
1

Preliminary Analysis of REST API Style Guidelines

Lauren Murphy
School of Information
University of Michigan
Ann Arbor, MI 48109
laumurph@umich.edu

Tosin Alliyu
Computer Science De-
partment
Haverford College
Philadelphia, PA 19041
alliyut@gmail.com

Andrew Macvean
Google, Inc.
Seattle, WA
amacvean@google.com

Mary Beth Kery, Brad A. Myers
Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213
mkery@cs.cmu.edu, bam@cs.cmu.edu

Abstract
We studied a collection of 32 publically published guideline
sets for designing RESTful Application Programming Inter-
faces (APIs), each from a different company, to identify sim-
ilarities and differences to see if there are overall best prac-
tices across ten different topics. Our contribution includes
providing a list of topics that API authors can reference when
creating or evaluating their own guideline sets. Additionally,
we found that while some guideline sets attempt to enforce
consistency, simplicity, and intuitiveness in the APIs that use
these guidelines, cross-guideline set comparisons show a
lack of consistency in some of the topics examined, and dif-
ferent interpretations of what is thought to be “simple” and
“intuitive.”

Keywords API Usability, API Style Guidelines, De-
veloper Experience (DevX, DX), Web Services

1. Introduction
Application Programming Interfaces (APIs), are the way

that libraries of code, SDKs, and frameworks are made avail-
able to programmers [1]. Increasingly, companies are
providing APIs so others can access their data and services.
For example, as of October, 2017, programmableweb.com
lists over 18,400 APIs for Web services. There are starting
to be a number of public guideline sets that attempt to help
internal and external programmers develop high-quality
APIs. We are investigating to what extent the guidelines in
the sets are consistent with each other, and whether there are
any universal best practices.

Several different groups of people are involved with
APIs and they have different goals [1, 2]. First, there are the
“API designers”, who build the APIs to be released for use
by the “API users,” who are programmers that make calls to

PLATEAU’17 Workshop on Evaluation and Usability of Programming Languages and
Tools, October 23, 2017, Vancouver, CA

the APIs in their own programs. Another group are the prod-
uct “consumers,” who use the products that are made with
programs designed by the API users. Another group that was
not mentioned in previous work [1, 2] is the “API Guideline
Authors,” who create API design guideline sets to help the
API designers create better APIs. Previous research around
usability and APIs has been centered around the API user’s
experience, and has covered topics on non-web APIs [3-5],
software patterns [6, 7], and documentation [8-10], which
has been called Developer Experience (DevX or DX), by
analogy with UX for User Experience. However, there has
been little research on how API Designers work or what their
needs are. By focusing on published design guideline sets for
APIs, we hope to better understand common design issues
that API designers face. Our findings may be helpful for cur-
rent API Guideline Authors and API Designers’ understand-
ing of how guideline sets differ and are the same. Addition-
ally, it may serve as a reference for API Authors creating
new guideline sets for themselves or their company by alert-
ing them about popular topics to cover and what decisions
other API Authors are making.

Previous research had identified a few sets of guidelines
aimed at helping API designers, including two books [4, 5].
However, with the explosion of the number of APIs, we were
interested in newer guideline sets used by API designers to-
day. Initial searches on Google and Github for API design
guideline sets revealed 39 different sets, of which 32 were
for REST APIs, two for JAVA APIs, one each for the pro-
gramming languages Swift and Rust, one for .NET, one for
TUK, and one not specific to any language or architecture
style. As a result, we focused our analysis on the 32 REST
API guideline sets (see Table 1). REST is generally a method
of communicating over the Internet to access web services.

Some articles have discussed design issues with REST
APIs [11, 12]. However, we are not aware of any previous
work examining the contents of API design guideline sets.

PLATEAU’17, October 23, 2017, Vancouver, CA Murphy, Alliyu, Macvean, Kery, Myers

2

In this paper, we seek to understand differences and similar-
ities in REST API design guideline sets.

