JFS, A Serverless Distributed File System on Jini

Jianing Hu

Ming Xu

Abstract

In this paper we present a serverless distributed file system based on Jini (JFS). In contrast with traditional central server file systems, where all clients rely on a single server for file storage and management, in JFS any machine can store and manage a part of the whole file space. The goal of this approach is to provide better performance and scalability than central file systems. Our tests showed that this approach does have good scalability.

Introduction

[image: image1.wmf][image: image2.wmf][image: image3.wmf][image: image4.wmf]Traditional network file systems has been those bearing a single central file server, which all the client applications rely on for file service. The server stores all data and satisfies all clients' cache misses. As shown in figure 1, such a structure has some problems. First, since all clients compete for the resources on the server, performance and availability will degrade greatly as the number of client increases. Second, the server is a single point of failure, which, if dies, disables the whole system. All of the problems, performance, availability, scalability and reliability, are now being compensated for by system administrators by raising their budget – buying bigger disks, faster CPUs, fault tolerant hardware, etc. That pushes the system build and maintenance cost sky high.

One approach to solve these problems is to construct a serverless distributed file system, where there are multiple file servers, each stores a part of the whole file space, as shown in fugure 2. This system, in which data storage and access control are distributed to multiple servers, can provide high performance and availability while the system grows. The motivation to a multi-server system is simple and natural. Since storage is distributed, multiple clients that want to access different files might find their files are stored in different servers and therefore can access the files simultaneously without competing for the limited resource of a single central server. However, this fact credits to performance and scalability only under the assumption that the network can provides enough bandwidth. Switched local area networks such as ATM or Myrinet [Bode95] provide such scalable bandwidth and therefore make such serverless distributed file system possible.

The fact that multi-server system provides higher availability and reliability can be seen from the following scenario: if one of the machines that provide file storage dies for some reason, the others are not affected and therefore the other part of the file space is still available. Moreover, using fault tolerant technology like RAID [Patt88, Chen94], failure of one or more storage machines might not affect the availability of the whole system at all.

Now that file storage is distributed to multiple machines, the load of each machine is much less compared with the server in a traditional system. The load of each server decreases as more servers are added to provide storage. Therefore it is possible to use less powerful machines to take the place of costly file servers. The extreme of that approach is the "serverless" system, where there's no server at all. Instead, client machines are used to provide file storage and control.

In this paper we introduce a prototyped serverless file system that is based on Jini. It's named JFS which stands for Jini File System. This is a simple system used to show the applicability of a serverless system. Benchmarks of both file and directory performance are taken under different configurations. Those results showed the advantage of serverless system over central server system in scalability. Because of the limited time budget we have, reliability is not investigated and the prototype lacks some features that a full-fledged file system should have. However, we believe that the results have proved serverless system as a promising solution to the problems that traditional central server system faces.

System Overview and Design

[image: image5.wmf][image: image6.wmf]Figure 3 shows the structure of JFS. Client stands for client applications, not client machines. The Storage Services provide storage space. They have nothing to do with the semantics of JFS, which is provided by Directory Services.
 Directory Services know where each file actually resides. When a client wants to access a file, it first asks a Directory Service on which Storage Service that file is located and then communicates with the Storage Services to access the file, as shown in figure 4. Both the Storage Service and the Directory Service can run on client machines.

Figure 3 might have visually implied that the Client, Directory Service and Storage Service all run on different machine. However, that is not true. A client machine can host arbitrary number of Services and Clients, as long as the resource requirements of all are met. Figure 5 shows a simple JFS configuration where each machine act as a Client, Storage Server and Directory Server while Figure 6 shows another JFS configuration where each machine only act as some of those roles.

[image: image7.wmf][image: image8.wmf]Followed are several design issues that we have to take into consideration, the decisions we've made and the tradeoffs. The criteria we used to make these decisions include correctness, simplicity, and performance.

Location Transparency

JFS provides a single, uniform name space that is independent to the storage location.
 To achieve the location transparency and independence, we globally replicate a mount-mapping table, called mtmap, into every lookup service in Jini. Whenever a new storage server tries to join JFS, it will grab the group of JFS lookup service and registers itself into every JFS lookup service. This can be managed by Jini JoinManager.

The Directory Service can access this table by querying Jini lookup service. During path lookup, the Directory Service will decide which storage server it should contact by checking this global table. Because both the lookup service and directory service are duplicated, the failure of them will not impact the whole system.

