In this homework assignment, we will work with specifying and implementing search in an array. In lecture, we worked on searching for any integer in an array. In this assignment, we will talk about searching for the first occurrence integer in an array with duplicates.

You will use some of the functions from the `arrayutil.c0` library that are discussed in this assignment. You’ll find this file in `theory3.tgz`.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

You must do this assignment in one of two ways and bring the stapled printout to the handin box on Thursday:

1) Write your answers *neatly* on a printout of this PDF.

2) Use the TeX template at http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15122-s14/www/theory3.tgz
1. Preconditions and postconditions

Here is our initial, buggy specification of search for the first occurrence of x in an array.

```c
/* 1 */ int search(int x, int[] A, int n)
/* 2 */ //@requires 0 <= n && n <= \length(A);
/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))
/* 5 */ || (0 <= \result && \result < n
/* 6 */ && A[\result] == x
/* 7 */ && A[\result-1] < x); @*/
```

(a) Give specific values of inputs and output such that the precondition evaluates to true and checking the postcondition will cause an array-out-of-bounds exception.

Solution:
- $x = 42$
- $A = \text{array}$
- $n = 5$
- $\result = \text{value}$

(b) Even in cases where we don’t access an array out of bounds, the specification is buggy because we left off an important precondition that should have appeared as line 3: `@requires is_sorted(A, 0, n)`.

Of course, we can perform linear search on an unsorted array, but if our array is not necessarily sorted, line 7 doesn’t actually enforce that \result is the first occurrence of x in the array.

Give specific values for inputs and output such that the precondition on line 2 and the postcondition both evaluate to true but the result is not the index of the first occurrence of x in the array. (Hint: the array A should not be sorted.)

Solution:
- $x = 42$
- $A = \text{array}$
- $n = 5$
- $\result = \text{value}$
(c) Give specific values for inputs and output such that the precondition on line 2 evaluates to true, the postcondition evaluates to false, and the result is the index of the first occurrence of x in the array. (Hint: the array A should again not be sorted.)

Solution:

- x = 42
- A = [0, 1, 2, 3, 4]
- n = 5
- \[\text{result} = \]

(d) Edit line 7 slightly so that, if we require that the array is sorted, the postcondition for search is safe and correct. Do not use any of the arrayutil.c0 specification functions.

Solution:

/* 7 */

(e) Edit line 7 so that whether or not we require that the array is sorted, the postcondition for search is safe and correct. You’ll need to use one of the arrayutil.c0 specification functions.

Solution:

/* 7 */
2. The loop invariant

Now that our specification is correct, we'll move on to an also-buggy implementation.

```c
/* 1 */ int search(int x, int[] A, int n)
/* 2 */ //@requires 0 <= n && n <= \length(A);
/* 3 */ //@requires is_sorted(A, 0, n);
/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))
/* 5 */ || (0 <= \result && \result < n
/* 6 */ && A[\result] == x
/* 7 */ /* YOUR ANSWER FOR 1(d) */); @*/
/* 8 */ {
/* 9 */ int lower = 0;
/* 10 */ int upper = n;
/* 11 */ while (lower < upper)
/* 12 */ //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
/* 13 */ //@loop_invariant lower == 0 || x > A[lower - 1];
/* 14 */ //@loop_invariant upper == n || x <= A[upper];
/* 15 */ {
...
/* m-3 */ }
/* m-2 */ //@assert lower == upper;
/* m-1 */ return -1;
/* m */ }
```

You should assume that the missing loop body does not write to the array A or modify the assignable variables x, A, or n.

(a) Prove that the loop invariant (lines 12-14) holds initially:

Solution:
(b) This loop invariant does not imply the postcondition when the function exits on line m-1! Give specific values for all variables such the precondition evaluates to true, the loop guard evaluates to false, the loop invariants evaluate to true, and the postcondition evaluates to false, given that $\text{result} = -1$.

Solution:

- $x = 42$
- $A = \begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
\end{array}$
- $n = 5$
- $\text{lower} =$
- $\text{upper} =$

(2) Modify the code after the loop so that, if the loop terminates, the postcondition will always be true.