2. Quick Introduction to REST
REST (REpresentational State Transfer) is a commonly

used architectural style for web services. According to Roy
Fielding, the inventor of REST [13], APIs that implement a
RESTful architecture style to design their structure and be-
havior should be stateless, so that any changes in the imple-

mentation do not cause an API user’s code to crash unex-
pectedly, have a decoupled client-server relationship, explic-
itly address cacheability, have a uniform interface, and op-
tionally provide code on demand. An API that is RESTful
will allow a user to provide a URI/URL and an operation –
performed using HTTP verbs – in order to do some action
on an object or set of objects stored in a server.

Table 1. API Guideline Sets Evaluated

 Creator Name Word
Count URL

1 Adidas 10,512 https://adidas-group.gitbooks.io/api-guidelines/content/
2 aGiftKit 1,085 https://github.com/aGiftKit/apiguide
3 Allegro Tech 6,745 https://github.com/allegro/restapi-guideline

4 Amazon 1,381 https://developer.amazon.com/public/apis/experience/cloud-drive/con-
tent/restful-api-best-practices

5 Apigee 7,820 https://pages.apigee.com/web-api-design-website-h-ebook-registration.html

6 Atlassian 3,936 https://developer.atlassian.com/docs/atlassian-platform-common-compo-
nents/rest-api-development/atlassian-rest-api-design-guidelines-version-1

7 Australian Digital
Transformation Office 5,181 https://apiguide.readthedocs.io/en/latest/principles/index.html

8 Australian Taxation Office 3,487 https://github.com/ato-team/restful-api-design-guidelines

9 CDiscount 5,551 https://github.com/jMonsinjon/archi-api-guidelines/tree/mas-
ter/src/docs/asciidoc/api

10 Cisco 9,463 https://github.com/CiscoDevNet/api-design-guide
11 Cloud Foundry 5,081 https://github.com/cloudfoundry/cc-api-v3-style-guide
12 Darrin 7,310 https://github.com/darrin/yaras/blob/master/restful-standards.md
13 Finnish Government 1,991 https://github.com/6aika/development_guide
14 Geert Jansen 9,174 http://restful-api-design.readthedocs.io/en/latest/intro.html
15 GitHub 3,210 https://developer.github.com/v3/
16 GoCardless 2,186 https://github.com/gocardless/http-api-design
17 Google 18,886 https://cloud.google.com/apis/design/
18 Haufe 15,446 https://haufe-lexware.gitbooks.io/haufe-api-styleguide/content/
19 Heroku 2,131 https://geemus.gitbooks.io/http-api-design/content/en/
20 IBM 2,370 https://github.com/watson-developer-cloud/api-guidelines
21 Inaka 1,598 https://github.com/inaka/rest_guidelines
22 Keboola 987 http://docs.keboolaconnector.apiary.io/#reference
23 Matteo Canato 1,463 https://github.com/mcanato/rest-api-standards
24 Microsoft 16,333 https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md
25 Paypal 3,813 https://github.com/paypal/api-standards/blob/master/api-style-guide.md
26 REST cheat sheet 826 https://github.com/RestCheatSheet/api-cheat-sheet
27 Squareboat 1,622 https://github.com/squareboat/api-guidelines
28 Thomas Hunter II 4,362 https://codeplanet.io/principles-good-restful-api-design/
29 Unoexperto 1,709 https://github.com/unoexperto/rest-api-design-guidelines
30 Vlad Mandrychenko 1,782 https://github.com/vmandrychenko/http-api-guidelines
31 White House 1,480 https://github.com/WhiteHouse/api-standards
32 Zalando 17,722 https://github.com/zalando/restful-api-guidelines

Preliminary Analysis of REST API Style Guidelines PLATEAU’17, October 23, 2017, Vancouver, CA

3

The following terms related to REST 2 will be used
throughout the summary of our results:

• Resource - A collection of one or more homogene-
ous objects. For example, dogs.

• Identifier - A unique reference to a single instance
of an object. For example, Fido23.

• Sub-resource - a resource that can be found hierar-
chically beneath an identifier, for example,
Fido23/checkup_dates.

• Field name - the string name (also called keys or
properties) associated with a value of an instance.
For example, dog_name.

