What We Really Should Do in Software Engineering Research Validation

Project Report of 15-839 Spring 2000

Jianing Hu {hujn@cs.cmu.edu}

Introduction

As defined in IEEE Standard Computer Dictionary, software engineering is "The application of a systematic, disciplined, quantifiable approach to development, operation, and maintenance of software; that is, the application of engineering to software." [IEEE90]. This definition gives what software engineering is, but does not give the goal of software engineering. Schach said software engineering is "a discipline whose aim is the production of quality software, delivered on time, within budget, and satisfying users' needs." [Schach93]. Roughly speaking, all these aims can be translated to the issue of money.
 The goal of software engineering could be summed up as trying to minimize overall software cost, where overall cost includes, not exclusively, cost of software development and maintenance, loss of money due to software quality problems, and loss of money due to late delivery of software system.

Given that the goal of software engineering is to minimize the overall software cost, all relevant researches should try to make a step towards this goal. The validation of researches, therefore, should show that a specific research does provide a way to reduce the overall software cost. People do try to validate their research results in various means, but unfortunately, most of them, if not all, do not do it right. This paper reviews the problem of current research validation and suggests an end-to-end approach to validate research results and gives an example of how this can be done.

End-To-End Arguments

The computer systems community has long adopted the end-to-end arguments, which basically say that functions put in the middle links may be redundant or of little use in providing the end-to-end functions that are needed [SRC84]. [SRC84] also gives several examples on how end-to-end arguments may be applied. The end-to-end arguments apply to research validation, too. Unfortunately, this is often overlooked by researchers validating their work. To show how end-to-end arguments apply to research validation, consider the problem tree in figure 1.

Figure 1 shows the problem tree of software engineering research. Because the grand problem of minimizing overall cost is too big to attack, people try to divide and conquer. The grand problem is therefore divided into sub problems of software engineering economics, system structure, risk management, and so forth. Sub problems can be further divided until people think they are small enough to be attacked. People then try to find solutions for problems at the leaves. Figure 1 shows that COCOMO model is presented as a solution to the leaf problem of cost estimation.

Given the grand problem of software engineering, the validation of a solution to a leaf problem should show the relationship between the solution and the grand problem. A validation that does not show the relationship is not complete. Hence if one wants to validate the COCOMO model, the right thing to do is to show that COCOMO model helps in solving the grand problem, i.e., reducing the overall software cost. Unfortunately, that is not what has happened. The validation of COCOMO model did a nice job showing that COCOMO estimates software cost to an acceptable accuracy. However, no link between cost estimation and the grand problem was actually established. The COCOMO paper does not justify the problem it solves as a good research problem and therefore leaves its own value in question.

"That's just too cautious!" one might say, "we all know what good research problems are when we see them." Really? A couple of year ago, researchers thought air bags could save lives in car accidents and the faster air bags deploy after a collision, the better protection the passengers will get. That sounds just right: air bag provides protection, and the faster you get the protection the better. A lot of research was conducted to find out how to deploy the air bag as quickly as possible and many of them produced techniques that were effective – experiments showed that they did help deploying air bags faster. However, though these techniques were "validated" that they could solve the leaf problem, deploying air bags fast, we know now that the research problem was not a good one – deploying the air bags too fast sometimes kills, not saves, lives.

Since just validating the solution against the leaf problem is not enough, it seems that the right thing to do is to validate every link along the problem tree up to the root. In the COCOMO case, it seems we should prove: COCOMO does cost estimation well, doing cost estimation helps in solving the SE economics problem, and using SE economics helps in achieving the grand goal. However, validating the intermediate links could be very hard. For example, since there is no good measurement of how well software economics is carried out, the effect of doing good software cost estimation has on software economics is hard to validate. The same difficulty appears in validating other problems, too. That is why we most often see people justifying their research problems by referring to common sense and/or intuition. As shown in the air bag example, using intuition to justify a problem is error-prone and could lead to loss of money, time, and even lives.

