The Sample Planner (and the MazeWorld class)

In the ri16x62 folder, you will find a folder called SamplePlanner. This new folder contains a project that demonstrates use of the MazeWorld class/data structure, which you’ll be during the rest of this class. Now, the sample application is in fact a DFID state-set sequential planner, and so we are also giving you a MazeWorld state-set sequential planner to get you started!

Go ahead and open up the Visual Cafe project, then read the these comments:

Open up MazeWorld and take a look. It’s very short, which is a very good thing. This is a data structure that you should NEVER modify. It serves as a standard way for us to tell your robots, in the future, where they are, where they’re going, and what the maze looks like. In fact, if you notice in the class declaration that it says “implements serializable,” this is so that, in a few days, we can show you how to save and load instances of this class! So, quite literally, we’ll be able to put sample MazeWorlds on the computer, and your program will be able to read them.

For this planner demo, the MazeWorld is not read from a file, but is created in PlanTester, in the function planTest. Take a look at that function.

First it makes a terribly uninteresting 2 x 2 maze that looks like this:

�

�

��

Then it says, in inits, that the robot is in the bottom left or bottom right corner, pointing to the left (West). And the goal is to get to the top left corner, pointing either South or East.

It makes an instance of MazeWorld using inits, goals and the maze walls specification.

Now, we have also given you an example Planner. So that’s instantiated here, and requires specification of the MazeWorld (the variable is world).

Finally, testPlan calls the planner and gives it the challenge to find a solution plan that is at most 9 steps long.

Now it’s time to look at the planner. Open up SequentialPlanner. Now a big word of warning: the planner we give you works—but it has none of the cool termination criteria and speedups that we will be talking about in class. So that means that if you try to have it find a long plan (more than 10 steps), it may take all day! (until you fix it, of course!)

Note the declaration of the maze variable. I do this so that, during planning, we don’t have to pass around this big array from recursive function to recursive function. The maze, after all, doesn't change terribly quickly.

Now look at the SequentialPlan function. This is the top-level way you invoke the planner. It takes the initial states, the goal states and the maximum depth. Note that it doesn’t use the inits and goals in the MazeWorld with which it was initialized—it just uses the maze from there. When you look at the code in SequentialPlan, you’ll see that it just does iterative deepening to the maximum search depth you have specified.

Now scroll down and check out some simple helper functions we wrote. MemberOf takes a state (which is basically an array of 3 numbers) and a state set (a Vector of states) and returns true or false. SubsetOf does subset checking with two state sets.

The two other functions you really should look at (because you have written them too!) are act and acts. act is a function STATE x ACTION (STATE and states is a function STATESET x ACTION (STATESET. Enough said.

