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Abstract 
Debugging is still among the most common and costly of 
programming activities. One reason is that current 
debugging tools do not directly support the inquisitive 
nature of the activity. Interrogative Debugging is a new 
debugging paradigm in which programmers can ask why 
did and even why didn’t questions directly about their 
program’s runtime failures. The Whyline is a prototype 
Interrogative Debugging interface for the Alice 
programming environment that visualizes answers in terms 
of runtime events directly relevant to a programmer’s 
question. Comparisons of identical debugging scenarios 
from user tests with and without the Whyline showed that 
the Whyline reduced debugging time by nearly a factor of 
8, and helped programmers complete 40% more tasks. 

Categories and Subject Descriptors: D.2.5. [Testing 
and Debugging]: Debugging aids. 

Keywords: Debugging, Alice, program slicing. 

INTRODUCTION 
Among all programming activities, debugging still remains 
the most common and most costly. A recent study by the 
NIST found that software engineers in the U.S. spend 70-
80% of their time testing and debugging, with the average 
error taking 17.4 hours to find and fix. Software engineers 
blamed inadequate testing and debugging tools [19]. 
One reason for this might be that the feature sets of 
commercial debugging tools have changed little in the past 
30 years [14, 17]: programmers’ only tools for finding 
errors are still breakpoints, code-stepping, and print 
statements. There have been many attempts to design more 
useful debugging paradigms and tools, including automatic 
debugging [1], relative debugging [21], program slicing 
[20, 22], and visualizations [6], but few of these have been 
shown to be usable, let alone to reduce debugging time. We 
believe this is because debugging activity always begins 
with a question, and to use existing tools, programmers 

must struggle to map strategies for answering their question 
to the tools’ limited capabilities. We propose to remove this 
hurdle by allowing programmers to directly ask the 
questions they naturally want to ask.  
As part of the Natural Programming project 
(www.cs.cmu.edu/~natprog), we have found that 
programmers tend to ask why did or why didn’t something 
happen. Thus, in this paper we propose a new debugging 
paradigm called Interrogative Debugging, in which 
programmers can ask why did and why didn’t questions 
directly about a program’s behavior, and view answers in 
terms of directly relevant runtime data. We then describe 
the design of the Whyline, an Interrogative Debugging 
interface for the Alice programming system. By comparing 
six identical debugging scenarios from user tests with and 
without the Whyline, we found that the Whyline reduced 
debugging time by nearly a factor of 8, enabling 
programmers to complete 40% more tasks. 

INTERROGATIVE DEBUGGING 
Research describes debugging as an exploratory activity 
aimed at investigating a program’s behavior, involving 
several distinct and interleaving activities [4, 7, 15]: 

• Hypothesizing what runtime actions caused failure; 
• Observing data about a program’s runtime state; 
• Restructuring data into different representations; 
• Exploring restructured runtime data; 
• Diagnosing what code caused faulty runtime actions; 
• Repairing erroneous code to prevent such actions. 

Current debugging tools support some of these activities, 
while hindering others. For example, breakpoints and code-
stepping support observation of control flow, but hinder 
exploration and restructuring [17]; visualization tools help 
restructure data, but hinder diagnosis and observation [11].  
Yet none of these tools support hypothesizing activities. 
The argument behind Interrogative Debugging (ID) is that 
support for such question-related activities is essential to 
successful debugging. If programmers have a weak 
hypothesis about the cause of a failure, any implicit 
assumptions about what did or did not happen at runtime 
will go unchecked. Not only do these unchecked 
assumptions cause debugging to take more time [15], but 
we have shown that in Alice, 50% of all errors were due to 
programmers’ false assumptions in the hypotheses they 
formed while debugging existing errors [12]. 
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Thus, the fundamental goal of ID is to allow programmers 
to ask questions explicitly about their program’s failure. 
For example, if a programmer was testing a graphical 
button and observed that clicking it had no effect, an ID 
interface would allow her to ask, “Why didn’t this button do 
anything?” By allowing questions about program output, any 
implicit assumptions about what did or did not happen at 
runtime can be explicitly addressed in the answer. 
In two studies of both experts’ and novices’ programming 
activity [12], programmers’ questions at the time of failure 
were one of two types: why did questions, which assume the 
occurrence of an unexpected runtime action, and why didn’t 
questions, which assume the absence of an expected runtime 
action. There were three possible answers: 

1. False propositions. The programmer’s assumption is 
false. The answer to “Why didn’t this button’s action 
happen?” may be that it did, but had no visible effect.  