If we cannot validate the leaf problem, how can we validate our research results? Some researchers are frustrated by this question because they only focus on the research problem they are solving and forget the whole problem tree. No matter which leaf problem one is attacking, he is attacking the grand problem! Therefore he only needs to validate his result against the grand problem: overall software cost. The overall software cost is measurable or can be accurately estimated. Hence when doing validation, we can totally ignore the intermediate problems and do the end (solution) to end (the grand problem) validation.

Need for Rigorous Validation

What are good methods to do end-to-end validation? To answer this question, let us first look at some common validation methods. Many of the papers and report we have read this semester try to validate the techniques they present, by one or more of the following means: [Shaw00]

· Persuasion

· Implementation

· Evaluation

· Analysis

· Experience

Though these authors more or less validate their results, the validation is usually far from enough to justify the technique presented, i.e., to convincingly show that the technique can actually help solving the grand problem. In many cases the validation is even not enough to justify the technique against the research problem. Followed we show the problems with the validation methods listed above.

· Persuasion

This can hardly be called a validation at all. The author’s argument is usually based on “common sense” or “intuition”. Use of common sense or intuition is OK for motivating research ideas or helping focusing on the central idea of a technique when it is in its early age. However, when a technique becomes mature and calls for more practices, a more rigorous validation is needed.

· Implementation

The effectiveness of the technique is shown by building a prototype system and showing the success of the system. One common mistake is that sometimes people take “doable” as “successful” and think the fact that a prototype system can be built justifies the technique used in the system or in building the system. This is, of course, wrong. A prototype system is not necessarily a beneficial one. Even for people who do try to show their prototypes systems are beneficial, few have presented rigorous validations. And, even if one did validate the prototype system successfully, that still would not completely justify the technique used. A prototype system, at its best, can justify the underlying technique only in a restricted domain and in a restricted environment.

· Evaluation

The criteria that we should use to judge a technique is how much it can reduce the overall software cost. Therefore if we can evaluate the cost reduced accurately, we will be able to tell “good” techniques from “bad” ones. Unfortunately, few papers that use evaluation to validate their techniques give satisfying results. Some evaluations are totally subjective, hence lack the scientific rigor we seek. Some evaluations do not directly evaluate the benefit and fall short of validation of the relationship between what they evaluated and the benefit. In the rare cases of successful evaluation, most have used small sample spaces that make it very hard to generalize their results to larger domains.

· Analysis

Formal analysis is by far the most rigorous validation method. Unfortunately, it can only be applied to a very limited domain due to the fact that a large portion of the software engineering techniques and practices can not be formalized. Particularly, a formal model of the overall software cost is not available. Hence it is very hard to do formal analysis on how one technique might affect the overall software cost.

Informal analysis using statistical results from controlled experiments also provides rigorous validation. This requires a rigorous experiment design. One deficiency in the experiment design could make the whole experiment useless. Another big concern of conducting controlled experiment is cost. Collecting any data that is statistically significant costs a lot of money, time and other resources.

· Experience

Another common practice in validation is validating by experiences. Benefits of applying a certain technique in practice is measured and used to justify the technique. This is one step forward than implementing a prototype system in that the results come from real-world settings and hence are more convincing. However, one or a couple of successful stories, though inspiring, should not be taken as a proof that some techniques work. Without rigorous statistical analysis they are just coincidences. It is hard, though, to apply statistical analysis to data collected from experiences, because the data is collected from uncontrolled environments in which many variables might affect the value of data collected.

As we have shown, not all validation methods are rigorous, and how rigorous a method could be is one of its intrinsic constraints. In the following section we show an example of how a rigorous validation method could be applied. We will design a controlled experiment to test the benefit of using object model in software maintenance. The purpose of this experiment is not only to validate the use of object model, but, more importantly, to show that rigorous validation of software engineering techniques is achievable and could be achieved incrementally.

