
Strengthening Zero-Knowledge Protocols using
Signatures

Juan Garay Bell Labs, Lucent Technologies

Philip MacKenzie Bell Labs, Lucent Technologies

Ke Yang Carnegie Mellon University

Strengthening Zero-Knowledge Protocols using Signatures – p.1/24

Zero Knowledge Proof Protocols

An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
introduces the notion
[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

[hundreds of papers here...]
many many applications in cryptography

identification protocols
two-party/multi-party computation
...

Strengthening Zero-Knowledge Protocols using Signatures – p.2/24

Zero Knowledge Proof Protocols

An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
introduces the notion

[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

[hundreds of papers here...]
many many applications in cryptography

identification protocols
two-party/multi-party computation
...

Strengthening Zero-Knowledge Protocols using Signatures – p.2/24

Zero Knowledge Proof Protocols

An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
introduces the notion
[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

[hundreds of papers here...]
many many applications in cryptography

identification protocols
two-party/multi-party computation
...

Strengthening Zero-Knowledge Protocols using Signatures – p.2/24

Zero Knowledge Proof Protocols

An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
introduces the notion
[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

[hundreds of papers here...]
many many applications in cryptography

�

identification protocols�

two-party/multi-party computation�

...

Strengthening Zero-Knowledge Protocols using Signatures – p.2/24

A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

Verifier
ε"x L"

Prover

�

Completeness — if � � �

then Verifier always accepts

�

Soundness — if � �� �

then Verifier accepts with negl. prob.

Verifier
ε"x L"

Prover

simulator

ZK−ness:

ZK-ness — a simulator produces the conversation w/o witness

Verifier
ε"x L"

Prover

extractor

wProof of Knowledge:

POK — an extractor produces a witness from interaction

Strengthening Zero-Knowledge Protocols using Signatures – p.3/24

A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

Verifier
ε"x L"

Prover

�

Completeness — if � � �

then Verifier always accepts

�

Soundness — if � �� �

then Verifier accepts with negl. prob.

Verifier
ε"x L"

Prover

simulator

ZK−ness:

�

ZK-ness — a simulator produces the conversation w/o witness

Verifier
ε"x L"

Prover

extractor

wProof of Knowledge:

POK — an extractor produces a witness from interaction

Strengthening Zero-Knowledge Protocols using Signatures – p.3/24

A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

Verifier
ε"x L"

Prover

�

Completeness — if � � �

then Verifier always accepts

�

Soundness — if � �� �

then Verifier accepts with negl. prob.

Verifier
ε"x L"

Prover

simulator

ZK−ness:

�

ZK-ness — a simulator produces the conversation w/o witness

Verifier
ε"x L"

Prover

extractor

wProof of Knowledge:

�

POK — an extractor produces a witness � from interaction

Strengthening Zero-Knowledge Protocols using Signatures – p.3/24

Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server is concurrent)

Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack
(necessary in a peer-to-peer network/routing protocols)

Universal Composability [Canetti 00]
secure when arbitrarily composed
(desirable for modularity)

Strengthening Zero-Knowledge Protocols using Signatures – p.4/24

Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

�

Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server is concurrent)

Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack
(necessary in a peer-to-peer network/routing protocols)

Universal Composability [Canetti 00]
secure when arbitrarily composed
(desirable for modularity)

Strengthening Zero-Knowledge Protocols using Signatures – p.4/24

Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

�

Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server is concurrent)

�

Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack
(necessary in a peer-to-peer network/routing protocols)

Universal Composability [Canetti 00]
secure when arbitrarily composed
(desirable for modularity)

Strengthening Zero-Knowledge Protocols using Signatures – p.4/24

Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

�

Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server is concurrent)

�

Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack
(necessary in a peer-to-peer network/routing protocols)

�

Universal Composability [Canetti 00]
secure when arbitrarily composed
(desirable for modularity)

Strengthening Zero-Knowledge Protocols using Signatures – p.4/24

Concurrent ZK

“Protocol remains ZK when concurrently composed.”

�

Introduced by [Dwork Naor Sahai 98]

Difficult in the plain model
[Canetti Kilian Petrank Rosen 01]
blackbox ZK needs rounds
[Prabhakaran Rosen Sahai 02]

rounds suffice
[Barak 01]
constant round non-blackbox ZK (bounded concurrency)

Easy in the common reference string (CRS) model
[Damgård 00] constant round ZK (simulator generates CRS)

We work in the CRS model.

