Strengthening Zero-Knowledge Protocols using
Signatures

Juan Garay Bell Labs, Lucent Technologies
Philip MacKenzie  Bell Labs, Lucent Technologies

Ke Yang Carnegie Mellon University

Strengthening Zero-Knowledge Protocols using Signatures — p.1/24




An extremely successful story in two decades...

Strengthening Zero-Knowledge Protocols using Signatures — p.2/24




An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
Introduces the notion

Strengthening Zero-Knowledge Protocols using Signatures — p.2/24




An extremely successful story in two decades...

[Goldwasser Micali Rackoff 85]
Introduces the notion

[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

Strengthening Zero-Knowledge Protocols using Signatures — p.2/24




An extremely successful story in two decades...

|Goldwasser Micali Rackoff 85]
Introduces the notion

[Goldreich Micali Wigderson 86]
all NP languages have ZK proofs

[hundreds of papers here...]
many many applications in cryptography

¢ identification protocols

¢ two-party/multi-party computation
¢ ..

Strengthening Zero-Knowledge Protocols using Signatures — p.2/24




A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

X €L
Prover

B Completeness — if x € L then Verifier always accepts

B Soundness — if z ¢ L then Verifier accepts with negl. prob.

Strengthening Zero-Knowledge Protocols using Signatures — p.3/24



A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

X €L
Prover

¥ Completeness — if x € L then Verifier always accepts

B Soundness — if z ¢ L then Verifier accepts with negl. prob.

B ZK-ness — a simulator produces the conversation w/o witness

Strengthening Zero-Knowledge Protocols using Signatures — p.3/24



A Quick Review of ZK Proofs

A protocol between Prover and Verifier.

X €L
Prover

¥ Completeness — if x € L then Verifier always accepts

B Soundness — if z ¢ L then Verifier accepts with negl. prob.

¥ POK — an extractor produces a witness w from interaction

Strengthening Zero-Knowledge Protocols using Signatures — p.3/24



Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

Strengthening Zero-Knowledge Protocols using Signatures — p.4/24




Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

® Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server is concurrent)

Strengthening Zero-Knowledge Protocols using Signatures — p.4/24




Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

B Concurrency [Dwork Naor Sahai 98]

remains ZK if many verifiers interact with the prover concurrently
(your web server Is concurrent)

® Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack

(necessary in a peer-to-peer network/routing protocols)

Strengthening Zero-Knowledge Protocols using Signatures — p.4/24



Issues of (Strengthening) Zero Knowledge Protocols

Since GMR85, many efforts are made to strengthen the original
definition of ZK proofs to fit into the “real world,” a.k.a. the “Internet.”

B Concurrency [Dwork Naor Sahai 98]
remains ZK if many verifiers interact with the prover concurrently
(your web server Is concurrent)

® Non-malleability [Dolev Dwork Naor 91]
secure against the man-in-the-middle attack
(necessary in a peer-to-peer network/routing protocols)

B Universal Composability [Canetti 00]
secure when arbitrarily composed
(desirable for modularity)

Strengthening Zero-Knowledge Protocols using Signatures — p.4/24



“Protocol remains ZK when concurrently composed.”
¥ Introduced by [Dwork Naor Sahai 98]

Strengthening Zero-Knowledge Protocols using Signatures — p.5/24




“Protocol remains ZK when concurrently composed.”
¥ Introduced by [Dwork Naor Sahai 98]

¥ Difficult in the plain model

¢ [Canetti Kilian Petrank Rosen 01]
blackbox ZK needs ()(log k) rounds

¢ [Prabhakaran Rosen Sahai 02]
O(log k) rounds suffice

¢ [Barak 01]
constant round non-blackbox ZK (bounded concurrency)

Strengthening Zero-Knowledge Protocols using Signatures — p.5/24




Concurrent ZK

“Protocol remains ZK when concurrently composed.”
¥ Introduced by [Dwork Naor Sahai 98]

® Difficult in the plain model

¢ [Canetti Kilian Petrank Rosen 01]
blackbox ZK needs ()(log k) rounds

¢ [Prabhakaran Rosen Sahai 02]
O(log k) rounds suffice

¢ [Barak 01]
constant round non-blackbox ZK (bounded concurrency)

B Easy in the common reference string (CRS) model
[Damgard 00] constant round ZK (simulator generates CRS)

We work in the CRS model.