An Example of A Rigorous Validation

Research Problem

An object model is a directed graph that represents the abstract state of a program. The nodes in the graph represent sets of objects and edges represent inheritance relationships or associations. Many have claimed the usefulness of object models in software process, especially in maintenance, since an object model can help the maintainer of a system understand the nature of objects in the system and the relationships between them. As a result, people document their systems with object models, invest in reengineering techniques that extracts object model from legacy systems, and train their software system maintainers to use object models. However, no one has really convincingly showed that having an object model does help in software maintenance. Some one might claim that they used object model in software maintenance and the maintenance cost was reduced as a result. However, the fact that the maintenance cost was reduced does not justify the use of object model. It could be that the maintainer got more experience in software maintenance, or the system is drastically different from the old system compared to, or an upgrade of the hardware system facilitated the maintainer’s work, etc.. If we cannot exclude all other possible reasons that might have caused the reduction of maintenance cost, we cannot say for sure that use of object models brought the benefit. To exclude the effect of all other possible reasons, we need a controlled experiment to show the effectiveness of using object models in software maintenance. 

A controlled experiment is one in which the effects of extraneous variables are controlled. One good way to control the effect of extraneous variables is to use two groups of essentially the same subjects. One group, the treatment group, gets the treatment while the other group, the control group, does not. The dependent variables are then measured from the subjects of the two groups. If the dependent variables from the two groups show significant difference, then we can say that the treatment, of a high probability, has generated the difference.

In this project we will design a controlled experiment in which two groups of human subjects solve the same software maintenance problem under the same condition, with the only difference being that subjects in the treated experiment are given the object model of the software system to maintain. We claim that the result of this experiment can only be applied to a limited domain. A complete evaluation of the use of object models in software maintenance requires more subsequent experiments.

Experiment Design

Task to Solve in the Experiment

Software maintenance is a rather large domain. Given that few experiments have been done in this domain, we decide to pick a relatively easy task for this experiment, so it can be conducted quickly and cheaply. If the experiment shows positive results or raises interesting questions, subsequent experiments can be conducted with more complex tasks to further explore this question.

In this experiment subjects are asked to do a software modification task. They are given the source code of Jipe, and are asked to add a new function to Jipe. Jipe is a text editor written in Java. It is designed to be a programming editor, therefore it comes with syntax highlighting for C/C++, Java, and HTML. The new function that the subjects are asked to add is syntax highlighting for Perl. They will be given specification that describes what should be highlighted and in which color. We estimate this task is small enough for a subject with Java programming experience to finish in a couple of hours.

Subjects

The subjects in this study will be undergraduate students majoring in Computer Science at CMU that are taking the Java programming course. This experiment will be conducted at the end of the semester, when all subjects should have mastered Java programming and have had some Java programming experience. The subjects will be granted credits according to their performance in the experiment and the credits will be factored into the final grade for the course. Hence addresses the concern of subject motivation. The experimenter should conceal the fact that this is an experiment from the subject, hence eliminate the Hawthorne effect.

Experimental Procedure and Control

All subjects are randomly assigned to one of two groups of the same size. The subjects in the treatment group will be given a tutorial on object model in advance. To make sure all subjects in the treatment group can interpret an object model correctly, a test on object model will be given after the tutorial. Subjects who do not do well in the test will get make up classes. Subjects in both groups are then given the Jipe source code and a tutorial on the function to be added, making sure all subjects understand the task well. Subjects in the treatment group will then be given the object model of Jipe. All subjects are then asked to add the new function to Jipe.

To control the effects of extraneous variables, all subjects should be put into the same environment when conducting the experiment. They should start solving the problem at the same time, in the same computing environment which contains no object modeling tool, and in the same room. Communication between subjects is not allowed.

What to Measure in the Experiment

Our goal is to evaluate the possible benefit of using an object model in the experimental task. Possible benefits are:

1. Shorter time to finish task

2. Better achieved required function

3. Easier maintenance of result system.

1. is the easiest to measure. We will just record the time needed for the subjects to finish the task

2. can be roughly measured by decomposing the required function into sub functions (e.g., keywords highlighted in red, comments highlighted in green, constants highlighted in blue, etc.) and count how many sub functions are implemented. A grade will be given according to the count of sub functions implemented. The mapping between the implemented sub function count and grade granted should reflect the cost to “match” systems. E.g., if system a gets x points and system b gets y points, that means it costs y-x to fix system a so that it is as good as system b. In this experiment we use f(x) = 0 if x = 0, f(x) = c+k*x if x > 0, where c is the cost to implement the first (whichever) sub function and k is the cost to implement each additional (after the first one is implemented) sub function. We assume all sub functions cost the same to implement, and two systems are as good to each other if they implement the same number of sub functions. These seem to be valid assumptions for this experiment.

