
Designing the Whyline: A Debugging Interface
for Asking Questions about Program Behavior

Andrew J. Ko and Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213

ajko@cmu.edu, bam+@cs.cmu.edu

Abstract
Debugging is still among the most common and costly of
programming activities. One reason is that current
debugging tools do not directly support the inquisitive
nature of the activity. Interrogative Debugging is a new
debugging paradigm in which programmers can ask why
did and even why didn’t questions directly about their
program’s runtime failures. The Whyline is a prototype
Interrogative Debugging interface for the Alice
programming environment that visualizes answers in terms
of runtime events directly relevant to a programmer’s
question. Comparisons of identical debugging scenarios
from user tests with and without the Whyline showed that
the Whyline reduced debugging time by nearly a factor of
8, and helped programmers complete 40% more tasks.

Categories and Subject Descriptors: D.2.5. [Testing
and Debugging]: Debugging aids.

Keywords: Debugging, Alice, program slicing.

INTRODUCTION
Among all programming activities, debugging still remains
the most common and most costly. A recent study by the
NIST found that software engineers in the U.S. spend 70-
80% of their time testing and debugging, with the average
error taking 17.4 hours to find and fix. Software engineers
blamed inadequate testing and debugging tools [19].
One reason for this might be that the feature sets of
commercial debugging tools have changed little in the past
30 years [14, 17]: programmers’ only tools for finding
errors are still breakpoints, code-stepping, and print
statements. There have been many attempts to design more
useful debugging paradigms and tools, including automatic
debugging [1], relative debugging [21], program slicing
[20, 22], and visualizations [6], but few of these have been
shown to be usable, let alone to reduce debugging time. We
believe this is because debugging activity always begins
with a question, and to use existing tools, programmers

must struggle to map strategies for answering their question
to the tools’ limited capabilities. We propose to remove this
hurdle by allowing programmers to directly ask the
questions they naturally want to ask.
As part of the Natural Programming project
(www.cs.cmu.edu/~natprog), we have found that
programmers tend to ask why did or why didn’t something
happen. Thus, in this paper we propose a new debugging
paradigm called Interrogative Debugging, in which
programmers can ask why did and why didn’t questions
directly about a program’s behavior, and view answers in
terms of directly relevant runtime data. We then describe
the design of the Whyline, an Interrogative Debugging
interface for the Alice programming system. By comparing
six identical debugging scenarios from user tests with and
without the Whyline, we found that the Whyline reduced
debugging time by nearly a factor of 8, enabling
programmers to complete 40% more tasks.

INTERROGATIVE DEBUGGING
Research describes debugging as an exploratory activity
aimed at investigating a program’s behavior, involving
several distinct and interleaving activities [4, 7, 15]:

• Hypothesizing what runtime actions caused failure;
• Observing data about a program’s runtime state;
• Restructuring data into different representations;
• Exploring restructured runtime data;
• Diagnosing what code caused faulty runtime actions;
• Repairing erroneous code to prevent such actions.

Current debugging tools support some of these activities,
while hindering others. For example, breakpoints and code-
stepping support observation of control flow, but hinder
exploration and restructuring [17]; visualization tools help
restructure data, but hinder diagnosis and observation [11].
Yet none of these tools support hypothesizing activities.
The argument behind Interrogative Debugging (ID) is that
support for such question-related activities is essential to
successful debugging. If programmers have a weak
hypothesis about the cause of a failure, any implicit
assumptions about what did or did not happen at runtime
will go unchecked. Not only do these unchecked
assumptions cause debugging to take more time [15], but
we have shown that in Alice, 50% of all errors were due to
programmers’ false assumptions in the hypotheses they
formed while debugging existing errors [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004…$5.00.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

151

Thus, the fundamental goal of ID is to allow programmers
to ask questions explicitly about their program’s failure.
For example, if a programmer was testing a graphical
button and observed that clicking it had no effect, an ID
interface would allow her to ask, “Why didn’t this button do
anything?” By allowing questions about program output, any
implicit assumptions about what did or did not happen at
runtime can be explicitly addressed in the answer.
In two studies of both experts’ and novices’ programming
activity [12], programmers’ questions at the time of failure
were one of two types: why did questions, which assume the
occurrence of an unexpected runtime action, and why didn’t
questions, which assume the absence of an expected runtime
action. There were three possible answers:

1. False propositions. The programmer’s assumption is
false. The answer to “Why didn’t this button’s action
happen?” may be that it did, but had no visible effect.

