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Introduction

As currently used, the Internet is largely a unicast medium.  Many past and current research efforts have focused on introducing additional services such as feasible broadcast and multicast into the Internet.  However, there exists a class of applications that has been largely overlooked: incast applications.  These applications require the exact opposite of a broadcast: many sources send data to a single location (a data sink).  Example incast applications include submission of income tax forms, online surveys, and collection of log files.

Currently, incast applications are implemented in a non-scalable fashion with data sources sending all data directly back to an incast server.  Large numbers of incast sources can easily overwhelm today’s incast sinks.  Network support for incasting has the potential to alleviate this problem by transmitting incast data in a scalable fashion.

This paper investigates the use of an incast protocol and support infrastructure to provide a means for creating scalable incast applications.  In order to analyze the potential performance of incast systems, we have created an experimental incast protocol and supporting infrastructure called XIA (eXperimental Incast Architecture).  XIA leverages an active network infrastructure in order to provide a scalable, reliable incast service.

Many factors must be taken into consideration to effectively analyze the potential benefit of network support for incasting.  However, in the interest of keeping this research focused, for many parameters we make a “reasonable” choice without investigating all alternatives.  Nevertheless, we implement a functional incast system which contains enough functionality to provide useful results.

Related Work

While very little work has been done on incasting specifically, there has been research which has considering incasting in somewhat different contexts:  active networks provide the functionality required for an effective incasting scheme, and incasting can be viewed as a specialized form of the “information fusion” mentioned in [1].  Incasting has also been investigated to a small extent by the ATM community.  These researchers have proposed standards for multipoint-to-point VCs [2] that provide a simple incasting mechanism for merging several datastreams into a single data stream.  

Our approach differs in that it deals specifically with the incasting of data as did the ATM multipoint-to-point VCs, but we leverage the functionality of active networks in order to provide a more efficient and customizable incasting mechanism.

Architectural Overview 

XIA consists of three major components: sinks which receive incast data, sources which send incast data, and servers which assist in the efficient transmission of data from the sources to the sinks.  XIA assumes a networking infrastructure in which several dedicated incast server processes are able to run continuously (though they may fail) on nodes which are conceptually internal to the network.  In our actual implementation servers, sinks, and sources all run on as standard user space processes on nodes which are at the edges of the network.  Hence, our prototype is somewhat similar to the MBONE [3].
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For simplicity, XIA is implemented entirely in Java, and requires sinks, servers, and sources to be Java applications.  However, the requirement for sources to be written in Java is an artifact of the current implementation and the overall architecture allows sources to be written in any language.  The key benefits of Java are the ability to securely download custom code onto the servers, as well as the ease of network programming.

Session Setup

A process which wishes to receive incast transmissions (a sink process or simply sink) begins operation by registering itself with a “sink manager” on a local machine.  A sink manager is a daemon process that listens on a well known port for incoming incast requests.  The sink manager is roughly analogous to a web server and provides remote entities a well defined point-of-contact for assistance in contacting sinks on a given host.  During the time in which a sink is registered, an active “incast session” is considered to exist.  Incast sessions are uniquely identified by a hostname, sink name pair which is known as a SessionID.  Sinks are globally identified by a URL which directly corresponds to their SessionID as follows: incast://<sink host>/<sink name> (e.g. incast://myhost.cs.cmu.edu/MySinks/sink1).

Routing

When a new source wishes to send incast data to a sink an incast route may be created in one of two methods:  upstream routing or downstream routing.  Under both schemes servers contain distance vector information which enables them to determine either upstream or downstream next-hop servers for a given source or sink respectively.  

Upstream Routing

Upstream routing proceeds from the sink towards the source desiring to join the incast session.  Under upstream routing sources desiring to send incast data send a join request directly to the sink manager.  The sink manager then checks to ensure that the join request specifies an active sink and then creates a “join message” which is sent to the sink manager’s edge server.  This join message is routed upstream and servers are then added to the incast tree until the source’s edge server is reached.
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A key benefit of upstream routing is the ability to use runtime information to perform dynamic routing.  Dynamic routing can improve resource utilization and performance on both servers and network links by creating routes which branch closer to the sources than the sink.  Conceptually upstream routing can do this by preferring existing routes to new routes.