3. is hard to measure and will not be considered in this experiment.

Processing Data
We will run t tests on both the time used to finish task and result system quality scores. Statistical results from the t tests will be checked to see if dependent variables from the two groups are from different distributions. We will first test the two dependent variables separately. If both variables show the same trend for the two groups (i.e., one groups uses less time and produces better system, or two groups use basically the same time and produce systems of similar qualities), we will be confident to tell if using an object model has a positive, or a negative, or no effects in doing our experimental task. If two variables show different trend for the two groups (i.e., one groups uses less time while the other produces better systems), we will have to combine the time used and system quality to produce some overall performance measure and run the t test over the overall measure. This tends to produce inaccuracy since it is hard to combine the time used to build the system and the quality of the system to produce an overall evaluation of the development process.

Validity of the Experiment
In this section we discuss the validity of the experiment we have designed.

Internal Validity

Internal validity is “the extent to which the observed effects is caused only by the experimental treatment condition.” [Chris93]. In other words, the internal validity of an experiment reflects to what extent the effects of extraneous variables are controlled. In this experiment the measured dependent variables are the time used to complete the task and the quality of the result system. They can be affected by the following extraneous variables:

1. Subject variety. No two subjects are completely the same. They differ in programming skills, styles, experiences, ways of thinking, familiarity with the computing environment used in the experiment, etc. All those differences inevitably affect the efficiency of their programming and the qualities of their programs.

2. History effects. One’s skills, styles, experiences, etc., all change with time. Therefore even the same subject will probably solve the experimental problem in two different ways if he is to solve it at different times.

3. Environment effects. The environment a subject is in could affect the subject’s performance.

4. Selection bias. Since subjects vary, composition of both the control and treatment group could affect the observed dependent variables from both groups. Therefore the way subjects are put into different groups could affect the result of the experiment.

5. Hawthorne effects. People tend to behave differently from what they would normally, when they know that they are in an experiment.
6. Experimenter effects. How the experimenter gives instruction, presents the experimental problem, can affect the subjects’ performance.
7. Instrument effects. Using different means to measure a variable could return different results.
To control the effect of subject variety and selection bias, all subjects are randomly chosen to be put into one of the two groups. This insures that the two groups are the same (statistically) and therefore any significant difference of the results from the two groups should be resulted from the difference in the environmental variables (independent variables and extraneous variables).

To control history effects and environment effects, all subjects are asked to do the task in the same room, in the same computing environment, and at the same time. Since they do the task at the same time, history effects should be the same to the two groups. We think we can minimize environment effects by putting all subjects in the same room and same computing environment. Of course environment effects can not be controlled perfectly, e.g., someone sitting next to the air conditioner might performs worse than if he sits in the middle of the room. But we think we have addressed all environment factors that might have significant effects.

To control Hawthorne effects, no subjects are told that this is an experiment. Hence Hawthorne effect are eliminated.

To control experimenter effects, all subjects are given the instructions by the same instructor at the same time. However, the treatment group is the only group the gets the object model tutorial and how well the instructor gives the tutorial could affect the result of the whole experiment. To make sure all subjects in the treatment group will understand the object model they will be given in the experiment, a test on object model is given after the tutorial. Subjects that do not do well in the test will get make up lectures. The instructor has to be careful not to reveal any specific information about the experiment to the subjects when giving the tutorial.

Instrument effects will not affect the performance of subjects. However, they could affect the data collected form the experiment and hence the result of the experiment. In this experiment, we cannot directly measure the quality of result systems. As an alternative, we give a quality score to each result system based on the number of sub functions implemented. If our estimation function does not give an accurate measure of the real quality, the data we used for statistical tests could be misleading and we might get the wrong result. Fortunately, changing the estimation function does not require redoing the experiment. Therefore we can always apply a better estimation function to our experimental data and rerun the statistical tests to get a more accurate result.