2. Invariants. The runtime action always happens (why 
did), or can never happen (why didn’t). The answer to 
our button question may be that an event handler was 
not attached to an event, so it could never happen. 

3. Data and control flow. A chain of runtime actions led to 
the program’s output. For example, a conditional 
expression, which was supposed to fire the button’s 
action, evaluated to false instead of true. 

Interaction Design Requirements 
Even with a clear idea of the functionality that an ID 
interface should have, there are numerous ways that one 
could design the interactions with such a tool. For example, 
some methods of asking questions may be better than others 
at allowing programmers to explore possible questions. 

Some methods of answering questions might be better than 
others at revealing the important information. We propose a 
set of design constraints in Table 1, framed in terms of 
Green’s Cognitive Dimensions Framework [9]. 
Consider hidden dependencies, which are entity relationships 
that are not fully visible. Gilmore argues that a critical part of 
debugging is searching for a set of runtime dependencies that 
explain a programmer’s knowledge gap [7]. These important 
relationships should never be hidden, while the larger set of 
irrelevant dependencies could be hidden in trade for 
visibility. Commercial debugging tools are notorious for 
hidden dependencies: code stepping tools show runtime data 
on the call stack, but not the data that depends on it or that it 
depends on. Print statements reveal relevant runtime data, 
but hide the context from which the data was printed. 
Another issue is viscosity, or resistance to local changes. For 
example, inserting ten print statements to observe runtime 
events requires removing them later; trying to use a code 
stepping tool to show data from the past requires re-
execution. These hindrances to exploration may lead to 
debugging errors. 

THE WHYLINE 
To investigate the merits of ID, we used our design 
constraints to design the Whyline—a Workspace that Helps 
You Link Instructions to Numbers and Events. The Whyline 
is prototyped in Alice, the environment shown in Figure 1. 
Alice is an event-based language that simplifies the creation 
of interactive 3D worlds. Code is created by dragging and 
dropping tiles to the code area and choosing parameters from 
popup menus. This interaction prevents all type and syntax 
errors. See www.alice.org for more details. 

Table 1. Proposed design constraints for debugging interfaces in terms of the Cognitive Dimensions Framework [8]. 
Dimension Rationale and Proposed Design Constraint 

Error-proneness Knowledge, attentional, and strategic breakdowns in debugging can cause errors, and should be prevented [12]. 

Premature Commitment Assumptions and misperceptions about runtime history lead to inefficient, error-prone debugging strategies [5]. 
Don’t require programmers to hypothesize and diagnose without observations of runtime data. 

Viscosity Exploration is essential to successful debugging [7], thus acquiring new runtime data should be unhindered. 
Provisionality There shouldn’t be any commitment to the effects of exploring questions, runtime data, or code.  
Visibility and 

Juxtaposability 
Ability to see and compare code, runtime data and output is essential to successful observation, hypothesizing 
and diagnosis [7]. This type of data should have more prominence than other potentially visible information. 

Hidden 
dependencies 

With respect to a specific program failure, there are few relevant runtime dependencies and many irrelevant ones 
[7]. Emphasize relevant runtime dependencies by hiding irrelevant ones.  

Secondary 
Notation 

Support for meta-activities such as managing hypotheses and annotating possibly erroneous code may improve 
productivity [5]. Support secondary notations for annotating code, runtime data, and hypotheses considered. 

Diffuseness Verbosity of runtime actions should correlate with the programming language’s verbosity. 
Consistency Representations of runtime actions should be understandable with only knowledge of the code. 

Progressive Evaluation Progressive evaluation is mentally simulating the execution of a program to test if a potential repair would prevent 
failure [14]. Debugging interfaces should help programmers simulate computation and control-flow. 

