthe candition codes. In contexts where the
cordition cadesmust be pesived, use MOV reg, O.

® Integer Dvide. Typically, an integer divid is prece@éd by a CDQ instruction. (Divide
instructons use EDX: EAX as tle dividend andCDQ sts upEDX.) It is better to cy
EAX into EDX, then ight shift EDX 31places ¢ sign exterd. Onthe Rentium® processor,
the copy/shift takesthe same number of clocks as CDQ, btithe cop/shift scherre dlows
two other instructions to execute at the ame time. If the valie is known to be positive, wse
XOR EDX, EDX.

On the P6 family processorsthe CDQ instructionis faster, becauseCDQ is asingle
micro-op instruction as g@posedto two instructionsfor the copy'shift seqience.

® Prdog Sequenes Be careful to avid AGIs in the poceduwe andfunction prolog
seqencedue to regster ESPSince PUSHcanpair with other PUSHnstructios, savirg
callee-savedegisterson entry to functions shold use thes instructions. If psdble, load
parameters befre decremeting ESP
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In routinesthat donot call aher routines (eaf routines),use ESPasthe kase register
to free upEBP If you are not using the Bhit flat madel, remembr that EBP caniot
be wsedasa geneal pupose tese register becase it referen@sthe gack segment.

®* Avoid Compares with inmediateZero. Oftenwhena vdue is conparedwith zeio, the
operatian producing the vale setscordition cades that can be tested directly by a &c
instruction The most nteble excefions are theMOV and LEA instructions. Inthese
casesuse the TEST #iruction.

* Epilog Seqencelf only 4 byteswereallocated inthestack frame br thecurrent function,
instead 6 incrementing tke gack pointer by 4, ise POP inguctions to pevern AGIs. Fa
the Penium® procesor, use wo popsfor eight bytes
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CHAPTER 15
DEBUGGING AND PERFORMANCE MONITORING

The Intel Architecure praiides exensve debugging facilities for u® in delugging code aml
monitoring code execution ard procesa performance. Thes facilities are auabe for debug-
ging applications sdtware, system software, andmultitaskng operatirg systens.

The dbugging supprt is accessd through thedebug registers OBO through DB7) andtwo
mocel-specific registerdyMSRs). The dehg registers of the Intel Architectue pracesors héd
the adiresgs of memory and|/O locations, callecbrealpoints. Brealkpoints ae userseleced
locations in a prgram, a data-stage area in mory, or specific I/O potswhele a progamrmer
or system cesigner wishes to @it executionof a pragramandexamire the state ahe piocessr
by invoking cebugger oftware. A debwg excetion #DB) is gererated whena memoy or I/O
acces ismack to one of these bregdoint addressesA brealpoirt is specifed for a paticular
form of memay or 1/0O access,&h as a ramory readand/a write ogerationor anl/O read
andbr write opeation. The debg regsters syppat both instruction bre&points and dad break
points. The MSRs(which were introducedinto the Intel Architecture in the P6 family proces-
sors) mortor branches, inteupts, andexceptios ard recad the adressef the las branch
interrupt or excepion takenandthe last brach talen bebre an interupt a exception.

15.1. OVERVIEW OF THE DEBUGGING SUPPORT FACILITIES

The following processr facilities support debugging andperiormarce manitoring:

®* Debug excepion (#DB)—Transfes program cortrol to a delugger procedire or tak
whena delug event @curs.

® Breakpoint exception #BP)—Trangersprogramcontol to adebwggerprocedire or task
whenan NT 3 instruction is exected.

®* Breakpoint-address registers (DBO through DB3)—Specifies the adds®s of up to 4
breakpants.

* Debug gatus register (DB6)—Reports the coditions that were in ééct whena debg o
breakpant excepion wasgererated.

®* Debug control register (DB7)—Specifiesthe fams of memoy or I/O accesshat cause
breakpants to be geneated

®* DebugCtIM SR register—Enabkslag brandy, interrupt, and excefjon recading; taken
branchtraps; the teakpant reporting pins; andrace nessages.

¢ LastBranchTolP and LastBranchFromlP MSRs—Specifies the surce anddestination
addes®s ofthe lastoranch intertupt, or exceptiontaken. The addesssaveds the ofsetin
the cale segrant ofthe banch(source) ortaget (destinatiopinstruction
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® LasteExcepionTolP and LastExceptionFromlP MSRs—Specifies the souce ard
degination addes®s of the lasbranch that was takn prior to an excefion or interrugt
being gererated. Tle addess saved istheoffset in the cde ggment ofthe brarch (souce)
or taiget (desination) instrucion.

* T (trap) flag, TSS—Gererates adebug excegtion #DB) when an attemt is made to
switch toatask with the T fag sein its TSS.

® RF (resumne) flag, EFLAGS register— Suppresses multiple exceptons to the sane
instrucfon.

* TF (trap) flag, EFLAGS register—Generatesa delug exeption (f/bB) after evey
executionof aninstruction

® Bredkpoint instruction (INT 3)—Genestes a breakmint excepion (#BP), which
trangers program cortrol to the delugger procedue or tak. This instruction is an
alterrative way to &t code breakoints. It is especially usful when more than fou
breakmints are @sired or whenbrealpoints arebeingplacedn the souce cale.

These faciliiesallow adebuggerto be called ¢her as a sepaste tak or asa procedire in the
cortext of the aurrent program ortask The fdlowing canditions can e used to invoke the
debugeer:

® Task switch to apecffic tak.

® Execuion of the lreakpoint instruction.

® Executon of any nstruction.

® Executionof an instructiomat a specifiedddess.

®* Read o write of a byte, word, or doublewad ataspeified memaey addess
®* Write to abyte, word, or doblewordat a specified memagraddress

* Inpu of a bye, word, or doblewordata specffied /O addess

® Qutput of a byte, word or doubleword ataspedfied /0 adlres.

® Attemptto charmge he ontents of a delug register.

15.2. DEBUG REGISTERS

The eght debug registers (refr to Figure 151) control the delug operaton d the procesor.

Theseregisters canbe written to andreadusing the move to or from debug regsterform of the

MOV ingtruction. A dehug register maybe he urce a dedination opeiand for one d these

instructiors. The delug registers are pvilegedresurces; a MOVistruction that accesselsese
regsterscan aly be exected in eal-addess made, inSMM, or in pratectedmock at a CPL &

0. An atempt to read orwrite the delug registers from any aher givilege level generaes a
gereral-protecion excegbn (#GP.
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Breakpoint 3 Linear Address
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Breakpoint 1 Linear Address
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Breakpoint O Linear Address

[ ] Reserved Bits, DO NOT DEFINE
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DR3

DR2

DR1

DRO

Figure 15-1. Debug Registe rs
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The pimary furction of he debyg regstersis to sé up and monitor from 1 b 4 breakpmints,
numbereal 0 though 3. For eachbreakpant, the following information canbe specified aml
detectedwith the delog registers:

® The linear adress wheréhe breakpant isto occu.

®* The length of the beakpant locaion (1, 2, or 4 bytes.

* The opestion that must be erformedatthe addess fora debg excepion to be geneated.
®  Whetherthe beakpadnt is enabled

® Whetherthe beakpadnt cordition was presernt whenthe delug exceptionwasgenesated.
Thefollowing palegraphsde<ribe he functions of flagsandfieldsin the debyg registers.

15.2.1. Debug Address Registers (DR0O-DR 3)

Each ofthe fou debuy-adires regsters(DRO through DR3) holdsthe 32-bit linear addessof
a lreakmint (referto Figure 151). Breakpant conparisons arenadebefae physical addes
trarslation occurs Each Ieakpoint cordition is specified further by the contents of debug
regster DRY.

15.2.2. Debug Regi sters DR4 and DR 5

Debu redgstersDR4 andDR5 are resrved whendelug extensonsare @abled (whenthe DE
flag in cortrol regster CR4 is set), and attemts to refelence theDR4 ard DR5 regsters cause
aninvalid-opcale exepton (#UD) to be generaed. When delug extensonsare nd enatbed
(whenthe DEflag is clear)thes registersare aliasd to cebugregsters DR andDR?.

15.2.3. Debug Status Register (DR6)

The debug status regster (DR6) repats the debig corditions that were sampleat the time the
last dehug excetion was greraed (refer b Figure 151). Updates to this register only occu
whenan exeptionis generatedThe fags in this reigter shav the fdlowing information:

BO through B3 (breakpoint condition detected) flags (bits 0through 3)
Indicates(when st) that ts associated bregbint cordition wasmet when a
dehlug exceptionwas gerrated. Tles flags are set if the codition described
for eachbrealpoint by the LENn, andR/Wn flagsin dehug contol register
DRY7 is true. Theyare set eveif the breakpant is not enalbed by the Ln ard
Gn flagsin regster DR7.

BD (debug register acces detected) ffiag (bit 13)
Indicatesthat the next instruction in the instruction streamwill accessne of
the delg regsters(DRO through DR7). Ths flag is enabledwhen the GD
(general detect) flag in dely corrol register OR7 is set. Refer to Sedbn
15.24., “Debug Control Regster OR7)’ for further explanaton of the pupos
of this flag.
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BS (single skp) flag (bit 14)
Indicaes(whense) that the delug exception wastriggeredby the single-step
exection mode(enatbedwith theTFflag inthe EFLAGS reigter).Thesingle-
step node isthe higheg-priority debug exception. When the BSflag isset, ay
of the other debug datus bits dso may be sd.

BT (task switch) flag (bit 15)
Indicateqwhenset)that tte debugexceptionresultedfromatask switchwheae
the T fag(delugtrap flag)in the TSS of th targettask was st (refer toSection
6.21., “Tak-State Segmean(TSS)”, in Section, “Tak Managerent”, for the
format d a TSS).Ther is ro flag in debug contrd regster DR7 to enalte o
disable ths exception; the T flag of the TSS is the orly enalling flag

Note that tle corents of the DR6 regster ae newr clearedby the pocessarTo avdd any
confuson in idenifying deby excepions, the delug hamller should clear he regster befae
returning to the interupted program ortask.

15.2.4. Debug Cont rol Regist er (DR7)

The cebugcontol regster (DR7) erablesor dsablesbrealpoints and sts breakpant corditions
(refer to Hgure 151). Theflagsandfieldsin this regstercontrd the fdlowing things

LO through L3 (local breakpoint enable) flags(bits 0, 2, 4 and 6)
Enabe (when set) therkakmint cordition for the asociated keakmint for
the curent tag. Whena lreakmint condtion is detectedird its as®ciatedLn
flag is set, adehug excefion is generatedThe praesorautanaticaly clears
these flag on everytask switch to avoid unwantedbrealpoint corditions inthe
new &sk.

GO through G3 (global breakpoint enable) flags (bits 1, 3 5,and 7)
Enable (wlen set) tke breakoint cordition for the asaciatedbrealpaint for all
taks. Whenabreakpant condition isdetected and i@sociated @ flag is set,
a delug excepion is geneated. The piocessr doesnot clearthes flags ona
task switch, allowing abreakpoint to beenabéd for all taks.

LE and GE (localand global exact breakpoint enable) flags(bits 8 and 9)
(Not supported in the P6 &mily procesors.) When setthes flags causehe
processr to detectthe exact istruction thatcaused a ala brealpoint cond-
tion. For backvard ard forward compatibility with other Intel Architecture
processrs, Intel reconmends that the LEand GE flag be set to 1if exact
breakpants are reaiired.

GD (general detect enable) flay (bit 13)
Enabes (when set) debg-register pratection, whichcauses debugexception
to be generatedprior to ary MOV instruction that access adehug register
When sich a corition is detectedthe BD flag in debyg satusregister DR6 is
setprior to generatirg the excepgion. This condition is providedto support in-
circuit emulatos. (When the enmulator need to accessthe delng registers,
emulate sotware canset tle GDflag to prevent irterfererce fomtheprogram
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curently executingonthe pracesor) The pocessr clears the GD flagipan
enteing to the delig exceptionhardler, to allow thehander accesdo the
debug registers.

R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29)
Specifies the lreakmint condition for the correspnding bregpoint. The DE
(dehug extersions) flag in control register CR4 deternineshow the hits in the
R/Wn fields are irterpreted When tre DE fagis set the pocessointerpiets
these lits as fdlows:

00—Breakoninstruction executiononly.

01—Breakon dai writes only.

10—Breakon /O read or writes.

11—Breakondat reals or writesbu notinstruction fetches.

When the DE lag isclear the pocessr interpgretsthe RWn bits the sime as
for the Intel386™ and Intel486™ processos, which is as folbws

00—Breakoninstruction executiononly.

01—Breakon dat writes only.

10—Undefined.

11—Breakon dat reals or writesbut notinstruction fetches.

LENO through LENS3 (L ength) fields (bits 18, 19,22, 23 26 27, 30 and 31)
Specifythe size of the memoy location atthe addressspecified in the coe-
spording breakmint addessregister (DRO hrough DR3). These felds are
interpretedss follows:

00—1-byte length
01—2-byte length
10—Undefined

11—A4-byte length

If the careponding RWn field in register DR7 is 00 (ingruction execution),
then the I[ENn field stould alko be 00 The efect of usng anyother kength is
undefined. Refer to Secion15.2.5, “Breakpant Feld Recanition” for further
informationonthe wse o these ifelds.

15.2.5. Breakpoint Field Recognit ion

The breakpoint addess registers (debugregsters DRO through DR3) andthe LENR fields for
each beakmint define a ran@ of sequetia byte addessesfor a dada or 1/0O brealkpoint. The
LENnfields permit specificatiorof al-, 2-, or 4-byte rangebegnning at the linearaddessspec-
ified in the coregpording debwg redster (DRn). Two-byte rarges mug be aigned o word
boundaries and4-byte ramges must be aligned on daibleword bowndaies /0 breakpmint
addes®s arezeroexterdedfrom 16to 32 bits far purposesof compaison with the lreakpmint
addessin the selectedebig register. These regiremerts are enbrcedby the pocessor; it ses
the LEN field bits to mask the lower aldress hts in the debug regigers. Uraligneddat or I/0
breakpant addessesdo notyield the expecedreaults.
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A data breakoint for readng or writing dagis triggered if anyof the bytes participating in an
acces is wihin the mngedefinedby a beeakpant addess ragisterand its LEM field. Table 15-1
gives arexanple setuf the delug regsters andhedata accegs thatwould subseqgently trap
or not trap o the breakoints.

Table 15-1. Breakpointing Examples

Debug Regi ster Setup

Debug Register R/Wn Breakpoi nt Ad dress LENn
DRO R/WO0 = 11 (Read/Write) A0001H LENO =00 (1 byte)
DR1 R/W1 =01 (Write) A0002H LEN1 =00 (1 byte)
DR2 R/W2 = 11 (Read/Write) B0002H LEN2 =01) (2 bytes)
DR3 R/W3 =01 (Write) C0000H LEN3 =11 (4 bytes)

Data Accesses

Access Length

Operatio n Address (In Byt es)

Data operations that trap

- Read or write A0001H 1
- Read or write AO0001H 2
- Write AO0002H 1
- Write AO0002H 2
- Read or write BOO0O1H 4
- Read or write B0002H 1
- Read or write B0O002H 2
- Write CO000H 4
- Write CO001H 2
- Write CO0003H 1
Data operations that do not trap

- Read or write AOO00H 1
- Read A0002H 1
- Read or write AO003H 4
- Read or write BOOOOH 2
- Read CO000H 2
- Read or write CO0004H 4

A data breakpint for anunalgned gerard canbe cmdructed usng two brealpoints, where
each beakpont is byte-aligned, ad the two breakmints togethercover the oprand These
brealpoints generae exceptons only for the ogerand nat for anyneighboring bytes.

Instruction brealpoint acddreses must hawe alength specfficaion d 1 byte (the LENa field is
setto 00). Thebelavior of cock breakpmints for otheropaandsizesis undefined. Theprocesa
recoquizes aninstructionbreakpant address oty whenit points to thefirst byte d aninstric-
tion. If theinstruction hasary prefixes the reakpoint addressmust paint to the first prefix.

15.3. DEBUG EXCEPTIONS

The Intel Architectureprocesors ddicate two interrypt vecibors to hawling debg exceptions:
vector 1 (debwy exception #DB) ard vecor 3 (breakmint exception,#BP). The following

I 15-7



DEBUGGING AND PERFORMANC E MONITORING Intel®

sectionsdesribe howthese excejpbns aregererated and tpical exaeption hander operatons
for hardling thes exceptios.

15.3.1. Debug E xception (#DB)—Interrupt Vector 1

The debwg-excepton hander is usualy a cbugger pogram « is part of a larger sdftware
sysem The pr@esorgenerates aebugexceptiorfor anyof several coditions. The debgger
cancheckflags in tte DR6 andDRY registers to dermine wlich canditioncaused th excefion
and which otherconditions might also apply Table 152 shows the statesof theseflags
following thegeneation of eachkind of breakmint condition.

Table 15-2. Debug Ex ception Conditions

Debug or Breakpoi nt Condition DR6 Flags Tested | DR7 Flags Tested | Exception Class
Single-step trap BS=1 Trap
Instruction breakpoint, at addresses Bn=1and R/Wn =0 Fault
defined by DRnand LENn (GEnor LEn=1)

Data write breakpoint, at addresses Bn=1and R/Wn =1 Trap
defined by DRnand LENn (GEnor LEn=1)

1/0 read or write breakpoint, at addresses | Bn=1 and R/Wn =2 Trap
defined by DRnand LENn (GEnor LEn=1)

Data read or write (but not instruction Bn=1and R/Wn =3 Trap
fetches), at addresses defined by DRn (GEnor LEn=1)

and LENn

General detect fault, resulting from an BD=1 Fault
attempt to modify debug registers

(usually in conjunction with in-circuit

emulation)

Task switch BT=1 Trap

Instruction-breakmint and gereral-detect caditions (efer to Section 153.13., “Gereral-
DetectException Condition”) resut in fauts; other debug-excepion conditions restt in traps.
Thedebig exceptionmay epott either orbath at ore time. Tl following sectons describeach
class d debugexcefion. Referto Section5.12.,“Excegion andinterupt Refererce” in Chapter
5, Interrupt and Excepion Handling for addtional informationabaut this excefion.

