Backtracking

Backtracking search is very important to the next homework, so we’re going to take a few minutes to review it.

The key idea behind backtracking search is that we try possibilities in some order and then backtrack if we get to a case where we can’t possibly solve the problem we’re trying to solve. In the case of peg solitaire, this could correspond to a board with no legal moves that isn’t a winning board.

It’s often conceptually useful to visualize backtracking search with a tree diagram, but we do not normally actually build a tree. It’s useful for talking about how algorithms work, but in practice we use some combination of recursion, stacks, queues, or priority queues to implement a backtracking search.

Your search algorithm for peg solitaire will use depth-first search. Let’s briefly discuss it:

Depth-first simply goes as deep as possible. We first generate a set of all the possible moves from a position. We then sequentially choose a move from the set of moves and go to the new position formed by making the chosen move. We then recursively generate a new set of moves and choose a new move from the set of moves.

If we come across a solution, we’re done: we’ve reached our goal. If we come across a state where we have no more valid moves and we have not found the, we backtrack to the previous position and try a different move.

Let’s try to execute DFS on this tree. Suppose that we are trying to find the state after move 3.1. Suppose that we choose moves in ascending numerical order (so we will first choose move 1 before move 2).

(i) From our Initial State, we can make moves 1, 2 and 3. We first make move 1, reaching state (After move 1).

(ii) From state (After Move 1), we can make moves 1 and 2. We first choose move 1, reaching state (After move 1.1)

(iii) There are no moves to be made from state (After move 1.1). We backtrack to state (After move 1) and try move 2, reaching state (After move 1.2).

(iv) There are no moves to be made from state (After move 1.2). We backtrack to state (After move 1.1) and try move 3, reaching state (After move 1.3).

...
1). There are now no remaining moves to be made from state (After move 1). We backtrack to the Initial State

(v) We now try move 2, reaching state (After move 2). From state (After move 2), we can make move 1. We choose move 1, reaching state (After move 2.1)

(vi) There are no moves to be made from state (After move 2.1). We backtrack to state (After move 2). There are now no more moves to be made from state (After move 2). We backtrack to the Initial State and try move 3, reaching state (After move 3)

(vii) From state (After move 3) we can make moves 1, 2 and 3. We choose move 1, reaching state (After move 3.1), which is our goal.

DFS can be easily implemented by using recursion: in a given state (say, the state we’re in after move 3.1), we see what moves we can make. For each possible move (there are three in our example tree), we then call our search function recursively on the (first on the state after move 3.1.1, then, if that doesn’t work, on the state after move 3.1.2, and then, if that doesn’t work, on the state after move 3.3.3).

There are a few things to note about DFS:

(a) DFS does not guarantee that the solution found will be the shortest. There may be multiple paths to reach a given goal, but DFS will only find one of these solutions, not necessarily the shortest solution.

This might not be a problem given the context (we may just want a solution, not necessarily the shortest one), but it may pose a problem for performance (DFS might waste a lot of time going down an erroneous path in the search tree, when a solution lies close by on a different path).

(b) Additionally, DFS may suffer from non-termination. It may emerge that one path in the search tree is infinite. In order to deal with this problem, we may impose a maximum depth of how far DFS can go down in the search tree.

A final note: it’s somewhat wasteful to do the same search twice, but this will happen all the time in your peg2 solution for peg solitaire. Consider the following sub-board:

```
... ...
... * * o ...
... * * o ...
... ...
```

We reach the position below by first moving moving the top-left peg, then the bottom left peg. We can also reach this position by first moving the bottom-left peg, then the top-left peg.

```
... ...
... o o * ...
... o o * ...
... ...
```

But if there’s no solution from the board at the bottom, we’ll find that out twice - once for each way we can make moves to get from the top board to the bottom one.
If we want to avoid that, we need to remember all the boards that we’ve decided don’t have solutions. This can save us a lot of time, but it requires a lot of space. In the bonus part of peg lab, you will do this using hash tables.

Binary search trees — a quick recap

- Binary search trees are an implementation of associative arrays in a tree structure.
- We maintain the invariant (an ordering invariant). For every node in the tree:
 - All the elements in the left subtree have keys smaller than that of the node
 - All elements in the right subtree have keys greater than than that of the node
- The asymptotic complexity of insertion/lookup in a BST is $O(\log n)$. While this is slower than the $O(1)$ insertion/lookup time with hash tables, there are some good reasons why we may want to use BSTs instead:
 - Hash tables only have $O(1)$ insertion/lookup time if the hashing function has a good key distribution. Otherwise, if most of the elements hash to a small number of chains, insertion/lookup will slow down to linear time.
 - Also, hash tables require us to allocate large backbone arrays; a number of these may be empty throughout the hash table’s usage, which wastes memory.