Guideline sets disagree about what the parts of the URL
should be called. Usually, to reference a single object, the
sets use the name “identifier” but others call it an “element,”
“document resource,” “resource-id,” “resource,” or “docu-
ment.” Similarly, for referencing a collection in a URL, most
sets use the term “resource”, but some say “collection,” “col-
lection resource,” or “resource-collection.” We acknow-
ledge that these differences exist, but since 16 of the 32 sets
use the terms “identifier” and “resource” – and Fielding’s
dissertation [13] also uses “resource” to mean more than one
object – for the rest of the paper we will also be doing so.

3. Methodology
To collect the guideline sets we evaluated, we began with

an initial list of guideline sets known to the authors from
well-known tech companies, along with the well-known API
design books [4, 5]. From there, we obtained the rest of our
sources by searching on both Google and Github with terms
such as “API design guideline,” “API styleguide,” and “API
Guidelines.”

Twelve of the 39 guideline sets that we discovered can
be found on a site called apistylebook.com, which provides
outbound links as well as other material. Table 1 shows the
full set of the 32 REST guideline sets and where they are
located. The length of the sets we evaluated range from 826
words up to 18,886 words. Word count is one of the few
common attributes among the different guideline sets, and
acts as a proxy for how much content is in each set.

Once we gathered these sets, we began the task of quali-
tative analysis and coding. The first two authors read through
all of the sets to understand what topics were covered. Then,
they collectively identified 27 topics included in some or

2 Some definitions adapted from the guideline sets from
Thomas Hunter II.

most of the guideline sets, such as naming conventions, se-
curity, and error responses (see Table 2 for the list of all top-
ics). Definitions of all 27 categories were constructed by the
coders as a reference to help when deciding which category
a rule belonged in. The two coders split the sets in half, so
that one person took odd numbered sets and the other even
numbered. After separating the sets, both authors carried out
the coding process for each guideline set using the 27 topics
as categories to identify whether or not each guideline set
includes some rule or discussion about that topic. In the case
where there was ambiguity about how to code a particular
rule, discussions were carried out either between the two
coders or among the four authors to resolve these ambigui-
ties. This identification stage allowed us to recognize pat-
terns about omissions and unique additions of rules among
the sets. In addition to this, we were able to recognize which
categories out of the 27 are addressed by a majority of the
sets and which categories are less discussed.

Next, with guidance from the other coauthors, we se-
lected 10 out of the 27 categories for a more in-depth analy-
sis. These 10 categories are discussed because they were ei-
ther identified as interesting or important topics by practic-
ing API designers or, through our initial analysis, they
seemed to be the most discussed and/or controversial. These
10 categories are addressed in sections below.

With the 10 selected categories, we re-analyzed each
guideline, gathering and noting what each guideline says
about each category. We used a cross evaluation process so
that each coder each worked on a different set of guidelines
from the previous analysis stage. Under each category, we
organized the information so that similar statements made by
different guidelines were placed next to one another, which
thereby revealed interesting patterns, ideas and concepts.

4. Versioning
A disagreement within the API design community, as ev-

idenced by the conflicting recommendations in the guideline
sets, is how to identify the version of the APIs. While
Adidas, Google, and Zalando recommend using the three-
number semantic versioning format, MAJOR.MINOR.
PATCH, other guidelines suggest a two-number semantic
versioning format, ordinal numbers with no decimals or dot
notation, and some even propose date versioning. Although

PLATEAU’17, October 23, 2017, Vancouver, CA Murphy, Alliyu, Macvean, Kery, Myers

4

the Zalando guideline set uses a three-number semantic ver-
sioning format, they refer to the last number as DRAFT in-
stead of PATCH, where the DRAFT number is only included
for unreleased API definitions that are still under review.
Adidas, Google, and Zalando each recommend similar rules
for when to increase each number:

• Increment major version when you make incom-
patible API changes.

• Increment minor version when you add functional-
ity in a backwards-compatible way.

• Increment patch version when you make back-
wards compatible bug fixes.

• Increment DRAFT version when you make
changes during the review phase that are not re-
lated to production releases.