Closeness of Mapping Diagnosis involves understanding a computational machine’s mapping from code to runtime behavior. 
Representation of runtime data should closely map to machine’s behavior, in order to support diagnosis. 

Role-Expressiveness Programmers will not use a tool if they perceive no reward in using it [2]. Interface artifacts should have 
affordances for the actions they support and rewards they provide. 

Hard Mental Operations Understanding runtime causality (hypothesizing and diagnosis) are hard mental operations; other activities are not 
[7]. Make the easy activities easier and hard activities possible. 

Abstraction-Gradient Debugging is a tight exploratory cycle, suggesting that the reward for creating abstractions is small. Focus on 
helping programmers explore runtime data, not on abstracting runtime data. 
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Alice-Specific Constraints and Guidelines 
To further inform our design, we performed two studies of 
novice and expert programmers using Alice in contextual 
and lab settings [12]. One major finding was that 50% of all 
errors were due to programmers’ false assumptions in the 
hypotheses they formed while debugging existing errors. 
There were also many consistent trends in their questions: 

1. 68% of questions were why didn’t questions and the 
remaining were why did questions. 

2. Programmers only asked why didn’t questions about 
code that plausibly might have executed. 

3. 85% of questions were about a single object. The 
remaining concerned multiple objects’ interactions. 

An Illustration of the Whyline’s Design 
Before we describe the Whyline’s implementation, let us 
illustrate its design through this debugging scenario (which 
comes directly from the user study we will discuss shortly): 

Ellen is creating a Pac-Man game, and trying to make 
Pac shrink when the ghost is chasing and touches Pac.  

She plays the world and makes Pac collide with the 
ghost, but to her surprise, Pac does not shrink... 

Pac did not shrink because Ellen (a pseudonym) has code 
that prevents Pac from resizing after the big dot is eaten. 
Either Ellen did not notice that Pac ate the big dot, or she 
forgot about the dependency. 

The Question Menu 
When Ellen played the world, Alice hid the code and 
expanded the worldview and property panel, as seen in 
Figure 2. This relates property values to program output. 
Ellen presses the why button after noticing that Pac did not 
shrink, and a menu appears with the items why did and why 
didn’t, as in Figure 3. The submenus contain the objects in 
the world that were or could have been affected. The menu 

 
Figure 1. The Alice programming environment, before the world has been played: (1) the object list, (2) The 3D world 

view, (3) the event list, (4) the currently selected object’s properties, methods, and questions, and (5) the code area. 

 
Figure 2. Ellen expected Pac to resize, but he did not. 

 
Figure 3. Ellen explores the questions and decides to ask 
“Why didn’t Pac resize .5?” which highlights the code. 
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supports exploration and diagnosis by increasing questions’ 
visibility and decreasing the viscosity of considering them. 
Because Ellen expected Pac to resize after touching the 
ghost, she selects why didn’t Pac… and scans the property 
changes and animations that could have happened. When she 
hovers the mouse over a menu item, the code that caused the 
output in question is highlighted and centered in the code 
area (see Figure 3). This supports diagnosis by exposing 
hidden dependencies between the failure and the code that 
might be responsible for it. This also avoids premature 
commitment in diagnosis by showing the subject of the 
question without requiring that the question be asked. 

The Answer 
Ellen asks why didn’t Pac resize .5? and the camera focuses 
on Pac to increase his visibility. The Whyline answers the 
question by analyzing the runtime actions that did and did 
not happen, and provides the answer shown in Figure 4. The 
actions included are only those that prevented Pac from 
resizing: the predicate whose expression was false and the 
actions that defined the properties used by the expression. By 
excluding unrelated actions, we support observation and 
hypothesizing by increasing the visibility of the actions that 
likely contain the fault. To support diagnosis, the actions’ 
names and colors are the same as the code that caused them.  