2. Invariants. The runtime action always happens (why
did), or can never happen (why didn’t). The answer to
our button question may be that an event handler was
not attached to an event, so it could never happen.

3. Data and control flow. A chain of runtime actions led to
the program’s output. For example, a conditional
expression, which was supposed to fire the button’s
action, evaluated to false instead of true.

Interaction Design Requirements
Even with a clear idea of the functionality that an ID
interface should have, there are numerous ways that one
could design the interactions with such a tool. For example,
some methods of asking questions may be better than others
at allowing programmers to explore possible questions.

Some methods of answering questions might be better than
others at revealing the important information. We propose a
set of design constraints in Table 1, framed in terms of
Green’s Cognitive Dimensions Framework [9].
Consider hidden dependencies, which are entity relationships
that are not fully visible. Gilmore argues that a critical part of
debugging is searching for a set of runtime dependencies that
explain a programmer’s knowledge gap [7]. These important
relationships should never be hidden, while the larger set of
irrelevant dependencies could be hidden in trade for
visibility. Commercial debugging tools are notorious for
hidden dependencies: code stepping tools show runtime data
on the call stack, but not the data that depends on it or that it
depends on. Print statements reveal relevant runtime data,
but hide the context from which the data was printed.
Another issue is viscosity, or resistance to local changes. For
example, inserting ten print statements to observe runtime
events requires removing them later; trying to use a code
stepping tool to show data from the past requires re-
execution. These hindrances to exploration may lead to
debugging errors.

THE WHYLINE
To investigate the merits of ID, we used our design
constraints to design the Whyline—a Workspace that Helps
You Link Instructions to Numbers and Events. The Whyline
is prototyped in Alice, the environment shown in Figure 1.
Alice is an event-based language that simplifies the creation
of interactive 3D worlds. Code is created by dragging and
dropping tiles to the code area and choosing parameters from
popup menus. This interaction prevents all type and syntax
errors. See www.alice.org for more details.

Table 1. Proposed design constraints for debugging interfaces in terms of the Cognitive Dimensions Framework [8].
Dimension Rationale and Proposed Design Constraint

Error-proneness Knowledge, attentional, and strategic breakdowns in debugging can cause errors, and should be prevented [12].

Premature Commitment Assumptions and misperceptions about runtime history lead to inefficient, error-prone debugging strategies [5].
Don’t require programmers to hypothesize and diagnose without observations of runtime data.

Viscosity Exploration is essential to successful debugging [7], thus acquiring new runtime data should be unhindered.
Provisionality There shouldn’t be any commitment to the effects of exploring questions, runtime data, or code.
Visibility and

Juxtaposability
Ability to see and compare code, runtime data and output is essential to successful observation, hypothesizing
and diagnosis [7]. This type of data should have more prominence than other potentially visible information.

Hidden
dependencies

With respect to a specific program failure, there are few relevant runtime dependencies and many irrelevant ones
[7]. Emphasize relevant runtime dependencies by hiding irrelevant ones.

Secondary
Notation

Support for meta-activities such as managing hypotheses and annotating possibly erroneous code may improve
productivity [5]. Support secondary notations for annotating code, runtime data, and hypotheses considered.

Diffuseness Verbosity of runtime actions should correlate with the programming language’s verbosity.
Consistency Representations of runtime actions should be understandable with only knowledge of the code.

Progressive Evaluation Progressive evaluation is mentally simulating the execution of a program to test if a potential repair would prevent
failure [14]. Debugging interfaces should help programmers simulate computation and control-flow.