Another versioning issue about which the community
disagrees is where to place the version: in the URL or in the
HTTP header. Eleven companies require that version num-
bers be placed in the URL, while eight require it to be in the
header. For example, GoCardless suggests that versions be
passed in the HTTP header and provides the example: Go-
Cardless-Version: 2014-05-04. In contrast, Paypal recom-
mends that version number should be in the URL, providing
the URL format: /v{version}/. The IBM guideline set is
unique since it states the minor version should be passed as
a required parameter that takes a date (i.e., ?version=2015-
11-24), while the major version should be placed in the URL
path with the format of a prefixed “v” followed by an ordinal
number (i.e. /v1/). However, Apigee and the Finnish gov-
ernment’s guideline sets provide the following rationale for
deciding between putting the version in the URL or in the
header:

• “If it changes the logic for handling the response,
put it in the URL so it is easily seen.”

• “If it does not change the logic for each response,
like OAuth Information, put it in the header.”

Overall, there is a lack of consistency across guideline
sets, with the two different locations and four different ways
of identifying a version.

5. Backwards Compatibility
Despite the fact that backwards compatibility is a key as-

pect of API design, only 12 of 32 guideline sets provide
rules on backwards compatibility. When code that was writ-
ten with, say, version 1 of an API also works with another
version – such as 1.1 or 2 – then the changes implemented
in the new version are considered backwards compatible.
Since APIs might be used by up to millions of places, the
costs of editing all of the code that uses the API can be very
high. While eight guideline sets explicitly discourage mak-
ing backwards incompatible changes, they still provide rules
for versioning, for when breaking changes are unavoidable.
CDiscount and Zalando state the same exact rule word for
word: “Strongly encourage using compatible API extension
and discourage versioning.” (This points to an interesting
pattern that we recognized among the API design guideline
sets; they derive or copy rules from one another, often with

Table 2. The 27 categories identified across all the guide-
line sets of Table 1. The ten highlighted were used for an

in-depth analysis. “Frequency” counts how many guideline
sets mentioned each category.

27 Categories Frequency
(out of 32)

Status Codes 30
Response Structure/Format 29
Standard Methods 29
Naming 28
Versioning 28
Pagination 24
URI/URL Structures 24
Error Response 22
Filter 17
HTTP Field/Header 15
Security 15
Backwards Compatibility 13
Naming Resources 13
Caching 12
Documentation 12
URI Field 12
Sorting 11
Action Resources 10
CORS 9
Long running operations 7
Rate Limiting 6
Gzip Compression 5
Metadata 4
Naming Collections 4
Custom Methods 2
Empty Responses 2
Rules for API Users 2

Preliminary Analysis of REST API Style Guidelines PLATEAU’17, October 23, 2017, Vancouver, CA

5

general citations.) Even though Zalando discourages ver-
sioning, they still provide specific rules for versioning and
incrementing version numbers when backwards incompati-
ble changes are made (as discussed in the previous section).

The two major principles mentioned within rules about
backwards compatibility are Postel’s law3 and the rules for
compatible extensions. Postel’s law, also known as the Ro-
bustness Principle, states, “be conservative in what you send
and liberal in what you accept from others.” [14]. The
Adidas guideline set is the only one that defines some rules
for extending APIs:

• You MUST NOT take anything away.
• You MUST NOT change processing rules.
• You MUST NOT make optional things required.
• Anything you add MUST be optional.

Various guideline sets recommend that APIs follow
Postel’s law and the rules for compatible extensions in order
to avoid versioning.

Another principle mentioned by just Microsoft is the
Principle of Least Astonishment, where Microsoft states that
anything in violation of this principle is a breaking change.
The Principle of Least Astonishment states that the result of
performing some operation should be obvious, consistent,
and predictable, based upon the name of the operation and
other clues [15].

The next sections discuss changes that different guideline
sets noted as breaking and nonbreaking changes.

5.1 Breaking (Backwards-incompatible) Changes
Renaming, removing, changing or adding new field

names are identified as breaking changes by some guideline
sets. Cisco, Darrin, Google, and IBM all mention removing
fields as a breaking change.

Cisco, Google, and Microsoft include a rule about
changes to the behavior of an API. For example, Google spe-
cifically states that changing the behavior of existing re-
quests is backwards incompatible. In addition to these,
Cisco, IBM, and Microsoft identify changes to error or status
codes as breaking changes.