Strengthening Zero-Knowledge Protocols using Signatures – p.5/24

Concurrent ZK

“Protocol remains ZK when concurrently composed.”

�

Introduced by [Dwork Naor Sahai 98]

�

Difficult in the plain model�

[Canetti Kilian Petrank Rosen 01]
blackbox ZK needs

� �	�
 �
 �

rounds�

[Prabhakaran Rosen Sahai 02]� � 	
 �
 �

rounds suffice�

[Barak 01]
constant round non-blackbox ZK (bounded concurrency)

Easy in the common reference string (CRS) model
[Damgård 00] constant round ZK (simulator generates CRS)

We work in the CRS model.

Strengthening Zero-Knowledge Protocols using Signatures – p.5/24

Concurrent ZK

“Protocol remains ZK when concurrently composed.”

�

Introduced by [Dwork Naor Sahai 98]

�

Difficult in the plain model�

[Canetti Kilian Petrank Rosen 01]
blackbox ZK needs

� �	�
 �
 �

rounds�

[Prabhakaran Rosen Sahai 02]� � 	
 �
 �

rounds suffice�

[Barak 01]
constant round non-blackbox ZK (bounded concurrency)

�

Easy in the common reference string (CRS) model
[Damgård 00] constant round ZK (simulator generates CRS)

We work in the CRS model.

Strengthening Zero-Knowledge Protocols using Signatures – p.5/24

Non-malleable ZK

“Seeing a proof doesn’t help prove something related.”

[Dolev Dwork Naor 91] one-time non-malleable ZK

[Sahai 99] one-time non-malleable NIZK

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

Strengthening Zero-Knowledge Protocols using Signatures – p.6/24

Non-malleable ZK

“Seeing a proof doesn’t help prove something related.”

�

[Dolev Dwork Naor 91] one-time non-malleable ZK

�

[Sahai 99] one-time non-malleable NIZK

VerifierADVERSARYProver

"prover""verifier"

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

Strengthening Zero-Knowledge Protocols using Signatures – p.6/24

Non-malleable ZK

“Seeing a proof doesn’t help prove something related.”

�

[Dolev Dwork Naor 91] one-time non-malleable ZK

�

[Sahai 99] one-time non-malleable NIZK

�

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

Strengthening Zero-Knowledge Protocols using Signatures – p.6/24

Simulation Sound (NI)ZK

“Seeing a simulated false proof doesn’t help prove something wrong.”

[Sahai 99] one-time simulation sound NIZK

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded simulation sound NIZK

Strengthening Zero-Knowledge Protocols using Signatures – p.7/24

Simulation Sound (NI)ZK

“Seeing a simulated false proof doesn’t help prove something wrong.”

�

[Sahai 99] one-time simulation sound NIZK

VerifierADVERSARYProver

"prover""verifier"

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded simulation sound NIZK

Strengthening Zero-Knowledge Protocols using Signatures – p.7/24

Simulation Sound (NI)ZK

“Seeing a simulated false proof doesn’t help prove something wrong.”

�

[Sahai 99] one-time simulation sound NIZK

�

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded simulation sound NIZK

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

Strengthening Zero-Knowledge Protocols using Signatures – p.7/24

Interactive Simulation Sound ZK

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

�

We allow to concurrently interact with many simulated provers.

�

Still cannot produce a false proof.

Strengthening Zero-Knowledge Protocols using Signatures – p.8/24

Interactive Non-malleable ZK

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

extractor

w

�

We allow to concurrently interact with many simulated provers.

�

Anything proves, a witness can be extracted.

�

Roughly speaking,
Non-malleable ZK = Simulation Sound ZK + non-rewinding POK.

