
15-122: Principles of Imperative Computation

Recitation 19 Nivedita Chopra, Josh Zimmerman

AVL Trees
• AVL trees are balanced binary search trees

• The insert and delete operations are O(log n) on AVL trees, since they are balanced. This is unlike
regular binary search trees, where the worst case is O(log n)

• Height of a tree can be defined in two ways. They are equivalent, so you should keep in mind just
the one that makes more sense to you.

(a) The height of a tree is the maximum number of nodes from the root to a leaf, inclusive.
(b) (recursive) The empty tree has height 0 and any other tree has height 1+max(hl, hr) where

hl and hr are the heights of the left and right children of the tree, respectively.

• AVL trees maintain a height invariant. The height invariant states that for every node in the tree,
the height of the left and right subtrees differ by at most 1, or in other words, if the left and right
subtrees have height hl and hr, respectively, |hl − hr| ≤ 1. This lets us maintain balance of the
tree, and so ensures that we’ll have at worst O(log n) lookup time.

• In an AVL tree, we insert an element much like we would in a BST, but we then check to see if
the height invariant is violated and rebalance the tree if necessary.

Rotations
• Rebalancing the tree is done by rotations. Since we rebalance immediately when the height invariant

is violated, the difference between the heights of the children of a node is at most 2

• Thus there are exactly four cases for rotations (the figure below is from Wikipedia).

1

• Two of the cases (the ones the diagram calls “Left Right” and “Right Left”) can be transformed into
the other two with a single rotation, and those two can be made balanced with a single rotation.

• This means that we never need more than 2 rotations to restore balance an AVL tree after inserting
an element.

• Since rotation is a constant time operation, insertion into an AVL tree is only at worst a constant
amount slower than insertion into a BST

• Note that we do these rotations at the lowest violation of the height invariant in the AVL tree.

Playing with AVL trees!
Use the visualization at http://www.cs.usfca.edu/~galles/visualization/AVLtree.html to in-
sert these keys into the tree in the following order:

1, 2, 5, 3, 4

Then delete the keys 2 and 4.

Discussing the code for rotations
Now that we have a conceptual understanding of AVL trees, let’s talk about the implementation details.

To keep track of the height in an efficient manner, we add a height field to the data structure:

struct tree_node {
elem data;
int height;
struct tree_node *left;
struct tree_node *right;

};

Note that we now need to do more work in the is_balanced function, since we need to check that
height accurately describes the height of each node of the tree (if it didn’t, we wouldn’t be able to
guarantee that the tree was balanced, since we use the height variable when checking balance in our
rebalance_right and rebalance_left functions).

First, let’s look at rotate_right. (rotate_left is exactly symmetric)

1 tree ∗rotate_right(tree ∗T) {
2 REQUIRES(is_ordtree(T));
3 REQUIRES(T != NULL && T−>left != NULL);
4 tree ∗root = T−>left;
5 T−>left = root−>right;
6 root−>right = T;
7 fix_height(root−>right); /∗ must be first ∗/
8 fix_height(root);
9 ENSURES(is_ordtree(root));

10 ENSURES(root != NULL && root−>right != NULL);
11 return root;
12 }

2

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Let’s go through some sketches to help illustrate what this function is doing. If you’re reading through
this after recitation, I encourage you to sketch some diagrams on a piece of paper or a whiteboard to help
you understand the code. (Note that rotate_left is symmetric to rotate_right, so if you understand
one you should be able to understand the other.)

Now, let’s look at our rebalance_right code, on an intuitive level. (The rebalance_left code is
similar, so we’re leaving it out here. But we highly encourage you to work with it and make sure you
understand it, as the code for AVL trees is tricky.)

1 tree ∗rebalance_right(tree ∗T) {
2 REQUIRES(T != NULL);
3 REQUIRES(is_avl(T−>left) && is_avl(T−>right));
4 /∗ also requires that T−>right is result of insert into T ∗/
5
6 tree ∗l = T−>left;
7 tree ∗r = T−>right;
8 int hl = height(l);
9 int hr = height(r);

10 if (hr > hl + 1) {
11 ASSERT(hr == hl + 2);
12 if (height(r−>right) > height(r−>left)) {
13 // We’re in the "right right" case in the diagram from Wikipedia
14 ASSERT(height(r−>right) == hl + 1);
15 T = rotate_left(T);
16 // Note that hl + 2 == hr here
17 ASSERT(height(T) == hl+2);
18 }
19 else {
20 // We’re in the "right left" case in the diagram from Wikipedia
21 ASSERT(height(r−>left) == hl + 1);
22 /∗ double rotate left ∗/
23 T−>right = rotate_right(T−>right);
24 T = rotate_left(T);
25 // Note that hl + 2 == hr here
26 ASSERT(height(T) == hl+2);
27 }
28 }
29 else {
30 // the tree is already balanced, so just update the height
31 ASSERT(!(hr > hl+1));
32 fix_height(T);
33 }
34 ENSURES(is_avl(T));
35 return T;
36 }

Checkpoint 0
Give an informal explanantion of why the rebalance right function works. (We’re missing a precondition,
as described by the comment on line 4, so we won’t do a formal proof here)

3

Discussing the code for insertion
For reference, the AVL insertion function calls rebalance_left and rebalance_right in exactly the
same place where the height-tracking BST implementation called fix_height. The assignment back to
T is needed because we might be changing the root of the tree with a rotation or double rotation.

1 tree ∗tree_insert(tree ∗T, elem e)
2 {
3 REQUIRES(is_ordtree(T));
4 REQUIRES(is_specified_height(T));
5 REQUIRES(e != NULL);
6
7 if (T == NULL) {
8 /∗ create new leaf with the data e ∗/
9 T = xmalloc(sizeof(struct tree_node));

10 T−>data = e;
11 T−>height = 1;
12 T−>left = NULL;
13 T−>right = NULL;
14 }
15 else {
16 int r = key_compare(elem_key(e), elem_key(T−>data));
17 if (r == 0) {
18 T−>data = e; /∗ modify in place ∗/
19 }
20 else if (r < 0) {
21 T−>left = tree_insert(T−>left, e);
22 T = rebalance_left(T); /∗ also fixes height ∗/
23 }
24 else {
25 ASSERT(r > 0);
26 T−>right = tree_insert(T−>right, e);
27 T = rebalance_right(T); /∗ also fixes height ∗/
28 }
29 }
30
31 ENSURES(is_ordtree(T));
32 ENSURES(is_specified_height(T));
33 return T;
34 }

4