3 Named after internet pioneer Jon Postel who wrote about
this in the TCP specification.

5.2 Non-Breaking (Backwards-compatible)
Changes

Darrin, GoCardless, Google, and Haufe all agree that, in
some situations, adding or deprecating a field is not a break-
ing change. IBM agrees with this but restricts it to the addi-
tion of output-only fields. Cisco, GoCardless, and IBM sug-
gest that the addition of optional parameters is non-breaking.
Furthermore, adding new HTTP methods is considered a
backwards compatible change by Atlassian and Google. The
Atlassian guideline set specifically states that the addition of
methods to existing resources is backwards compatible,
while Google states that an HTTP binding to a method and
adding a method to an API interface is not a breaking
change.

Rules for determining backwards compatibility seem to
be based off of what would intuitively be most likely to
break code. Though there is disagreement about whether
adding a field is considered backwards compatible, other
rules do not seem to differ among guideline sets.

6. Naming
Naming in API design refers to the style and word re-

strictions for names of objects such as variables, classes,
functions, identifiers, and resources. In general, guideline
sets recommend using plural nouns rather than verbs. The
Australian Taxation Office goes so far as to suggest simpli-
fying a plural noun such as “parties” into “partys.” Casing
has less consistency across guideline sets, where 7 of 11 that
mention case recommend using camelCase for field names,
and 4 of 11 preferring snake_case. The preference for
camelCase over snake_case may appear because guideline
sets are attempting to be consistent with JavaScript conven-
tions (which traditionally recommends camelCase), as men-
tioned in one of the sets. The guidance for the case of path
segments of the URL are also split, with some preferring ke-
bab-case while others say snake_case. Most guideline sets
include rules about naming that aim for a consistent, intuitive
aesthetic and grammatical style instead of specifying spe-
cific words that must or must not be used (although Adidas,
Allegro Tech, CDiscount, Darrin, Google, and Microsoft all
do mention some specific words to use or avoid). These
kinds of rules are more widely applicable and apply across a
set of APIs, whereas rules for specific words have limited
application.

PLATEAU’17, October 23, 2017, Vancouver, CA Murphy, Alliyu, Macvean, Kery, Myers

6

7. URL/URI Structure
URL/URI structure refers to the decisions an API de-

signer makes about the hierarchy of resources and identifiers
when constructing a URL or URI. The structure of the
URI/URL can reveal information about how the authors of
the guideline set think about the relationships between re-
sources and identifiers. With the notable exception of a few
guideline sets (Australian Taxation Office, Geert Jansen, and
REST cheat sheet), the majority suggest that nesting should
stop after one sub-resource (resource/identifier/sub-re-
source). Interestingly, GoCardless discourages nesting alto-
gether, instead using filters to extract identifiers from re-
sources. Their reasoning: “Nested resources enforce rela-
tionships that could change and makes clients harder to
write,” is an interesting argument for maintaining backwards
compatibility that no other guideline set addresses. While
few guideline sets provide reasoning for the construction of
relationships – many just stating the syntax to implement it
– a few do discuss how to determine if a resource can func-
tion as a sub-resource. For example, if there is a one-to-many
relationship and a set of identifiers are associated with an
identifier, such as a set of messages that belong to one user,
then the messages should be able to function as a sub-re-
source. Overall though, guideline sets do not often focus on
low level implementation details of the URI/URL construc-
tion.

8. Response/Structure Format
REST API guideline sets include several rules about the

structure and format of the response that API users receive
after a method is completed. There is a general consensus
that JSON should be used as the default format. However,
Adidas and Darrin propose using HAL format. Several
guideline sets disagreed about whether to pretty print or keep
the response minified. GoCardless and IBM recommend that
the response should be pretty printed by default while Alle-
gro Tech, Heroku, and Squareboat recommend keeping the
JSON responses minified.

Other rules under this category include the format to use
for date and time (where some recommendations specified
ISO-8601 format and others specified RFC-3339 format),
how to present nested objects, and the format for linked ele-
ments, as well as rules about what object types to use within
a response. While most guideline sets agreed on certain rules
such as JSON format, time and date format, other rules such
as which object types to use within a response and what for-
mat to use for linked elements are not as consistent.