Strengthening Zero-Knowledge Protocols using Signatures – p.9/24

Non-malleable/Simulation Sound ZK: Known Constructions

�

[Dolev Dwork Naor 91]
one-time non-malleable ZK, polylogarithmic rounds, plain model

�

[Barak 02]
one-time non-malleable ZK, constant rounds, plain model

�

[Katz 03]
one-time non-malleable ZK, three rounds, CRS model

�

[Sahai 00]
unbounded simulation-sound NIZK�

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

Strengthening Zero-Knowledge Protocols using Signatures – p.10/24

Universally Composable ZK

�

[Canetti 00]
Universal Composability: a framework for defining (very strong)
security that allows arbitrary composition

P2 PnP1 P2 PnP1

ideal process real−world model

Strengthening Zero-Knowledge Protocols using Signatures – p.11/24

UCZK: Known Results

�

Roughly speaking
UCZK � unbounded non-malleable ZK�

[Canetti 00]
UCZK impossible in plain model

�

[Canetti Fischlin 01]
three round UCZK in CRS model, adaptive corruption

�

[Canetti Lindell Ostrovsky Sahai 02]
The DDOPS01 construction is NIUCZK, non-adaptive corruption

Strengthening Zero-Knowledge Protocols using Signatures – p.12/24

Efficiency?

Most of the previous constructions are not very efficient.

Complicated constructions
e.g. non-blackbox simulation

NIZK
Non-interactive ZK is generally inefficient.

Cook-Levin theorem

pick an NP-complete language
construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

NIZK
Non-interactive ZK is generally inefficient.

Cook-Levin theorem

pick an NP-complete language
construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

�

NIZK
Non-interactive ZK is generally inefficient.

Cook-Levin theorem

pick an NP-complete language
construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

�

NIZK
Non-interactive ZK is generally inefficient.

�

Cook-Levin theorem�

pick an NP-complete language

�

construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

�

NIZK
Non-interactive ZK is generally inefficient.

�

Cook-Levin theorem�

pick an NP-complete language

�

�

construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

�
Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

�

NIZK
Non-interactive ZK is generally inefficient.

�

Cook-Levin theorem�

pick an NP-complete language

�

�

construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

�

�

reduce the ZK proof for any NP language to

�

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Efficiency?

Most of the previous constructions are not very efficient.

�

Complicated constructions
e.g. non-blackbox simulation

�

NIZK
Non-interactive ZK is generally inefficient.

�

Cook-Levin theorem�

pick an NP-complete language

�

�

construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for

�

�

reduce the ZK proof for any language to

� � Inefficient!

Strengthening Zero-Knowledge Protocols using Signatures – p.13/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

-protocol (three-round, public-coin, honest-verifier)
unbounded simulation-sound ZK

-protocol (-protocol + non-rewinding POK)
unbounded non-malleable ZK
universally composable ZK

What’s special about our technique?

conceptually simple

efficient
three rounds, small additive overhead (const. pub. key op’s)
completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK

-protocol (-protocol + non-rewinding POK)
unbounded non-malleable ZK
universally composable ZK

What’s special about our technique?

conceptually simple

efficient
three rounds, small additive overhead (const. pub. key op’s)
completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK� �

-protocol (

�

-protocol + non-rewinding POK)

� � unbounded non-malleable ZK� � universally composable ZK

What’s special about our technique?

conceptually simple

efficient
three rounds, small additive overhead (const. pub. key op’s)
completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK� �

-protocol (

�

-protocol + non-rewinding POK)

� � unbounded non-malleable ZK� � universally composable ZK

What’s special about our technique?

�

conceptually simple

efficient
three rounds, small additive overhead (const. pub. key op’s)
completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK� �

-protocol (

�

-protocol + non-rewinding POK)

� � unbounded non-malleable ZK� � universally composable ZK

What’s special about our technique?

�

conceptually simple

�

efficient

three rounds, small additive overhead (const. pub. key op’s)
completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK� �

-protocol (

�

-protocol + non-rewinding POK)

� � unbounded non-malleable ZK� � universally composable ZK

What’s special about our technique?

�

conceptually simple

�

efficient�

three rounds, small additive overhead (const. pub. key op’s)

completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

� �

-protocol (three-round, public-coin, honest-verifier)

� � unbounded simulation-sound ZK� �

-protocol (

�

-protocol + non-rewinding POK)

� � unbounded non-malleable ZK� � universally composable ZK

What’s special about our technique?

�

conceptually simple

�

efficient�

three rounds, small additive overhead (const. pub. key op’s)�

completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,
“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”

an hour ago.)

Strengthening Zero-Knowledge Protocols using Signatures – p.14/24

Ideas of the Conversion

Start with a

�

-protocol �

= “

�

is true.”