15.3.1.1. INSTRUCTION-BREAKPOINT EXCEPTION CONDITION

Theprocessr reports an instruction breakpointwhenit attempts texectie aninstructionatan
addessspecifiedin abrealpoint-address regster OBO through DR3) that has ben set upo
detect irstruction execution (R/W flagis st to 0). Upon reporting the irstruction breakmint, the
processr geneates a fault-classdebig excepion (#DB) befae it executedie targetinstruction
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for the beakpadnt. Instruction breakmints are thehighest piority debug excepions and &
guarnteed b be grvicedbefore ary other exceptonsthat may bedetected duing the decoding
or executiorof aninstrudion.

Becawe thedebig excepion for aninstruction kreakmint is geneated bebre the instruction is
executedif the ingruction reakmint is nat removed by the exceptionhandler, the pocessr
will detect tke ingruction brealpaoint again whenthe irstruction isrestitedandgererateanother
debig excepion. To prewent loopng on an instruction brealpoint, the Irtel Architectue
provides he RF flag (resume flag) in the EFLAG register (refeto Secion 23., “SystemFlags
andFields in the ELAGS Register”in Chapter 2, System Achitectue Ovewriew). When tre RF
flag is sef the pracessr ignores irstruction breakpoints.

All Intel Architecture proesorsmanage theRF flag asfollows. Theprocessor &sthe R-flag
autonatically prior to calling an exceptionhander for anyfault-classexceptionexcept a bug
excepion that was geprated in response 0 an nstruction brealpoint. For debwg excepions
resuting from instruction breakpoints, the pracessar does nd set the RF flag prior to calling the
deby excepion hander. The dbug excepion handler then tes te ogion of disabling the
instruction brealpoint a seting the R flag inthe EFLAGSimage onthe sack If the R- flag
in theEFLAGS imag isset when the pracesorretumns from theexcepion handler, it is coped
into the RFflag in the EFLAGS register by the IRETDor taskswitch instruction that causes he
return. The pocesor thenignaesinstruction treakmints for the duation of the nextinstruc-
tion. (Note that the PORF, POPFD, aml IRET instructions do not trarsfer tre RFimageinto the
EFLAGS regster.) Setting the RFflag doesot preventother typesof delug-excepion cond-
tions (suchas,l/O ordat breakmints) frombeing deecied,nor doesit preventnondehug excep
tions frombeing gnerated After the instuction is siccesfully executed, thgrocessor clears
the R-flagin the BFLAGS regster except aer an RETD instriction or after a JIMPCALL,
or INT n instructionthat causes a taswitch. (Note that the prcessr al doesnot set the RF
flag when calling exception or interrupt handersfor trap-classexcepions, for hardvare inter-
rupts, or for sotware-gererated intewupts.)

For the Penum® processo, when an instruction breakpoint coincideswith andher faut-type
excepion (uchasa pge fault), the plocesa maygererate one uriousdebugexcepion after
the £cand exceptionhas been hadled, exen thogh the debug excepion hardler st the R-flag
in the EFLAGSimage. To prewent ths spurious exceptian with Pertium® processrs, all fault-
class excegion handlers shauld set the R flag inthe EFLAGS mage.

15.3.1.2. DATA MEMORY AND I/0 BREAKPOINT EXCEPTION CONDITIONS

Datamemoy ard 1/O breakpantsare reprtedwhen the pracesorattemptsto access nmemory
or 1/0 addressspecified in éreakmint-addressregster (DB) through DR3) that hadeenset
upto detectdata o 1/0 acceses (RW flagis setto 1, 2, or 3). The piocessr generates thexcep
tion after itexecuesthe instruction that mack the access, these Ibeakpoint condition cases
a trapclass excepton to be gererated

Because data brealpoints are trap, the aiginal data is overwrittenbefore the trapexcegion is
genested. If a delugger need  save the conerts of a write brealpoint locaion, it shoud sawe
the orignal corterts befae setting the breakmint. The handler can reprt the saved value ater
the breakmint is triggered The addessin the debu regisers can e used to locate thenew
value stored by the ingruction that tiggered the breakoint.
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The Intel486™ ard later Intel Arclitectue pracesors ignore the GE and LE flags in DR7. In
the Intel3®™ processr, exactdata beakpant matching dasna occur unessit is enabledoy
seting the LEandor the GE flags.

The P6 family proesors, howvever are unable to repd databreakmints exactly for the REP
MOVS andREP STOS instructions until the canpletion of the iteration after the iteration in
which the beakpant occured

ForrepeatedNS ard OUTS irstructions thatgeneste anl/O-breakpant debug excepion, the
processr generateghe exceptionafter the canpletionof the first iteration.RepeatedNS ard
OUTS instructions generate an/O-breakmint delbug excepion after the iteratio in which the
memay addess bieakpant locationis accessed.

15.3.1.3. GENERAL-DETECT EXCEPTION CONDITION

When tte GD flagin DR7 is =t, the general-cttect delng exceptionoccus whena gogram
attempts t@cces ary of the delug regsters (DR through DR7) at thesame time tley ae beirg
usedby andherapplication suchas aremuatar or debugger This adlitional protectionfeature
guarantees filicontrol overthe dbug registerswhenrequred.Thedebwg exceptionhardler can
detect ths cordition by checking the sate of tle BD flag d the DR6register. The pracessr
gereratesthe exeptionbefre it execues the MOV instructionthatacceses a doug register,
which causesfault-classexceptionto begenesated.

15.3.1.4. SINGLE-STEP EXCEPTION CONDITION

The pocesor generatsa shgle-stepdebig exaption if (while aninstruction isbeing execuied)
it detects that th&F flag inthe EFLAGSregister is at. The exeptionis atrap-clasexception
becasethe ex@ptionis generatedafter the instructions executed(Notethat theprocesordoes
not gererate ths excepion after aninstruction that sts the TFflag Far exanple, if the PORF
instruction is used toset the TF flag, a sirgle-step trapdoes rot occur until after the indruction
that followsthe PQPF irstruction.)

The pocessr cleas the TFflag bebre calling theexceptionhandler. If the TFflag wassetin a
TSSatthe time o a tak switch, the excepton occus afterthe first instruction is execuedin the
new Bsk.

The TFflag normally is not cleared by prilege changesinside atask. The INTa ard INTO
instructiors, however do clearthis flag. Theefore, software debgge's tha singlestep cale
must recodqnize and emiate INT n or INTO instructiors ratherthan execting them directly To
maintain protection, the operatirg systemshould check the CPR afteranysingle-sep trg to see
if single steping should cortinue at tke curren privilege level.

The nterrupt priorities guaentee that, if an exérnal interrupt occus, single sepping stops
When oth an exernal irterrupt anda singlestepinterrupt occurtogether the single-step irner-
rupt is procesed frst. This operation clears the THag. After savinghe return addressor
switching taks, the exernal nterrypt input is examinedbefore the first instructon of the sngle-
step landler executes|f the exernal interrupt is gill pending, thenit is seniced. The exterml
interrupthandlerdoesna runin single-step made. 10 single stepan nterrupt hander, set a beak
point inside the hamller and thenset the TF flag.
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15.3.1.5. TASK-SWITCH EXCEPTION CONDITION

The pocessr generates a delguexception afer a tak switch if the T flagof thenew tag's TSS
is set. This exceptionis gererated affer program cantrol haspasgdto the newtask, andafterthe
first instruction of that taskis execued. The exepion hander can @tect this candition by
examinng theBT flag of the DR6 regster.

Note that, if the detug excepion hardleris atask, the T bit of its TSSshould not be setFailure
to observe ths rule wil put the pracessoin a loop.

15.3.2. Breakpoint Excep tion (#B P)—Interrupt V ector 3

The lreakmint exception(interrypt 3) is caused byexection of anINT 3 instruction (referto
Section 5.12., “Exceptionard Interupt Reference” in Chager 5, Interrupt and Exception
Handing). Deluggers use brea&xceptios in the same way that theyuse the breakoint regis-
ters that is, ammechanism fosugpendng program exection to examine regsters and @mory
locations. Wth earlier Intel Achitecture proesors, breakpant exceptions areisedextensively
for setting instruction brealpoints. With the Intel386™ ard later Inel Architecture pracessrs,
it is more corveniert to set brealpoints with the brealpoint-addess regiters (DRO through
DR3). Howewer, the treakpoint excepion still is useful for breakpointing debuggers, kecawse
the lreakmint exceptioncan call aseparate exeptionhander. Thebrealpoint excepion is al®
useful whernit is necesary to sst mare bieakpants thanthere are eébugregisteror whenbreak
points ae beingplacedin the souce cale ofa pogram urderdevelgpment.

15.4. LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING

The P family processorgrovide five MSRs for recading the lag brarch, interryt, or excep
tion taken ly the pre@esor. DeblgCtIMSR, LastBranchDIP, LagBranchromIP, LastExcei-

onTolP, ard LastExceptinFromP. These regters carbe used t@et breakmints onbrarches,
interrupts andexcepions, andto single-steprbm onebrarch tothe next.

15.4.1. DebugCtIMSR Regist er

The Debu@tIMSR register enable$ast branch interrypt, and excetpon recading; taken
brarch breakponts; the beakpant reporting pins; and trace messages. Thegister canbe
writtento using the WRM SR instruction, whenoperatingat privilegelevel 0 or whenin real-
addess male. A potectedmode opeating system pocedue isrequred toprovide wseracces
to this regster Figure 152 showsthe flags inthe Deb@gCtIM SR regster The functionsof these
flags are asdllows:

LBR (lag branch/interru pt/excegion) flag (bit 0)
When set, th@roessor record the souce andtamget addes®s for the last
branch ad the las exception @ interrypt taken ly the pocessr prior to a
delug exceptim being generaed. The piocessr clears ths flag wherevera
delug excefion, such asaninstruction or daa bre&point or single-step trap
oCCuUs.
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31

76543210

PlP|P|P|B|L
TiB|B|B|B|T|B
Rig|2|1]|0|F|R

TR—Trace messages enable ‘
PBi—Performance monitoring/breakpoint pins

BTF—Single-step on branches
LBR—Last branch/interrupt/exception

D Reserved

Figure 15-2. DebugCtl MSR Register

BTF (single-gep on brancheg flag (@it 1)

When set, lte pracesortreatsthe TF flag in the EFLAG &gister as a “Bgle-
step @ branches' flag ratherthan a “single-step a instructions” flag This
mechanism allows sigle-steppig the pocessr ontakenbranctes Software
must set bath the BTF and TF flagto emable debg brealpoints on branctes
the proessorcleas both flags whenegr a adbug excegion occurs.

PBi (performance manitoring/breakpoint pins) flags (bits 2through 5)

When thesdlags are &t, the peformance moiitoring/breakmint pinson the
procesa (BPO#, BP1#, BP2#, and BRB#) report breakpant matches n the
coregponding brealpoint-addess regsters (DRO through DR3). The
processr asgrtsthen ceaserts theorregpondng BPi# pin when a breakpoint
matchoccus. When a PBflag is clearthe merformancemonitoring/breakpmint
pins repat performarce evats. Processorexecutiom is rot affeced by
reporting peformance eents

TR (trace message enable) fag (bit 6)

15-12

When set, trace meagesae enabed. Therafter when the ppcessor dects

abrarch, exception or interrug, it sendthe“to” ard “from” addesss aut on

the sysembus aspart of abranch trace meage. A deluggng device thats

monitoring the system bus can read thesessagesard synchronize orations
with brarch, exceptionand interrpt eventsSetting thisflag greatly reduces
the performarce ofthe plocesor Whentrace messages areabied, tie values
storedin the Lad$BrancholP, LastBrarchFromP, LasExceptiomolP, ard

LagExcegionFromIP MSRs are urdefined.

Note that the “fom” addes®s €nt out on the system ba may differ from
those dored in the LaBrarchFromP MSRsor LagExcegionFromIP MSRs
The from addresssert out on the bis is always the rext instruction in the
instruction stream 6llowing a succedslly completed instruction. For
exanple, if a ranchcompetes successfullythe addess storedin the Last-
BranctrromIP MSRis the addess of the brarch instructiol, bu the addess
sentout on the busin the trace mesmge isthe addess of the instruction




Intel® DEBUGGING AND PERFORMAN CE MONITORING

following the brarch instruction If the pocessor dults on the brarch, the
addessstoredin the LastBarchFromiP MSR is againthe adiressof the
branch irstruction ard that same attess issent ait on the hus.

15.4.2. Last Branch and Last Exception MSRs

The LastBranch®IP and LasBranchFromP MSRs are 32bit registers for recordng the
instruction painters for tke last lbanch interrupt, or excepion thatthe pocesa took prior to a
debwg excepion being generaed (refer to Figure 15-2). When abrarch accurs the pocesa
loads theaddessof the bianchinstructionintothe LastBanchFronlP MSRandloads tte taget
addess for the branchinto theLagBranchrolP MSR Whenan interupt a excepion occurs
(other thana debyg exception) the adressof theinstruction that was interuptedby the excep
tion or interrypt isloaded io the LastBanchFromP MSR andthe addess ofthe excepon or
interrug hander that iscalledis loadedinto the LastBanchTolP MSR.

The LasExceptionDIP and LastExceptioFromP MSRs (al® 32-bit regisers) recad the
instruction painters for tke last lbanchthat the pracesso took prior to an exepion or interrug
beinggererated. Whenan exeptionor interrupt occuss, the cortentsof theLasBranchlolP and
LagBranch-romIP MSRs are copiednto thes registers before the to androm addresesof the
exceptim orinterrypt arerecodedin the LastBanch®IP andLagBranch-romIP MSFRs.

These retsters catbe readusingthe RDMSR instruction.

15.4.3. Monitoring Branches, Exceptions, and Interrupt s

When the LBR flag in the DebugCtIMSR regster isset, tle proces®r auomatically begns
recoring branches thatt takes, excepions that ae gerrated éxceptfor delugexceptios), and
interrupts that are erviced. Each time branch, exceipon, or interrupt occus, the pocessr
recods the toandfrom instructionpanters in tle LasBranchlolP ard LastBanchFronlP
MSRs. In addition, for interrupts andexceptons, the processo copies tte catents of the Last-
BrarchTolP and LasBranchFromP MSRs into the LastExceponTolP and LasException
FromIP MSRs prior to recading the toandfrom addesses otthe interupt a exception.

Whenthe pr@esor generates a delguexcepion (#DB), it auomatically clearghe LBR flag
befae eecuting tle excefion handler, bu does ot touchthe last brach ard lastexception
MSRs. The addessesfor the las$ branch,interrupt, or excepion taken are thairetainedin the
LagBranchrolP andLastBranchFrenlP MSRs ard the addes®s of the lasbranchprior to an
interrypt ar exceptionare retainedn theLastExceptionTolP, andLastExcefionFromIP MSRs.

The deligger can ge the lasbranch interrypt, and/o excepion addessesin combiration with
codesegmnentselectas retrieved from the dackto rest brealpoints in the breakoint-address
registers (DR through DR3), allowinga backvard tracdrom the maifesiationof a paticular
bug towardits souce. Because thénstruction pointers recorced inthe LastBarchTolP, Last-
BrarchFromP, LasExceptiomolP, ard LasExceptiorFromIP MSKs are ofsetsinto a coé
segment, sofware must deterrime the segmnt base addssof thecodesegment assciatedwith
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thecontiol transfer to calculatethe linearaddessto be gacedin thebreakpont-addessregis-
ters. The segmeiase addesscanbe determired by eadingthe segnent slectorfor the cale
segment fom the saickand usingt to locate he gment descriptofor the segmetrin the GDT
or LDT. The segmenbase addrs canthen le readfrom the segrant descrifor.

Before resuming program execuion from a ébug-exaeption handler, the handler ould set the
LBR flag againto re-erable last braoh aml last exceptiofinterrupt recading.

15.4.4. Singl e-Stepping on Branches, E xceptions, and Interr upts

When the BTF flag inthe DebgCtIMSR register ad theTF flagin the EFLAGS regdster are
both set the pracessr gererates a sigle-stepdehug excepton the next time it takesa brarch,
gereratesanexception or servicesaninterrug. Thismectanism albws the deligger to sngle-
stepon cantrol transfes caused ¥ brarches, excejpons, or interupts. This “contrbflow single
stepping’ helps isolate a big to a paticular block of coce befae instructon single-stepping
further narravs the searchlf the BTF flag is set whethe piocessr generates a@ugexcep
tion, the pocessr clears the flaglongwith the TF flag Thedebwggermust reset the BF flag
before resuming programexecuton to continuecontol-flow snge steppng.

15.4.5. Initializing Last Branch or Last Except ion/Interrupt
Recording

The LastBarchTolP, LastBranchFronlP, LastExceptiofolP, and LastException+romIP

MSRs are enaled by setting the LR flagin the DebgCtIMSR regster. Contra-flow single

stepping is enabled P setting the BI'F flag in the DebgClIMSR regster The pr@esorclears
bath theLBR andthe BTF flags whenevera debug exceptionis generated To re-erable these
meclanians, the delug-exceptiom handler must thus eplicitly set these flags befoe returning

to the interruped program

15.5. TIME-STAMP COUNTER

The Intel Architecture (begiming with the Pertium® processr) defines a time-samp counter
meclanisn thatcan ke usedto moritor andidentify therelative timeof occurence ofprocessr
evens. The ime-stampcourter architectug includes an instructiofor readingthe time-samp
cownter (RDTSQO), a feature ki (TCS flag) that can bread with tle GPUID instruction a time-
stanmp caunterdisable it (TSD flag in cortrol register CR4, anda nodel-specifc time-stnp
counter.