9. Standard Methods
HTTP defines a variety of standard verbs – which indi-

cate an action to be performed on a resource or identifier –
and most guideline sets recommend using at least GET,
POST, PUT, and DELETE as their methods. IBM is a bit
different in that they only mention using GET, POST, and
PUT, and Google, instead, maps GET, POST, PUT, and DE-
LETE to their own set of five standard methods (List, Get,
Create, Update, and Delete). Other methods are mentioned
by various numbers of guideline sets: PATCH (by 17),
HEAD (10), and OPTIONS (8). A few sets go into depth,
explaining which verbs should be idempotent, cacheable, or
have side effects. In addition, a few sets have rules about be-
haviors of some of the methods - such as permitting a “soft”
DELETE that allows the API user to reverse a prior deletion
– but most do not specify what kinds of actions can be done
with the methods. Standard methods are a popular topic to
cover in guidelines sets, likely because of their fundamental
role in REST APIs. Analysis across guideline sets reveals a
high level of consistency and agreement as well, which is not
often seen in other topics.

10. Custom Methods
Custom methods still use HTTP Verbs to complete ac-

tions, but they are distinct from standard methods because
their functionality is incompatible with traditional imple-
mentations of standard methods. For example, POST tradi-
tionally creates an identifier or modifies the content of one;
however, Google has specified a custom method called
Move, which uses POST to change the parent of an identi-
fier. Only two companies mention custom methods. Cisco
advises against creating custom methods, while Google out-
lines examples of common custom methods and any guide-
lines that would go along with them. Common custom meth-
ods outlined by Google are BatchGet (used on multiple iden-
tifiers), Cancel (stopping an outstanding operation), Move
(mentioned above), Search (alternative to List with different
semantics), and Undelete (uses POST to bring back a deleted
identifier from within the last 30 days). However, other cus-
tom methods are possible. Custom methods have a low level
of agreement due to the fact that only two guideline sets
mention them, and disagree fundamentally about whether to
make them available.

11. Error Responses
Sixteen of the guideline sets propose similar formats for

the error response – the response that is sent back to API
users when an error has occurred – which generally includes

Preliminary Analysis of REST API Style Guidelines PLATEAU’17, October 23, 2017, Vancouver, CA

7

a code, error type, and message. Code refers to either the
HTTP status code or internal error code, error type provides
further information about the type of the error (e.g., “Invalid
Request”) and message is the description of the error. While
this is the basic format that the guideline sets propose, some
sets have additional fields within their error responses. Dar-
rin, the Finnish Government, and Matteo Canato state that
error responses should include a common HTTP status code,
a message for the developer, a message for the end-user, an
internal error code, and links for where developers can find
more information. On the other hand, the Australian Digital
Transformation Office only recommends providing the mes-
sage for the end-user, an internal error code and links for de-
velopers. IBM has the basic format of an error response
code, error type and description, but states that the descrip-
tion can be optional. While there are some deviations, the
most common, basic fields to include (code, error, and mes-
sage) try to provide the simplest response while still provid-
ing enough information to be helpful.

12. Status Codes
Thirty of the 32 guideline sets provide rules for status

codes – indicators of the success of an HTTP request – and
many of the codes overlap. A few talk about status codes in
a general sense, suggesting to use commonly understood
codes but to be as specific as possible. Most provide a list of
codes that should be used by APIs and a portion of them fur-
ther delve into which specific standard methods can result in
which status codes. For example, the status code 207 can
only result from a POST action according to CDiscount. Of
the 35 unique status codes mentioned, only six (codes 200,
201, 400, 401, 404, and 500) are mentioned by half or more
of the guideline sets. As another popular topic besides stand-
ard methods, rules regarding status codes lack consistency in
which HTTP status codes to use – though all adhere to the
standard definitions for each individual code. A 400 error,
for example, signifies a bad request. Twenty-one of the 32
guideline sets recommend using it, and Google and the Aus-
tralian Taxation Office even provide specific situations that
narrow down the cause of the bad request – out of range and
failed precondition – while Paypal joins these two guideline
sets in mentioning a third situation, an invalid argument.