Distribution policy

Another issue is how to distribute file storage. In particular, are all files under a directory stored in one Storage Service, or they can be distributed among arbitrary services? And, scaling down this problem: can a file be distributed between multiple Storage Services?

Generally Speaking, broader distribution offers better performance. For example, files under a certain directory, say, /bin, are more often used than files under other directories. If all those files are stored in one Storage Service, that service could possibly become a bottleneck of performance. If those files are distributed between multiple Storage Services, then the workload will be distributed, too, and bottleneck is avoided. This justification also fits for the case of single file. If a file that is often read is distributed between multiple Storage Services, the reading requests to this file might be dispatched to different Storage Services and therefore avoided bottleneck.

However, though broader distribution might offer better performance, its implementation is also complicated. Distributing files under one directory will make if more difficult to maintain directory consistency. Distributing a single file will make mutual exclusion more difficult to implement. Our choice is essentially the simplest one. We mount each Storage Service to a directory in JFS file space. A Storage Service is responsible for storing and managing all the files and subdirectories under its directory unless the subdirectory is mounted to another Storage Service. For example, a Storage Service, A, is mounted to /, another Storage Service, B, is mounted to /bin, then all files and subdirectories under /bin are stored in the machine on which B is running; all files and subdirectories under /, except those under /bin and /bin itself, are stored in the machine on which A is running.

Directory consistency

With multiple Directory Services running, consistency between them becomes a problem. All Directory Services should give the same picture of the file space. We have essentially two choices in designing Directory Service. One is to have each Directory Service keep the information of the whole file space and keep them consistent using some protocol. The other is to have each Directory Service keep only a part of the whole file space information and they as a whole form a picture of the whole file space.

The advantage of the first approach is better performance, since a Client that requests for file information of a particular file can get it from any Directory Service. On the contrary, in the second approach, such a request might need the cooperation of multiple Directory Services, which will degrade performance. However, if every Directory Service keeps a full picture of the whole file space, keeping the directory information consistent becomes a hard problem. It might have to require a Directory Service notify all its peers about a modification it makes to a directory, and before all its peers get notified, that directory should not be modified by any Directory Service. Building such a protocol is hard under Jini, without guaranteed message delivery and ordering. If we use the Jini transaction mechanism to implement, its performance is going to be bad due to the heavy overhead of the transaction mechanism.

The second approach is relatively easier to implement. In our prototype, we took a similar approach. The Directory Service only manages the highest level directory, namely, those mounted to a Storage Service by the system administrator. The real directory management of lower level directories is done by the Storage Service, which relies on the file system on which it is running to do that. In particular, each Storage Service is mounted to a JFS directory, and it maps the JFS directory to a local directory. Every operation to the JFS directory is passed to the local directory. For example, suppose a Storage Service maps JFS directory /usr to its local directory d:\usr, and a client wants to create a file named "foo" under /usr, then this request will be passed to d:\usr and a file named "foo" will be created under the local directory d:\usr. Each Directory Service keeps a mounting map which shows the mapping between Storage Services and JFS directories. All mounting maps are the same, and they can only be changed by the system administrator, who is responsible for their consistency.

This approach is simple to implement, but is has several disadvantages. One is that it relies on the underlying system to provide directory consistency, since it is the underlying system that is doing the real directory management. However, it's reasonable to assume the underlying system can keep directories consistent. The other disadvantage is by storing JFS files directly into local directory of the Storage Service, the JFS's semantics is determined partly by the underlying system. Another disadvantage also relates to storing JFS files into local directory. The owner of the machine on which the Storage Service is running has full access to the JFS files if no protection is provided. In our prototype we don't provide any kind of security. We assume all client machines are good. Those disadvantages, though undesirable, don't affect our goal to compare the serverless system with the central server system

Mutual Exclusion

The JFS semantics allows concurrent read and exclusive write. During the writing of a file, JFS has to guarantee that no other programs can access the same file. This mutual exclusion is achieved using the Jini lease mechanism. A lease is a ticket permitting an activity that is valid until some expiration time. Lease is granted by the Storage Service. Due to the difficulty for a service to contact a client in Jini, a Storage Service will never notify a lease holder that another client wants the lease. Therefore, when a client is holding a lease, the server can not pull the lease back before it expires. However, the server can refuse to renew the lease when the client asks.

Cache

We designed a token-based cache consistency scheme similar to Sprite, however, we only implemented partial write-caching lease functionality due to some technical issue using Jini distributed lease mechanism. We claim it does not affect the value of our result much, since the central file system simulated and JFS are equally affected being without cache, and our goal is to compare the relative performance of the two systems.