Closeness of Mapping Diagnosis involves understanding a computational machine’s mapping from code to runtime behavior.
Representation of runtime data should closely map to machine’s behavior, in order to support diagnosis.

Role-Expressiveness Programmers will not use a tool if they perceive no reward in using it [2]. Interface artifacts should have
affordances for the actions they support and rewards they provide.

Hard Mental Operations Understanding runtime causality (hypothesizing and diagnosis) are hard mental operations; other activities are not
[7]. Make the easy activities easier and hard activities possible.

Abstraction-Gradient Debugging is a tight exploratory cycle, suggesting that the reward for creating abstractions is small. Focus on
helping programmers explore runtime data, not on abstracting runtime data.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

152

Alice-Specific Constraints and Guidelines
To further inform our design, we performed two studies of
novice and expert programmers using Alice in contextual
and lab settings [12]. One major finding was that 50% of all
errors were due to programmers’ false assumptions in the
hypotheses they formed while debugging existing errors.
There were also many consistent trends in their questions:

1. 68% of questions were why didn’t questions and the
remaining were why did questions.

2. Programmers only asked why didn’t questions about
code that plausibly might have executed.

3. 85% of questions were about a single object. The
remaining concerned multiple objects’ interactions.

An Illustration of the Whyline’s Design
Before we describe the Whyline’s implementation, let us
illustrate its design through this debugging scenario (which
comes directly from the user study we will discuss shortly):

Ellen is creating a Pac-Man game, and trying to make
Pac shrink when the ghost is chasing and touches Pac.

She plays the world and makes Pac collide with the
ghost, but to her surprise, Pac does not shrink...

Pac did not shrink because Ellen (a pseudonym) has code
that prevents Pac from resizing after the big dot is eaten.
Either Ellen did not notice that Pac ate the big dot, or she
forgot about the dependency.

The Question Menu
When Ellen played the world, Alice hid the code and
expanded the worldview and property panel, as seen in
Figure 2. This relates property values to program output.
Ellen presses the why button after noticing that Pac did not
shrink, and a menu appears with the items why did and why
didn’t, as in Figure 3. The submenus contain the objects in
the world that were or could have been affected. The menu

Figure 1. The Alice programming environment, before the world has been played: (1) the object list, (2) The 3D world

view, (3) the event list, (4) the currently selected object’s properties, methods, and questions, and (5) the code area.

Figure 2. Ellen expected Pac to resize, but he did not.

Figure 3. Ellen explores the questions and decides to ask
“Why didn’t Pac resize .5?” which highlights the code.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

153

supports exploration and diagnosis by increasing questions’
visibility and decreasing the viscosity of considering them.
Because Ellen expected Pac to resize after touching the
ghost, she selects why didn’t Pac… and scans the property
changes and animations that could have happened. When she
hovers the mouse over a menu item, the code that caused the
output in question is highlighted and centered in the code
area (see Figure 3). This supports diagnosis by exposing
hidden dependencies between the failure and the code that
might be responsible for it. This also avoids premature
commitment in diagnosis by showing the subject of the
question without requiring that the question be asked.

The Answer
Ellen asks why didn’t Pac resize .5? and the camera focuses
on Pac to increase his visibility. The Whyline answers the
question by analyzing the runtime actions that did and did
not happen, and provides the answer shown in Figure 4. The
actions included are only those that prevented Pac from
resizing: the predicate whose expression was false and the
actions that defined the properties used by the expression. By
excluding unrelated actions, we support observation and
hypothesizing by increasing the visibility of the actions that
likely contain the fault. To support diagnosis, the actions’
names and colors are the same as the code that caused them.