13. Documentation
In addition to providing rules on how to design APIs, 12

of the 32 reviews guideline sets give suggestions on how to
document the API. There seems to be significant disagree-
ments among the recommendations that the different sets

suggest. For example, one set, Thomas Hunter II, discour-
ages the use of automatically generated documentation,
whereas Allegro Tech, Australian Digital Transformation
Office, and Haufe recommend using automatic generators
for the documentation, and explicitly mention using Swag-
ger (swagger.io) as the automatic generator. Also, Thomas
Hunter II, after suggesting against using a generator, states
that if a generator must be used, the generated documenta-
tion should afterwards be manually doctored and made pre-
sentable. Whereas the sets generally have good agreement
about documentation, the amount of detail each set includes
about documentation varies widely; for example, Google has
an entire section that is just over 1,150 words, while Apigee
has a small section of just two sentences.

14. Discussion
The rules themselves revealed patterns in popularity of

topics and even sub topics inside of the categories. Of all the
27 categories identified, five of them (Versioning, Naming,
Response Structure/Format, Standard Methods, and Status
Code) are mentioned by at least 27 of the 32 guideline sets.
Each have sub topics that some guideline sets would cover,
some of which we mention above in the analysis. For exam-
ple, many sets would talk about the grammar of naming, with
sub topics focusing on nouns versus verbs or singular versus
plural – with extra emphasis on resource names. Addition-
ally, while most talk about casing, sub topics for casing focus
on JSON field names, path segments, query parameters, and
HTTP Headers. In some cases, the topics or rules mentioned
in one guideline set are copied directly into another set, as
mentioned earlier in the section on backwards compatibility.
With each category in our analysis, we mention sub topics
that are the most consistent or contentious between guideline
sets, though not every rule in a category is also a part of a
sub topic.

We note that with the lengths of the guideline sets vary-
ing so much, it would be very difficult for the shorter sets to
cover the same content or provide equal depth. It is our im-
pression that there could be some intent behind the length of
a guideline set. While it might not always be the case, some
API authors may, for example, write a shorter set so it is
more easily digested so that the API developers could read it
entirely. A longer set may then function more as a resource
to reference.

Though a style guide is meant to enforce consistency for
the API designers who follow it, cross-guideline set compar-
isons allows us to better understand where industry con-
sistency is lacking, as seen in versioning for example. Other
rules though, such as using nouns for resource names, are

PLATEAU’17, October 23, 2017, Vancouver, CA Murphy, Alliyu, Macvean, Kery, Myers

8

consistent across almost all guideline sets. Additionally, the
rules seem to agree that simplicity and intuitiveness are en-
couraged in the design of an API. The mostly consistent rule
for path segments – not going deeper than a sub-resource –
functions as a way to keep a URL simple and short. This has
the benefit of promoting intuitiveness in that it is easier to
create a mental model of the hierarchy of resources if you
are limited in how deep they can run.

15. Limitations and Future Work
One limitation in our research so far is that it focuses

solely on RESTful APIs. Although this allowed us to gain a
comprehensive understanding of the issues and decisions re-
lated to the design of REST APIs, we have no comparison
point for other types of APIs. In addition to this, a majority
of the design guideline sets were written by either tech com-
panies or people within the tech industry. This points to the
issue of possible domain and field biases, since the guideline
sets may have presented rules specific to the environment
and requirements of the tech industry. Additionally, because
we did not talk directly with API guideline authors about
their rationale or intentions when creating the guideline sets,
we cannot definitively know why certain decisions were
made.

With these limitations in mind, our future work includes
doing the same process we mentioned above in our method-
ology section for different types of APIs and then using this
information to compare and contrast across different kinds
of guideline sets. Apart from gathering APIs of different
types, we may also consider evaluating APIs from different
fields in order to examine and determine domain-specific
conventions versus general conventions recommended for
all APIs. Interviewing API guideline authors about their
guideline sets may also provide useful information regarding
the decisions they had to make when creating the sets and
why there is conflict between sets.

16. Conclusions and Implications
Our work brings up interesting points of contention and

agreement around decisions in API design that API design-
ers and guideline authors may need to consider. For guide-
line authors, our categories may be a resource for under-
standing potential topics they may want to address as well as
informing them of what may be most important to cover in
their own guideline sets. API designers may benefit from un-
derstanding how other guidelines differ, either as a way to
suggest an alternative to their own practices or to better un-
derstand why their set suggests a specific rule.