Strengthening Zero-Knowledge Protocols using Signatures — p.5/24



“Seeing a proof doesn’t help prove something related.”

Strengthening Zero-Knowledge Protocols using Signatures — p.6/24




Non-malleable ZK

“Seeing a proof doesn’t help prove something related.”
¥ [Dolev Dwork Naor 91] one-time non-malleable ZK

B [Sahai 99] one-time non-malleable NIZK

ADVERSARY - Verifier

"verifier" "prover"

Strengthening Zero-Knowledge Protocols using Signatures — p.6/24



Non-malleable ZK

“Seeing a proof doesn’t help prove something related.”
¥ [Dolev Dwork Naor 91] one-time non-malleable ZK
B [Sahai 99] one-time non-malleable NIZK

B [De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

ADVERSARY - Verifier

"verifier" "prover"

simulator

Strengthening Zero-Knowledge Protocols us

ing Signatures

—p.6/24



“Seeing a simulated false proof doesn’t help prove something wrong.”

Strengthening Zero-Knowledge Protocols using Signatures — p.7/24




Simulation Sound (NI)ZK

“Seeing a simulated false proof doesn’t help prove something wrong.”
B [Sahai 99] one-time simulation sound NIZK

ADVERSARY - Verifier

"verifier" "prover"

Strengthening Zero-Knowledge Protocols using Signatures — p.7/24



Simulation Sound (NI)ZK

“Seeing a simulated false proof doesn’t help prove something wrong.”
B [Sahai 99] one-time simulation sound NIZK

B [De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded S|mulat|on sound NIZK

| Prover

ADVERSARY - Verifier

| ~ "verifier" "prover"
| Prover [ |

simulator

Strengthening Zero-Knowledge Protocols using Signatures — p.7/24



Interactive Simulation Sound ZK

ADVERSARY - Verifier

| ~ "verifier" "prover"
| Prover [ |

simulator

¥ We allow A to concurrently interact with many simulated provers.
¥ Still A cannot produce a false proof.

Strengthening Zero-Knowledge Protocols using Signatures — p.8/24



Interactive Non-malleable ZK

ADVERSARY - Verifier

extractor

3 ~ "verifier" "prover"
| Prover [

simulator

¥ We allow A to concurrently interact with many simulated provers.
¥ Anything A proves, a witness can be extracted.

¥ Roughly speaking,
Non-malleable ZK = Simulation Sound ZK + non-rewinding POK.

Strengthening Zero-Knowledge Protocols using Signatures — p.9/24



Non-malleable/Simulation Sound ZK: Known Constructions

[Dolev Dwork Naor 91]
one-time non-malleable ZK, polylogarithmic rounds, plain model

[Barak 02]
one-time non-malleable ZK, constant rounds, plain model

[Katz 03]
one-time non-malleable ZK, three rounds, CRS model

[Sahal 00]
unbounded simulation-sound NIZK

[De Santis, Di Crescenzo, Ostrovsky, Persiano, Sahai 01]
unbounded non-malleable NIZK

Strengthening Zero-Knowledge Protocols using Signatures — p.10/24



Universally Composable ZK

B [Canetti 00]
Universal Composability: a framework for defining (very strong)
security that allows arbitrary composition

Strengthening Zero-Knowledge Protocols using Signatures — p.11/24



¥ Roughly speaking
UCZK ~ unbounded non-malleable ZK

B [Canetti 00]
UCZK impossible in plain model

B [Canetti Fischlin 01]
three round UCZK in CRS model, adaptive corruption

B [Canetti Lindell Ostrovsky Sahai 02]
The DDOPSO01 construction is NIUCZK, non-adaptive corruption

Strengthening Zero-Knowledge Protocols using Signatures — p.12/24




Most of the previous constructions are not very efficient.

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24




Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24




Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

B NIZK
Non-interactive ZK is generally inefficient.

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24




Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

B NIZK
Non-interactive ZK is generally inefficient.

¥ Cook-Levin theorem
¢ pick an NP-complete language L

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24




Efficiency?
Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

B NIZK
Non-interactive ZK is generally inefficient.