Following exectuion of the CPUID instruction, the TSC flag in regiser EDX (bit 4) indicakes
(whense) that the timestamp counter is present ira particliar Intel Architecture pocessr
implemenation. (Refer to“CPUID—CPU Idertificaion” in Chapter 3of thelntel Architecture
Sdtware Develogr's Manual, \blume 2)

The time-stamp couer (as implemeted in the Pertium® andP6 family procesors) isa 64bit
counter that issetto O following thehardvare reset of theprocesso. Foll owing reset, tie cainter
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is incremered everyprocessr clock cycle, even when the presor is halted by the HLT
instruction or the exernal STRCLK# pin.

The RDTSCinstruction read the time-stamp cater andis guaenteed to rettn a momtoni-
cally increasingunique value whermver excuted.except br 64-bit courter wrapaourd. Intel
guaantees, ardhectually, that the time-stamp aarter frequery ard canfigurationwill be such
that itwill not wraparound within 10years ater beirg reset ta). The peria for counter wrap is
several thousards of years inthe Petium® andP6 fanily processrs.

Normally, the RDTSC instructioncan k& executedy programs andporoceduesrunning at any
privilege level ard in virtual-8086 male. The TSD flgin control register CR4 (bit 2) alows
use of thisinstruction to be restictedto only programs angrocedues runningat privilege kevel
0. A secue qoeratirg system wold set thel SD flag during system iitializationto disableuser
acces to the time-stanp counter. An operatingsystem that disables user acces to the time-
stampcounter shauld emulate the instictionthrough a ugraccesible prgramming interface.

The RDTSC instruction is not serializing or ordered with other instructions Thus, it does rot
necesarily wait wuntil all previous instructiors havebeenexecutedbefae readingthe cownter.
Similarly, subsequentinstruconsmay kegin executon beforethe RDTSC instruction gperaton
is performed.

The RDMSR andWRMSR instructiors can reacnd writethe time-stampcounter respectively
asamodelspecific regster (TSC). The alility toreadandwrite thetime-stampcaunterwith the
RDMSR ard WRMSR instructions is not anarchitecturaléaure, ard maynot ke supparted by
future Intel Architecture proesseos. Witing to the time-stamp caunter with the WRMSR
instruction resetghe caint. Only thelow order 32-bits of the time-stanp counter can lewritten
to; the ligh-orde 32 bitsare Oextencetd (cleaed toall 0s).

15.6. PERFORMANCE-MONITORING COUNTERS

The Petium® processr introduced malel-specific pdiormancemonitoing caintes to the
Intel Architectue. These cauters pernt processr peformance peameters to be mrmitored
and measwd. The infomationobtained fom thesecounters can then be used foning system
andcomgpler performarce.

In thelntel P6 family of preesors, the perfomarce-moritoring counter mechaism wasmod-
fied and erhancedto pemit a wider vaiiety of events tobe monitored ard to allow greater
control over the selection of the eents to be monitored.

The fdlowing sections describe the performance-nonitoring counter mecharism in the
Pentium® andP6family processrs.

15.6.1. P6 Family Processor Per formance- Monitoring Counters

The P6family processes provide two 40-bit performance canters, allaving two types of
events to be onitored simultaneowsly. These counters can eithezourt events or measerduia-
tion. Whencouwnting events, aaurter isincrememed eachime a specifiecevert takes place o
a gecified nunber of ewents tkes place. When meastng duation a counter counts the
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number of processo clocksthat cccur while a sgecifiedcordition istrue. The canterscancount
evens or measire duationsthat occur at any pvilege level. Bble A-1 in Apgendix A, Perfor-
marce-Monitoring Eventdists the eventsthat carbe countedwith the P6 family peformance
monitoring counters.

The performancemonitaing cownters are gppated by four MSRs: the perfamarce event
sekct MSRs (PerfEvtSel0 andPerfE/tSel1l) and the pdormance conter MSRs (PerfCtrO ard

PerfCtrl). The® regsterscan ke read fom and witten to usng he RDMSR ard WRMSR

instructiors, respectivelyTheycanbe accessed using thesistructionsonly when ogerating at
privilege level 0. The PefCtrO and RrfCtrl MSRscanbe read fran any pivilege level using

the RDOPMC (readperformance-nonitoring countes) instruction.

NOTE

The PerfE¥Sel0, PerfEvtSell, Perf@0, and Pei€trl MSRs ard theevents
listed in Table A-1 in Appendix A, Performarce-Monitoring Bvens are
model-specific ér P6 family processors. Téy arenot guararieed to be
available in fuure Intel Architectue praecesors.

15.6.1.1. PERFEVTSELO AND PERFEVTSEL1 MSRS

The PerfE¥Sel0 andPerfEvtSell MSRs contrd the oeration ofthe perbrmance-manitoring
counters, wth one register used teesup eachcounter Theyspecify the eventsa be courted,
how theyshauld be couted, andhe privilege levelsat which couating should take place Figure
15-3 shavs the flags andields in trese MSRs.

Thefunctions ofthe flags ad fields inthe PerfE¥Sel0 andPerfEvtSell MSR areasfollows:

Event selectfield (bits 0 through 7)
Selectsthe event to be monitored (reér to Table A-1 in Appendix A, Perfor-
marce-MonitoringEventsfor a lig of evers and their 8bit codes.

Unit mask field (bits 8through 15)
Further qualifies the eent €lected inthe event seledtield. For example, fo
some cach events, the mask is used as a Ma$tocol qualifier of cache
staes (eferto Table A-1in Appendix A, Performancevonitoring Everis).

USR (user mode) flag (it 16)
Specifies thaévents a& comntedonly whentheprocesoris operatingat piiv-
ilegelevek 1, 2or 3. Ths flag canbe wsedin canjunction with the OS flag

OS (operating system mode) flag (bit 17)
Specifies thaevents a& counted only whentheprocesoris operatingat piiv-
ilege level 0. This flag canbe used inconjunction with the USRflag.
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31 24232221201918171615 87 0

N

INV—Invert counter maskJ
EN—Enable counters*

INT—APIC interrupt enable
PC—Pin control
E—Edge detect
OS—Operating system mode
USR—User Mode

| !
Counter Mask N|E N[P|E g S Unit Mask Event Select
\% T

* Only available in PerfEvtSelO.

D Reserved

Figure 15-3. PerfEvtSel0 and PerfEvtS ell MSRs

E (edge detect) flag (bit 18)

Enabes(when &t) edge detection afvents.The procesorcouwnts thenumber

of deasertedto asserted tragitions of ary cordition that carbe expressed by
the aher fields. The mechanigm is limited in that it does ot permit backto-

back asertics to be distinguished This mechanism allows Dftware to

measurenot only the fraction o time spert in aparticularstate,but dsothe

avelge lengttof time gent in sich a sate (br exanple, the time gent wating

for aninterrupt to be sewiced)

PC (pin contral) flag (bit 19)
Whenset, the processar togglesthe PMi pinsand incremeits thecounter when
performance-nonitoling evens occut when cka, the pocessr toggles he
PMi pinswhen the counter overflows. The toggling of apin is defined as asser-
tion d the pin for asinge bus clock followed ly deasertion

INT (APIC interrup t enable) flag (it 20)
When set the pracesor geneates an exception through its local ARC on
counter overflow.

EN (Enable Counters) Flag (bit 22)
This flag is only presen in the PerfEvt®0 MSR. When set, grformance
counting is enalbedin both performance-nonitoring counters whencleat both
counters are thabled

INV (invert) flag (bit 23)
Invertstheresult of the cauntermask comparisonwhen set, so hatboth greater
thanandless tharcompaisons can ke made.

Counter mask field (bits 24 through 31)
When nonzeo, the processor compas this maskto the nunber of events
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cowntedduring a sngle cycle. If the eent caint is geater tharor equal to this
mask,the courter is increnentedby one. Otherwise theouwnter is rot incre-
merted. Ths mask carbe sedto cownt evers only if multiple occurences
happen per clock (for example, two or more instructions retired per clock). If
the caunter-mas field is 0,then the courter isincremerted eacttycle bythe
numberof events that ccuried that cgle.

15.6.1.2. PERFCTRO AND PERFCTR1 MSRS

The perbrmarce-cainter MSRs (PerfCtrO and PerfCtrl) contain the evert or duation courts
for the selected evénbeing caunted The RDPMC instructioncan ke used byprograms or
proceduies runningat ary privilege level andin virtual-8086 mode toreadthese canters.The
PCE flagin contrd register QR4 (bit 8) allowstheuse d this instruction to berestrictedto only
programsand pocediresrunning atprivilege kevel 0.

The RDPMC instruction is nd serializirg or ordered withother instructions Thus, it does nd
necessarilywait urtil all previous instructions have bteen exected before readng the carter.
Similarly, subsequent instructions may begin execution before the RDPMC instruction opera-
tionis performed.

Only the operatirg system executing at privilege level 0, candirectly manipulate the perfa-
marce counters, wing the RDMSRandWRMSR instructions. Asecue eratingsystem wold
setthe TSD flag during system intialization to disable drect wser access$o the performarce-
monitoring couwnters, hut provide a wseraccesible pogrammirg intefface thatemulates the
RDPMC instruction.

The WRMSR instruction camat aritrarily write to the performance-nonitoring counter MSRs
(PerfCtrOand PerfCtr). Instead the lower-order 32 bits of eachMSR may be writtenwith ary
value, andhe highorder 8bits are gin-extendedaccoding to the vale ofbit 31.This opeation
allows writing bath positive ard negative values tothe performance cainters.

15.6.1.3.  STARTING AND STOPPING THE PERFORMANCE-MONITORING
COUNTERS

The performance-nonitoring counters are $arted by writing valid setyp information in the
PerfEvSelOandor PerfEvt®l1 MSRs and seting the erabde cauntersflagin the RerfEvtSel0
MSR. If the stup is valid, the caunters kegin caunting following the exection of a WRMSR
instructionthat ®ts the eable couter flag The courterscan bestopped ly clearirg the eable
cowunters flag orby cleaing all the bitsin the RerfEvtSel0 ad PerfE¥Sell MSR. Courter 1
alore can le stoppedby clearingthe PerfEtSell MSR.

15.6.1.4. EVENT AND TIME-STAMP MONITORING SOFTWARE

To use the perbrmarce-manitoring cownters andtime-stamp cownter, the operating system
need to provide anevent-nonitoring device diver. This driver shoud include pocedires fa
handling the following operations

® Feature checkim

* |nitialize aml start counters.
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* Stop ourers.
®* Read the eent cainters.
® Read the timestampcouwnter.

The eent maitor feature @termination procedue must determine wiether the current
procesor suppats the perfamarce-manitoring counters and timestamp courter. This proce-
dure compresthe family and model ofthe praesor eturnedby the GUID instruction with
those of pocesas known to sippat performarce moiitoring. (The Rentium® andP6 family
processors suppat paformancecourters.) The pocedire also checls the MSRand TSCflags
returnedto regster EDX by the QPUID instruction to determine if the MSRs aml the RDTSC
instruction aresupported.

The irtialize andstart courtersprocedue «ts the PeiEvtSel0 anfbr PerEviSell MSR for
the evems tobe cowunted andthe method usedto caunt them andinitializesthe counter MSRs
(PerfCtr0 and PerfCtrl) to starting counts. The gop cauntersprocedue gops the performarce
courters. (Refer to Secion 156.13., “Starting and S$opping the Peformance-Mamitoring
Counters' for mare information abait sartingand $opping the counters.)

The readcourtersprocedire eads he values in the Perf® andPerfCtrl MSRs, and a read
time-stamp courier pracedue readsthe time-stamp couer. These proedues woud be
provided inlieu of enalling the RDTSC anl RDPMC instructions that allow applicationcode
to readthe caintess.

15.6.2. Monitoring Counter Overflow

The 5 family procesas piovide the option ofgeneratng alocal ARC interruptwhena pefor-
mance-monitoring counter overflows. This mechanismis enalted by settng the interrupt enalte
flag in either the PerfEvtSelO or the PerfEvt81 MSR. The primary u® of this option is for
statigical performancesampling.

To use this option, the gerating system should do the following things on the processo for
which performanceevents areequited tobe maitored

®* Provide aninterrug vector for fanding the counter-overflow interrug.

® |nitialize the APIC PERF local vecor entry to enale hardling of performancemonitar
couwnter overflow everts.

® Provde an efry in the DT that poirts to a stub eception lander that returrs without
exectuing ary instructions.

* Provde an evenmonitordriver that provides he actia interrug hander and malifies the
reservedDT entry to point to its interrug routine.

When interrupted by a caunter owverflow, the irterrug handler need to performthe fdlowing
actions:

® Savethe irstruction pointer (EIP redster), code-segrant selector TSS segmnt selectar
counter vales aml ather relevant information atthe time d the interrupt.
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®* Rest the caunter toits initial setting ard retun from the interrup.

An event monitor apgication utility or arother apgication program canreadthe information
collected ér analysisof theperfamarce ofthe pofiled gplication.

15.6.3. Pentium® Processor P erforman ce-Monito ring Count ers

The Rentium® processor providestwo 40-bit peformance canters which can te used etherto

count eventsor meagsire duration Theperformarce-manitoring caunters ag@ sippatedby three

MSRs: the cantrol andevent €lect MSR (CESR) and the pdgormance coater MSRs (CTRO

andCTR1). Theseregisters can be read froand writtento usingthe RDOMSR andWRMSR

instructiors, respectivelyTheycanbe accessed using thesestructionsonly when ogerating at
privilege level 0.Each canterhas an asgiated exterral pin (PMO/BP0 andPM1/BP1), which

canbe usedo indicate tke date d thecourter to exernal tardware.

NOTE

The CESR CTRO, ard CTR1 MSRs andthe evets listed in Table A-1 in
Appendix A, Performance-Moritoring Evers are nodel-specifc for the
Pertium® processr.

15.6.3.1. CONTROL AND EVENT SELECT REGISTER (CESR)

The 32bit cortrol and evehselectMSR (CESR) is used to control the ogration ofperfor-
marce-mortoring counters R0 and O’ R1 andtheir associated pins (refey Figue 15-3). To
cortrol eachcounter, the CESR register cortains a6-hit event select fieldESO anl ES1) a pn
cortrol flag (P ard PClL), and a 3-hit counter cantrd field (CCO ard CC1). The functions &
these fields arasfollows:

ESO and ES1 (ewent select) fields (bits Othrough 5, hits 16 through 21)
Selects(by enteringaneventcodein thefield) up to two ewents to le moni-
tored. Refer to Table A-1in Appendx A, Performarce-Monitoring Evens for
a listof available evehcodes

CCO0 and CC1 (counter contral) fields pits 6 through 8, bits 22 through 24)
Contrds the eration of the courter. The pasible cotrd codes are as

foll ows:

CCn Meaning

000 Count nothing (caunter disabled)

001 Count tre ®lectedeventwhile CPL is O, 1, or 2
010 Count the ®lectedeventwhile CPL is 3

on Count the ®lectedeventregardess of CPL

100 Count nothing (caunter disabled)

101 Count clocks (duration) while CRL is 0,1, a 2
110 Count clocks (duration) while CPL is 3

111 Count clocks (duration) regardlessof CPL
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Note that he highed order bit selects betweencourting evens andcounting
clocks (durationr); the middle bit endles counting whenthe CPL is 3; andthe
low-order bit enables counting when tte CR_is 0, 1, or 2.

31 262524 2221 1615 109 8 65 0
P P
c| cci ES1 c| cco ESO
1 0

PC1—Pin control 1J
CC1—Counter control 1

ES1—Event select 1
PCO—Pin control 0
CCO0—Counter control 0
ESO—Event select 0

D Reserved

Figure 15-4. CESR MSR (Pentiu m® Proc essor Only)

PCO and PC1 (pin control) flags (it 9, bits 25

Sekcts the finction of the exteral perbrmarce-maitoring cownter gn

(PMO/BPOand PM1/BP1). Settihg ore of trese flags to 1 causes the pcessr

to asert is asociated piwhenthe counterhas overflowed seting the flag ©

0 causes the pinto be asertedwhen the conter has been inementedThese
flagspemit the pinsto be ndividualy programmedo indicate the owverflow o

incremented conidion. Note thatthe exteral signaling of the eventonthe pins
will lag theinternal eent ty a few clocks as theignalsare latchedaindbuff-

ered

While a counter need not be sppedto sample itscortents, it must be stoppd and clearedr
preet befae swichingto a new even It is not possible to set one couter separatly. If only
oneevern needs tdechangd, the CESR regster must beread,the ajpropriate bts modified,
ard all bitsmust then be writterback toCESR. Atrest, all bitsin the CE®R registerarecleared.

15.6.3.2. USE OF THE PERFORMANCE-MONITORING PINS

When the performarce-manitor pins PMO/BPO andbr PM1/BP1 are onfigured to indicate
when the pdormance-maitor caunter has increméed and an “oaarerce event” is being
courted, the asociated pin isas®rted (high) eachtime the event occarWhen a“duration
event” isheing cownted the asociated PMoin is asertedfor the entire duation of the eveh
When the perbrmarce-maitor pins are caffigured to indcaie when the couter has over
flowed, the assciated PM pinis not as®rted urtil the courter has werflowed.

When the PMO/B?0 ard/or PM1/BP1 pins are cofigured to signal that a cater ha incre-
mened, it shoud be noted hatalthough the caintersmay incrementby 1 a 2 inasingle clock,
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thepins ca only indicatethat tre event acurred.Moreover, sincetheinternalclock frequermry
may be higler thanthe exteral clock feqiency, a shgle exterral clock my coresond to
multiple internal clocks.

A “court upto” funcion may be pravidedwhen the eventpin is programmed ¢ signal an over
flow of the counter. Because theourtersare 4 hits, a carryout of bit 39 indicatesanoverflow.
A counter may be preset toa gecific valle les then2** - 1. After the conter has beeenated
ard the prescribed number of everts hes trarspred, the counter will overflow. Approximately 5
clocks later, the oerflow is indicatedexternally andappropriate action, such asigraling an
interrupt, may thenbetaken.