This improves consistency and closeness of mapping with 
code. 
The arrows represent data and control flow causality. 
Predicate arrows are labeled true or false and dataflow 
arrows are labeled with the data used by the action they 
point to. The arrows support progressive evaluation, and 
thus hypothesizing, by helping Ellen follow the runtime 
system’s computation and control flow. 
Along the x-axis is event-relative time, improving the 
closeness of mapping to the time-based Alice runtime 
system. Along the y-axis are event threads: this allows co-
occurring events to be shown, supporting juxtaposibility. 
Ellen interacts with the timeline by dragging the time 
cursor (the vertical black line in Figure 4). Doing so 
changes all properties to their values at the time represented 
by the time cursor’s location. This supports exploration of 
runtime data. When Ellen moves the cursor over an action, 
the action and the code that caused it become selected, 
supporting diagnosis and repair. These features allow Ellen 
to rewind, fast-forward, and even “scrub” the execution 
history, receiving immediate feedback about the state of the 
world. This exposes hidden dependencies between actions 
and data that might not be shown directly on the Whyline, 
and between properties’ current values and program output. 

 
Figure 4. The Whyline’s answer shows a visualization of the runtime actions preventing Pac from resizing. Ellen uses the 
time cursor to “scrub” the execution history, and realizes that Pac did not resize because isEaten was true.  
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To reduce the viscosity of exploration, Ellen can double-
click on an action to implicitly ask what caused this to 
happen? and actions causing the runtime action are 
revealed. Ellen can also hover her mouse cursor over 
expressions in the code to see properties’ current values 
and to evaluate expressions based on the current time. This 
improves the visibility of runtime data and supports 
progressive evaluation. Finally, the Whyline supports 
provisionality by making previous answers available 
through the Questions I’ve Asked button. The button 
prevents the hard mental operation of recalling facts 
determined earlier in debugging activity. 
Ellen discovers her misperception using the Whyline: 

“So this says Pac didn’t resize because BigDot.isEaten 
is true…Oh! The ghost wasn’t chasing because Pac ate 
the big dot. Let’s try again without getting the big dot.” 

Without the Whyline, the misperception could have led to 
an unnecessary search for non-existent errors. 

Implementation 
Alice programs are implemented internally using a control 
flow graph (CFG), where expressions are represented as 
data flow graphs attached to CFG nodes. These graphs are 
constructed incrementally as programmers create and 
modify code. At runtime, we annotate the graphs with all 
assignments and uses of properties’ values. This value 
history is used to traverse the execution history based on 
the location of the time cursor. 
We use static [20] and dynamic [22] analysis to support: 

1. Creation of a database of all changes to output (all 
animation statements and changes to visible 
properties), used for generating the why did menu 
structure, and for answering false propositions. 

2. Generation of precise dynamic slices on the code in 
question, used to visualize the Whyline’s answer. 

3. Generation of all potential definitions and uses of 
properties from static DFGs, used for constructing 
the why didn’t question menu. We do not support 
continuous number spaces (i.e., an object’s position), 
but do support the generic question “why didn’t this 
property change?” 

4. Answering of invariant why didn’t questions by 
coupling a dynamic slice on an execution instance of 
a CFG node with the reachability of the node. 

We used Alice-specific design heuristics to construct 
program slices. For example, for each question we had to 
choose which execution of the queried statement to slice 
on. Because our observations showed that questions were 
asked immediately after failures, we sliced on the most 
recent execution of a program statement. 
For why did answers, we included up to two predicates in 
the queried runtime action’s chain of causality, and any 
events defining the properties used in the predicates’ 
expressions. Including more runtime actions would have 

decreased visibility, and we believed forcing programmers 
to interactively reveal the history would better support 
progressive evaluation of their hypotheses. 
For why didn’t answers, we included all of the different 
executions of the predicate that prevented the code in 
question from being reached, and the why did slice on each. 

USER STUDY 
The Whyline was an exploration of an example 
Interrogative Debugging interface, so we had general 
questions about its usability and impact: 

• Would the Whyline be considered useful? 
• Would the Whyline reduce debugging time? 
• Would the Whyline help complete more tasks? 

To investigate these questions, we replicated the 
observational study discussed earlier [12], but included the 
Whyline in the Alice environment. We will refer to the first 
study without the Whyline as the Without study, and the 
present study as the With study. The With study used an 
iterative design methodology: observations from user 
session were used to fix usability problems and inform the 
design of features for successive sessions. 