This improves consistency and closeness of mapping with
code.
The arrows represent data and control flow causality.
Predicate arrows are labeled true or false and dataflow
arrows are labeled with the data used by the action they
point to. The arrows support progressive evaluation, and
thus hypothesizing, by helping Ellen follow the runtime
system’s computation and control flow.
Along the x-axis is event-relative time, improving the
closeness of mapping to the time-based Alice runtime
system. Along the y-axis are event threads: this allows co-
occurring events to be shown, supporting juxtaposibility.
Ellen interacts with the timeline by dragging the time
cursor (the vertical black line in Figure 4). Doing so
changes all properties to their values at the time represented
by the time cursor’s location. This supports exploration of
runtime data. When Ellen moves the cursor over an action,
the action and the code that caused it become selected,
supporting diagnosis and repair. These features allow Ellen
to rewind, fast-forward, and even “scrub” the execution
history, receiving immediate feedback about the state of the
world. This exposes hidden dependencies between actions
and data that might not be shown directly on the Whyline,
and between properties’ current values and program output.

Figure 4. The Whyline’s answer shows a visualization of the runtime actions preventing Pac from resizing. Ellen uses the
time cursor to “scrub” the execution history, and realizes that Pac did not resize because isEaten was true.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

154

To reduce the viscosity of exploration, Ellen can double-
click on an action to implicitly ask what caused this to
happen? and actions causing the runtime action are
revealed. Ellen can also hover her mouse cursor over
expressions in the code to see properties’ current values
and to evaluate expressions based on the current time. This
improves the visibility of runtime data and supports
progressive evaluation. Finally, the Whyline supports
provisionality by making previous answers available
through the Questions I’ve Asked button. The button
prevents the hard mental operation of recalling facts
determined earlier in debugging activity.
Ellen discovers her misperception using the Whyline:

“So this says Pac didn’t resize because BigDot.isEaten
is true…Oh! The ghost wasn’t chasing because Pac ate
the big dot. Let’s try again without getting the big dot.”

Without the Whyline, the misperception could have led to
an unnecessary search for non-existent errors.

Implementation
Alice programs are implemented internally using a control
flow graph (CFG), where expressions are represented as
data flow graphs attached to CFG nodes. These graphs are
constructed incrementally as programmers create and
modify code. At runtime, we annotate the graphs with all
assignments and uses of properties’ values. This value
history is used to traverse the execution history based on
the location of the time cursor.
We use static [20] and dynamic [22] analysis to support:

1. Creation of a database of all changes to output (all
animation statements and changes to visible
properties), used for generating the why did menu
structure, and for answering false propositions.

2. Generation of precise dynamic slices on the code in
question, used to visualize the Whyline’s answer.

3. Generation of all potential definitions and uses of
properties from static DFGs, used for constructing
the why didn’t question menu. We do not support
continuous number spaces (i.e., an object’s position),
but do support the generic question “why didn’t this
property change?”

4. Answering of invariant why didn’t questions by
coupling a dynamic slice on an execution instance of
a CFG node with the reachability of the node.

We used Alice-specific design heuristics to construct
program slices. For example, for each question we had to
choose which execution of the queried statement to slice
on. Because our observations showed that questions were
asked immediately after failures, we sliced on the most
recent execution of a program statement.
For why did answers, we included up to two predicates in
the queried runtime action’s chain of causality, and any
events defining the properties used in the predicates’
expressions. Including more runtime actions would have

decreased visibility, and we believed forcing programmers
to interactively reveal the history would better support
progressive evaluation of their hypotheses.
For why didn’t answers, we included all of the different
executions of the predicate that prevented the code in
question from being reached, and the why did slice on each.

USER STUDY
The Whyline was an exploration of an example
Interrogative Debugging interface, so we had general
questions about its usability and impact:

• Would the Whyline be considered useful?
• Would the Whyline reduce debugging time?
• Would the Whyline help complete more tasks?

To investigate these questions, we replicated the
observational study discussed earlier [12], but included the
Whyline in the Alice environment. We will refer to the first
study without the Whyline as the Without study, and the
present study as the With study. The With study used an
iterative design methodology: observations from user
session were used to fix usability problems and inform the
design of features for successive sessions.