Prover Verifier

�
� � � � �

��

Convert to
= “Either is true, or I know a signature for message w.r.t. .”

Strengthening Zero-Knowledge Protocols using Signatures – p.15/24

Ideas of the Conversion

Start with a

�

-protocol �

= “

�

is true.”

Prover Verifier

�
� � � � �

��

Convert to� �

= “Either

�

is true, or I know a signature for message � w.r.t. �

.”

Strengthening Zero-Knowledge Protocols using Signatures – p.15/24

Protocol in More Details

� �

= “Either

�

is true, or I know a signature for message � w.r.t. �

.”

� �

is from a digital signature scheme SIG � �

Gen � Sign � Verify

�

existential unforgeable against chosen message attack.

� �

is in the common reference string (�

unknown).

� � � �
 �

is a fresh verification key of a one-time signature scheme
SIG � � �

Gen � � Sign � � Verify � � .

Prover Verifier

Gen
sig

Sign tran Verify tran

Strengthening Zero-Knowledge Protocols using Signatures – p.16/24

Protocol in More Details

� �

= “Either

�

is true, or I know a signature for message � w.r.t. �

.”

� �

is from a digital signature scheme SIG � �

Gen � Sign � Verify

�

existential unforgeable against chosen message attack.

� �

is in the common reference string (�

unknown).

� � � �
 �

is a fresh verification key of a one-time signature scheme
SIG � � �

Gen � � Sign � � Verify � � .

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

Strengthening Zero-Knowledge Protocols using Signatures – p.16/24

How does it Work?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

Completeness — straightforward

Soundness — since unknown, infeasible to fake a signature

ZK-ness — generates and can produce signatures
(non-rewinding simulation means concurrency)

Strengthening Zero-Knowledge Protocols using Signatures – p.17/24

How does it Work?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Completeness — straightforward

Soundness — since unknown, infeasible to fake a signature

ZK-ness — generates and can produce signatures
(non-rewinding simulation means concurrency)

Strengthening Zero-Knowledge Protocols using Signatures – p.17/24

How does it Work?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Completeness — straightforward

�

Soundness — since �

unknown, infeasible to fake a signature

ZK-ness — generates and can produce signatures
(non-rewinding simulation means concurrency)

Strengthening Zero-Knowledge Protocols using Signatures – p.17/24

How does it Work?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Completeness — straightforward

�

Soundness — since �

unknown, infeasible to fake a signature

�

ZK-ness —

#

generates

� �
 � �
 �
and can produce signatures

(non-rewinding simulation means concurrency)

Strengthening Zero-Knowledge Protocols using Signatures – p.17/24

How does it Work — Unbounded Simulation Soundness

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

�

We allow to (arbitrarily) interact with many (simulated) provers.

�

Still cannot produce a false proof.

Strengthening Zero-Knowledge Protocols using Signatures – p.18/24

How does it Work — Unbounded Simulation Soundness

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

“producing a false proof” = “faking a signature for �
 �

”

�

does not know �
 � � cannot reuse �
 �

�

fakes a signature for a fresh �
 � � breaks SIG

Strengthening Zero-Knowledge Protocols using Signatures – p.19/24

How about Unbounded Non-malleability?

VerifierADVERSARYProver

"prover""verifier"

Prover

Prover

simulator

extractor

w

Non-malleable ZK = Simulation Sound ZK + non-rewinding POK

�

We allow to interact with many (simulated) provers.

�

Anything proves, a witness can be extracted.

Strengthening Zero-Knowledge Protocols using Signatures – p.20/24

From -protocols to Unbounded Non-malleability

same construction, let

�

be an

�

-protocol

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

� �

-protocol =

�

-protocol + non-rewinding POK

“failing to extract” = “faking a signature for �
 �

”

�

does not know �
 � � cannot reuse �
 �

�

fakes a signature for a fresh �
 � � breaks SIG

Strengthening Zero-Knowledge Protocols using Signatures – p.21/24

From Unbounded Non-malleability to Universal Composability

Prover(

$&%) Verifier(
$&')

� �
 � � �
 � � � Gen � � ! � � � $% � $' � � () � �
 �
�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

roughly speaking
UCZK � unbounded non-malleable ZK�

easily augmentable to UCZK for non-adaptive corruption
(add common input, ProverID, VerifierID, SessionID)