Implementation

There are three major components in the prototype system: the Directory Service, the Storage Service, and the Client. We encapsulated the directory access operation in JfsDir and the file access operation in JfsFile class for client application.

JfsDir provides interface for application to operate on a directory, including create, delete, and search. Similiarly, JfsFile provides methods for file operation. A Client holding a JfsFile instance can call its read method directly without any additional action. If it wants to call write, it must have called getLease sometime before and have never cancelled the lease since then. Before the lease is expired, the client can flush the write into the stable storage. The client initializes a LeaseRenewManager provided by Jini to manipulate a set of leases.

The Directory Service keeps the mounting map, which is a mapping between directory names and Storage Services. When it is requested by a Client for file information, it creates a JfsFile object to get the information. To avoid frequently constructing and freeing file objects, which degrades performance, it has a hashtable to cache recently created file objects. So when being asked for information of a particular file, it first check its cache to see if a matching file object is already there. If so, it uses that object to get the information. Only when it can not find a matching object in its cache does it creates a new object and get the information through that object. The cache is periodically cleared, to avoid excessive holding of file resource.

The Storage Service takes care of file storage and management. Because we are using Java/Jini on application level, we can not access system level resources, such as buffer cache. Hence, the Storage Service actually relies on local file system. It acts as a layer for JFS and it encapsulates the local file system. In Storage Service, we simulate a buffer cache in the file system, and provide synchronization for clients. One thread will periodically invoked to free the resources.

Evaluation

Evaluation Methodology

We evaluated the performance and scalability of JFS, and compared it with that of a central server system. For fairness, this system should also be a Jini based system. However, we can not find any existing Jini based file system by far. We finally decided to simulate a central server system using JFS by running only one Directory Service and one Storage Service on the same machine. However, this approach will affect the benchmark and give a result biased to JFS. This is because the machine used to run Services on is not as powerful as it should be as a file server in a traditional file system. We compensated for this by using the best machine we can find (a dual Pentium II system with 256MB memory) to run the service. In our benchmark this machine acted perfectly as a file server.

[image: image9.wmf]Comparisons were made between the results of different number of clients and different number of services. In each test we measured the performance by having the Client automatically generate some requests and time the processing of those requests. The Client would randomly pick up some files from the distributed file system and issue file I/O. By simply applying a random scheme, each client may access files from different storage servers. Since we wanted to time the processing of requests while all Clients were working simultaneously, we had to be careful to ensure that we got the correct result. One potential problem is that some data might be taken while not all Clients are running (e.g., some might be doing file I/O while others are just initializing themselves). To get the correct bandwidth, we made the Client to periodically log the bandwidth it measured. By having all Clients running long enough, we were confident that the data logged in the middle of running time was taken while all Clients were running.

Performance was measured in terms of bandwidth and the data from all Clients is added to get the aggregate bandwidth of the whole system. We did not only try different number of clients and servers, but also different accessing patterns, namely:

· Pure reading of small chunks of data (1KB)

· Pure reading of large chunks of data (100KB)

· Pure writing of small chunks of data (1KB)

Analysis

Figure 7 shows the aggregate bandwidth of all Clients in a 5 Storage Servers, 5 Directory Servers configuration, when the number of Clients increases from 1 to 5. This test is done in the small data read pattern, where each time only 1kb of data is read. Though the absolute performance is not good, figure 7 shows good scalability of bandwidth when the number of clients increases. This configuration scaled well because there were no bottleneck of file I/O. Given that the file I/O requests were generated randomly by the Client, it's unlikely that one server will be accessed by several Clients simultaneously. Presumably, if we continue adding clients but keep the number of servers the same, the bandwidth will soon stop scaling. On the other hand, if we continue adding servers while adding clients, the bandwidth will go on increasing. However, we could not have run a test to verify that since we didn't have access to more machines.

Figure 8 shows the same information for a one Storage Server, one Directory Server configuration, which is used to simulate a traditional central server system.

Both of the Servers were running on a powerful machine (dual Pentium II system with 256 MB memory), which give the system higher absolute performance compared to the one showed in figure 7. The bandwidth of one client in figure 8 is comparable to the total of 5 clients in figure 7. We intentionally chose the most powerful machine we can find to be the server to simulate the real scenario that traditional central file systems always have a very powerful machine as server. The difference in absolute performance is therefore not surprising. However, it’s clear from the graph that the central server system hardly scaled as the number of client increases, while the JFS system scales well. It is presumable that if we could have run the test on more machines, JFS will definitely get a better performance than the central server system.