Acknowledgments
This work primarily took place while the first two authors

were in an REU program at CMU, funded by NSF grant IIS-
1644604. Additional funding was provided by a gift from
Google. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the funders.

References
[1] B. A. Myers and J. Stylos, "Improving API

Usability," Communications of the ACM, vol. 59, pp.
62-69, July 2016.

[2] J. Stylos, Making APIs More Usable with Improved
API Designs, Documentation and Tools. PhD
Dissertation: Computer Science Department,
Carnegie Mellon University. 2009.

[3] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,
M. L. Mazurek, and C. Stransky, "Comparing the
Usability of Cryptographic APIs," in 2017 IEEE
Symposium on Security and Privacy, 2017, pp. 154-
171.

[4] J. Bloch, Effective Java Programming Language
Guide. Boston, MA: Addison-Wesley, 2001.

[5] K. Cwalina and B. Abrams, Framework Design
Guidelines, Conventions, Idioms, and Patterns for
Resuable .NET Libraries. Upper-Saddle River, NJ:
Addison-Wesley, 2006.

[6] J. Stylos and S. Clarke, "Usability Implications of
Requiring Parameters in Objects' Constructors," in
International Conference on Software Engineering
(ICSE'2007), Minneapolis, MN, 2007, pp. 529-539.

[7] B. Ellis, J. Stylos, and B. Myers, "The Factory Pattern
in API Design: A Usability Evaluation," in
International Conference on Software Engineering
(ICSE'2007), Minneapolis, MN, 2007, pp. 302-312.

[8] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers,
"Improving API Documentation Using API Usage
Information," in VL/HCC'09: IEEE Symposium on
Visual Languages and Human-Centric Computing
Corvallis, Oregon, 2009, pp. 119-126.

[9] B. A. Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos,
R. Ehret, J. Karstens, A. Efeoglu, and D. K. Busse,

Preliminary Analysis of REST API Style Guidelines PLATEAU’17, October 23, 2017, Vancouver, CA

9

"Studying the Documentation of an API for
Enterprise Service-Oriented Architecture," JOEUC:
The Journal of Organizational and End User
Computing, vol. 22, pp. 23-51, Jan-Mar 2010.

[10] M. Robillard and R. DeLine, "A field study of API
learning obstacles," Empirical Software Engineering,
vol. 16, pp. 703-732, December 2011.

[11] A. Macvean, L. Church, J. Daughtry, and C. Citro,
"API Usability at Scale," in 27th Annual Workshop of
the Psychology of Programming Interest Group -
PPIG 2016 Cambridge, UK, 2016, pp. 177-187.

[12] A. Macvean, M. Maly, and J. Daughtry, "API Design
Reviews at Scale," in Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems (CHI EA '16) Santa Clara, CA,
2016, pp. 849-858.

[13] R. T. Fielding, Architectural Styles and the Design of
Network-based Software Architectures. PhD
Dissertation, Information and Computer Science,
University of California, Irvine. 2000.

[14] J. L. Ordiales, "Why you should follow the robustness
principle in your APIs." July 27, 2017,
https://jlordiales.me/2017/03/25/postel-law-api/.

[15] P. Seebach, "The cranky user: The Principle of Least
Astonishment," in IBM DeveloperWorks, 2001,
https://www.ibm.com/developerworks/library/us-
cranky10/us-cranky10-pdf.pdf.

https://jlordiales.me/2017/03/25/postel-law-api/
https://www.ibm.com/developerworks/library/us-cranky10/us-cranky10-pdf.pdf
https://www.ibm.com/developerworks/library/us-cranky10/us-cranky10-pdf.pdf

	Preliminary Analysis of REST API Style Guidelines
	Abstract
	1. Introduction
	2. Quick Introduction to REST
	Table 1. API Guideline Sets Evaluated
	3. Methodology
	4. Versioning
	5. Backwards Compatibility
	6. Naming
	7. URL/URI Structure
	8. Response/Structure Format
	9. Standard Methods
	10. Custom Methods
	11. Error Responses
	12. Status Codes
	13. Documentation
	14. Discussion
	15. Limitations and Future Work
	16. Conclusions and Implications
	Acknowledgments
	References

