Lecture recap

This lecture was mainly about contracts and ensuring correctness of code.

There are 4 types of annotations in C0 (for convenience, we’re using exp here to mean any boolean expression):

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>//@requires exp;</td>
<td>before function execution</td>
</tr>
<tr>
<td>//@ensures exp;</td>
<td>before function returns</td>
</tr>
<tr>
<td>//@loop_invariant exp;</td>
<td>before the loop condition is checked</td>
</tr>
<tr>
<td>//@assert exp;</td>
<td>wherever you put it in the code</td>
</tr>
</tbody>
</table>

There are certain special variables and functions you have access to only in annotations. One of these is \result. It can be used only in //@ensures statements and it will give you the return value of the function. (There are other such variables/functions that we’ll get to later in the semester.)

To help you develop an intuition about contracts, here are some explanations of the different kinds of annotations:

- **//@requires**: Something that the caller needs to make sure is true before calling the function. ///@requires statements are used to make sure that users of the function use it in ways that make sense. For instance, if you were writing a factorial function it wouldn’t make sense to ask for the factorial of a negative number, so you might say ///@requires n >= 0; as a precondition of your function. Using a ///@requires statement allows you to clearly express how a function you write is used. If someone calls your function and violates a ///@requires statement, anything can happen and it’s their fault, not yours (you warned them!). ///@requires statements are called preconditions because they are checked before the function is executed.

- **//@ensures**: If the caller satisfies all preconditions, the function must make all ///@ensures statements true. ///@ensures statements are useful because they allow users of functions you write to make assumptions about your function’s behavior. ///@ensures statements are called postconditions because they are checked after the function has been executed.

- **//@loop_invariant**: Loop invariants are very useful when trying to verify that a function is correct. A loop invariant should directly imply the postcondition in most cases (the exception being when your function does something after the end of the loop). If your loop invariant doesn’t directly imply the postcondition, you should strengthen it until it does or figure out why you can’t strengthen it enough and fix any bug in your function that is stopping you from strengthening it.

- **//@assert**: Assert statements are useful if at some point in your function you want to be sure that a certain condition holds. This can be useful to help you debug part of a loop (for example, if the loop invariant doesn’t work, assert statements might help you find out why) and also in cases where you do work after the end of your loop (to help you prove the postcondition).
Checkpoint 0

What command would you compile with to enable contract checking in a file named fastpow.c0?

Proving correctness of the mystery function

We use contracts to both test our code and to logically reason about code. With contracts, careful reasoning and good testing both help us to be confident that our code is correct.

Here's a different way of looking at the mystery function from lecture yesterday. Once we have loop invariants for the mystery function set, we can view the whole thing as a control flow diagram:

The circle labeled 1 is a ________ of the function, and the circles labeled 2 and 3 are ________. The circles labeled 4 and 5 just capture information we get from the result of the loop guard (or loop condition), but we might write 4 as an ________ statement.

To prove this function correct, we need to reason about the two pieces of code (pieces that this diagram hides in the two cloud-bubbles) to ensure that our contracts never fail:

• When we reason about the upper code bubble, we assume that ________ is true before the code runs and show that ________ and ________ are true afterwards.

• When we reason about the lower code bubble, we assume ________, ________, and ________ are true before the code runs and show that ________ and ________ are true afterwards.

• To reason that the returned value r is equal to x^y, we combine the information from circles ________ and ________ to conclude that $e = 0$. Together with the information in circle ________, this implies that $r = x^y$.

In addition, we have to reason about termination: every time the lower code bubble runs, the value e gets strictly smaller.
Greatest common divisor

Let’s take a different look at contracts, proofs, and tests. Imagine we’re given a function that we’re told gives us the greatest common divisor of two numbers.

```c
1 int gcd(int x, int y)
2 //@requires x > 0 && y > 0;
3 //@ensures \result > 0 && x % \result == 0 && y % \result == 0;
```

This isn’t a great contract — it doesn’t require the result to be the greatest common divisor of two numbers, just that it be some divisor. If we don’t have access to the implementation of this function, the best we can do is test it. We’re looking for two kinds of errors:

- Cases where the contracts don’t hold: given positive integers, the function returns a quantity that isn’t a positive divisor. We’ll call these contract failures.

- Cases where the answer was wrong even though the contract was right. We’ll call these contract exploits.

To test for contract failures, we just have to run the gcd function on some good test cases. To test for contract exploits, we can use the `assert(exp)` statement to enforce that we’re actually calculating greatest common divisors. `assert(exp)` performs the same function as the contract `//@assert exp`. However, since it’s a function and not an annotation, it’s always checked, whether or not we compile with the `-d` flag. As a result, we use `assert(exp)` mostly for writing tests.

```c
#use <util>
#use <conio>

int main() {
    assert(gcd(42, 4) == 2); //random
    printint(gcd(13,5)); print("\n");
    assert(gcd(13, 5) == 1); //primes
    assert(gcd(1, 7) == 1); //input 1
    assert(gcd(12, 48) == 12); //multiple inputs
    assert(gcd(12, 12) == 12); //same number
    assert(gcd(int_max(), 2) == 1); //int_max
    assert(gcd(int_max(), int_max()) == int_max()); //both int_max

    println("All tests passed!");
    return 0;
}
```

Now we’ve that we’ve tested this implementation a bit, maybe we’re a little bit more confident that it’s correct. But maybe it’s too slow, or maybe we’re just nervous that we can’t see and reason about the correctness of this code. We can instead use this secret implementation of the greatest common divisor as a specification and write our own implementation:

```c
1 int fast_gcd(int x, int y)
2 //@requires x > 0 && y > 0;
3 //@ensures \result == gcd(x, y);
4 {
5     int a = x;
6     int b = y;
7     while (a != b)
8         //@loop_invariant a > 0 && b > 0;
```

```c
```
But does it actually work? Using the fact that \(\text{gcd}(a, b) = \text{gcd}(a - b, b) \) if \(a > b > 0 \) (and that \(\text{gcd}(a, b) = \text{gcd}(b, a) \)), let’s try to prove that this function is correct.

Another buggy program

Here’s a function that’s supposed to add its arguments. (Admittedly, this particular case is a bit unrealistic, since you wouldn’t ever want to implement a slower version of something you already have a fast version of.) The function doesn’t work.

To figure out why, add annotations (there are spaces everywhere you might want to do that), try to prove that it’s correct, and see where that proof fails.

```c
int add (int x, int y)
{
    // These two variables will let you keep track of old values of x and y
    // in case you need them in any loop invariants or assert statements.
    int a = x;
    int b = y;

    while (b >= 0)
    {
        a++;
        b--;
    }
    return a;
}
```

Checkpoint 1

Write some tests for this add function in the same format as we tested the gcd function earlier. Testing is an invaluable skill, as you will soon see on the programming assignments.