B Cook-Levin theorem

¢ pick an NP-complete language L

¢ construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for L

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24



Efficiency?
Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

B NIZK
Non-interactive ZK is generally inefficient.

B Cook-Levin theorem

¢ pick an NP-complete language L

¢ construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for L

¢ reduce the ZK proof for any NP language to L

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24



Efficiency?
Most of the previous constructions are not very efficient.

® Complicated constructions
e.g. non-blackbox simulation

B NIZK
Non-interactive ZK is generally inefficient.

B Cook-Levin theorem

¢ pick an NP-complete language L

¢ construct a (concurrent/simulation sound/non-malleable/UC)
ZK proof for L

il reduce the ZK proof for any language to

Strengthening Zero-Knowledge Protocols using Signatures — p.13/24



A novel technigue to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24




A novel technigue to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signatures

W > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24




Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signhatures

¥ > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

B ()-protocol (>:-protocol + non-rewinding POK)

—> unbounded non-malleable ZK
—> universally composable ZK

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24



Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signhatures

¥ > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

B ()-protocol (>:-protocol + non-rewinding POK)

—> unbounded non-malleable ZK
—> universally composable ZK

What’s special about our technique?
B conceptually simple

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24



Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signhatures

¥ > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

B ()-protocol (>:-protocol + non-rewinding POK)

—> unbounded non-malleable ZK
—> universally composable ZK

What’s special about our technique?
B conceptually simple
H efficient

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24



Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signhatures

¥ > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

B ()-protocol (>:-protocol + non-rewinding POK)

—> unbounded non-malleable ZK
—> universally composable ZK

What’s special about our technique?
B conceptually simple

H efficient
¢ three rounds, small additive overhead (const. pub. key op’s)

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24



Our Contributions

A novel technique to construct efficient, concurrent, non-malleable,
and/or universal composable ZK in the CRS model using signhatures

¥ > -protocol (three-round, public-coin, honest-verifier)
—> unbounded simulation-sound ZK

B ()-protocol (>:-protocol + non-rewinding POK)

—> unbounded non-malleable ZK
—> universally composable ZK

What’s special about our technique?
B conceptually simple

H efficient
¢ three rounds, small additive overhead (const. pub. key op’s)

¢ completely avoid the Cook-Levin Theorem
(c.f. Micciancio and Petrank,

“Simulatable Commitments and Efficient Concurrent Zero-Knowledge,”
an hour ago. )

Strengthening Zero-Knowledge Protocols using Signatures — p.14/24



Start with a >-protocol
[I="¢ Is true’”

Prover Verifier
%9 ()

-
< |l
T~

Strengthening Zero-Knowledge Protocols using Signatures — p.15/24




Start with a >-protocol
[I="¢ Is true’”

Prover Verifier
%9 ()

YiY

Convert to
[I' = “Either ¢ is true, or | know a signature for message m w.r.t. vk.”

Strengthening Zero-Knowledge Protocols using Signatures — p.15/24



Protocol in More Detalls

[I' = “Either ¢ is true, or | know a signature for message m w.r.t. vk.

B ok is from a digital signature scheme SIG = (Gen, Sign, Verify)
existential unforgeable against chosen message attack.

® ok is in the common reference string (sk unknown).

¥ m = vk’ Is a fresh verification key of a one-time signature scheme
SIG; = (Genq, Sign,, Verify,).

Strengthening Zero-Knowledge Protocols using Signatures — p.16/24



Protocol in More Detalls

[I' = “Either ¢ is true, or | know a signature for message m w.r.t. vk.

B ok is from a digital signature scheme SIG = (Gen, Sign, Verify)
existential unforgeable against chosen message attack.

® ok is in the common reference string (sk unknown).

¥ m = vk’ Is a fresh verification key of a one-time signature scheme
SIG; = (Genq, Sign,, Verify,).