The AMO0/BPO andPMYBP1 pins also serve  indicak breakpant mathesduing in-circuit
emdation during which time the canterincremen or overflow function of these pins isiot
avaiable. After RESET, the PM0/BP0 and RM1/BP1 pinsare conigured for grformance mai-
toring, however a halware deligger may econfgure hese pis to indicate lreakmint
mathes

15.6.3.3. EVENTS COUNTED

The evets thatthe peformance-nonitoring courterscan seto coun ard recordin the CTRO
andCTR1 MSRsare dvided ino two categades occurences andwation Occurences eves
are comted each tim¢he event &kes place. Ifthe PMO/B?0 orPM1/BP1 pins are cofigured to
indicatewhena couwnter incremetts, they aras®rted eachclock the cainterincrenents Note
that if an evencanhappen twice in ore clock, the cainter incementshy 2, however the pins
are assertednty once.

For duration everts, the counter counts the tol number of docks that the cadition is true.
When canfiguredto indicate whera courter incements, théMO0/BPO and/a PM1/BP1 pins
are assertef the duation of theevent.

Table A-2 in Appendix A, Performance-Moritoring Eventdists the evets thatcan be couted
with the Peium® procesor performarce-moritoring counters.
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CHAPTER 16
8086 EMULATION

Intel Architectue processrs (begiming with the Intel386™ processr) provide two waysto
execute new or legacy ggramsthat areassembled aridr compledto runon an Intel8086
procesor.

® Realaddress male.
® Virtualt8086 made.

Figure 2-2 in Chapter 2, System Achitectue Overviewshavsthe elationship ofthese gerating
mocdkes b praeced male am ystemmanagmentmode(SMM).

Whenthe processr is poweed up orreset, itis placedn the real-adressmode. Thisoperating
mock almaest exactly dplicates the executioervironment ofthe Irtel 8086 piocessr, with
some extensions. Virtualy any program assenbled ard/or conpiled to runon an Irtel 8086
processorwill run an anintel Architecure processor irthismode.

Whenrunning in proteced mode,the processr canbe svitchedto virtuat8086 mock to run
808 programs. This moe also duplicates the exetion ervironment d the Irtel 8086
processr, with extensions. In virtual-8086 mode, an8086 program runsasasefarate proteced
mock task. legacy 8086 programs ae thus ake to run under an eratingsystem (suclas
Microoft Windows*) thattakes adlantage of poteced male ando useprotecied-mode facl-
ities, suchas the potectedmode interrpt- ard exceptiorhardling facilities. Proectedmocde
multitasking permits mutiple virtual-8086 made taks (with eachtaskrunning a sefarate 8086
program) to be run onthe procesor along with othernorvirtual8086 made tsks.

This section describesoth the bagi real-adressmode executio ervironmen andthe virtual-
808-mode execuion ervironment avaiable on the Intel Architecure piocesas begnning
with the Intel36™ processr.

16.1. REAL-ADDRESS MODE

The Intel Architecture's real-addess noede runsprograms written for the Intel 8086, Intel 888,
Intel 80185, ard Intel 80188 procesors, or for the realaddress moce of the Intel 286
Intel386™, Intel486™, Pertium®, Pertium® Pro, Periium® 11, andP6-family processrs.

The executiorenvironment of theprocessorn realaddress mode is desgned toduplicate he
executiom endronment d the htel 86 procesor To an 886 program, a jpocessor perating
in reataddessmoce behaveslike ahigh-speed 808 procesor. The pricipal feaures ofthis
architectue are ddahed in Chapter3, Basic Exection Environment, of the Intel Architecture
Software Developr's Manud, Wolumel. Thefollowing isa summay of the core featesof the
real-adiressmodeexecutionenvironment as woulde seetby aprogramwrittenfor the 886
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16-2

The pro@ssor supprts anominal 1-MByte physical addressspace (gfer to Sedbn

16.1.1., “AddressTrarslation in Real-Addes Mode” fa specific details). THs addess

space iglivided intosegmats, eachof which can ke up to 64 KBytesin lengh. The base
of asegmenis specifedwith a 16bit segment glector, which iszeroextendedto form a

20-bit offset from addess O in the addess space. Anoperard within a segmenis

addresed with a 16bit offset from the base of theegment. A phyical addess isthus

formedby addirg the offset to the 2(it segmehbase (refer to Section16.1.1., “Address

Transhtionin Real-Addes Mode”).

All operards in “native 80& code” are 8-bit or 16-bit values. (Operahsize overide
prefixes carbe sedto acces82-hit operand.)

Eight 16-bit geneal-pumpo registers areprovided: AX, BX, CX, DX, SP, BR, Sl, and DI.
The extended32 bit regigers (EAX, EBX, ECX, EDX, ESP EBR ESI, andEDI) are
accesdile toprograms that explicitly perform asize override operatin.

Fou segmenhregistersare povided: CS, DS, SS, andS. (The FS ard GS registers are
accesdile toprograms that explicitly aces them) The CSregster cmtains the segment
selectorfor the codesegment; the DS andES egisters containsegment selectors br data
segmets; ard theSS regster contains thesegment seleatr for the stack segment.

The 886 16-hit instruction painter (IP) is mappedto the lower 16bits of the EIP regiger.
Notethis registeris a 32-bit register ard urintentional addesswrapping may acur.

The 16bit FLAGS regster catains stais andcontrd flags. (This regster is maped to
the 16 leag sgnificart bits of the 32-bit EFHLAG S register.)

All of the Intel 8086 instructions are supported (referto Secton 16.1.3., “Indructions
Supported in ReatAddressMode™).

A single, 16-bit-wide gack is provided for handing procedue cals and invocaions of

interupt ard exceptionhanders. This stack is contaired in the gack segmenidertified

with the SSregister The SP (stack pointe)) regster contains anoffset into the stack
segmeh The gack grows down (toward lower segment dfsets) fom the stack pinter.

The BP (bas pointer) regiser al contains an féset into the $ack segment that carbe
usedas a poiter to a parameter lis. When a G\LL instruction is executed, the qocessr

pushes the awent irstruction pointer (the 16 least-ggnificant hits of the HP register and
on far calls the curert value of the CSregister) onto the stack Onareturn, initiatedwith

a RET indruction, the proces®r pops the saed instruction pointer from the stackinto the

EIP regster (andCS regster on farretuns). When an implicit call to an interrpt or

exceptionhander is exected, tte piocessr pushesthe EIP, CS, andEFLAGS (low-order
16-bits orly) registers onto the sack Ona returnfrom aninterrypt or excepion handler,

initiated with an IRET instruction, the gocessa pops the sved instruction pointer and
EFLAGS imagefomthe gack intothe EIR CS, aid EFLAGSregigers

A single interupttable, callecthe “interrupt vecta talde” or “interrupttable,” is piovided
for handling interuptsandexcepions (refer to Hgure 162). Theinterrypt table (wlch has
4-byte entries) takes thelgce of tle interrypt descriptor table (DT, with 8-byte entries)
used when handling protectedmode interupts and excepions. Interrypt and exception
vecbr numbes povide an hdex to entiesin the interupt table. Each enty providesa
pointer (called a “vecbr”) to aninterupt- or exceptionhanding procedue. Refer to
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Secion 16.1.4, “Interryot ard Excegion Hardling” for more detils. It is possible for
software to reloae the IDT ly means of the LIDT instructioon Irtel Architectue
procesas begnning with the Intel386™ procesa.

® The floatingpoint wit (FPU) is acive and aailable toexecute FR instructiors in real-
addes male. Rogramswritten to run onthe Intel 8087 andintel 287 mah coprocesors
canbe run in realaddess modewithout madifi caion.

The following extensbns to the mtel 808 exection ervironment ae available in thentel
Architecure'srealtaddes mock. If backwarg conpatibility to Intel 286 and Iriel 8086 pioces
sors isrequired, these éatures shdd notbeused innew progranswrittento run in realaddress
mock.

* Two adlitional segrent regsters (FS anGS) are awilable.

®* Many of theintegerandsystem instrctions thathavebeenadded to P6-family processors
can ke executedn real-adiressmade (iefer toSection 16.1.3., “Ingructions Supported in
RealAddress Modg”).

® The 32bit operard prefix canbe wsedin real-addessmodepragrans to execute the32-bit
forms of instructions This prefix alo allows real-adliress mode programs to use the
procesa’s 32-bit geneal-purpo registers

®* The 32bit addres prefix canbe used n realaddress moce programs, allowing 32-bit
offsets.

The fllowing sectons desribe adires formation, registers avalable instructions ard inter-
rupt andexception hadling in real-addessmoce. Forinformationon 1/O in real-addessmock,
referto Chapter9, Inpu/Output, in the Intel Architectue Sdtware Developeis Manud, Volume
1

16.1.1. Address Translation in R eal-Addres s Mode

In real-adiressmode, the proesor des nad interget segnent selectors asndedes into a
descriptortade; instead, iuses them directly to fon linear addes®s asthe 8@6 piocessr
does. It shifts the segnent selecto left by 4 bits to form a 2-bit base adires (refer toFigure
16-1). Theoffsetinto asegment is addd tothe tase addeess to ceate a lineaaddess thatmaps
directly tothe fhysical addess space.

When wsing 8086-style address trarslation, it is pasdble to specify addreses lager than 1
MByte.Forexampe,with a segmetselector elue of FFFFH and aroffset d FFFFH, thelinear
(andphydcal) addesswould be DFFEFH (1 megalte plus 64 KByteg. The 8086 procesor,
which can brm adiresesonly up © 20 bits long, tuncaesthe high-order bit, therely “wrap-
ping’ thisaddessto FFEFH. Whenopegting inreataddes mode however, the procesor does
not truncate sich an adressarnd usesit asa physical addess. (Note, lowever that forIntel
Architecture pocessrs beginning with the Intel6™ processarthe A20M# signal can dused
in reataddress mode to mask addessline A20, thereby mimicking the 20-bit wrap-araund
behavor o the 86 pocesor.) Care stould be ke b ersue that A20M# bagd addesswrap
ping is hardled carectly in multiprocesa basedsystem
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19 4 3 0
Base 16-bit Segment Selector 000O
+ 19 16 15 0
Offset | 00 00 16-bit Effective Address
T 19 0
Linear -
Address 20-bit Linear Address

Figure 16-1. Real-Addres s Mode Addre ss Translation

The Intel Architecture procesas begnning with the Irtel386™ processr can gererate 32-bit
offsetsusing an addess owerride pefix; howvever in real-addessmade, the alue of a 32bit
offset maynot exceed FFFH withou causingan exeption.

For full conpatibility with Intel 286 real-adiressmode, pseudo-protection faults (interupt 12
or 13) occu if a32-bit offsetis generaed outside the rang 0 hrough FFFFH.

16.1.2. Registers Supported in Real-Address Mode

The regster set avalable in realaddes mode ncludesall the regsters defhed for the 80&
processr plus the newregisters introduced inP&amily pracesors, sich as the FS ard GS
segmentregisters the cebugregsters, he control registers, am the floaing-point unit regsters
The 32bit opeand prefx allowsarealaddress mode prgram b usthe 32bit geneal-pumpose
regsters(EAX, EBX, ECX, EDX, ESREBP, ESI, arl EDI).

16.1.3. Instructions Supported in Real-A ddress Mode

Thefollowing instructionsmake up the core istruction set for the 8086 processa. If backvards
compatibility to the Intel 286 ard Intel 8086 processas is requred, only these istructions
should be used in anew programwritten to run in realaddress node.

®* Move (MOV) instructiors thatmove @erards betweeneneral-purpose registersegment
registers and betweenmemay and gnerd-puipos regsters

®* The exclange(XCHG) instruction.
®* |Load segmetregister instrations LDSand LES.

* Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC,
CMP, andNEG.

® Logical instructios AND, OR, XOR andNOT.
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Decimal instructioa DAA, DAS, AAA, AAS, AAM, and AAD.

Stack instructioa PUSH andPOP (o gereral-purpase registers and segrent regsters).
Type corversioninstructions GNVD, CDQ, CBW, andCWDE.

Shift ard ratate instructionsSAL, SHL, SHRSAR, ROL,ROR,RCL, andRCR.
TEST indruction.

Control instructions JMP, Jec, CALL, RET, LOOR, LOOPE, ad LOOPNE.

Interrypt instructions INT n, INTO, ard IRET.

EFLAGS control instructiors STC, @.C, CMC, CLD, STD, LAHF, SAHF, PUSHF, and
POFF.

I/O ingructionsIN, INS, OUT, andOUTS.

Load efective adiress (LEA)instruction, andtranshte (XLATB) instruction.
LOCK prefix.

Repeat pefixesRER REPE, FEPZ, REPNE, andREPNZ.

Procesor halt (HLT) instruction

No operation(NOP) irstruction.

The following instructions, added to P6-family processrs (ome inthe Intel 286 processo ard
the renainder in the Intel386™ procesor), canbeexecutedn realaddress male,if backvards
compatibility to the Intel 8086 processa is not requred.

Move (MOV) instructions that oprate orthe catra and a&bug regsters.

Load ®gmert regider ingructiors LSS, LFS, ad LGS.

Gereralized multiply instructions andmultiply immediate data.

Shift and rotate by immediatecounts.

Stack instructioa PUSHA, PUSHAD, PORA andPORAD, andPUSH immedate data.
Move with sign exengon ingructions MOVSX and MOVZX.

Long-dsplacement dc instructions.

Exchang instructions CMPXCHG, CMPXCHG8B, andXADD.

Stringinstructions MOVS CMPS, S@S, LODS andSTOS.

Bit test ard bit scan nstructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on
condition instruction SETec; andthe lyte swap (BBWAP) instruction

Double shft instructions SHLD and SHRD.
EFLAGS contol instructionsPUSHF ard POPE
ENTERandLEAVE contiol instructiors.
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®* BOUND ingtruction.
® CPU idertification (CPUID) instructon.

® System instruction CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SDT,
LMSW, SMSW RDMSR, WRMSR, RDTSC, andRDPMC.

Executn of any of the other Intel Architecture irstructions (not given in the prevoustwo lists)
in reataddress nmode result in aninvalid-opcade excepton (#UD) being generated

16.1.4. Interrupt and Exception Hand ling

When operaing in reataddess mode, sftware mug provide interrupt ard excetion-handing
facilitiesthat ae seprate from those provided in praectedmode. Even duing the ealy stages
of processar initialization when tre procesa is stll in realaddress node, elenertary real-
addressmode interrupt and excepfon-hardling facilities must be provided to insure reliabbe
operatian of the processo, or the initiali zation cade must insure that ro interrupts or excepions
will occur.

The Intel Architectue praesors hadle interupts andexceptios in real-adiressmode similar
to the waythey hande themin protectedmocde. Whena piocesorreceivesan interupt or gener

atesan exeption it uses the ector umber d theinterrupt or excepion as anindexinto the
interrupt take. (In protectedmode, tte interrug tade iscalledthe interrup t descriptor table

(IDT), but in real-addess node, te tabkis usually calledthe interrupt v ector table, orsmply

theinterrupt table.) The enry in the interrupt vecior table povides gpointerto aninterrupt- or

excepiion-handlerprocedue. (The poiter consists of asegnentselector for @odesegnentand

a 16-hit offsetinto the segmet) The piocessr performs the bllowing actions tomakean
implicit call to the selectedhardler:

1. Pushes the cwnt values of thCS ard EIP regsters onto th stack. Only the 16least-
significart bitsof the EIP regster ae pwshed.)

Pushes the low-ader 16bits of the EFLAGSredster ato the stack

Clearsthe IF flagin theEFLAGS regster todisable intempts.

Clearsthe TF RC, andAC flags in the EFLAGS regster.

Transfers prgramcortrol to the locationspecified inthe interupt vector table.

AR

An IRET instructionat theendof thehander procedirereverses these stepsrédurnprogram
cortrol to the interuptedprogram. Exceptions do not eturn erra codes in real-adiress moce.

The interupt vectortalle isan aray of 4-byte entrieqrefer to kgure 162). Eachertry corsists
of a farpointerto a fandler procedue, madeup d a segrent €ecta andan dfset. The
processr scales the iterrupt or exceptionvectorby 4 to dotain anoffset into the irterrupt table.
Following resetthe base of the interrpt vector tables locaedat physical addess 0 ard itslimit
is setto 3H-H. In the Intel 8086 processo, the base adiressard li mit of the interrupt vecta takde
canrot be ctangedIn the F6-family processors, the base adsisandlimit of the interupt vecior
table are catained in the IDTRregister and cabe chaged usinghe LIDT instuction. (For
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backward conpatihility to Intel 8086 processos, the default base addessand li mit of the inter-

rupt vecor table shoud na be ctanged)

A Up to Entry 255
Entry 3
12
Entry 2
8
Entry 1
4
Segment Selector 2
Interrupt Vector 0*—|
Offset 0
15
* Interrupt vector number O selects entry 0
(called “interrupt vector 0”) in the interrupt IDTR
vector table. Interrupt vector O in turn
points to the start of the interrupt handler
for interrupt 0.

Figure 16-2. Interrup t Vector Table in Real-Addres s Mode

Table 16-1 shows thénterrypt ard exceptionvectosthat carbegenesated inreal-adiress mod
and vitual-8086 mode, ard inthe Intel 808 pracessr. Referto Chaper 5, Interrupt and Excep

tion Handling for a desription of the excepion condtions
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Table 16-1. Real-Addre ss Mode Exceptions and Interrupts

intgl.

