
15-122: Principles of Imperative Computation

Recitation 18 Nivedita Chopra

Today, we’ll be writing some C code :)

Hopefully, you have your laptop with you. If not, please sit next to someone with a laptop, so that you
can work with them.

Throughout this handout, please refer to the tutorial at this link http://c0.typesafety.net/tutorial/
From-C0-to-C:-Basics.html (an electronic version of this handout should be up on Piazza, so you
won’t need to type in the url)

All C0 files (and some library files) mentioned in this handout can be found at http://www.andrew.
cmu.edu/~niveditc/pages/C0toC.html

Hello World!
The first program to try out in any programming language is one that prints out “Hello World!” (or any
other string of your choice), so that you know that you are able to compile and run programs.

Create a file called hello.c and write some valid C code that prints out the string “Hello World!” You
can refer to the file hello.c0 for the equivalent C0 code. Also, you’ll need to use the stdio library for
printing.

Now compile the file with
gcc -Wall -Wextra -Werror -std=c99 -pedantic hello.c

Fix any compile errors and then run the code using
./a.out

This should print out
Hello World!

Fun with Strings
Given a string e.g. “Nivedita”, we’d like to print out the following:

8. Nivedita
7. ivedita
6. vedita
5. edita
4. dita
3. ita
2. ta
1. a

Create a file stackfun.c and write a function print_substrings that takes a string as an argument
and prints it out in the form shown above.

Then compile and run the program (don’t forget to include a main function in the file). The equivalent
C0 code is in the stackfun.c0 file.

1

http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html
http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html
http://www.andrew.cmu.edu/~niveditc/pages/C0toC.html
http://www.andrew.cmu.edu/~niveditc/pages/C0toC.html


Roll Call
We’re checking on the attendance records of various students. Each student is represented by a struct
with fields for his/her Andrew ID, the number of days he/she was supposed to have attended class, and
boolean array with the letters repesenting whether the student was present or absent on a given day.
Look at rollcall.c0 for the C0 version of the code this struct.

• Copy the xalloc.h and xalloc.c file from the website into your working directory. Remember to use
xmalloc rather than malloc in your code.

• In a new file, rollcall.c, write a function student_new that takes in an andrew id and a string
of letters (either ‘T’ or ‘F’). The function creates a new student struct, assigns the appropriate
values and returns the newly created struct.

• Write a function count_present to count the number of days that a given student was present.

• Translate the main function in rollcall.c0 to valid C code in rollcall.c

• Compile and run the code in rollcall.c and check that your output matches the following:
niveditc : 3/5
medee : 3/3
shayaks : 3/4
sj1 : 3/5
hbovik : 0/0

• However, whenever you malloc, you need to free the memory as well. Attempt to free the memory
that you have allocated. Remember to free the arrays allocated within each struct! Consider
writing a student_free function and calling it on each student.

• Test if you have corrrectly freed the memory by compiling the file and then running with Valgrind:
valgrind ./a.out

• If you see “All heap blocks were freed – no leaks are possible,” then you’ve freed everything that
you allocated :)

• Else, the “HEAP SUMMARY” and “LEAK SUMMARY” probably show that some bytes of memory
are lost. Most probably, you’re not either freeing the student struct correctly or you’re not freeing
the array of students.

2