Strengthening Zero-Knowledge Protocols using Signatures – p.22/24

UCZK: Adaptive Corruption (With Erasure)

�

start with the UCZK non-adaptive construction

�

technique from [Damgård 00, Jarecki Lysyanskaya 00]

Prover Verifier

* � first_message

� � � � � * �

� +

, � response

� � � � � * � + � z � verify

� � � * � + � , �

Prover Verifier
first_message

commit

response
decommit

erase a,d,z verify
com_verify

“Simulation Sound Trapdoor Commitment”: cannot fake a
decommitment even after seeing a simulator faking

Strengthening Zero-Knowledge Protocols using Signatures – p.23/24

UCZK: Adaptive Corruption (With Erasure)

�

start with the UCZK non-adaptive construction

�

technique from [Damgård 00, Jarecki Lysyanskaya 00]

Prover Verifier* � first_message

� � � � �

* - � commit

� * � * - �

� +

, � response

� � � � � * � + �

) � decommit

� * � * - �

erase

� � � a,d,z � verify

� � � * � + � , �

com_verify

� * � * - �) �

“Simulation Sound Trapdoor Commitment”: cannot fake a
decommitment even after seeing a simulator faking

Strengthening Zero-Knowledge Protocols using Signatures – p.23/24

UCZK: Adaptive Corruption (With Erasure)

�

start with the UCZK non-adaptive construction

�

technique from [Damgård 00, Jarecki Lysyanskaya 00]

Prover Verifier* � first_message

� � � � �

* - � commit

� * � * - �

� +

, � response

� � � � � * � + �

) � decommit

� * � * - �

erase

� � � a,d,z � verify

� � � * � + � , �

com_verify

� * � * - �) �

�

“Simulation Sound Trapdoor Commitment”: cannot fake a
decommitment even after seeing a simulator faking

Strengthening Zero-Knowledge Protocols using Signatures – p.23/24

What About Efficiency?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

Building by adding POK of signature to
avoids the Cook-Levin Theorem
efficient POK of signatures exists (Cramer-Shoup, DSA)

-protocols efficient composition of “OR”

Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations)

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures – p.24/24

What About Efficiency?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Building

� �

by adding POK of signature to
�

avoids the Cook-Levin Theorem
efficient POK of signatures exists (Cramer-Shoup, DSA)

-protocols efficient composition of “OR”

Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations)

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures – p.24/24

What About Efficiency?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Building

� �

by adding POK of signature to
�

�

avoids the Cook-Levin Theorem�

efficient POK of signatures exists (Cramer-Shoup, DSA)� �

-protocols � efficient composition of “OR”

Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations)

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures – p.24/24

What About Efficiency?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Building

� �

by adding POK of signature to
�

�

avoids the Cook-Levin Theorem�

efficient POK of signatures exists (Cramer-Shoup, DSA)� �

-protocols � efficient composition of “OR”

�

Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations)

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures – p.24/24

What About Efficiency?

Prover Verifier

� �
 � � �
 � � � Gen � � ! � �
 �

�

�
� � � � �" �sig � �
 � �
 � �

��

� � Sign � � �
 � � tran

� � � Verify � � �
 � � tran � � �

�

Building

� �

by adding POK of signature to
�

�

avoids the Cook-Levin Theorem�

efficient POK of signatures exists (Cramer-Shoup, DSA)� �

-protocols � efficient composition of “OR”

�

Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations) �

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures – p.24/24

	Zero Knowledge Proof Protocols
	A Quick Review of ZK Proofs
	Issues of (Strengthening)
Zero Knowledge Protocols
	Concurrent ZK
	Non-malleable ZK
	Simulation Sound (NI)ZK
	Interactive Simulation Sound ZK
	Interactive Non-malleable ZK
	Non-malleable/Simulation Sound ZK: Known Constructions
	Universally Composable ZK
	UCZK: Known Results
	Efficiency?
	Our Contributions
	Ideas of the Conversion
	Protocol in More Details
	How does it Work?
	How does it Work --- Unbounded Simulation Soundness
	How does it Work --- Unbounded Simulation Soundness
	How about Unbounded Non-malleability?
	From eemph {$Omega $}-protocols to Unbounded Non-malleability
	From Unbounded Non-malleability to Universal Composability
	UCZK: Adaptive Corruption (With Erasure)
	What About Efficiency?