Participants and Method
In both studies, participants were recruited from the
Carnegie Mellon HCI Masters program. Programming
experience ranged from beginning Visual Basic to
extensive C++ and Java. The four participants in the
Without study will be referred to as C1-C4, and the five in
the With study as E1-E5.
Sessions began with a 15-minute tutorial on creating Alice
code. Participants were given the layout in Figure 1 and 90
minutes to make a Pac-Man game with these specifications:

1. Pac must always move. His direction should change
in response to the arrow keys.

2. Ghost must move in random directions half of the
time and directly towards Pac the other half.

3. If Ghost is chasing and touches Pac, Pac must flatten
and stop moving forever.

4. If Pac eats the big dot, ghost must run away for 5
seconds, then return to chasing.

5. If Pac touches running ghost, Ghost must flatten and
stop for 5 seconds, then chase again.

6. If Pac eats all of the dots, Ghost must stop and Pac
must hop indefinitely.

For the purposes of analysis, we consider these six
specifications to be six distinct tasks, since the code
necessary to accomplish them were only related by the
character’s state of behavior.
In both studies, the experimenter used think-aloud and
Contextual Inquiry [10] methods to track participants’
goals, strategies and intents. Participants were also
videotaped while they worked, for later analysis.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

155

Results
Table 2 shows the distributions of question/answer types in
each study. Why didn’t questions were more common than
why did questions, and programmers rarely asked invariant
or false proposition why did questions. Participants found
the Whyline useful for 19 of 24 of their questions, and the
proportion increased in successive user tests: the Whyline
was useful for 0 of E1’s 3 questions, but all 5 of E5’s.
Table 3 describes six identical debugging scenarios that
occurred in the With and Without studies (many other
scenarios were similar, but not enough to warrant
comparison). In the Without study, participants tended to
hypothesize and diagnose by inspecting and rewriting code.
In the With study, they tended to hypothesize and diagnose
by asking questions and analyzing the Whyline’s answer. A
repeated measures ANOVA shows that in the six scenarios,
the Whyline significantly decreased debugging time (F1,5 =
12.64, p < .02) by an average factor of 7.8.
Overall, in the 90 minutes allotted, programmers with the
Whyline completed significantly more tasks (M = 3.20, SD
= .457) than those without (M = 2.25, SD = .500), t(7) =
3.0, p < .02. This was a 40% increase in tasks completed.

DISCUSSION
The Whyline appears to have great potential as a usable and
effective debugging tool for Alice users. In generalizing
our experiences, there are many issues to consider.

Issues Raised in User Testing
In our user testing, there were a few significant usability
issues with our initial designs, some of which we predicted,
and others we did not. These have implications for the
design of future ID interfaces.
In session 1, for example, our prototype did not support
why didn’t questions. When E1 first used the Whyline, he
wanted to ask a why didn’t question, but could not, and
immediately decided “this thing is useless.” This suggests
that support for why didn’t questions may be crucial to
programmers’ perceptions of the utility of the tool.
In session 2, our prototype distinguished between questions
about output statements (why did) and questions about
property changes (which we phrased as why is). E2
observed a failure based on Pac’s direction property and
searched the why did menu, ignoring the why is menu. We
asked her later if she had noticed the menu: “I wanted to
ask about something that already happened.” This is

Table 2. Frequency of question/answer types in each study and times the Whyline was found useful for each.
Frequency Question/Answer Pair was Asked Question

Type Answer Type
Without (4 programmers) With (5 programmers)

of times Whyline was found
useful in the With study

Invariant 0 0 0
False Proposition 1 0 0 Why Did
Control/Data Flow 7 5 3

Total # of Why Did Questions 8 5 3
Invariant 5 5 4
False Proposition 5 7 5 Why Didn’t
Control/Data Flow 7 7 7

Total # of Why Didn’t Questions 17 19 16

Table 3. Identical debugging scenarios in the With and Without studies. Scenarios are described by the programming
error, the failure caused, each programmer’s strategy and outcomes, and the time from failure to error diagnosis.