Vector Real-Address Virtual -8086 Intel 8086
No. Descrip tion Mode Mode Processor

0 Divide Error (#DE) Yes Yes Yes

1 Debug Exception (#DB) Yes Yes No

2 NMI Interrupt Yes Yes Yes

3 Breakpoint (#BP) Yes Yes Yes

4 Overflow (#OF) Yes Yes Yes
5 BOUND Range Exceeded (#BR) Yes Yes Reserved
6 Invalid Opcode (#UD) Yes Yes Reserved
7 Device Not Available (#NM) Yes Yes Reserved
8 Double Fault (#DF) Yes Yes Reserved
9 (Intel reserved. Do not use.) Reserved Reserved Reserved
10 Invalid TSS (#TS) Reserved Yes Reserved
11 Segment Not Present (#NP) Reserved Yes Reserved
12 Stack Fault (#SS) Yes Yes Reserved
13 General Protection (#GP)* Yes Yes Reserved
14 Page Fault (#PF) Reserved Yes Reserved
15 (Intel reserved. Do not use.) Reserved Reserved Reserved
16 Floating-Point Error (#MF) Yes Yes Reserved
17 Alignment Check (#AC) Reserved Yes Reserved
18 Machine Check (#MC) Yes Yes Reserved
19 SIMD Floating-Point Numeric Yes Yes Reserved

Error (#XF)

20-31 | (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 | User Defined Interrupts Yes Yes Yes

NOTE:

* In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086
modes, this exception covers all general-protection error conditions, including traps to the virtual-8086
monitor from virtual-8086 mode.
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16.2. VIRTUAL-8086 MODE

Virtual-8B6 moce is actually a special typ of a task thatuns inpratectedmocde. Whenthe
opewting-system or egcutive svitches b avirtual-8B6-mocdk task, the ppcessr emulatesan
Intel 8086 processr. The executionemironment ofthe pocessr while inthe 86-emuation
state is the same as is descrifie@ecton 16.1., “RealAddress Mode” for real-adiress mod,
including the exensions. The majordifferencebetween th twomodesis that in virtual-8086
moce the8086 emuata usessome protectedmodeservices fuch asthe protectedmode inter
rupt ard exception-handling ard paging facilities).

As in realaddress mode, ary new orlegacyprogram tathasbeenasemlbed ard/or comgled
to run on an Intel 8086 procesor will run in a virtual-808-mode task. And seweral 8086
programs can ke run asvirtual8086-mode tasks corcurrently with nomal praecedmode
taks, using the procesa’s multitasking facilities.

16.2.1. Enabling Virtual -8086 Mode

The pocessr runs in virtual-8@6 node wherthe VM (virtual macline) flag inthe EFLAGS
register is set. Tikflag can aly be set wkn the piocessr switchesto anew protectedmode
task or resumesvirtual808 made viaan IRET instruction.

System software camot chang the state d theVM flag directly inthe BFLAGS regster (for
exampe, by usingthe PORFD instruction). Insteadit charges theflag in theimage d the
EFLAGS register staed intheTSS oron the stackollowing a call toanintetrupt- or exception
hander pracedue. For example, softwareets the VM flag in the EELAGS image n the TSS
whenfirst creatng avirtual8086 task

The pocessor testhe VM flag uncer thiee genaal conditi ons:

® When loading sggment registers, b detemine whethea to use 8086style address
translation.

® Whendecodng instructions, to deermine which instructions are rot supported in virtual-
8086 mode andwhich instructions are gndtive o IOPL.

® When checlng piivileged instructiog, on pag accessesor when peforming other
pemissionchecks. Yirtual-8086 modealways executes at EL 3.)

16.2.2. Structure of a Virtual-8086 Task
A virtual8086-made sk congsts of the fdlowing items
® A 32-bit TSS for the task

® The 80% program.

® Avirtual-8086 nonitor.

® 8086 opeating-system services
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TheTSS d the rew task must be a 3-bit TSS, rot a 16bit TSS, becase the 16bit TSS does
not load the most-significant word of the EFLAGS register, which contairs the VM flag. All
TSSs, stacks, &a, andcocde usedo hardle exceptions whetn virtual-8086 mode must alsobe
32-bit segnents

Theprocessr enters virtual-808 male b runthe 886 programandreturns o praecied male
to run the virtual-8086 manitor.

The \irtual8086 monitor is a 32bit praeciedmode coa modue that mnsata CPL of 0. The
monitor consists of initialization, interrupt- and excepion-handling, and 1/O errulation proce-
duresthat enulatea personal computer @ other8086-based fatform. Typically, the monitoris
either par of or closely as®ciated with the praected-mde geneal-protection (#GP) excefpon
hardler, which akoruns ata CPL of 0. Aswith any potecied-mode code mdue, codesegnent
degriptorsfor the virtual-8086 monitor mug exist in the GDT o in the task’sLDT. The virtuat
8086 monitor also mayneeddat-segmen degriptors so it canexamine the IDT or other pats
of the 8@6 program in the first 1 MByte of the adbss gace.The linear addressesabore
10FFEFH are asilable forthe nonitor, theopeting system, ad other sysem software.

The 886 operting-system ervices consists of a kerrel ard/or gperatingsysem procedires
that the 886 pogram males calls to. These arvices canbe implemeted in either 6 the
following two ways

®* They canbe ircluded in the 808 program. Ths approach is desirableof either of the
following reasns:

— The 886 programcoce modfies he 86 geratng-system sevices

— There isnot suficient development time to merge the 886 operatingsystemservices
into main operating systemor executie.

®* They canbe implemented o emuated inthe \irtual-8086 moritor. This appraach is
desiralde foranyof the fdlowing reasos:

— The 808 operatingsysemproceduescan be more edygicoadinated amang sveral
virtual8086 tasks.

— Memory canbe saved by na duplicaing 808 opeting-system procedire coce for
seweral virtual-8086 tasks.

— The 808 peratirg-system pocedires canbe easly emuated by calls tothe main
opewting system oexective.

The aproach cheen for implementingthe 8086 opeating-system services may result i

differert virtual-8085-mode tsks usng differert 808 operatng-system sewices.

16.2.3. Paging of V irtual -8086 Tasks

Eventhough a progam running in virtual8086 mode can us only 20-bit linear addesses the
processr conerts hese adiresseinto 32-Lt linear addesses befoe mapjing them to the pirs-
ical addessspacelf pagingis beingused,the 86 addes spacedr a program running in
virtual-808 made can be pagl andocated in aset of pgesin physicaladdressspacelf pagirg
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is used, it istrarsparent tothe programrunning in virtual-8086 mode just asit is for ary tak
running onthe pocesa.

Pagingis not necesaryfor asingle virtual-808-modetask, but padng is useful or necessarin
the following situations:

®  Whenrunning multiple virtual-8086-mode task. Hee, padng allows the laver 1 MByte
of the linear adressspace dr eachvirtual-808-made task to b mappedto a diferent
physicaladdess location

®  When enulatingthe 86 addess-wrafarownd that ocurs at IMByte. When wsing 8086-
style addresstranslaton, it is possibleto gecify addeseslarger than 1IMByte. These
addes®s auomatically wraparownd in the Intel 8086 processr (referto Section161.1,
“Address Trandation in Real-AddressMode”). If any 8@6 prayrans depe on addess
wraparownd, the sane effect can beachievedin a virtual-808-mode ask by mapping the
linear addesses between100000H and 1LOOMOH and linear addesses between0 and
1000(H to the samephysical addreses

® When sharinghe 80& operatingsystem services or &M code that isconmonto several
8086 programsrunning asdifferent8086-mock tasks.

® When edirecing or trapping referenceso memory-mapedl/O devices

16.2.4. Protection within a Virtual-8086 Task

Protecion is not erforcedbetwveen he sgmeris of an 8086 program. Ether of the following
techngues can be sl toprotectthe systemsoftware runningin a virtua-8086-mode task from
the 8@6 program

®* Reserve the first 1 MBrte pluis 64 KBytes ofeach tasls linear addessspace fothe 886
program. An808 procesa task camot generae addreses autside this rance.

®* Use the USS flagof pagetale enties to protectthe virtual-808 mamitor and dher system
softwarein the vrtual-8086 mock task space. Wenthe pocessr is in virtual-8B6 modk,
the CPL is 3. Therebre,an 886 procesa program tas only user pivileges If the pages
of the \irtual-8086 monitor have supenisor privilege,they cannd be accesedby the 8086
program.

16.2.5. Entering Virtual-8086 Mode

Figure 16-3 summarizesthe metaods of erteringandleavng virtual-8086 mode.The procesa
switches tovirtual-8086 mode in either of the following situations:

® Task switch when the VM flagis set b 1 in the EELAGS register image sted in the TSS
for the task. Here tle taskswitchcan e initiatedin either of twoways

— A CALL or MP instruction.
— An IRET instruction, wherethe NT flag inthe EFLAGS image isset tol.

® Return from aprotectedmoce interupt or exceptionhandlerwhenthe VM flag is set to 1
in the EFLAGS registerimage o thestack.
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- | Real Mode
Code
Real-Address \
Mode 5 / PE=0 or
PE=1 RESET
Y ,
Task Switch Protected- CALL _
Protected Protected- | VM=0 Mode Interrupt ™| virtual-8086
Mode Mode Tasks | and Exception | Monitor
Handlers = RET
A A
Task Switch!
o | _fvmso ] I R _
VM=1
Y Interrupt or
: 2
Virtual-8086 Exception
Mode Virtual-8086 #GP Exception®
RESET | Mode Tasks .
(8086 < IRET
Programs) IRET®

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler®

NOTES:

1. Task switch carried out in either of two ways:
- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

4. Normal return from protected-mode interrupt or exception handler.

5. A return from the 8086 monitor to redirect an interrupt or exception back
to an interrupt or exception handler in the 8086 program running in virtual-

8086 mode.
6. Internal redirection of a software interrupt (INT n) when VME is 1,

IOPL is <3, and the redirection bit is 1.

Figure 16-3. Entering and Leaving Virtual-8086 Mode

Whena taskswitchis usedto erter virtual-8086 mode, the TSS for the virtual-8086-mode task
must be a32-bit TSS (If thenew TS isa 16bit TSS, the uperword o the BFLAGS regiter
is not in the TSS, caing the pocessor to cleahe VM flag wren it loads the EFLAGS register
The processr updates th&/M flag prior to loadingthe segmentregistersrom their imagesin
the newTSS. The mw settng of the VM flag determineswhether the pracesso interprets the
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conerts of the segmentregisters as 808-gyle segnentselecbrs or prdaededmode segment
selectors. When the \M flag is set,the segmenregisters are badedfrom the TSSusing8086-
style addess translation tdorm base adresses

Refer to Section16.3., “Interrupt ard Excepion Handlingin Virtual-8086 Mock” for informa-
tion on ertering virtua-8086 moce on a retirn froman interrupt or excepton hander.

16.2.6. Leaving Virtual-8086 Mode

The pocesa can kave he virtual-8086 male orly through an interrupt or excepion. The
following are siuations where aninterrupt or execepion will lead to the pocessr leavng
virtual808 male (efer b Figure 16-3):

The processr services a hardvare interupt gererated to gnal the suspensionof
exection d the virtual8086 appication. Ths hardware interrupt may be gneraed by a
timer orother exernal mechnian. Uponreceivingthe hardvare interruypt, the pocessr
entes protected mod and swichesto a préected-mde (a anotler virtual-8086 modk)
taskeither tirough ataskgate inthe potectedmode IDT o through a trapor interrug gate
that pants o a handler that initiatesa task switch A taskswitch from a \virtual-8086 tasc
to arother task loasithe EALAGS regster fom the 1SS of the new tak. The \alue ofthe
VM flag in the rew EFLAGS detemines if the ew taskexecues invirtual-8086 mode or
not.

The piocessr services arexceptioncausedby code execting the \irtual-8(B6 tak or
services a érdwareinterrypt that “telongs to” the virtual-8@6 tak. Here,the processr
entes protected mde aml services the eeption @ hardware irerrupt through the
protecied-nodeIDT (normally through aninterrupt or trap gae) andthe pratecedmode
excefion- ard interrypt-hardlers. The pcessr may haxle the exceptionor interrypt
within the cantext of the \irtual 8086 task andreturn to virtual-8086 mode on a retun from
the hauler pracedue. The processor may alsexecute atask svitch and hadle the
excepion or interupt in the cantext d andher task.

The processr services asoftware interrug gereratedby code executing in the virtual-

8086 task (suchas asdtware nterruptto cal a MSDOS* operatng systemroutine). The
procesa provides several mehods of handing thee sdtware nterrupts, which are
discwssed in detailin Section 16.3.3., “Class 3—Software Irterrug Handlirg in Virtual-

8086 Made” Mog of them nvadve the rocesa enering protecied male, oten by means
of a gerral-protection (#GP) excejon. In protected mod, the processr can &nd the

interrupt to the virtual8086 manitor for hardling andbr redrect the interrupt backto the

apgication program running in virtual8086 mock task for hardling.

Intel Architecture praesors that incoporate the vrtual moe extensbn (endled with the
VME flag in control register CR4) are caphble of redirecting softwaregeneated intermupts
back to the prayram’s interrupt handers withou leavng virtual-808 mock. Refr to
Secton 16.3.34., “Method 5 Software Interrupt Handing” for more information on this
mechanian.
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® A hardvare eset initiated by as®rting the RESET o INIT pin is a gecial kind of
interupt. When a RESET or INIT is signaled whle the grocessr is in virtual-8086 mode,
the proces®r leavesvirtual8086 male aml enters realaddessmaode.

® Execuion of the HLT instruction in virtual-8086 mode will cause a gneral-protecion
(GP#) fault, which the praeced-mode hander gererally serds to the virtual-808 manitor.
The \irtual-8@86 manitor thendetemines thecorrect executionsequene afer werifying
thatit was entezd as a resultfoa HLT execution.

Refer to Secton 163., “Interru and Excepion Handing in Virtual8086 Made” for informa-
tion an leaving virtual-8086 mode b hande an nterrupt or excepion generagd in virtuat808
maode.

16.2.7. Sensitive Instructions

When anintel Architectureprocesoris running in virtual-8086 mode, theCLI, STI, PUSH,
POH, INT n, ard IRET instuctions are sensite to IOPL. The IN, INS, OUT andOUTS
instructions, which are semitive to IOPL in pratectedmode, arenot sersitive in virtual-8086
mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, anattenpt
to use the IOPL-sesitive ingructions listed abwe triggers ageneral-potection excepton
(#GP). These ingructions aresensitive to IOPL to give the \irtual-8086 monitor a chance to
emulate the facilites trey afect.

16.2.8. Virtual-8086 Mode /O

Many 8086 programs written for nonmultit asking systens directly acess 1/0 pats. Ths prac-
tice may cawseproblems in amultitaskng ervironment. If more thanone programaccessethe
same prt, they may interferewith eachother. Most mutitasking sysens requre aplication
programsto acces I/O potsthrough the geratingsystem. This results in simplified, cetralized
cortrol.

The pocessr provides|/O pmotection for creating 1/0 thatis compatible wth the enwronment
andtrangarentto 8086 programs Desgness may take ary of several possible approachesto
protecing 1/O ports:

®* Praect the 10 adlressspace ath gererate exceptios for all atempts to perform 1/0
directly.

® Letthe 886 program perform 1/O drectly.
® Gererate excepons onattempts to accesspecifc I/0 potts.
® Gererate excepons onattempts to accesspecifc memoy-mapped|/O pats.

Themetha of contolling acces tol/O ports depenls upn whethertheyare I/O-port mapped
or memaoy mapped
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16.2.8.1.  I/O-PORT-MAPPED I/O

The VO permisson bit map inthe TSS cabe wsedto gererate exeptions a attempts t@cces
specific I/0 pat addesses The I/O pemission bit map ofachvirtual-8086-moce task deter
mineswhich 1/O addressegererate exceptios for that task. Becauseeachtask mayhave a
different 1/O pemission bit map the addessesthat gemrate exeptions ér one taskmay ke
differen from the adressedor armthertak. This difers from pratecied mode in which, if the
CPL is lessthan or equal tothe IOPL, I/O aces isallowedwithout checking the 1/0O pernisson
bit map. Refer to Chapter 9 Inpu/Output, in the Intel Architectue Softvare Developr's
Manual, Volume 1 for more information about the I/O pernission bit map.

16.2.8.2. MEMORY-MAPPED I/O

In systerrs which use memory-mapyed 1/0, the padng facilities of the pocessr can leusedto
genesate exceptionsfor atempts to acces|/O pots. The virtual-836 monitor mayuse paging
to cortrol memory-magped O in these ways:

® Map pat of the linear adbss paceof eachtask thamneedsto peform 1/O to the physical
addessspace whee /O portsare paced.By putting the I/Oports atdifferen addes®s (n
different pags), the @ging mechaism can eiforceisolationbetweertasks.

® Map pat of the linear addressspace to pags that are notqesent. Thisgeneratesan
excepion whene\er a task atempts to perform I/O to those pages. Btem oftware then
caninterpret the 1/0 ogeratian being attenpted

Software emulatiorof the I/O pacemay requre too mud opeeting system intewventionunder
some conditions In these cags, itmay be possible to gererate anexception for only the first
attempt toacces 1/0. The system softwarten nay determine whether aprogramcan ke given
exclusive catrd of 1/0 tenporaily, the piotection d the I/O space maybe lifted, andthe
programallowed torun at full speed

16.2.8.3.  SPECIAL I/O BUFFERS

Buffers of intelligentcortrollers (for exanple, abit-mappedframe buffer) alsocan ke errulated
usingpagemappng. Thelinearspace fa the bufer canbe mappedto adifferert physical space
for eachvirtual-8086-mode task. The \irtual-8086 monitor thencancontrd which virtual buffer
to copy onto the real liffer inthe fhysical addess space.

16.3. INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086
MODE

Whenthe pra@zesorreceives an inteupt ordetectsan exeptioncondtion whilein virtual-8086
mocdk, it invokes an iterrug or exceptionhardler, justasit does in potected o realaddres
mock. The interupt or exception handlerthat is inwked ard the meclanian usedto invoke it
depers onthe clas of interrupt or exception ttat has been dtectedor generatedand the state
of various g/stem 1ags and felds.

I 16-15



8086 EMULATION Intel®

In virtual8086 mode, he interrupts and excefions are divided into three chs®s for the
purpasesof hardling:

® Class 1-All processr-generatedexcegions ard all hardware interrugs, including the
NMI interrupt and the hardvare inerrupts seri to the processr’s external interrup
delivery pins. All class 1 egeptions andnterupts are bndled by the prdectedmode
excepton and iterrupt hardlers.