Take care to ensure that any array access you make is safe! You know that the loop invariants on lines 12-14 are true, and you know that the loop guard is false (which, together with the first loop invariant on line 12, justifies the assertion $\text{lower} == \text{upper}$).

Solution:

```c
/* Loop ends here... */
//@assert lower == upper;

if (________________________________________________) {

    return __________________________________________;
}
return -1;
```
3. Binary search

Now we’ll fill in the loop body with code that does binary search (on a sorted array, of course!).

```c
/* 1 */ int search(int x, int[] A, int n)
/* 2 */ //@requires 0 <= n && n <= \length(A);
/* 3 */ //@requires is_sorted(A, 0, n);
/* 4 */ /*@ensures (\result == -1 && !is_in(x, A, 0, n))
/* 5 */ || (0 <= \result && \result < n
/* 6 */ && A[\result] == x
/* 7 */ /* YOUR ANSWER FOR 1(d) */); @*/
/* 8 */ {
/* 9 */   int lower = 0;
/* 10 */   int upper = n;
/* 11 */   while (lower < upper)
/* 12 */     //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
/* 13 */     //@loop_invariant lower == 0 || x > A[lower - 1];
/* 14 */     //@loop_invariant upper == n || x <= A[upper];
/* 15 */     {
/* 16 */       int mid = lower + (upper-lower)/2;
/* 17 */       if (A[lower] == x) return lower;
/* 18 */       if (A[mid] < x) lower = mid+1;
/* 19 */       else { /*@assert(A[mid] >= x); @*/
/* 20 */         upper = mid;
/* 21 */       }
/* 22 */     }
/* 23 */   //@assert lower == upper;
/* 24 */   return -1;
/* 25 */ }
```

(a) Prove that this loop has to terminate. (What quantity gets smaller every time the
loop body runs and is guaranteed to be positive?)

Solution:
(b) Prove that, in the case that the code returns on line 17, the postcondition on lines 4-7 – with your modification from 1(d) – always evaluates to true.

Solution: When we start the loop, we know the following:

- $0 \leq n \land n \leq \text{\texttt{length(A)}}$ by the function’s precondition (line 2, A and n are never modified by the function)

- $A[0,n)$ sorted by the function’s precondition (line 3, A and n are never modified by the function and A is not written to anywhere)

- $\text{lower} < \text{upper}$ by the loop guard (line 11)

- $0 \leq \text{lower} \land \text{lower} \leq \text{upper} \land \text{upper} \leq n$ by the first loop invariant (line 12)

- $\text{lower} == 0 \lor x > A[\text{lower}-1]$ by the second loop invariant (line 13)

- $\text{upper} == n \lor x <= A[\text{upper}]$ by the third loop invariant (line 14)
4. Code revisions

Here’s an alternate loop body that performs linear search. You can use it as a replacement for lines 15-22 on page 6:

```c
/* 15 */ {
/* 16 */ if (A[lower] == x)
/* 17 */ return lower;
/* 18 */ if (A[lower] > x)
/* 19 */ return -1;
/* 20 */ //@assert A[lower] < x;
/* 21 */ lower = lower + 1;
/* 22 */ }
```

(a) The loop invariants in line 12-14 are still preserved by the new loop body. Prove that the invariant in line 14 is still preserved by the new loop body.

Solution:

```
/* 12 */ //@loop_invariant 0 <= lower && lower <= upper;
/* 13 */ //@loop_invariant lower == 0 || x > A[lower - 1];
/* 14 */ //@loop_invariant
```

(b) You might have noticed in the previous part that `upper` does not change during the loop. So now, complete this simpler loop invariant for the modified code by writing a line that tells you something about `upper`. The resulting loop invariant should be true initially, should be preserved by any iteration of the loop, and should allow you to prove the postcondition without the modifications you made in 2(c). (You don’t have to write the proof.)

Solution:

```
/* 12 */ //@loop_invariant 0 <= lower && lower <= upper;
/* 13 */ //@loop_invariant lower == 0 || x > A[lower - 1];
/* 14 */ //@loop_invariant
```