Downstream Routing

Downstream routing adds branches to the incast tree starting at the source and searching toward the sink.  Under this scheme, when an incast source desires to send incast data to a sink, it first sends a join request to its edge server.  If the edge server is already participating in the incast session, the source is informed that it has successfully joined the session.  Otherwise, the join message is forwarded downstream towards the sink until an incast server which is participating in the session is reached.  If the sink’s edge server is reached and it is not participating in the session, the sink is contacted and the sink’s edge server joins the session if the session is active.  If the session is not active an error message is relayed back.  Once an active server, or the sink, has been reached, a join message is sent back upstream along the route just established, and all upstream servers join the session. 
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Downstream routing eliminates the need for every source to contact the sink.  This is important because the motivation behind incasting is to reduce the load on the sink.  However, dynamic downstream routing is more difficult than dynamic upstream routing because it is not clear in which direction the closest active branch is.  Under both routing schemes when the source’s edge server is added to the incast session, it contacts the source and gives it a port to which it can send data. 

Our prototype implements a hybrid of downstream and upstream routing.  Sources in our prototype initially attempt to add themselves to a session by contacting their edge server.  If the edge server has knowledge of the session, the source is added to the session.  If not, a failure message is sent to the source and it contacts the sink directly for upstream routing.  

Data Structures

In this section we present several data structures that are used in aggregation and acknowledgement. Since XIA is not a protocol, but an architecture upon which protocols can be built, these data structures are by no means "final", i.e., their formats are not strictly enforced in an implementation of XIA. These data structures presented below are rather "conceptual" data models whose realization is expected to provide the information mentioned here. The real format of these data structures in implementations could vary.  In our implementation, all data structures are realized as Java classes which are sent and received using Java object serialization.

Record

A Record is the minimum data unit and consists of a RecordID and user data. The format and content of the data are  completely user defined. A RecordID is a session-wide unique identifier of a record. It consists of a SourceID that uniquely identifies a source, and a sequence number that uniquely (source-wide) identifies the data carried with this record.

RecordGroup

RecordGroup is the minimum data transmission unit. A RecordGroup encapsulates multiple Records (possibly only one). A RecordGroup consists of a length field, which is the number of Records wrapped in this RecordGroup, a list of the RecordIDs of all the Records it carries, and a piece of data which is the aggregation of the data of all Records it encapsulates. RecordGroup is the minimum data transmission unit. Even if there is only one Record to transmit it must be encapsulated in a RecordGroup.

ACK

ACK is the acknowledgement sent to the source. In XIA, the unit of acknowledgement is a Record, i.e., data is acknowledged on a per-Record basis, rather than the per-byte basis as TCP. An ACK consists of a length field, which indicates the number of Records this ACK wants to acknowledge, and a list of all the RecordIDs to acknowledge.

Aggregation

Overview

Aggregating data at servers can effectively reduce the amount of data that has to be forwarded to the next hop. For example, a voting application (built using incast) that has millions of sources sending their votes to the sink can greatly benefit from having servers aggregate the votes they receive into one message that only contains the total vote tally. However, since the format and content of the data carried in a Record are session-specific, the servers have no idea how to aggregate the Records while keeping their integrity. The generic method of aggregation, namely concatenating all data, does maintain integrity, but in the incast vote example, concatenation is not a very effective method of aggregation. This suggests that session-specific aggregation methods should be used at the server side. 

XIA allows the sink to create a session-specific aggregator and send it out with the JoinMessage. An aggregator is a piece of code with a well-known interface that is called by the servers to aggregate RecordGroups for a session. The aggregator knows the specific data format and can aggregate the data in the most efficient way. When the JoinMessage travels in the network to the source, each server on its way keeps a copy of the aggregator in its local storage. If no specific aggregator is carried by the JoinMessage, the server will create a generic aggregator that does simple concatenation for this session. The server sends all incoming RecordGroups of the same session to the aggregator of that session and the aggregator aggregates the RecordGroups into one or more RecordGroups and sends the aggregated RecordGroups to the next hop. The aggregator has full control on when and how to do the aggregation. It could temporally store a RecordGroup when there are not enough RecordGroups to do efficient aggregation. However, an aggregator should not keep a RecordGroup too long before aggregating and forwarding it. Its own aggregation policy should contain a periodic "flush" that aggregates what it already has received and forwards them. 