® (Clas 2—Special casdor maskablehardvare interupts (Sction 5.1.1.2., “Maskable
Hardwvare Inerrupts”, in Chapter5, Interrupt and Excepion Handling) whenthe \rtual
mode exensbns are eabled.

®* Clas 3—All sdtware-generatedinterrupts, that is interrupts gererated with the INT n
instructon®.

The mehod the procesor usesto hande clas 2and 3interupts deendsonthe seting d the
following flags ard fields:

® |OPL field (bits 12 and B in the ERLAGS regster)—Controls how class 3 sdtware
interrupts are tanded when he pocesa is in virtuak8086 mode (referto Secion 2.3,
“System Flags andrields in tle EFLAGS Register’, in Chapter2, System Achitectue
Overview. This fieldalso contols the embling of the VIF ard VIP flags in the EFLAGS
register wren the VME flag isset. The VIFand VIP flags are pndded to assis$ in the
handling of class2 maskable hadware nterrupts.

®* VME flag (bt O in cortrol regster CRl)—Enales he virtual mode exenson for the
processr when sefrefer to Section B., “Control Registers’, in Chapter 2 System Achi-
tectue Overview.

® Sdtware interrupt redrection bt map (32 bytes in the TSS, referto Figure
16-5)—Cortains 256 flagsthat indicaeshow clas 3 software nterrupts should be hanted
when they occu in virtual8086 mode. A sdtware nterrupt can bedireced either © the
interrupt andexcepton handlersin the curertly running 8086 programor to the protected
mode nterupt andexcepton hardlers.

® The \rtua interrupt flag (VIF) ard virtual interupt perding flag (VIP) in the EFLAGS
register—Provides virtual interrupt support for the handing of class 2 maslable
hardware interapts (refer to Section 1632., “Clas 2—Maskalle Hardvare Interrypt
Hardling in Virtual8086 Mode Using the Mirtual Interrupt Mecharmsm?).

NOTE

The VME flag sdtware nterrupt redirection bit map, ad VIF ard VIP flags
are orly available in Intel Architectue processrs that supprt the \irtual
mode extersions. These exénsons were irtroduced inthe Intel Architecture
with the Rentium® processor.

The following sectons describe the actimsthat procesa takes ard theposdble actimsof inter-
rupt and excepion handlers for the two clas®s of interrupts desciibedin the previous paia-
graphs Thesesectons desciibe threepossible typesof interrupt ard excepion handers:

1. The INT 3 instruction is a special case (refer to the description of the INT n instruction in Chapter 3,
Instruction Set Reference, of the Intel Architecture Software Developer’s Manual, Volume 2).
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®* Protectednode interrypt and exeptions hadlers—These are the hdlers hat the
procesa calsthroughthe poteced-nmode DT.

® Virtual8086 moritor interrupt ard excepion handlers—Thes hamllers are reslentin the
virtual-8086 manitor, and they are conmorly accesad through a gneralprotection
excepion (#GPR interrypt 13 that isdirected to the qtectedmode gneralprotection
excepion handler.

® 8086 program nterupt and excepton hardlers—Thes handlers are @rt of the 886
program thatis running in virtual8086 moce.

The fdlowing sectons describe he thee handlers are usedleperding on the sele@d clas
andmetod of interrupt andexcepion handling.

16.3.1. Class 1—Hardware | nterrupt and E xception Handling in
Virtual-8086 Mode

In virtualk8086 made, te Patium® andP6 family procesers hande hardvare nterrupts and
exceptimsin the same maren astheyare handledby the Intel4&™ and Intel386 ™ processors.

Theyinvoke the prtected-mde interupt orexceptionhander that the inteupt orexception
vecta paints to inthe IDT. Here,the IDT ertry must cortain eithera 32-bit trap orinterrug gate
or a sk gate. The following secionsde<ribe varous waysthat a virtual-8086 male nterrupt

or exceptioncan le hardled ater the potectedmode hanller has been irvoked.

Referto Section 163.2, “Class 2—Maskable Hardware Inerrupt Handing in Virtuak8086
Mode Using the Virtual Interrupt Mechanism” for a descrigtion of thevirtual interrupt mecha-
nismthat is available for hardling maskable hardvare interrupts while in virtual8086 mode.
Whenthis meclanism iseither rot available orna enalbed, maskake hadware irterrupts are
handed inthe same marer as egeptions, as desced in the following sectons.

16.3.1.1. HANDLING AN INTERRUPT OR EXCEPTION THROUGH A
PROTECTED-MODE TRAP OR INTERRUPT GATE

When aninterrupt or excepion vecta paints toa 32bit trap o interryot gate inthe IDT, the gate
must in tun point to anonconforming, privilege-lewvel 0, cale segmen When accessg this
codesegment, the praesor performs the following steps.

1. Switches b 32-bit protecied male aml privilege kevel 0.

2. Saves the state ofdipraesor on the piivilege-level Ostack The gates ofthe EIR CS,
EFLAGS ESRSS ES, DS, FS, ard GS reistersare swved (refer toFigure 16-4).

3. Cleasthe 'gment regsters. Savig the DS, ES, FS, an@dSregisters on the stack ashthen
clearingthe registerdets the interrupt or exceptionhander safely save aml restore these
regsters regarlkkss of the ype ggment €lectas they contain (potected-mde or 8@6-
style). Theinterrupt and exeption handlers which may be caled in the catext of either a
protected-node task pa virtuel-8085-mode task, camse the same cedequences fo
savingandrestoringtheregisters foanytask. Qearingthese reigters befre executio of
the IRET instruction does rot catse a trap inhe interrugt handler. Interrupt procecures that
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expect valuesri the ssgment registersr that returnvaluesin the segmenregisters must
use the register imagssavedonthe stackdr privilege level 0.

Clearsthe VM flagin the EFLAGS regster

Begins execting the slectedinterrypt or excepion handler.

Without Error Code With Error Code
Unused <— Egg from Unused <— ESSP from
Old GS Old GS
Old FS Old FS
Old DS Old DS
Old ES Old ES
Old SS Old SS
Old ESP Old ESP
Old EFLAGS Old EFLAGS
Old CS Old Cs
Old EIP <<— New ESP Old EIP
Error Code <<— New ESP

Figure 16-4. Privilege Level 0 Stack After Interrupt or E xception in Virtual -8086 Mode

If the trapor interrup gae refelencesa pracedue in acorforming ssgment or ina ssgment ata
privilege level otherthanO, the proces®r gereratesa generatprotecion excepion (#GP). Here,
the eror codeis thesegment selector othecode segrmnt to which a call was aémpted.

Interrupt ard excepion handerscanexamine the VM flag otthe stack to deterine if the inter-
rupted pocedire was unring in virtual-808 mode.If so, the interupt or excepion canbe
hardled in ore ofthree ways

* The protectedmode interrupt or exception hadler that was calked canhande the interryt
or excepion.

®* The protectedmode interupt or exceptiorhandler can callthe virtual-886 monitor to
handle tke interrypt or excepion.

®* The virtuat8086 montor (if caled) canin turn pas cortrol back tothe 886 praram's
interrupt ard excegtion handeer.
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If the interrupt or exception is handled with aproteaed-mode hander, the hamller canreturn to
the interruged programin virtual-8086 modeby executnganIRET instruction. This instruction
loads the EFLAGSd segmentegisters flom the imagssavedn the privilege level O sack
(refer to Figure 16-4). A setVM flag in the ERLAGS image causethe pr@essor to svitch back
tovirtual8086mode. The CP at the imethe IRET instruction isexecuéd mustbe 0, oherwise
the pocessr doesnot changethe stag of the VM flag.

The virtual808 moritor runsat pivilege lewe 0, like the prdecied-male interrupt and excep

tion handers It is comnonly closely tedto the prdected-mde geneal-protection exception
(#GP, vector 13) handler. If the protected-mode interrupt or exception handler calls the virtud-

8086 monitor to handle the interrupt or excepion, the return from the \irtual-8386 monitor to

the interrupted virtual-8086 mode program requirestwo return instructions. a RET instruction

to retun to the prdectedmode hardler and an IRET instrucion to retun to the interupted

program

Thevirtual-8086 monitor has the option of directingtheinterrug andexcepion back toan inter-
rupt or excepion hander that is partof the interupted 808 program, as desibed in Secton
163.12., “Handling anlInterrupt or Excegion With an 808 Program Interrupt or Excepton
Handker”.

16.3.1.2.  HANDLING AN INTERRUPT OR EXCEPTION WITH AN 8086
PROGRAM INTERRUPT OR EXCEPTION HANDLER

Because it was deginedto run onan 808 pracesor, an 8@6 piogram ruming in a virtual-
8085-mode Bsk cantainsan8086-gtyle interrupt vecor table, which gsarts atlinear adires0. If
the virtual-886 moritor correctlydirectsan interupt or exeption vectoback to the virta-
808-modetask it came fom, the hamllers in the 86 progam can tandle te interrupt or
excepion. The virtual-8086 monitor must carryout the following stes to serd aninterrupt or
exceptio backto the 80& program:

1. Use the 886 interrupt vecbr to locae the appopriate hander procedire n the 886
program nterrupt table.

2. Store he ERLAGS (low-order16 bits only), CSard EIPvaluesof the 80& program onthe
privilege-level 3 stack. This is the stack that the virtual808-made tak is uing. (The
8086 hander mayuse ormodfy thisinformaton.)

3. Charge the retun link on the privilege-level O stack to point to the privilege-level 3
hardler procedire.

Execuk anIRET instruction © pas contol to the 808 program handler.

When te IRET instruction from the piivilege-level 3 handler triggersageneralprotecion
excepiion (#GP) ard thus efecively again callsthe virttel-8086 manitor, restore the
returnlink on the privilege-level 0 stack b paint to the original, interupted, privilege-level
3 pracedue.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stackto the
privilege-level 0 gack (becausesome 886 hamllers modify these flags to return
information tothe cale that cawsedthe irterrug).
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7. Execue an IRET instruction to pass catrol back tothe irterruged 8086 program

Note that if an operating system intends to support all 8086 MS-DOShasedprograns, it is
necesary to use the actal 8086 interrupt and excepon handers sypplied with the program.
The rea®n for this is that same programs modify their ovn interrug vecta table to subgitute
(or hook in serie$ their avn specialized inteupt ard exceptionhanders.

16.3.1.3.  HANDLING AN INTERRUPT OR EXCEPTION THROUGH A TASK
GATE

When aninterrypt orexcepion vecbor points to a task gein the DT, theproessorperfams a
tak switch to the selectedinterrug- or excepton-hardling task. The following actins are
cariied ait aspart d this tak switch:

1. The EFLAGSregister with the VM flag set is savedin thecurren TSS

2. The link field in the TSS of thealled task is loaded with the segmérselector of the TSS
for the interruged virtual-8086-mode tak.

3. The EFLAGSregister is loadd from the imag inthe rew TSS whichclearsthe VM flag
ard causes the pocessor t@witch to pratected mde.

4. The NT flagin theEFLAGS regster isset.
5. The pocessr begnsexecutingthe selected inteupt- or exceptionhardler task.

When anIRET instruction is exected in the fandler task and theNT flag in the EALAGS
regster is set, therocesors swithesfrom a potectedmode interrypt- or exceptiorhardler

tak backto a vrtual-8@B6-modetak. Here, tle ERLAGS amnl segmetregisersare loadedrom

images sved in the TSSfor the virtual-8086-mode tak. If the VM flag is st in the ERLAGS
image the processor svichesbackto virtual-8086 mocke on the tak switch. The CPL at the time
thelRET instructionis executednust ke 0, othewise the piocessr doesnat chang thestate d

the VM flag

16.3.2. Class 2—M askable H ardware Interr upt Handli ng in Virtual-
8086 Mode Using the Virtual Interrupt Mec hanism

Maskable hadware nterrupts are hose interrupts tat ae delivered trough the INTR# pin or

through an inerrupt reqlest tothe local APIC (referto Secton 5.11.2, “Maskable Hardwvare

Interrupts’, in Chapter 5 Interrupt and Excepion Handing). The interrugs can be ihibited

(maskedlfrom interrupting anexecutingoragramor task by clearirg the F flag in tre ELLAGS
regster.

When the VMEflag in contrd register CR4 isset and the IOPL field ime EALAGS register$
less than3, two addtional flags areactivated inthe EFLAGSregister.

® VIF (virtual interrupt) flag, bit 19 of the EFLAGSregister.
® VIP (virtual interrupt pendng) flag, bt 20 of the EHLAG S register.
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These flag provide the \irtual-8086 monitor with more eficient control over hamling
magkable hardvareinterrupts thatoccurduring virtuak8086 male tags. Theyalso rediceinter-
rupt-hardling ovethead,by eliminatingthe reedfor all IF relatedoperations guch as PUSIF,
PORF, CLI, ard STlinstructions) to trap tothe virtual-808 montor. The pupaose and us of
these flags aresdollows.

NOTE

The VIF andVIP flags are aly available inintel Architectureprocesors ttat
support the virtual mode extensons These exensions were introducedin the
Intel Architecture with the Pentum® procesor When this mechaism is
either na available or nbenalbed, makablehardware interruptsare handled
as clasdl interupts. Hee, if VIF andVIP flags ae needd,the \irtual-8(6
monitor can inplement themin software.

Existing 808 pragrams commuoly set andclear the IFlag in the EFLAGS registerto enable
anddisable ma&able hadware irterrupts, respectively; for exampe, to disable intetrpts while
handling andher interrupt or anexcegtion. This practice waks well in single taskervironmerts,
but cancau® prablems in multitasking and multiple-procesa environmerts, where it isoften
desirable to mvent an aplication program from having direct conrol over thehanding of
hardware nterrugs. When using eatier Intel Architecture processrs, this problem wasoften
solved by creding a \irtual IF flag in software. Tte Irtel Architecture processrs (begnning
with the Pentium® procesar) provide hardware support for this virtual IF flagthrouch the VIF
and VIP fhgs

The VIFflag s avirtualized vesion of the IF flag which anapplicaion program running from
within a virtual8086 task can usd b contol the handling of ma&able hadware nterrupts.
Whenthe VIF flag is endled, the @I and STI instructions ograte orthe VIF flag instead o
the IF fag. Whenan 886 programexectiesthe QLI instruction the pocessocleas the VIF
flag to request that the virtual-8086 monitor inhibit maskable tardwareinterrugs from inter-
rupting programexecution whenit execues the STI irstruction, the processr setsthe VIF flag
requeding that the virtual-8086 monitor erable maskable hardware irterrupts for the 8(B6
program But acualy the IF fag, mareged ly the operaing s/stem, alayscontols whether
maskabléhardvare irterrupts are eabled.Also, if underthese cicumstances aB086 program
triesto reador charge thelF flag using the PUSHF or POPF instructios, the pocessor will
chang the VIF flag instead, leang IF unchanged

The VIPflag provides software a meansf recordng the existnce of a deferred(or perding)
maskable hardvare inerrupt. This flag is readby the pracessr but never explicitly written by
the processr; it canonly be written by sdtware.

If the IFflag is setard the VIF and VIPflags are enaled, and the proesorreceives amaskable
hardvare interupt (interupt vector Othrough 255, the pocesor performs and the interryt
hander oftwareshaild perfam the following operatiors:

1. The piocessr invokesthe pratectedmock interrupt hardler for theinterupt received,as
descriled in the following steps. These stps are almost ideical tothose describedor
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method linterrupt ard excepion handing in Section 163.11., “Handing an Irterrupt or
ExceptionThrough a PréectedMode Trapor Interrupt Gate”™:

a. Switches to32-bit protected node ar privil ege lew 0.

b. Saves the gate of the proesoron the privilegedevel 0 stack. The sttesof the EIR
CS,EFLAGS, ESP, SS ES,DS, F5, and GSegstersare saved (reér to Figure 16-4).
In the EFLAGS image a the stack, the IOPL field is st to 3 andthe VIF flagis
copiedto thelF flag.

c. Clears the segenmt regsters.
d. Clears the VMlagin the EFLAGS register.
e. Begins executingthe selead protected-node irterrug hardler.

2. The recomrendedacion of the potectedmode interupt handler isto read the VM flag
from the EFLAGS inage o the stack. If this flag isset, the hamller makesa call tothe
virtuat8086 moritor.

3. The virtual-808 monitor should readthe VIF flagin the BFLAGS regster.

— If the VIF flag is cleat the virtuel-808 mornitor setsthe VIPflag in the ERRAGS
image o the sackto indicate thathere is a dferred irterrupt perding andretums to
the piotecied-node tander.

— If the VIF flag is set, the virtual-8086 monitor canhandle the interrug if it “belongs’
to the 86 rogram running in the interrupted \irtual8086 tasc; otherwise, it can cal
the poteced-node nterrupt hander to hande the interrupt

4. The protectedmocde handler executesa retun to the praggram execting in virtual-8085
mode.

5. Upon returning to virtual-8086 male, te praessr continues execuiton of the 80%
program.

When the 808 pragramis ready to receivenaskalbe hardware interapts, itexecutesthe STI
instruction to setthe VIF flag (enaling maskable hardware irterrupts). Rior to setting the VIF
flag, theprocesorauomatically checks theVIP flag anddoes me d the following, depending
onthe state othe flag:

* If the VIPflag is clear (indcating no pendinginterupts), tle pracesor sets the VF flag.

* If the VIP flag is set (imicating a pemling interrupt), the procesa generatesa general-
protectionexceptia (#GP).

The reconmenad acton ofthe pioteced-node gepral-protecion excefion hander isto then
cal thevirtual8086 manitor andlet it hardle the pendnginterrupt. After hardlingthe pending
interrupt, the typical actin of the \irtual-8086 monitor is to clearthe VIP flag and set the VIF
flag in theEFLAGS image onthestack andthenexecte a retun to thevirtual-8086 made.The
next time the proces®r receives a makalbe hardware inerrupt, it will then handle it as
described in stegs 1through 5 earlierin this sction.