Another instrumentation problem we have in this experiment is that we do not know a good way to measure the maintainability of the result systems. Hence we ignore its measurement. This, of course, leads to inaccuracy of the result of the experiment. But whenever a technique is available to measure system maintainability, we can apply it to the result systems and update our result.

For the extraneous variables listed above, we either eliminated their effects or make the effects equal to the two groups. Therefore if the two groups perform significantly differently in doing the task, we can say in confidence (unless there are extraneous variables that are not in the list but can significantly affect the performance of subjects) that the treatment condition (using object model in the treatment group) causes the difference.
External Validity

External validity is “the extent to which the results of an experiment can be generalized to and across different persons, setting, and times.” [Chris93]. For this experiment we are interested in the following generalizations.

· Can this result be generalized to a larger population?

· Can this result be generalized to other software maintenance problems?

· Can this result be generalized to group activities? I.e., if a group of maintainers work on one maintenance problem, does the result still hold?

For the sake of the scientific rigor we worship, we cannot say “yes” to any of these above questions. That leaves our result to be of little use. Who would care how using an object model would affect a CMU undergraduate student’s ability to add Perl syntax highlights function to Jipe in a summer afternoon using Microsoft Visual J++ in an air conditioned room? We have to make trade-offs between the rigor and power of the result. In doing that, we have to keep in mind the importance of rigor. The assumptions we make in generalizing our result should be reasonable enough that the rigor of the result is kept in a certain level.

It seems safe to assume that other CMU undergraduate students who do not take the Java course would behave similarly in the experiment as those who take the course. Hence we can expand the population to all CMU graduate students (CS majored). It also seems safe enough to say CMU undergraduate students are representative of all undergraduate students majored in CS. That is probably as far as we can go. Though our interested population is real software maintainers, we cannot generalize our experimental population much further without compromising the rigor of our result. The training and experience a real software maintainer has could make him behave much differently than a college student and generalizing the result got from samples of the latter to the population of the former seems to be a dangerous move.

For the second generalization problem, there seems to be a good chance that the result from this experiment would also apply to small software maintenance problems that involve adding new functions to a system written in an object oriented programming language. The setting of this experiment does not support much further generalization along this dimension, either.

Generalizing along the third dimension requires knowledge of group activities. This experiment’s setting does not directly support this generalization and it seems only safe not to generalize along this dimension.

To sum it up, the result of this experiment can be applied to small software maintenance problems that involve adding new functions to a system written in an object oriented language, when the task is performed by an undergraduate student majored in CS.

Cost of the Experiment

We chose the cheapest setting when designing this experiment. The subjects, undergraduate students, come for free. Students participate in this experiment to get credits for a course and are not paid. The computing facilities come for free, too. As part of the course schedule, the experiment has access to the computing facilities allocated for the course. The only significant cost comes from management and the experimenter’s time, and we expect that to be at a reasonable level. The cheap cost makes this experiment design feasible.

Discussions

We have not really carried out this experiment, but we have showed both internal and external validity of this design. This experiment is rigorous and feasible.

However, the result we can get from this experiment does not seem to be very inspiring. It is restricted to a rather limited domain, therefore its power is limited. But we claim that it is the most general result we can get from this experiment setting. To further generalize the result, one has to conduct more experiments in larger domains to see if the result still holds. Generally speaking, experimental validation can be carried out in an incremental way. Cheap and small experiments are carried out first to validate the technique in small domains. After the technique is validated in small domains, it can be applied in these small domains while further, more expensive and bigger experiments are being carried out to validate it in larger domains.