Participants and Method 
In both studies, participants were recruited from the 
Carnegie Mellon HCI Masters program. Programming 
experience ranged from beginning Visual Basic to 
extensive C++ and Java. The four participants in the 
Without study will be referred to as C1-C4, and the five in 
the With study as E1-E5. 
Sessions began with a 15-minute tutorial on creating Alice 
code. Participants were given the layout in Figure 1 and 90 
minutes to make a Pac-Man game with these specifications: 

1. Pac must always move. His direction should change 
in response to the arrow keys.  

2. Ghost must move in random directions half of the 
time and directly towards Pac the other half. 

3. If Ghost is chasing and touches Pac, Pac must flatten 
and stop moving forever. 

4. If Pac eats the big dot, ghost must run away for 5 
seconds, then return to chasing. 

5. If Pac touches running ghost, Ghost must flatten and 
stop for 5 seconds, then chase again. 

6. If Pac eats all of the dots, Ghost must stop and Pac 
must hop indefinitely. 

For the purposes of analysis, we consider these six 
specifications to be six distinct tasks, since the code 
necessary to accomplish them were only related by the 
character’s state of behavior.  
In both studies, the experimenter used think-aloud and 
Contextual Inquiry [10] methods to track participants’ 
goals, strategies and intents. Participants were also 
videotaped while they worked, for later analysis. 
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Results 
Table 2 shows the distributions of question/answer types in 
each study. Why didn’t questions were more common than 
why did questions, and programmers rarely asked invariant 
or false proposition why did questions. Participants found 
the Whyline useful for 19 of 24 of their questions, and the 
proportion increased in successive user tests: the Whyline 
was useful for 0 of E1’s 3 questions, but all 5 of E5’s. 
Table 3 describes six identical debugging scenarios that 
occurred in the With and Without studies (many other 
scenarios were similar, but not enough to warrant 
comparison). In the Without study, participants tended to 
hypothesize and diagnose by inspecting and rewriting code. 
In the With study, they tended to hypothesize and diagnose 
by asking questions and analyzing the Whyline’s answer. A 
repeated measures ANOVA shows that in the six scenarios, 
the Whyline significantly decreased debugging time (F1,5 = 
12.64, p < .02) by an average factor of 7.8.  
Overall, in the 90 minutes allotted, programmers with the 
Whyline completed significantly more tasks (M = 3.20, SD 
= .457) than those without (M = 2.25, SD = .500), t(7) = 
3.0, p < .02. This was a 40% increase in tasks completed. 

DISCUSSION 
The Whyline appears to have great potential as a usable and 
effective debugging tool for Alice users. In generalizing 
our experiences, there are many issues to consider. 

Issues Raised in User Testing 
In our user testing, there were a few significant usability 
issues with our initial designs, some of which we predicted, 
and others we did not. These have implications for the 
design of future ID interfaces. 
In session 1, for example, our prototype did not support 
why didn’t questions. When E1 first used the Whyline, he 
wanted to ask a why didn’t question, but could not, and 
immediately decided “this thing is useless.” This suggests 
that support for why didn’t questions may be crucial to 
programmers’ perceptions of the utility of the tool.  
In session 2, our prototype distinguished between questions 
about output statements (why did) and questions about 
property changes (which we phrased as why is). E2 
observed a failure based on Pac’s direction property and 
searched the why did menu, ignoring the why is menu. We 
asked her later if she had noticed the menu: “I wanted to 
ask about something that already happened.” This is 

Table 2. Frequency of question/answer types in each study and times the Whyline was found useful for each. 
Frequency Question/Answer Pair was Asked Question 

Type Answer Type 
Without (4 programmers) With (5 programmers) 

# of times Whyline was found  
useful in the With study 

Invariant 0 0 0 
False Proposition 1 0 0 Why Did 
Control/Data Flow  7 5 3 

Total # of Why Did Questions 8 5 3 
Invariant 5 5 4 
False Proposition 5 7 5 Why Didn’t 
Control/Data Flow  7 7 7 

Total # of Why Didn’t Questions 17 19 16 

Table 3. Identical debugging scenarios in the With and Without studies. Scenarios are described by the programming 
error, the failure caused, each programmer’s strategy and outcomes, and the time from failure to error diagnosis. 