If the pracessorfinds that loth the VIF ard VIP flags are set at theginning of an instruction
it generates a gerral-pratection exception. This actin dlows the virtual-8086 monitor to
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hande the pending interrupt for the virtual-8086 male tak for which the VIF flagis enabéd.
Note that thissituation caronly occur imnediately following exection of a POPFor IRET
instruction or upon entring a virtuak8086 mock task through a task switch.

Note that the states ofthe VIF and VIP flags ae nd madified in real-addessmode or during
transitions betweeneal-addessard protected mdes.

NOTE

Thevirtual interrupt mechatsm desribedin this section is alsoavailabe for
use in proteced node,refer to Section 16.4., “PratectedMode Mrtual Inter-
rupts”.

16.3.3. Class 3—S oftware Interrupt Handling in Virtual-8086 Mo de

Whenthe praesor eceives a software interpt (aninterrupt generatedwith the INTn instruc-
tion) whilein virtual-8086 mod, it can us ary of six differert metodsto handle the interrupt.
The mehod slecied dpend m the Ettingsof the VME flag n contol register R4, the IORL
field in the EFLAGS regster and the sdtwareinterrug redirectia bit map in the TSS. Table
16-2 lists the six methods of handling software interrupts in virtual-8086 mode ard the respec-
tive settirgs of the VME flag, IOPL field, ard the hts in the interupt redirectian bit map for
eachmethod The tablealso summaizes the various actims the procesor takes fo each
method.

The VME flag enalbes the vrtual male extesions for the Rentium® and P6family processrs.
When ths flagis clearthe pocesa respndsto interrugs ard excegionsin virtual-8086 mode
in the same ranneras anintel386™ or Intel486™ pracesor des When this flag is set, he
virtual modeextensgon providesthe fdlowing ernarcemens to virtual-8086 mode:

®* Speedsupthe hamling o software-generagdinterrupts in virtual8086 mocde by alowing
the pocesa to bypas the virtual-8086 manitor ard redrect oftware interrupts backto
the interrypt handlers that are part of th currenlty running 8086 program

® Supports virtual interrugts for software writtento run on the 86 procesar.

The IOPLvalue interacts with the VME flag and the bits in the interrug redirection bit map to
determine haw specific sdtware nterrupts shoud behanded.

The oftware interupt redrection bt map(referto Figure 165) is a 32-byte field in the TS.
This map islocateddirectly below the I/O permission bit map in the TSS Eachbit in the inter-
rupt redrectionbit map is mapped to an irterrugt vector Bit O in the interrupt redirection hit
map (vhich meps to vecto zeroin theinterrupt table)is locatedat the 1/0 lase map adiressin
the TSSminus 2 bytes. When a lit in this bit map is s, it indicates tat the assciated sftware
interrupt (interrupt gererated with an INT n instructon) shoud be hanted through the
proteciedmode IDT andinterupt andexcepion handers. When abit in this bit map is cleay
the processor redécts the associateddtware interrupt backto the interrpt tade in the 8086
program (locatedat linear adress0 in the prayrams address pace).
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NOTE

The sdtware interryt redrection bit mapdoesna affect hardware gnerated
interrupts and exeptons Hardware geeraed interrupts and excefions are
alwayshandled by he protected-mde interrupt and exceptiomardlers.

Table 16-2. Softw are Interrupt Ha ndlin g Method s While in Virtual -8086 Mode

Bitin
Redir.
Method | VME | IOPL | Bitmap* Processor Act ion

1 0 3 X Interrupt directed to a protected-mode interrupt handler:
- Clears VM and TF flags
- If serviced through interrupt gate, clears IF flag
- Switches to privilege-level 0 stack
- Pushes GS, FS, DS and ES onto privilege-level 0 stack
- Clears GS, FS, DS and ESto 0
- Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto

privilege-level 0 stack
- Sets CS and EIP from interrupt gate

2 0 <3 X Interrupt dir ected to protected-mode general-p rotect ion
exceptio n (#GP) handler.

3 1 <3 1 Interrupt dir ected to a protected-mod e general -protectio n
exceptio n (#GP) handler; VIF and VIP flag supp ort for hand ling
class 2 maskabl e hard ware interrup ts.

4 1 3 1 Interrupt dir ected to protected-mode interrup t handler: (refer to
method 1 processor action).

5 1 3 0 Interrupt redir ected to 8 086 prog ram interrupt handl er:

- Pushes EFLAGS with NT cleared and IOPL set to O

- Pushes CS and EIP (lower 16 bits only)

- Clears IF flag

- Clears TF flag

- Loads CS and EIP (lower 16 bits only) from selected entry in
the interrupt vector table of the current virtual-8086 task

6 1 <3 0 Interrupt redir ected to 8 086 prog ram interrupt handl er; VIF and
VIP flag support for handling class 2 maskabl e hard ware
interrupts:

- Pushes EFLAGS with IOPL set to 3 and VIF copied to IF

- Pushes CS and EIP (lower 16 bits only)

- Clears the VIF flag

- Clears TF flag

- Loads CS and EIP (lower 16 bits only) from selected entry in
the interrupt vector table of the current virtual-8086 task

NOTE:

* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1,
interrupt is directed to protected-mode handler.
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b . 31 2423 Task-State Segment (TSS) 0

Last byte of bit

mapmustbe_> 11111111

followed by a byte
with all bits set

1/0 Permission Bit Map

Software Interrupt Redirection Bit Map (32 Bytes) >
/_/\

<— I/O Map Base 64H

I/0 base map must _»~
not exceed DFFFH. <

Figure 16-5. Softw are Interrup t Redirection Bit Map in TSS

Redirecting software interrupts back to the 886 program potertially speeds up interrug
handing becausa swich backard forth betweervirtual-8086 mode ard protectedmode is not
required. This latter irterrug-hardling technique is particularly useful for 8086 operatirg
systems (suclas MSDOS) that use theNT n instruction to call operatirg system procedires

The CPUID instruction can be usedtverify that thevirtual moak extersion is implementedn
the procesa. Bit 1 of the featue flags regster (EDX) indicates he awailakility of the virtual
mocke extersion (referto “CPUID—CPU Identificatior in Chapter 3 of the Intel Architecture
Software Developes Manud, Volume 3.

The following sectims deribe the six methods (a mechanians) for hardling software inter
rupts in virtuak8086 mode. Referto Section16.3.2, “Class 2—Maskale Hardware hterrupt
Handing in Virtualk8086 Mode Using the Virtual Interrupt Mechansm” for adescription of the
use of he VIF and VIPflagsin the EFLAGSreggter forhanding magkable hadware nterrupts.

16.3.3.1. METHOD 1: SOFTWARE INTERRUPT HANDLING

Whenthe VME flag in cortrol regiser CR4 is clear an the IOPL field is 3, aPentiun?, or P6
family processr hardles sotware interrugs in the same maner as they a handed by an
Intel386™ or Inteld86™ processa. It executesanimplicit call to the interruypt hardler in the
proteced-node IDT pointed to by the interupt vector Refer to Section 16.3.1, “Class
1—Hardwarenterrupt ard Excepton Handing in Virtual-808 Mode” for a canplete desrip-
tion of this mechaism ard its possible uses.
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16.3.3.2. METHODS 2 AND 3: SOFTWARE INTERRUPT HANDLING

When a sdtware interrugt occus in \irtual-8086 mode aml the nethod 2 or 3 corditions are
presen, the praesor geneates a general-potection exception(#GP). Metlod 2 is enalbed
whenthe VMEflag is set to0 ard the IOPL \alue is les than 3 Herethe IOPL \elue is wsedto
bypas the pioteced-male interupt handers andcau® any sdtware nterrupt that occus in
virtual-808 male to betreatd asa potectedmode geneal-protedion excepion (#GP). The
gereral-protecion excefion hamller cals the virtuaF808 moritor, which canthen emudite an
8086-program nterrupthander or pas contol back tothe 8@B6 piogram’s hardler, asdescribed
in Secion 163.12, “Handling an Interrupt or Excepton With an 808 Program Irterrupt or
Exception Handler”.

Method3 is enalked when tle VME flag is &t to 1, the IOPL value isless ban 3 andthe core-
sponding bit for the sdtware irterrupt in the sdtware interrupt redirection bit map is setto 1.
Here, the ppcesa perfams the same gerationasit doesfor metha 2 sdtware interryot
handling. If the carespnding bit for the sdtwareinterrupt in the sdtwareinterrupt redrecion
bit map issetto 0, the interruptis handed using method 6 (refer toSection 163.35.,“Methad
6: Software Interrupt Handling”).

16.3.3.3. METHOD 4: SOFTWARE INTERRUPT HANDLING

Method 4 hardling is enabled whenthe VME flag is set to 1, theIOPL value is3, ard the kit for
the interrypt vector inthe redirectio bit map is set to 1 Method 4 software interrupt handling
allows method 1 style handling when te virtual mode extenson is enalted; that is, tte interrugt
is direciedto a potected-node hadler (refer to Section16.3.3.1., “Method 1 Software Iter-
rupt Handing”).

16.3.3.4. METHOD 5: SOFTWARE INTERRUPT HANDLING

Method 5 softwareinterrupt hardling provides a greamlned method of redrecing sdtware
interrupts (invokedwith the INT n instruction) that occur in virtual 808 mode backo the 80&
program’s interrupt vecor table and its interrupt handers. Method 5handling is enabéd when
the VMEflag is set tal, the IOPL valueis 3, ard the bit far the interrupt vecta in the redrecion
bit map is setto 0. The pocessr performs the following actions to make an inplicit call tothe
selected 8086 program interrupt hander:

1. Pushes thiow-order16 bits ofthe BFLAGS regster ontothestackwith theNT andIOPL
bits cleared

2. Pushes theurrent \aluesof the CS andEIP regsters ato the curent stack(Only the 16
least-sgnificant hits of the HP register argpushedandno stackswitch accurs.)

Clearsthe IF flagin theEFLAGS regster todisable intempts.
Clearsthe TF flag in theEFLAGS regster.
Locatesthe 8@B6 rogram irterrug vectortable at lineaaddess Ofor the 86-mocdk tak.

o v A~ W

Loads he CS andEIP registers with valuesfrom the interupt vecior table enty poirted to
by the interupt vecto nunber. Only the B low-orderbits of the EIP are loadednd the &
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high-order hits are set to OThe interupt vector table is aimedo be at lineaaddes 0 d
the curent virtual8985 task.

7. Begins execting theselected irterrug hardler.

An IRET instruction at theendof the tandler procedue reverseghese steps taturn program
contol to the interrupted 886 program.

Note that with mehod 5 handing, a node svitch from virtual-8086 node b praectedmode
doesnot occu. The pocesa remainsin virtuak808 made troughou the interrupt-handing
opeation.

The metlod 5 tandling actions are virtally identical b the actons he praesor takes when
handing sdtware irterrupts in reataddess mocke. The benefit of using mehod 5 handing to
acces the808 programhandersis thatit avoids the overheadof methals 2and3 handling,
which requiresfirst gaing to the virtuak808 maitor, thento the 86 program tander, then
back agai to the virtualF8086 monitor, befae retrning o the intemupted 8086 program (reér
to Section 163.12., “Hardling aninterrupt or Excepton With an 8086 Program Inerrupt or
Excepion Hander").

NOTE

Methods 1 and 4 hanting can hadle a ftware nterruptin a virtual-8086
task with a egular pratected-mde handler, but this appoachrequres all
virtual-8086 tasks to use the sane sdtware irterupt hardlers, wilich
generally does rot give suficient latitude to the prayrams running in the
virtual-8086 tasks, particularly MS-DOS programs.

16.3.3.5. METHOD 6: SOFTWARE INTERRUPT HANDLING

Method 6 hardling is enabded whenthe VME flag is setto 1, the IOPL \alue islessthan 3, ard
the bit for the intermupt or excepion vecta in the redrection bit map is set ta0. With method 6
interrupt handling, software interrupts are hadled in the samemanrer aswas degribed for
method 5 handing (referto Section 16.3.3.4., “Methad 5: Software Interupt Handing”).

Method 6 differs from method 5 in that with the IOPL \alue <t to less than 3, the VIF ard VIP
flags in the EFLAGS regster ae eralded, poviding virtual interrug suport for hardling
class2 maslable hardware nterrupts (referto Section 16.2., “Class 2—Maslkable Hardware
Interrupt Hardling in Virtual-8086 Mode Using the VMirtual Interryot Mechaniam™). Thes flags
provide the virtual-8086 monitor with an efficient meansof handing maskabe hardware inter-
rupts that occu duiing a virtlel-8086 made tag. Also, kecausehte IOR value islessthan3
andthe VIF flag is enaled, the irformation pushed a the stack ¥ the pocessor wan invoking
the interrupt hander is dightly different betveen metods5 and6 (refer b Table 162).

16.4. PROTECTED-MODE VIRTUAL INTERRUPTS

The Irtel Architectule processors (bemning with the Pentiurf proces®r) al support the VIF
ard VIP flags inthe EFLAGSregister in pratectedmode by setting the PVI (protected-node

I 16-27



8086 EMULATION Intel®

virtual interrug) flag in the CR4 regster. Seting the PM flag allows applications running at
privilege bvel 3 to execute the CLI ard STI instructions without causing a general -protecion
excepion (#GP) or affecting hardware interrupts.

Whenthe PM flagis setto 1, the CPL is 3, andthe IOPL slessthan3, the STl andCLI instruc-
tions st ard clear the VIF flag inhe EFLAGS regster leaving IF unaffected. h this mode
operation,anapgication running in pratectedmodeandata CPL of 3 caninhibit interrugsin
the same marer as $ desribed h Section16.3.2, “Class 2—Maskable Haravare hterrupt
Handing in Virtual8086 Mode Using the Mrtua Interrupt Mechansm” for a virtual808
mode task. WWenthe aplicationexecutes th€LI instruction, the pocessoclearsthe VIF fag
If the processr receivesa maskable havdare nterrypt when the VIF flag isclear the processr
invokes thepratected-mode interrupt hardler. This hander checks the statefdhe VIF flag in
the EFLAGS register If the VIF flagis clear(indicatingthat the activetak does nd wantto
haw interupts landlednow), the hrendlerses the VIP flag intheEFLAGS imaye an the stack
ard retuns tothe pivilege-lewd 3 application, which cantinues grogram execuion. When tre
apgicationexecutesa STI irstruction to setthe VIFflag, the piocessr auomatically invokes
the gereral-praection excegtion hander, which can ttken hardle the gnding interrupt. After
harding the penling interrug, the fandler typically ses the VIF flagand cleas the VIP flagin
theEFLAGS image o the staclkandexecuesa retun to the agplication program.The nex time
the pocessoreceives a @skable tardwareinterrupt, theprocesorwill hande it in the namal
mamer for interrupts receved while the piocessr is operting at a L of 3.

As with the \rtual mode extenson (erebled with the VME flag in the CR4 regiger), the
proteced-male virtual interrupt extenson only affects maskble hardware interrupts (interrupt
vecbrs 32 through 255. NMI interrupts ard exceptonsare handied in the namal mamer.

When prdaeciedmode virtual interrypts are disabledthat is, when the R/I flag in conrol
register (R4 is setto 0, the CPL is lessthan 3 or the IOPL \dlue is 3), thenthe CLI and STI
instructions execute ina manner compatible with the Intel486™ procesa. That is, if the CPL
is greater(lessprivileged) thanthe I/O privilege level (IOPL), a general-prdection excepion
occus. Ifthe IOPL vale is3, CLI and STI clearor set thelF flag, regectively.

PUSHF, POPE, andIRET are exected likein the Intel886™ processr, regadless of whether
protected-mde \irtual interupts are pabled.

It is only possble to erter virtual-8086 mode through a tak switch or the executon of anIRET
instruction, ard it is anly possible to leawe virtual-8086 mode Ly faulting to a poteced-node
interrupt handler (typically the gereral-praection excegtion hardler, which in turn calls the
virtual 8086-mode monitor). In both casesthe ERLAGS register is saved andrestored. Thsis
nat true, however in protectedmnode whenthe PVIflag is set andtheprocessr is ot in virtual-
8086 mode. Here,it is possble tocall a piocedue ata different pivilege level, in which case
the EFLAGSregster isnot saved or malified. Howe\er, the stags of VIF andVIP flags are
newer examined ly the pracesorwhenthe CPL is na 3.
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CHAPTER 17
MIXING 16-BIT AND 32-BIT CODE

Program modules writtento run on Intel Architecture procesass can [ either 16-bit modules
or 32-hit modules. Table 17-1 showsthe chaackristic of 16-bit ard 32bit modules

Table 17-1. Characteristic s of 16-Bit and 32-Bit Program Modul es

Characteristi ¢ 16-Bit Program Modules 32-Bit Progr am Modules
Segment Size 0 to 64 KBytes 0 to 4 GBytes
Operand Sizes 8 bits and 16 bits 8 bits and 32 bits
Pointer Offset Size (Address Size) | 16 bits 32 bits
Stack Pointer Size 16 Bits 32 Bits
Control Transfers Allowed to Code | 16 Bits 32 Bits
Segments of This Size

The Intel Architecture mrcessrs function mat efficiertly when executing32-bit program
modules They can howe\er, also execie 16-bit program modiles, n any d the following
ways:

®* |n real-adiress mock.
®* |n virtual-808 made.
* System mamgemenimode(SMM).

®* As aproteded-mode task,whenthe code, data, aml stack segmets for thetak are all
corfigured as a @-bit segments.

® By integrating 16-bit and 32-bit segmerts into asingle proteced-node task
® By integrating 16-bit opertions into 32-bit code £gments.

Realaddress mode,virtuak8086 mode,and $1M are naive 16-bit mades A legacy pogram
asembled andbr compled to run onan Irtel 8086 or Intel 286 pracessr should run in real

addessmock or virtual-808 made without madificaion. Sixteenbit program malulescan aso
be writtento run in real-adiress mode for handling system initiali zation or to run in SMM for

handing system managmentfunctions.Refer to Chapter 16, 8086 Emuktion for detailedinfor-

maionon realaddessmade aml virtual-8086 mode; referto Chaper 12, SystenManagement
Mode (SMM) for information o1 SMM.