The aggregator requires server resources, for example memory, disk space, and CPU cycles, in order to run. The server provides a well-known interface for the aggregator to allocate such resources on the server. The only way that an aggregator can get the resources it needs is through this interface. Therefore, servers can indirectly control the execution of the aggregator by controlling the resource supply; and a malicious sink can not bring the server down by sending an aggregator that consumes all the resources to the server.

Implementation

In our implementation, the following classes take part in the data aggregation process, ServerImpl, SessionManager, Receiver, and Aggregator.

ServerImpl implements the framework of a server. It also provides a ResourceService interface to the Aggregator. The ResourceService interface is the Aggregator's only access point to the resources on the server. For simplicity, in our implementation the ResourceService interface is not implemented and the Aggregator has direct access to the resources it needs.

SessionManagers are constructed and managed by ServerImpl. For each session the ServerImpl joins, a SessionManager is constructed that coordinates all activities related to the session on that ServerImpl. The SessionManager constructs and manages all the Receivers of its session. A Receiver receives RecordGroups from its upstream host through a TCP connection When a Receiver receives a RecordGroup, it gets a reference of the Aggregator from its SessionManager and forwards the RecordGroup to the Aggregator.

For our expirements, we have implemented two Aggregators. The first is the DefaultAggregator that does default aggregation, namely concatenation. The other is the CompleteAggregator that aggregates all the received data into a single data unit and then transmits a single data unit in a single RecordGroup. The two Aggregators have the same aggregation policies. The "timely" policy triggers aggregation periodically. The "space" policy triggers aggregation upon the consumption of a certain amount of storage. For simplicity, incoming RecordGroups are stored in memory instead of on disk. Since the two Aggregators are both developed for illustration and testing purposes, they don't do any real processing to the incoming RecordGroups (such as a summation of votes during complete aggregation). When doing aggregation, they simply construct a new RecordGroup(s) with all the RecordIDs and a data block(s) of an appropriate size.
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Acknowledgement

Overview

While not all incast applications require reliability, it is critical for some applications such as the tax return application mentioned previously.  Applying the end-to-end argument might lead us to believe that reliability should be provided by the network endpoints.  However, such a decision would cause an ACK-explosion, as shown in figure [???].  This occurs because if we wish to ensure reliable communication without any support from the servers, the sink must send an acknowledgement of each Record it receives to the corresponding source. This defeats the goal of providing scalable incast as the sink itself creates all ACK traffic and potentially becomes the bottleneck again.

Our approach to solve the ACK-explosion problem is to send ACKs along the inverted incast tree. Upon receiving a RecordGroup, the sink sends an ACK that contains all the RecordIDs in the RecordGroup to the server who sends the RecordGroup. Each server splits the ACK it receives to smaller ACKs, each smaller ACK containing RecordIDs that are sent from the same upstream host. This process is called "ACK-splitting". Eventually, the ACKs are sent to the sources that originally sent the corresponding Records, as shown in figure [???].
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One important concern of the acknowledgment scheme is how to compute the timeout value. Since each server, or, more accurately, the aggregator on each server, could keep a RecordGroup for arbitrary long time before forwarding it, it is impossible for the source to compute an appropriate timeout value without knowledge about the servers on the route. In XIA such knowledge is passed along with the JoinMessage. Before sending a JoinMessage, the sink sets the MaxDelay field of the JoinMessage to the maximum delay between its receiving a Record and sending ACK for that Record. Each server that receives this JoinMessage adds to the value of MaxDelay field the maximum delay that the aggregator may cause. Therefore, when the JoinMessage is sent to the source, its MaxDelay field has the maximum delay that the aggregators and the sink might cause. The source can then compute its timeout value accordingly.

Unlike TCP, the acknowledgment scheme of XIA doesn't take part in flow control. It simply provides a basis upon which the sink and sources can build their own reliability protocol. The sink and sources may also choose to build their reliability protocol independently, totally ignoring the support provided by XIA. They may even choose not to provide any reliability at all.

Implementation

Our implementation uses the following classes in the acknowledgment process, ACK, Aggregator, SessionManager, ServerImpl, and Receiver.

Each ACK consists of an array of RecordIDs. Each RecordID identifies a successfully received Record by the sink. Since each array in Java contains its length information, no separate field is needed for the total number of RecordIDs carried in the ACK, as suggested in the Data Structures section.

The Aggregator listens to incoming ACKs from its downstream host and passes the ACKs to its SessionManager through a well-know interface. The ACKs should only come from the host to which the Aggregator forwards its aggregated RecordGroups.