Strategy, Outcome, and Time in Seconds from Failure → Error Diagnosis Programming Error and 
the Failure it Caused Without With 

Code resized Pac to 0, which 
Alice ignores → Pac doesn’t 
resize after touching ghost. 

Read events, moved method call to event, 
moved camera, toggled state variables. “So 
it’s the resize function that’s not working.” 

330
sec

Asked, why didn't pac resize 0? and got invariant 
answer. “So resize to 0 must not work. I’ll try .5 
instead.” 

38
sec

Forgot event to call method 
that moves ghost → ghost 
doesn’t move after playing. 

Stared at screen and held head in hands. 
“Oh! I need an event to start it.” 75 

sec

Browsed why didn’t ghost questions and saw high-
lighted ghost movement code: " …oh, I didn't call it 
anywhere!" 

8 
sec

Thought dot2 was dot1 and 
referenced wrong dot → 
dot1 not eaten after collision. 

Looked at code; searched for dot in world-
view; removed then recreated collision 
code, this time without error. 

91 
sec

Inspected why didn’t menu and realized her misun-
derstanding: "Oh, no questions about the other 
dots. That must be dot2". 

9 
sec

Maps right key to right direc-
tion → Pac moves down 
instead of right. 

“I think this is wrong; it doesn’t go to where 
I want it to be…this is terrible!” Tried all 
possible mappings until she realized direc-

182
sec

Asked why did Pac move right? Inspected control 
and data flow answer; noticed direction set to right 
because down was pressed: “So direction is relative 

28
sec

Dot collision threshold too 
small for test to happen while 
Pac is over dot → dot not 

“I made some methods that I thought would 
help me rid of the dots…I’m pretty sure I got 
close enough.” Rewrote collision events and 

207
sec

Asked why didn't dot1.isShowing change to false? 
Scrubbed predicate tests: "that's really intuitive…so 
when it actually did this test, this was the state of 

27
sec

Forgot event to call eat-
BigDot method → Dot not 
eaten after touching Pac 

“There is definitely nothing happening.” 
Browsed and inspected code and event list. 
“Oh, of course not!” 

49 
sec

Asked why didn't big dot isShowing change to 
false? and read invariant answer which noted that 
nothing called the method. “Oh, you’re right!” 

10
sec

CHI 2004  ׀  Paper 24-29 April  ׀  Vienna, Austria 

 Volume 6, Number 1 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

156



consistent with our observations that programmers phrased 
questions in terms of failures instead of runtime data: she 
said why did Pac’s direction change to forward? and not 
why is Pac’s direction forward right now? 
In session 3, our prototype answered questions relative to 
the time cursor’s placement. When E3 asked his first 
question, he moved the time cursor, and upon asking his 
second question, noticed that the contents of the question 
menu changed considerably: “Where did all my questions 
go?” This was our rationale for using a statement’s latest 
execution, regardless of the time cursor’s placement. 
Usability issues were also found in sessions 4 and 5, but not 
of the same magnitude as in the first three. 

What was Helpful? 
The most helpful feature of the Whyline seemed to be the 
question menu. Observations confirmed our hypothesis that 
asking questions in terms of program output, rather than 
code or runtime actions, would make it easier for 
programmers to map their question to related code. By 
restricting the programmer’s ability to make assumptions 
about what did and did not happen, we enabled them to 
observe and explore the runtime actions that most likely 
caused failures. We plan to further refine the Whyline and 
formally investigate these findings. 
Similarly, relating code to runtime actions interactively 
with the time cursor and visual highlighting helped with 
diagnosis and repair activities, as predicted. Had this 
relationship not been explicitly visualized, more text would 
have been needed to denote what caused the runtime action, 
decreasing visibility, and programmers would have had to 
manually search for the code responsible.  
Finally, the data and control flow arrows directly supported 
hypothesizing which runtime events caused failure, as 
predicted. This seemed to be because the visualization 
acted as an external memory aid to help programmers 
simulate runtime execution. In the Without study, 
participants were forced to calculate expressions manually, 
allowing for attentional breakdowns during calculation. 
When the time cursor, reversibility, and other features were 
used, our observations suggest that they played supporting 
roles in the Whyline’s overall effectiveness. 