Strategy, Outcome, and Time in Seconds from Failure → Error Diagnosis Programming Error and
the Failure it Caused Without With

Code resized Pac to 0, which
Alice ignores → Pac doesn’t
resize after touching ghost.

Read events, moved method call to event,
moved camera, toggled state variables. “So
it’s the resize function that’s not working.”

330
sec

Asked, why didn't pac resize 0? and got invariant
answer. “So resize to 0 must not work. I’ll try .5
instead.”

38
sec

Forgot event to call method
that moves ghost → ghost
doesn’t move after playing.

Stared at screen and held head in hands.
“Oh! I need an event to start it.” 75

sec

Browsed why didn’t ghost questions and saw high-
lighted ghost movement code: " …oh, I didn't call it
anywhere!"

8
sec

Thought dot2 was dot1 and
referenced wrong dot →
dot1 not eaten after collision.

Looked at code; searched for dot in world-
view; removed then recreated collision
code, this time without error.

91
sec

Inspected why didn’t menu and realized her misun-
derstanding: "Oh, no questions about the other
dots. That must be dot2".

9
sec

Maps right key to right direc-
tion → Pac moves down
instead of right.

“I think this is wrong; it doesn’t go to where
I want it to be…this is terrible!” Tried all
possible mappings until she realized direc-

182
sec

Asked why did Pac move right? Inspected control
and data flow answer; noticed direction set to right
because down was pressed: “So direction is relative

28
sec

Dot collision threshold too
small for test to happen while
Pac is over dot → dot not

“I made some methods that I thought would
help me rid of the dots…I’m pretty sure I got
close enough.” Rewrote collision events and

207
sec

Asked why didn't dot1.isShowing change to false?
Scrubbed predicate tests: "that's really intuitive…so
when it actually did this test, this was the state of

27
sec

Forgot event to call eat-
BigDot method → Dot not
eaten after touching Pac

“There is definitely nothing happening.”
Browsed and inspected code and event list.
“Oh, of course not!”

49
sec

Asked why didn't big dot isShowing change to
false? and read invariant answer which noted that
nothing called the method. “Oh, you’re right!”

10
sec

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

156

consistent with our observations that programmers phrased
questions in terms of failures instead of runtime data: she
said why did Pac’s direction change to forward? and not
why is Pac’s direction forward right now?
In session 3, our prototype answered questions relative to
the time cursor’s placement. When E3 asked his first
question, he moved the time cursor, and upon asking his
second question, noticed that the contents of the question
menu changed considerably: “Where did all my questions
go?” This was our rationale for using a statement’s latest
execution, regardless of the time cursor’s placement.
Usability issues were also found in sessions 4 and 5, but not
of the same magnitude as in the first three.

What was Helpful?
The most helpful feature of the Whyline seemed to be the
question menu. Observations confirmed our hypothesis that
asking questions in terms of program output, rather than
code or runtime actions, would make it easier for
programmers to map their question to related code. By
restricting the programmer’s ability to make assumptions
about what did and did not happen, we enabled them to
observe and explore the runtime actions that most likely
caused failures. We plan to further refine the Whyline and
formally investigate these findings.
Similarly, relating code to runtime actions interactively
with the time cursor and visual highlighting helped with
diagnosis and repair activities, as predicted. Had this
relationship not been explicitly visualized, more text would
have been needed to denote what caused the runtime action,
decreasing visibility, and programmers would have had to
manually search for the code responsible.
Finally, the data and control flow arrows directly supported
hypothesizing which runtime events caused failure, as
predicted. This seemed to be because the visualization
acted as an external memory aid to help programmers
simulate runtime execution. In the Without study,
participants were forced to calculate expressions manually,
allowing for attentional breakdowns during calculation.
When the time cursor, reversibility, and other features were
used, our observations suggest that they played supporting
roles in the Whyline’s overall effectiveness.