The SessionManager determines whether and how to split the ACK. It takes the source information from the RecordIDs carried by the ACK, and looks the sources up in the routing table provided by the ServerImpl. The looking up process gives the upstream host (either a server or the source itself) from which the Records of a specific source comes from. RecordIDs are grouped according to upstream hosts.  For each group, the SessionManager constructs a new ACK that contains all the RecordIDs in that group. The SessionManager then passes the new ACK to the Receiver that receives data from the corresponding upstream host. The Receiver will then send this ACK to the upstream host.

Experimental Methodology

In order to investigate the benefits attainable from using our incast prototype we conducted a series of experiments analyzing various incasts strategies. 

Our tests were conducted using three different machines running Windows NT and connected via a 10Mbps noisy Ethernet: a 200Mhz Pentium Pro, a 400 MHz Pentium II, and a 500 MHz Pentium II.  Five hundred sources were simulated in all of our tests by having multiple sources on a single machine.  This machine spawned multiple threads which each sent incast data concurrently with the other threads.

Performance data was gathered at one second intervals using NT’s Performance Monitor.  Three different system parameters were recorded:  processor utilization, network bytes received/sent per second (the performance monitor aggregates bytes received and sent into a single figure), and the number of active threads.  (Note that we also monitored system memory usage, but do not report results due to the fact that the actual memory usage by a Java thread is not directly observable to Performance Monitor; the Performance Monitor only sees the utilization of the Java Virtual Machine.)  

For each test we calculated the total load placed on a machine by summing the data for each parameter over the duration of the test.  Hence for each test we analyzed performance using three metrics: network bytes received/sent, processor seconds, and thread seconds.  Note that the results of the processor utilization gathered on the 500MHz Pentium II was normalized to reflect the probable amount of utilization on the 400MHz Pentium II.

We tested a total of five different network topologies: direct, simple, tree, static routing, and dynamic routing.

Direct 

Our direct incast experiments were designed to analyze incasts as they are currently implemented.  In this scheme, all sources directly sent data to the sink.  Sources resided on the 200 MHz machine, the server resided on the 400 MHz machine, and the sink resided on the 50MHz machine.  Performance measurements were gathered on the sink.

[image: image8.wmf]Figure 10. Processor Utilization

0

200

400

600

800

1000

1200

1400

Direct Sink

Simple Sink

Simple Server

Tree Server

Processor Seconds


Simple

Our simple incast experiments were designed to show the reduction of load on the sink using our incast prototype.  In this scheme all sources sent to a single server which, in turn, sent the data to the sink.  Sources again resided on the 200 MHz machine, and performance measurements were gathered simultaneously on the sink and the server.
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Tree

Our tree experiments were designed to show that a hierarchical topology allows the incast architecture to scale to potentially large numbers of nodes.  In this experiment, sources send data to two different servers which send the data to a final server which then sends the data to the sink.  Sources were allocated to the 200 MHz machine, and performance measurements were gathered simultaneously on the sink and the edge server closest to the sink.
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Static and Dynamic Routing

We also conducted experiments that were designed to show the benefits of using dynamic routing.  Due to the limited number of machines we were able to use, sources and the sink resided on the 200 MHz machine, and 2 servers per machine were allocated to both the 500 MHz machine and 400 MHz machine.  Servers were allocated so that adjacent servers were on physically distinct machines so that all communication would still need to go over the network.
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Reduction of Sink Load

Figures [???]-[???] show the load on the sink and the edge server (i.e., the server next to the sink) in different topologies, when each source sends 1K data and the servers run the default (concatenation) aggregator. In each figure, the columns (from left to right) show the sink of the direct incast topology, the sink of the simple incast topology, the edge server of the simple incast topology, and the edge server of the tree topology, respectively.

The sink processor usage drastically dropped from the direct incast topology to the simple incast topology. This shows that even the simple incast topology can effectively reduce the sink load. At the same time, the network traffic on sink slightly dropped. This drop of network traffic can be attributed to aggregation. Though the default aggregation does not reduce the amount of data that has to be transmitted much, it does greatly reduces the number of objects that have to be transmitted individually and therefore reduces the network transmission overhead due to object serialization.  (Individual object transmissions must define the object being transmitted each time while multiple objects can simply refer the a previous definition) 

Scalability of Hierarchical Topologies

Figures [???]-[???] also clearly show that the simple topology merely shifts the bottleneck location from the sink to the edge server.  In fact, due to incasting overhead, the load on the edge server of the simple incast topology is much greater than that of the sink in both the direct and the simple incast topology. The server needs more processor usage to do the aggregation and session management. The additional network overhead was caused by incast control messages sent using RMI. In tests where the amount of data being transmitted is small (1K per source), the RMI overhead has a large impact. The increase of thread usage is probably caused by the usage of RMI and aggregator.  (RMI spawns a thread for each incoming method invocation.)