 There are some applications in which hash tables are preferable and some in which BSTs are preferable, so it’s a matter of evaluating the specific case and deciding which data structure works better for it.
 - One important thing to note is that BSTs are not always balanced, and so we won’t necessarily always have $O(\log(n))$ runtime for the common operations. This is largely dependent on the order in which the keys are inserted.

Checkpoint 0

Insert the keys 1,2 and 3 in the order 2, 1, 3 and draw the tree formed. Then insert the keys in the order 1,2,3. What do you notice?

Solution: we see that tree is not balanced; it resembles a linked list, which has linear insertion/lookup time. We’ll see how to fix the problem next week when we talk about self-balancing binary trees.

Playing with binary search trees

Let’s play around with a binary search tree visualization so we can see how the ordering invariants work out in practice. We’ll be using http://www.cs.usfca.edu/~galles/visualization/BST.html. Try inserting these keys:

$$2, 4, 1, 3, 5$$

Then try deleting 2 and then 4 from the tree.
Discussing the code for insertion into the tree

Now let's consider the code for tree_insert. It's a recursive function.

tree* tree_insert(tree* T, elem e)
//@requires is_ordtree(T);
//@requires e != NULL;
//@ensures is_ordtree(result);
{
 if (T == NULL) {
 /* create new node and return it */
 T = alloc(struct tree_node);
 T->data = e;
 T->left = NULL;
 T->right = NULL;
 return T;
 }
 int r = key_compare(elem_key(e), elem_key(T->data));
 if (r == 0) {
 T->data = e; /* modify in place */
 } else if (r < 0) {
 T->left = tree_insert(T->left, e);
 } else {
 //@assert r > 0;
 T->right = tree_insert(T->right, e);
 }
 return T;
}

Note that in the cases where $r < 0$ and $r > 0$ we assign the right and left sub-trees to the result of calling the function recursively. Also, we need to return T in the case where we enter the case where T == NULL (an empty tree), since we have no way of modifying the tree that was passed in as an argument.

We can understand tree_insert as follows. Suppose that the element we want to insert is e

1. If we reach an empty tree (T == NULL), then we just create a new node, set the data to e and return the node.

2. Otherwise, we compare the key e_k of e to the key n_k of the node n we're currently at in the tree. We then have the following three cases:

 (i) If e_k and n_k are equal, then we just write over the data in the node n with e.

 (ii) If $e_k < n_k$, then element e belongs in the left-subtree of n. We therefore call tree_insert on the subtree T->left and insert e somewhere in T->left.

 (iii) Otherwise, $e_k < n_k$, so the element e belongs in the right-subtree of n. We therefore call tree_insert on the subtree T->right and insert e somewhere in T->right.
Checkpoint 1

Recursion on binary search trees can be a tricky concept to master. Here are some practice problems to help you. Note that some of these problems only rely upon the structure of a BST, while others rely upon the BST ordering invariant. Your solution should use the struct definitions and the client-side functions we defined in class (given below for your reference).

Your solutions should be short (around 10 lines at most). You may also need a helper function to access the internals of the tree (as we did in bst_insert with tree_insert).

key elem_key(elem e);

int key_compare(key k1, key k2);

struct tree_node {
 elem data;
 struct tree_node* left;
 struct tree_node* right;
};
typedef struct tree_node tree;

struct bst_header {
 tree* root;
};
typedef struct bst_header* bst;

(a) Write a function elem bst_max(bst B) that returns the element with the maximum key in a given BST.

Solution:

// Solution 1: iterative.
elem bst_max(bst B) //@requires is_bst(B);
{
 tree curr = B->root;
 if (curr == NULL) return NULL; // Empty tree.
 while (curr->right != NULL) {
 curr = curr->right;
 }
 return curr->data;
}

// Solution 2: recursive.
elem tree_max(tree T) //@requires T != NULL;
{
 if (T->right == NULL) return T->data;
 return tree_max(T->right);
}
elem bst_max(bst B)
//@requires is_bst(B);
{
 if (B->root == NULL) return NULL; // Empty tree.
 return tree_max(B->root);
}

(b) Write a function int count_leaves(bst B) that counts the number of leaves in a given BST.

Solution:

int count_tree_leaves(tree T) {
 if (T == NULL) return 0;
 return count_tree_leaves(T->left) + count_tree_leaves(T->right) + 1;
}
int count_leaves(bst B)
//@requires is_bst(B);
{
 return count_tree_leaves(B->root);
}