FUTURE WORK

Making the Whyline More Helpful
Currently, questions about complex Boolean and numerical
expressions give equally complex answers. This is because
the level of detail in the questions is not enough to know
which particular part of the data flow path is problematic.
Reichwein et al. describe one solution that allows
spreadsheet users to mark intermediate values in dataflow
paths as correct or incorrect, which feeds into a
visualization of which computations may be faulty [16].
Programmers often needed to inspect the internals of Alice
primitives. For example, choosing the distance for “is
object a within distance of object b” was difficult, because

programmers could not see the values used by the internal
inequality at runtime. One solution would be to instrument
the surface-level internal logic of primitives, so that such
expressions could be shown on the Whyline.
The Whyline does not yet support object-relative questions
(such as “why did Pac resize after Ghost moved”), which
were fairly common in early observations of Alice
programmers. In future prototypes, we will investigate
constructing object-relative questions using direct
manipulation of the objects on the screen.
In our user studies, using the latest execution of the queried
statement was sufficient. In more complicated Alice
worlds, this may not hold true. One possible interaction
would allow programmers to further specify their questions
with a time, which would allow them to find a particular
execution in the recent history. This may require domain-
specific heuristics to design effectively.
We plan to make the Whyline available online, and deploy
it to the several universities where Alice is already in use.

Interrogative Debugging for Other Languages
“Gosh, that’s really intuitive. Can you make this for Java?”

Subject E5, after his first program failure
There are many open questions in designing ID tools for
other languages. For example, for a given language and
programming task, what output will programmers want to
ask about? In a modern code base, output might be
numerical, message-based, or simply the execution of a
stub of code. One way to automatically determine the
granularity and nature of such output would be to search for
previous executions of code in recently modified source
files. This analysis could be used to select a set of output
statements for why did and why didn’t questions that are
likely to be relevant. Even still, the sheer number of
possible questions would be overwhelming. Future work
must devise methods for selecting a small set of
contextually relevant questions from all possible questions.
Because our implementation requires the complete
execution history, another issue is memory and
performance. Researchers have developed time- and space-
efficient approaches to recording data definitions and uses,
building CFGs and DFGs, and generating dynamic slices
[20, 22]. However, how to efficiently generate a set of
relevant questions remains an open question. Even with
these methods, failures that are difficult to reproduce or
take significant time to reproduce will pose significant
challenges.
Another question is, for a given task and language, what
heuristics generate the most understandable answers? We
only included a small portion of a dynamic slice because of
the simplicity of most Alice worlds. For more complex
software, there would be a host of visualization and
interactive issues in presenting a dynamic slice. One
approach might be to use semantic differencing methods
[18] to determine what parts of a dynamic slice might be
anomalous, based on past executions histories.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

157

RELATED WORK
There are a few systems with approaches similar to ID.
Lencevicius et al. discuss Query-Based Debugging [13],
where programmers form textual queries on objects’
runtime relationships. However, it forces programmers to
guess what relationships might exist, and requires learning
an unfamiliar query language. Briggs et al. discuss a task
timeline [3] for debugging distributed Ada programs. Their
visualization is similar to the Whyline’s in that it highlights
a dynamic slice, but it does not relate runtime events to
code. Zeller’s work on cause-effect chains and the AskIgor
debugger [21] is a related diagnosis tool. However, Zeller’s
approach requires both a failed and successful execution of
a program. ID interfaces have no such requirement.

CONCLUSIONS
We have discussed a new debugging paradigm, called
Interrogative Debugging, and a new debugging interface
called the Whyline. The Whyline allows programmers to
ask why did and why didn’t questions about runtime
failures, and provides direct access to the runtime data that
they need to debug. Our user studies demonstrate that the
Whyline can dramatically reduce debugging time,
suggesting the potential of Interrogative Debugging as a
highly effective approach to supporting debugging activity.

ACKNOWLEDGEMENTS
We thank the programmers in our user studies for their
participation. This work was partially supported under NSF
grant IIS-0329090 and by the EUSES Consortium via NSF
grant ITR-0325273. Opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the NSF.