Prover Verifier
(vk', sk') + Gen, (1) vk’
3¢ (x) v SS9 (vk, vk

<
<«

s < Sign, (sk', tran) 5 Verify, (vk’, tran, s)

-
>

YiY

\ 4

Strengthening Zero-Knowledge Protocols using Signatures — p.16/24



Prover Verifier
(vk', sk') + Gen, (1) vk’
¢ (x) v SS9 vk, vk

<
B |

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

\ 4

Yiy

Y

Strengthening Zero-Knowledge Protocols using Signatures — p.17/24




Prover Verifier
(vk', sk') + Gen, (1) vk’
¢ (x) v SS9 vk, vk

\ 4

<
|

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

Yiy

Y

¥ Completeness — straightforward

Strengthening Zero-Knowledge Protocols using Signatures — p.17/24




Prover Verifier
(vk', sk') + Gen, (1) vk’
¢ (x) v SS9 vk, vk

<
B |

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

\ 4

Yiy

Y

¥ Completeness — straightforward
¥ Soundness — since sk unknown, infeasible to fake a signature

Strengthening Zero-Knowledge Protocols using Signatures — p.17/24




How does it Work?

Prover Verifier
(vk', sk') + Gen, (1) vk’ :
¢ (x) v SS9 vk, vk

<
«

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

A\

A 4

¥ Completeness — straightforward
B Soundness — since sk unknown, infeasible to fake a signature

B ZK-ness — S generates (vk, sk) and can produce signatures
(non-rewinding simulation means concurrency)

Strengthening Zero-Knowledge Protocols using Signatures — p.17/24



How does it Work — Unbounded Simulation Soundness

ADVERSARY - Verifier

| -~ "verifier" "prover"
| Prover [ |

simulator

¥ We allow A to (arbitrarily) interact with many (simulated) provers.
¥ Still A cannot produce a false proof.

Strengthening Zero-Knowledge Protocols using Signatures — p.18/24



How does it Work — Unbounded Simulation Soundness

Prover Verifier
(vk', sk') + Gen, (1) vk’ :
¢ (x) v SS9 vk, vk

<
«

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

A\

A 4

¥ “producing a false proof” = “faking a signature for v£"”

¥ A does not know sk’ = cannot reuse vk’
W A fakes a signature for a fresh vk’ = A breaks SIG

Strengthening Zero-Knowledge Protocols using Signatures — p.19/24



How about Unbounded Non-malleability?

ADVERSARY

| ~ "verifier" "prover"
| Prover [

simulator

Non- malleable ZK = Simulation Sound ZK + non-rewinding POK

¥ We allow A to interact with many (simulated) provers.
¥ Anything A proves, a witness can be extracted.

Strengthening Zero-Knowledge Protocols using Signatures — p.20/24



From ()-protocols to Unbounded Non-malleability

same construction, let IT be an (2-protocol

Prover Verifier
(vk', sk") < Gen,(1%) vk’ R
O (z) v 239 (vk, vk
s < Sign, (sk', tran) 5 Verify, (vk’, tran, s)

B ()-protocol = > -protocol + non-rewinding POK
“failing to extract” = “faking a signature for v£"”

® A does not know sk’ = cannot reuse vk’

W A fakes a signature for a fresh vk’ = A breaks SIG

Strengthening Zero-Knowledge Protocols using Signatures — p.21/24




From Unbounded Non-malleability to Universal Composability

Prover(FP,) Verifier(F;)

. . ) ,
(vk', sk'") < Gen,(1%) z, B, by, sid, vk R

Q% (x) V ZSig(fuk, vk')

YY

]
|

s < Sign, (sk', tran) 5 . Verify, (vk', tran, s)

4

® roughly speaking
UCZK ~ unbounded non-malleable ZK

¥ easily augmentable to UCZK for non-adaptive corruption
(add common input, ProverlD, VerifierlD, SessionID)

Strengthening Zero-Knowledge Protocols using Signatures — p.22/24



¥ start with the UCZK non-adaptive construction
B technique from [Damgard 00, Jarecki Lysyanskaya 00]

Prover Verifier
a < first_message(z, w) a

A

z < response(z, w, a, c) 2 verify(z,a,c,2)

Strengthening Zero-Knowledge Protocols using Signatures — p.23/24




¥ start with the UCZK non-adaptive construction
B technique from [Damgard 00, Jarecki Lysyanskaya 00]