FUTURE WORK 

Making the Whyline More Helpful 
Currently, questions about complex Boolean and numerical 
expressions give equally complex answers. This is because 
the level of detail in the questions is not enough to know 
which particular part of the data flow path is problematic. 
Reichwein et al. describe one solution that allows 
spreadsheet users to mark intermediate values in dataflow 
paths as correct or incorrect, which feeds into a 
visualization of which computations may be faulty [16]. 
Programmers often needed to inspect the internals of Alice 
primitives. For example, choosing the distance for “is 
object a within distance of object b” was difficult, because 

programmers could not see the values used by the internal 
inequality at runtime. One solution would be to instrument 
the surface-level internal logic of primitives, so that such 
expressions could be shown on the Whyline. 
The Whyline does not yet support object-relative questions 
(such as “why did Pac resize after Ghost moved”), which 
were fairly common in early observations of Alice 
programmers. In future prototypes, we will investigate 
constructing object-relative questions using direct 
manipulation of the objects on the screen. 
In our user studies, using the latest execution of the queried 
statement was sufficient. In more complicated Alice 
worlds, this may not hold true. One possible interaction 
would allow programmers to further specify their questions 
with a time, which would allow them to find a particular 
execution in the recent history. This may require domain-
specific heuristics to design effectively. 
We plan to make the Whyline available online, and deploy 
it to the several universities where Alice is already in use.  

Interrogative Debugging for Other Languages 
“Gosh, that’s really intuitive. Can you make this for Java?” 

Subject E5, after his first program failure 
There are many open questions in designing ID tools for 
other languages. For example, for a given language and 
programming task, what output will programmers want to 
ask about? In a modern code base, output might be 
numerical, message-based, or simply the execution of a 
stub of code. One way to automatically determine the 
granularity and nature of such output would be to search for 
previous executions of code in recently modified source 
files. This analysis could be used to select a set of output 
statements for why did and why didn’t questions that are 
likely to be relevant. Even still, the sheer number of 
possible questions would be overwhelming. Future work 
must devise methods for selecting a small set of 
contextually relevant questions from all possible questions. 
Because our implementation requires the complete 
execution history, another issue is memory and 
performance. Researchers have developed time- and space-
efficient approaches to recording data definitions and uses, 
building CFGs and DFGs, and generating dynamic slices 
[20, 22]. However, how to efficiently generate a set of 
relevant questions remains an open question. Even with 
these methods, failures that are difficult to reproduce or 
take significant time to reproduce will pose significant 
challenges. 
Another question is, for a given task and language, what 
heuristics generate the most understandable answers? We 
only included a small portion of a dynamic slice because of 
the simplicity of most Alice worlds. For more complex 
software, there would be a host of visualization and 
interactive issues in presenting a dynamic slice. One 
approach might be to use semantic differencing methods 
[18]  to determine what parts of a dynamic slice might be 
anomalous, based on past executions histories.  
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RELATED WORK 
There are a few systems with approaches similar to ID. 
Lencevicius et al. discuss Query-Based Debugging [13], 
where programmers form textual queries on objects’ 
runtime relationships. However, it forces programmers to 
guess what relationships might exist, and requires learning 
an unfamiliar query language. Briggs et al. discuss a task 
timeline [3] for debugging distributed Ada programs. Their 
visualization is similar to the Whyline’s in that it highlights 
a dynamic slice, but it does not relate runtime events to 
code. Zeller’s work on cause-effect chains and the AskIgor 
debugger [21] is a related diagnosis tool. However, Zeller’s 
approach requires both a failed and successful execution of 
a program. ID interfaces have no such requirement. 

CONCLUSIONS 
We have discussed a new debugging paradigm, called 
Interrogative Debugging, and a new debugging interface 
called the Whyline. The Whyline allows programmers to 
ask why did and why didn’t questions about runtime 
failures, and provides direct access to the runtime data that 
they need to debug. Our user studies demonstrate that the 
Whyline can dramatically reduce debugging time, 
suggesting the potential of Interrogative Debugging as a 
highly effective approach to supporting debugging activity. 
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