REFERENCES
[1] Auguston, M., Jeffery, C., and Underwood, S. A

framework for automatic debugging, IEEE
International Conference on Automated Software
Engineering, 2002, Edinburgh, UK, 217-222.

[2] Blackwell, A. and Burnett, M. Applying attention
investment to end-user programming, IEEE Symposia
on Human-Centric Computing Languages and
Environments, 2002, Arlington, VA, 28-30.

[3] Briggs, J.S., et al., Task time lines as a debugging tool.
ACM SIGAda Ada Letters, XVI(2), 1996, 50-69.

[4] Davies, S.P., Models and theories of programming
strategy. International Journal of Man-Machine
Studies, (39), 1993, 236-267.

[5] Davies, S.P. Display-based problem solving strategies
in computer programming, Empirical Studies of
Programmers, 6th Workshop, 1996, Washington, D.C.,
59-76.

[6] Gestwicki, P. and Jayaraman, B. Interactive
visualization of java programs, IEEE Symposia on
Human-Centric Computing Languages and
Environments, 2002, Arlington, VA, 226-235.

[7] Gilmore, D.J., Models of debugging. Acta
Psychologica, (78), 1992, 151-173.

[8] Green, T.R.G., Cognitive dimensions of notations, in
People and computers v, A. Sutcliffe and L. Macaulay,
Editors. 1989, Cambridge, UK, Cambridge University
Press, 443-460.

[9] Green, T.R.G. and Petre, M., Usability analysis of
visual programming environments: A 'cognitive
dimensions' framework. Journal of Visual Languages
and Computing, 7, 1996, 131-174.

[10] Holtzblatt, K. and Beyer, H., Contextual design:
Defining customer-centered systems. 1998, San
Francisco, CA, Morgan Kaufmann.

[11] Kehoe, C., Stasko, J., and Taylor, A., Rethinking the
evaluation of algorithm animations as learning aids:
An observational study. International Journal of
Human-Computer Studies, 54(2), 2001, 265-284.

[12] Ko, A.J. and Myers, B.A. Development and evaluation
of a model of programming errors, IEEE Symposia on
Human-Centric Computing Languages and
Environments, 2003, Auckland, New Zealand, 7-14.

[13] Lencevicius, R., Holzle, U., and Singh, A.K., Dynamic
query-based debugging of object-oriented programs.
Journal of Automated Software Engineering, 10(1),
2003, 367-370.

[14] Lieberman, H., The debugging scandal and what to do
about it. Communications of the ACM, 40(4), 1997, 26-
78.

[15] Mayrhauser, A.v. and Vans, A.M. Program
understanding behavior during debugging of large
scale software, Empirical Studies of Programmers, 7th
Workshop, 1997, Alexandria, VA, 157-179.

[16] Reichwein, J., Rothermel, G., and Burnett, M. Slicing
spreadsheets: An integrated methodology for
spreadsheet testing and debugging, Proceedings of the
2nd Conference on Domain-specific Languages, 2000,
Austin, Texas, 25-38.

[17] Romero, P., et al., A survey of external representations
employed in object-oriented programming
environments. Journal of Visual Languages and
Computing, 14, 2003, 387-419.

[18] Rothermel, G., Harrold, M.J., and Dedhia, J.,
Regression test selection for c++ software. Software
Testing, Verification & Reliability, 10(2), 2000, 77-
109.

[19] Tassey, G., The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project Number
7007.011, 2002.

[20] Tip, F., A survey of programming slicing techniques.
Journal of Programming Languages, 3, 1995, 121-
189.

[21] Zeller, A. Isolating cause-effect chains from computer
programs, International Symposium on the
Foundations of Software Engineering, 2002,
Charleston, SC, 1-10.

[22] Zhang, X. and Zhang, Y. Precise dynamic slicing
algorithms, International Conference on Software
Engineering, 2003, Portland, OR, 319-329.

CHI 2004 ׀ Paper 24-29 April ׀ Vienna, Austria

 Volume 6, Number 1

158