This experiment is designed to be carried out in a university, in which subjects (undergraduate students) and computing facilities come for free. Doing experiments in real-world setting could be very expensive. It is almost impossible to conduct a similar experiment like the one described in this report with real software maintainers and big software maintenance projects. The cost would be astronomical. People who want to conduct experiments to validate other software engineering techniques will face the same problem. Software projects are expensive. No one can afford doing sound experiments with real software engineers and real software projects. One can at most apply a technique to a few real projects and see if it works for these projects. But that is far from enough to draw a statistically significant conclusion. And even this approach is a luxury to most people.

If no one can afford doing experiments in the real world, and formal analysis cannot be applied to most techniques, how can a technique be convincingly validated? To answer this question, let us go back to the question of why we do validation in the first place. We do validation because deploying a new technique could be expensive, and we want to make sure that it is going to pay off. Clearly the driving factor here is cost. Suppose we are going to do a project that will cost x, we can apply a partially validated technique that will save us 100*y percent, with probability p, and the technique itself will cost z. The expected cost of the whole project if we apply the technique is therefore x+z–p*x*y. It is clear that we will apply this technique only when p*x*y is greater than z. Now suppose we can validate this technique with a cost of c, the cost to validate before determining whether to use the technique is then x+c+p*(z-x*y). Apparently we will choose to do validation only when c <min((1-p)*z, p*(x*y –z)). We claim that c is always greater than z, since validating a technique through experiment always requires deploying that techniques first. Hence c<(1-p)*z never holds and we should never do experimental validation. However, the knowledge of the validity of a technique can be shared and that makes it possible for multiple investors to invest in the experimental validation of a technique and share the result. Suppose there are n enterprises, each has a project that costs x as in the above setting. If they divide the cost of experimental validation evenly among them, each will spend x+c/n+p*(z-x*y). Now it is profitable to do the validation if c/n<min((1-p)*z,p*(x*y-z)). When enough enterprises want to apply this technique, this inequality will hold and doing experimental validation becomes a better choice. Once a technique is validated, further decision of whether or not to apply this technique comes with no additional cost. Of course there will be a lot of practical difficulties to ask multiple enterprises to invest on the same validation project. But it at least shows a feasible way to achieve complete yet affordable validation.

Conclusions

In this paper we show how end-to-end arguments can be applied in software engineering research validation. To validate a research result, the effects of the research result has on the grand problem must be shown. We can even ignore the intermediate sub-problems because they are often hard to validate, and validating them is not necessary in validating the research result.

A validation has to be rigorous or it is of little use. Many validation methods are intrinsically not rigorous enough. One rigorous validation method is to conduct controlled experiments and run statistical analysis on the experimental results. In this paper we design an experiment and show its validity. A hurdle of applying experimental techniques in software engineering research validation is that experimenting in a real-world setting costs too much, yet experimenting in the laboratory does not give general results. The solution is joint effort of multiple enterprises.

References

[Chris93] Larry B. Christensen, Experimental Methodology 6th Edition Allyn and Bacon, 1993

[IEEE90] IEEE Standard Computer Dictionary, 1990

[Schach93] Stephen R. Schach, Software Engineering 2nd Edition, Richard D.Irwin, Inc. and Aksen Associates, 1993.

[Shaw00] Marry Shaw, What Makes Good Research in Software Engineering, Reflections. Lecture slides, Spring 2000.

[SRC84] J.H.Saltzer, D.P. Reed and D.D. Clark, End-To-End Arguments in System Design, ACM Transactions in Computer Systems, November 1984

[ZW98] Marvin V. Zelkowits and Dolores Wallace, Experimental Models for Validating Computer Technology. IEEE Computer, May 1998.

The grand problem of SE





SE Economics





System Structure





Risk Management





…





Cost Estimation





COCOMO





…





problem





Figure 1. Problem Tree of Software Engineering





solution








� This is, of course, not 100 percent true. For example, in a software system whose malfunctioning would cause the loss of lives, the goal of software engineering would not be completely money-driven. We over simplified the goal of software engineering because cost in terms of money is easy to measure. This simplifies the discussion in this paper.


� We can never be 100% sure that the treatment DOES cause the difference, due to the uncertainties of subject, experiment conditions, or effects of unknown variables.


� The influence produced by knowing that one is participating in an experiment. [Chris93]