Prover Verifier
a < first_message(z, w)
. *
a* < commit(a) a
C

A

z < response(z,w, a, ¢)
d < decommit(a, a*)

erase(w) _ &2 verify(z,a, ¢, 2)

com_verify(a, a*, d)

Strengthening Zero-Knowledge Protocols using Signatures — p.23/24




UCZK: Adaptive Corruption (With Erasure)

¥ start with the UCZK non-adaptive construction
B technique from [Damgard 00, Jarecki Lysyanskaya 00]

Prover
a < first_message(z, w)

a* < commit(a) a

Y

<
<«

z < response(zx,w, a, ¢)
d < decommit(a, a*)
a,d,z

Verifier

erase(w) .

verify(z, a, c, z)
com_verify(a, a*, d)

B “Simulation Sound Trapdoor Commitment™. A cannot fake a
decommitment even after seeing a simulator faking

Strengthening Zero-Knowledge Protocols using Signatures — p.23/24



Prover Verifier
(vk', sk') + Gen, (1) vk’
¢ (x) v SS9 vk, vk

<
B |

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

\ 4

Yiy

Y

Strengthening Zero-Knowledge Protocols using Signatures — p.24/24




Prover Verifier
(vk', sk') + Gen, (1) vk’
¢ (x) v SS9 vk, vk

\ 4

<
|

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

Yiy

Y

¥ Building IT" by adding POK of signature to II

Strengthening Zero-Knowledge Protocols using Signatures — p.24/24




What About Efficiency?

Prover
(vk', sk') < Gen,(1%)

s < Sign, (sk’,tran)

vk’

Verifier

-

2% () v ES19 (vk, vk')

<
«

A\

S

Verify, (vk', tran, s)

A 4

B Building IT" by adding POK of signature to 11

¢ avoids the Cook-Levin Theorem

¢ efficient POK of signatures exists (Cramer-Shoup, DSA)
¢ >-protocols = efficient composition of “OR”

Strengthening Zero-Knowledge Protocols using Signatures — p.24/24



What About Efficiency?

Prover
(vk', sk') < Gen,(1%)

s < Sign, (sk’,tran)

vk’

Verifier

-

2% () v ES19 (vk, vk')

<
«

A\

S

Verify, (vk', tran, s)

A 4

B Building IT" by adding POK of signature to 11

¢ avoids the Cook-Levin Theorem

¢ efficient POK of signatures exists (Cramer-Shoup, DSA)
¢ >-protocols = efficient composition of “OR”

B Efficient one-time signatures and SSTCs

Strengthening Zero-Knowledge Protocols using Signatures — p.24/24



What About Efficiency?

Prover Verifier
(vk', sk') + Gen, (1) vk’ :
¢ (x) v SS9 vk, vk

<
«

s < Sign, (sk’,tran) 5 Verify, (vk’, tran, s)

A\

A 4

B Building IT" by adding POK of signature to 11

¢ avoids the Cook-Levin Theorem
¢ efficient POK of signatures exists (Cramer-Shoup, DSA)

¢ >-protocols = efficient composition of “OR”
B Efficient one-time signatures and SSTCs

(honest-verifier ZK) + (additive const. pub. key operations) =

(concurrent, non-malleable, and/or universally composable ZK)

Strengthening Zero-Knowledge Protocols using Signatures — p.24/24



	Zero Knowledge Proof Protocols
	A Quick Review of ZK Proofs
	Issues of (Strengthening)
Zero Knowledge Protocols
	Concurrent ZK
	Non-malleable ZK
	Simulation Sound (NI)ZK
	Interactive Simulation Sound ZK
	Interactive Non-malleable ZK
	Non-malleable/Simulation Sound ZK: Known Constructions
	Universally Composable ZK
	UCZK: Known Results
	Efficiency?
	Our Contributions
	Ideas of the Conversion
	Protocol in More Details
	How does it Work?
	How does it Work --- Unbounded Simulation Soundness
	How does it Work --- Unbounded Simulation Soundness
	How about Unbounded Non-malleability?
	From eemph {$Omega $}-protocols to Unbounded Non-malleability
	From Unbounded Non-malleability to Universal Composability
	UCZK: Adaptive Corruption (With Erasure)
	What About Efficiency?