This chaper desribes how to integrate 16-bit program moduleswith 32-bit program modules
when operding in pratected node am how to mix 16-bit and 32-bit code within 32-bit code
segments.
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17.1. DEFINING 16-BIT AND 32-BIT PROGRAM MODULES

Thefollowing Intel Architedure mechanisms arasedto dstinguish betweenard sugport 16-
bit and 32-bit segnentsandoperations

®* The D (cefault oerandandaddesssize) flagin cade-segmendescriptes.
®* The B(defalt stacksize)flag in stacksegment dabscriptors.

® 16-bit and32-bit call gatesinterrug gates, andrap gtes.

® Opeandsize an adlress-ie irstruction prefixes.

® 16-bit ard 3-bit gened-pumpose regsters

The D flag in acode-segrent descriptor deteminesthe ddault opeand-size and addsssize
for the instructions of a code sagent (In real-addressmode andvirtual-8086 moak, which do
not use ssgmentdegriptors,the defalt is 16 bits.) A code ggment withits D flag €t is a 32bit
segment; @ode segmnt with itsD flag clearis a 16-bit segment.

The B flag in the stack-segmerdescripor specifesthe size 6 stackpointer (the 32-bit ESP
regster orthe 16-bit SPregster) usedby the pocessr for implicit stackrefererces The B flag
for all data desciiptorsalso cortrols upper adires range for expand down segnens.

When tarsferring program cortrol to andher cade gmentthrouch acall gag, interruptgat,
or trapgate the qperard size wedduring the trarsfer is determinedby thetype d gate used16-
bit or 32-hit), (not by the D-flag or prefix of the trarsfer irstruction). The ggte type deternines
how return information is saved on the stack(or stacls).

For most efficientard trouble-free ograion d the procesa, 32-bit programsor tasks shoud
hawe the Dflag in the cale-segrent descriptor andthe B flag in the stacksegmehdescrifor
set and 16-hit programs or taks shoud have thes flags ckar Progam contrétrarsfersfrom
16-bit segments to 32-bit segmernts (andvice vesa) are hanleéd mog efficienty through call,
interrupt, or trap gtes.

Instruction prefixes carbeused tooveride the deult operandsize andaddess size ofa cale
segmentThese pefixes can b used inreal-addessmode as well as in ptected mde anl
virtual-808 mode An opeand-size or addesssize prefix only chargesthe size forthe duation
of the instruction.

17.2. MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE
SEGMENT

The fdlowing two instruction prefixesallow mixing of 32-bit and 16-bit operatians within one
segnert:

®* The operandsize prefix (66H)
®* The addesssize pefix (67H)

These pefixes reerse the dfault size slectedby the D flagin the cale-segmeidescripto. For
exanple, theproeessorcan interpet the MOV mam, reg) instruction in any of four ways:
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®* In a 32bit code €gmert:
— Moves 32bitsfrom a 32bit regsterto memay usng a 2-hit effective addess

— If precedediy anoperandsize pefix, moves 16 bits from a16-bit regsterto memory
using a 2-bit effectve addess.

— If precededy anaddess-size prak, moves 32bits froma 32bit register to ramory
using a B-bit effectve addess.

— If precedd bybothan addess-size prak and anopeeand-size pefix, moves 16 kts
froma 16bit regster tomemay using a B-hit effective addess.

®* In a 16bit code ®gmert:
— Moves 16bitsfrom a 16bit regsterto memay usng a 6-bit effective addess

— If precedediy anoperandsize pefix, moves 32 bits from a32-bit regsterto memory
using a B-bit effectve addess.

— If precededby anaddess-size prak, moves 16bits froma 16bit register to ramory
using a 2-bit effective addess.

— If preceed bybothan addess-size prék and anopeeand-size pefix, moves 32 kts
froma 32bit regster tomemay using a 2-bit effective addess.

The pevious exampesshow that anynstruction can gearate any cmbinationof operandsize
andaddesssize egardess of whether the instructionis ina 16- or 32-bit segmeh The cloice
of the 16 or 32-bit default for a cale £gmen is normaly basd on the following criteria:

* Performance—Always use 32bit code sgmentswhen posile. They runmuch faster
than 16-bit code segmets on P6 family pocessrs, and somewhat fater on earlierintel
Architectue processrs.

® The operating system the code sgment will b e running on—If the operatingsystem is a
16-bit operatirg system, it may nat sypport 32-bit programmodules.

® Mode d operation—If the cock segnent is beingdesigned to runin real-addess mode,
virtual-8086 nmode,or SMM, it must be a B-bit cade gment.

®* Backward compatibility to earlier Intel Architecture procesors—If a cale segrant
must be abé to run e an Inel 808 or Inel 286 pracessr, it must be al6-bit code
segnent

17.3. SHARING DATA AM ONG MIXED-SIZE CODE SEGMENTS

Datasegments can baccesed fomboth16-hit and32-kt code segrants When a data segamt
thatis larger than 64KBytes & to be shared amog 16-and 32-bit code sgmeris, the daa that
is to be accesed from the 16bit code segments must be tated wihin the frst 64 KBytes of
the data segment. The reasn for thisis that 16-bit pointers by definition canonly point to the
first 64 KBytesof a £gment
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A stackthatspars lessthan64 KBytescanbe sharetly bath 16 and32-bit code segmets. This
class d stacksincludes:

® Stacks n expam-up segments wh the G (grarularity) ard B (big) flags in the sick
segmendescripto clear

® Stacks in eganddown segmets with the G andB flagscleat

® Stacks m expam-up segmets with the Gflagset andthe Bflag clear ad where the stack
is containedcompletely wihin the lower 64 KBytes. (Ofsets greater thafrFH-H can be
usedfor data, ¢her than thestack,which is na shared)

Refer to Secton 34.3, “Segmen Desciptors’ in Chaper 3, Protected-Mod Menory Manage-
mentfor a desciiption d the G andB flags and he ex@nd-downstacktype.

TheB flag canna, in general, ke used to cange the szeof stack sedby al6-ht code segrant.
This flag contols the ske d the stack pinter onlyfor implicit stack refeencessuchasthose
cau®d by interrupts, exceptioms, andthe PUSH, POR CALL, and RET indructiors. It doesnot
cortrol exdicit stack eferenes suchasaccesesto paameters or loalvariables. A 1ébit code
segment an use a 3-bit stack aly if the cale ismodfied so that all eglicit referercesto the
stack are pecededby the 32bit addess-size prdak, causingthose refeences to use 3Bit
addessng andexgdicit writes tothe stackpointerarepreceed by a32-bit operandsize prefix.

In 32-bit, expanddown segmets, all dfsets maybe geater tlan 64KBytes theefore, 16bit
cock camot usethis kind of stack ggment unlesghe code segment imodfied to use 32bit
addessng.

17.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

There are hree ways foa procedire in a 16ébit code segmerio safelymake a cdlto a 32bit
code segment:

®* Make the call through a 32bit cal gate.

®* Make a 16-hit call to a 32bit interface procdure The interice proedue then makes a
32-bit cdl to the intenced degination.

®* Modify the 16bit procedue, inserting an opeand-size prefx before the call, to chang it
to a 32-hit call.

Likewise, there ar three wagfor procedue in a32-bt code segrent to safely maka call to a
16-bit code ggmert:

®* Make thke call thraugh a 16-bit call gate. Here, the EIP aue at tke CALL instruction
camot exeed FFFH.

®* Make a32-hbit call to a 16bit interface procdure The interfice proedue then makes a
16-bit cdl to the intended degination.

®* Modify the 32bit procedue, inserting anopernd-size pefix beore the call changng it to
a 16-hit call. Be cettain that thereturnoffset desnot exeed FIFFH.
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These methds d transferrig programcontrd overcone thefollowing architectural limitations
imposedon calls betveen16-bit and32-bit coce segmens:

® Pointers from 16-bit cade £gments (which by default canonly be 16-bits) camotbe wsed
to addres dat or cock locaedbeyad FH-FH in a 32bit segmen.

® The operard-size atributesfor a CALL and its com@nion RETURN instructionmustbe
the same to maintain stack coherency This is also true for implicit calls to interrupt and
excefion handlers ard thér commnionIRET instructiors.

® A 32-bit paraneters (particlarly a panter parameter) greater tlan FFFFH canrot be
squeezedhto a 16bit paameter locatioron a sad.

® The size of the stack poier (SPor ESP) chages when sviching between @-bit and
32-bit cade ®gmerts.

These linitations are dscussedin greaterdetail in the following sections

17.4.1. Code-Segment Pointer Size

For control-trander instructions thatuse a winter to identify the rext instruction (thatis, those
thatdo nat use gates the operard-size atribute determines theze of the dietportion of the
pointer. The implicatiors of this rule are as follws:

® A JMB CALL, o RET instruction from a 2-hit segnent to a 16-bit segmert is always
possible using a 32bit operard size, poviding the 32-bit panter deesnot exceed FFFH.

® A JMP, CALL, or RET ingruction from a 16-bit segmert to a 2-bit segmentcanrot
addessa destination igater than FHFH, urless e instruction is given anoperard-size
prefix.

Refer to Section 17.45., “Writing Interface Pracedues’ for an inteface praedue that can
transfer program cortrol from 16-bit segments to destinations in 32-bit segmerts keyond
FFFHH.

17.4.2. Stack Management for Control T ransfer

Becauwse the stack is manaddifferenly for 16-bit proeedue calls than ér 32-bit calls the
opemlnd-size atribute of he RET instruction mus$ matchthat ofthe CALL instruction (refer to
Figure 171).On a 16bit call, the processor pshesthecontentsof the 16-bit IP regisér ard (for
calls between prilege levels) the 16bit SPregster The matchindRET instructionmust also
use a 1éit operard size to pp these 16-bit values fom thestackinto thel6-bit regsters.

A 32-bit CALL instruction pusesthe contents of the 32bit EIP register and(for inter-privilege-
level calls) the 2-bit ESP regiser. Here, the ratiching RET instruction must wse a 2-bit
opeind sze topopthese 32bit values fran the gackinto the 32bit regiters.If the wo pars
of a CALL/RET instruction par do nothave mathing operandsizes, he stack will not be
mana@gd corectly andthe valesof the instructia pdnter andstackpoirterwill not be restored
to corect vales
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While executing 32-hit code, if a call ismade to a 16-bit code segnentwhich is at the sane or
a nore privilegedlevel (that is, the DPL d the calledcode segnent i less than @ equal  the
CPL of the caling cale £gmen) througha 16bit cal gate, then he upger 16bits of the ESP
register nay be wreliade upn returring tothe 2-bit code segnent (that is afterexecuing a

Figure 17-1. Stack after Far 16- and 32-Bit Calls

RET in the 16-bit code segmert).

When the @\LL instruction andits matchindRET instrucion are in cod segments hat have D
flags with the sane values (that is, bah are 32-bit code segnerts or both are 16bit coce
segnents), the default settingsmay be wsed When the CALL instruction ard its metching RET
instruction are in sgmerts which hawe different D-flag settngs, anoperand-size prefixmustbe

used.
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17.4.2.1. CONTROLLING THE OPERAND-SIZE ATTRIBUTE FOR A CALL
Threethings cardetermire the @erard-size ofa call:

® The D flagin the segnent descriptor for the calling cade ggmert.

® An operard-size instructiomprefix.

®* The type of call gae (16-hit or 32-hit), if a call ismade through acall gate.

When a call is made with a pointer (ratter than a cal gate), tre D flag for the calling code
segment cetermines the perard-size fa the GALL instruction This operard-size attribute can
be owerridden by peperding anoperard-size prefixto the CALL instruction. So, fo exampe,
if the D flag for acode gment issetfor 16bits and the oprandsize pefix is used with &CALL
instruction, the proces®r will cau® the information stored on the stckto be storedin 32-bit
format. If the callisto a 3-bit code segnent, theinstructions in that cale segnent will be alke
to readthe stackcoherently. Also, a RET irstrucion from the 32-bit code segmert without an
operand-size prefix will maintain stackcohererty with the 16-hit code segnert being returned
to.

Whena CALL instruction referercesa @ll-gate descriptorithe type @ call isdeterminedby the
type of cal gate (16bit or 3-bit). The offset tothe destination in the cod segmert being called
is takenfrom the gae de<riptor; therefoe, if a 32bit call gate is used, a pocedue in a 16bit
codesegment cancall a pocedue locatedmore than64 Kbytes fran thebase ofa 32bit code
segment, kecause aBhit call gate uses 32hit offset.

Note that regartessof the operand size d the call aml how it is determined, the size 6 the sack
pointer used (SP or ESP) g alwayscontrolled ty the B flag in the sacksegnent descripto
currently inuse (that is, wheB is clear SPis usedandwhen Bis st, ESP is used).

An ummodfied 16bit code segment that has m succedslly on an8086 pocessr or in
real-node an aP6-family procesar will haveits D flagclear an will not use qperand-size over-
ride prefixes. Asa resillt, all CALL instructionsin this code segment will use the 16-bit operard-
size attribte. Procedres in these cadsegments can & modifiedto safely call ppcedues b
32-bit code £gments in either of two ways:

¢ Relink the CALL instrucion to point to 32-bit call gates (efer to Sedon 17.4.2.2,
“Passing Parameters Vith a Gate”).

® Add a 32bit operard-size preik to each @\LL instruction.

17.4.2.2. PASSING PARAMETERS WITH A GATE

When refeencing 32-bit gateswith 16-bit procedues, it isimportantto cansider the mmber of
paraneters pasedin each proedue call. The coutfield of the gatelescriptor pecifiesthe size
of the pararater stringto copy fromthe curent sackto the sack ofa moe privileged (numer
ically lower privilege level) procedue. The cout field of a 16-bit gate specifies the nuber d
16-bit words to becopied,wherasthe caintfield of a32-bit gate specifiesthe nunberof 32-bit
dowblewords to be coped The counfield for a 32-bit gate musthus be half the size of the
number d words beingplaced o the stack ¥ a 16bit procedire. Also, tle 16bit procedue
must use aevennumker of words asparameters.
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17.4.3. Interrupt Control T ransfers

A program-contol transfer causedytan excepon or interupt is always cariedout thraighan
interrupt or trapgate (located inthe IDT). Here the typeof the gte (16bit or 3-bit) determnes
the gperard-size attriluteused in the implicit call tothe exception or interrupt hander procedure
in arothercodesegnent

A 32-bit interrypt o trap gate provides a safanterfaceto a32-bit exceptionor interupthardler
whenthe exeptionorinteruupt accurs ineithera 32bit or a16-bit code segmen Itissomeimes
impractcal, however to place excejon or interrupt handers in 16-bit code segments, because
only 16-bit return addes®s are aved on the sick If an excefion orinterupt occusin a 32bit
cock segment whenthe EIP wasgreater thanFH-FH, the 16bit hardler procedue caniot
providethe corect retun adiress.

17.4.4. Parameter Translation

When £gment ofsetsor pdnters (which containsegmen offsets) are passl asparameters
betveen B-bit and 2-bit procedires some rangation is required If a 32bit procedue pases
a pinter to data locatedbeyond 64 KBytesto a16-bit procedue, the 16-bit procedue caniot

useit. Exceq for this limitation interffacecode can perfon anyformat conerson between
32-bit and 16-bit pointers trat may be neecdkd.

Parameters pasdby value between 2-bit ard 16-bit coce also may reqire trarslationbetween
32-bit and 16-bit formats. The fom of the tranation is apgication-dependert.

17.4.5. Writing Interface Procedures

Placing interface code between-&t and 16-bit proceduescanbe the slution to the fdlowing
interface prblems:

® Allowing procedires in 16bit coce segmentsto cal procedires wth offsets greatethan
FFH-H in 32-bit code segmens.

®* Matching operard-size attributes betwe@ompanionCALL and RET instructiors.

®* Trandating parametrs (data), includng managng parmametr strings with avariabe cowunt
or anodd numberof 16-bit words

®* The mssible invalidation of the ugper bits of the ESP reigpter
Theinterface pocedireis simplifiedwhere thee rlesare fdlowed.

1. The interface pocedire nust reside in a 32bit code segment (theD flag for the coa-
segmernt degriptor is se).

2. All proceduesthat may be caled by 16-bit procedues nust haveoffsets not greaer than
FFAH.

3. All return addresses saved by 16-hit procedues nust haveoffsets rot greaer than F-FFH.
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Theinterfaceprocedue becomes rare comgex if any of these ules areviolated.Forexampe,

if a 16-bit procedue callsa 2-bit procedire with anentry point keyond FF-FH, the interfice
procedue will needto provide the dfsetto the erry point. The majping beiveenl6- and32-bit

addesses s only performed autanaticdly when a call gate is used, besathe gate descripto
for a call gatecortains a 2-bit addess Whena call gite is rot used the inteface odemust
provide the 32bit addess

The structue of the interface pocedire cepends on the types of callsit is going to upport, as
follows:

® Callsfrom 16bit proceduesto 32-hit procedures Calls o the interface pocedue fram
a 16bit code segment are maelwith 16-bit CALL instructions (bydefaut, because the D
flag for the calling cale-segrent descripto is cleal), ard 16-bit operandsize preifxesare
usedwith RET irstructions to return from the interface pocedure tothe calling procedure.
Cdls from theinterface pocedireto 32-bit procedires ae performedwith 32-bit CALL
instructiors (by defaut, because th D flag for the interfaceprocedue’s code segmenhis
set), andetuns from the cded proceduesto the inteface pocedue areperformedwith
32-bit RET instructions (also by default).

® Callsfrom 32bit proceduesto 16-hit procedures Calls o the interface pocedue fram
a 32-hit code sementare madeavith 32-bit CALL instructions(by default), and retirns to
the callhg procedue from the nterface preedue are mack with 32-bit RET instructions
(alsoby defadut). Callsfrom the interfaceprocedure to16-hit p