However, the results (seen in the last column of Figure[???]-[???]) also show that the hierarchical tree topology, effectively reduces the load on the edge server. We don't measure the load on the sink or the two edge servers on the source side in the tree topology because of our shortage of testing resources. We expect the sink load to be similar to that of the simple topology. We also expect the load on the other two servers be much less than that of the edge server since each of the them only has to deal with half of the sources.

Custom Aggregation
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Figures [???]-[???] show that allowing users to download custom aggregation code can greatly reduce the overall load on the system. The tests shown in these figures compare the load on the sink and the servers in different topologies, when each source sends 32K data; these tests were run for both the default (concatenation) aggregator and the complete aggregator. In each figure, the columns (from left to right) show the sink of the direct incast topology, the sink of the simple incast topology using the concatenation aggregator, the sink of the simple incast topology using the complete aggregator, server of the simple incast topology using the concatenation aggregator, and the server of the simple topology using the complete aggregator, respectively.

It is clear that complete aggregation greatly reduces the network load both on the sink and on the server. The processor usage drop on the server is mainly the result of the reduced network load.

Total Time

Figure [???] shows the total time required for each of our tests to complete as observed by the sinks and sources.  (The times observed by the servers, sinks, and sources were essentially equivalent due to the limited nature of our tests.)  These times correspond directly to the longest time for a source thread to complete.  As each thread issues a sequence of requests with only one outstanding request at a time, the times measured are a reflection of the average time required for each individual incast “conversation” to complete (a conversation is defined as a single source sending incast data to the sink and receiving an acknowledgement of receipt).

In all cases, using XIA increased the overall time.  This undesirable effect occurs because each individual incast conversation takes longer since data must flow through several severs, wait for aggregation at each server, be acknowledged by the sink, and then flow back through each server to the source.  The results also show that increasing the depth of the hierarchy increases the overall time. 

It should be noted that all of our measurements were conducted using an incast load well within the capability of the direct incast scheme.  As the incast data and connection rates increase, it is conceivable that in some cases XIA would be faster than direct incast.  (This is trivially true when the load exceeds the ability of direct incast to handle.)

Dynamic Routing

The results of our dynamic routing tests were inconclusive, and showed only a minor benefit from using dynamic routing.  We believe that the limitation of testing three or four servers using only two physical machines caused our results to be inconclusive.  Due to the dubious validity of the results obtained in these tests, we do not report them here.

Conclusions

XIA has been shown to provide a scalable incasting infrastructure which greatly reduces the load on incast sinks.  Our results have shown that sink load remains fairly constant even with large numbers of clients.  Further, we have shown that with an appropriate topology of servers, server load can remain low as well.  

A key feature of our system in reducing the resource demands of incast applications is the ability for sinks to inject custom aggregators into the network.  These have been shown to allow network load on the incast backbone to remain constant despite large numbers of sources.  Incast architectures based on an active networking infrastructure have the potential to allow robust, scalable incast applications to be built in a simple manner.

Future Work

Our prototype is a fairly limited design aimed at demonstrating that incast is potentially useful; there is ample room for further investigation into incast architectures.  Many design parameters in our prototype have been set at “reasonable” values, but await justification or enhancement.  Also, our implementation relies on Java object streams for sending data; a more useful incasting architecture would use simple byte streams.
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Figure 5. ACK-splitting





Rec1+2+3+4





ACK1+2+3+4





Data Transmission





ACK Transmission





Rec1+2





Ack1





Rec1





Rec2





Ack2





Rec3+4





Ack3





Rec3





Rec4





Ack4





Ack1+2





Ack3+4





Sources





Servers





Sinks





Figure 2. Upstream Routing





Join Message





Figure 1. Overall Architecture











Join Request











Join Request





Join Message
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Figure 6. Direct Test Topology
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Figure 3. Downstream Routing
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