[image: image10.wmf][image: image11.wmf]Figure 9 shows the aggregate bandwidth got in the same configuration as figure 7. The access pattern used is writing of small chunks of data. The bandwidth also scaled with the number of clients. The absolute performance is worse than in figure 7, because writing requires a lease, which increases overhead. Moreover, writing is exclusive, which means while one client is writing to a file, another client that want to write to the same file has to block. This also added to the overhead and therefore degraded the performance.

Figure 10 tells another story. It’s the same configuration as in figure 7, the only difference is the access pattern: data is now being read in 100kb chunks instead of 1kb ones.

[image: image12.wmf]The difference is great. Now the absolute performance is almost 7 times better, while still keep the good scalability. No doubt larger data block access is more efficient. One conclusion we can draw from the comparison of figure 7 and figure 8 is that if JFS has cache, which will then read data in big chunks, its absolute performance will also be good.

Future Work

We implemented a JFS prototype. The evaluation shows that this technology is promising to provide a good scalability. In this section we will describe some interesting future work on JFS.

Cache Consistency

The JFS prototype utilizes a token-based cache consistency scheme, however, only partial write-caching lease functionality on a per-file basis was implemented. In this prototype, all file operations are required to be done synchronously with the server, except write operation when write-caching lease being held. Read request will be told “try later” if a write-caching lease is held. In such case, the renew of write-caching lease will be refused and the read request will be satisfied later.

This prototype suffers the performance due to no read caching at client side. We are investigating Jini distributed leasing mechanism to provide both read-caching lease and write-caching lease. The basic idea is that each file has a single manager. When the first open operation on a file gets a storage server through a directory server, the file owner ship will be transferred to that directory server. Later on, if the storage server receives more open requests on that file from other directory servers, it will pass those requests to the file owner, whose proxy will be returned to the clients. Hence, the clients can contact each file’s manager directly and all operations on a file will be managed by a single directory server.

Before a client modifies a file, it must acquire write ownership of that file. The client sends a request to the file’s manager. Then the manager invalidates any other cached copies of that file (read-caching lease holders), updates its cache consistency information to indicate the new owner, and replies to the client, giving permission to write. The client holds write ownership until some other client reads or writes the file, at which point the manager revokes the ownership, forcing the client to flush any changes to stable storage. After that, the manager can forward the data to the new client.

Each file’s manager (directory server) can also use such information to achieve better cache cooperation policy, by forwarding a request from one client to another one who has the cached data.

The major challenge for us is how to invoke the client from service providers in Jini, when a directory server needs to invalidate read caching at some clients.

Fault Tolerance

JFS eliminates the single point of failure of traditional central server by distributing files into different storage servers. Additionally, multiple directory services and multiple lookup services in Jini provide higher availability. However, since storage servers are normally cheaper than the traditional central servers, partial failures on those machines are more likely to occur. Therefore, fault tolerance must be addressed well in JFS.

One way is to distribute the data storage across storage server disks by implementing a software RAID and properly select a stripe group among a large pool of storage servers. [Ande95] However, we are more interested in exploiting Jini Transaction technology.

Authentication and access permission

This is another feature that JFS prototype omitted intentionally. However, it’s critical to practical file systems.

Security

Besides traditional security issues, JFS raised another security problem in that its files are stored in client machines, which are tend to be more unsecured. To make it worse, the prototype save the file in JFS file space directly in a local directory, which means the owner of the client machine has all right to deal with those JFS files. To avoid this, security has to be provided. Encryption on the files stored in local directories is probably a must.

Distribution policy

Different distribution policy give different performance. To make our prototype simple, we chose the simplest policy, yet probably gives the worst performance. Changing distribution policy might arise problems like directory consistency, etc.

Conclusions

JFS implements a serverless distributed file system. This approach eliminates the central server bottleneck of traditional file systems and provides better performance and scalability. The system performance scales with the number of clients as long as a given portion of clients provide Storage Service.

The prototype doesn't have good absolute performance due to the lack of many important features for a practical system. But it has good scalability and succeeded in proving the serverless approach as a promising means to gain high performance, acalability, and availability at low cost. However, many work needs to be done to make it a practical system, and larger scale performance tests are desirable.

Reference:

[Ande95] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, Randolph Y. Wang Serverless Network File Systems. 5th Symposium on Operating Systems Principles, ACM Transactions on Computer Systems , 1995.

[Bode95] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. su. Myrinet – A Gigabit-per-Second Local-Area Network. IEEE Micro, pages 29-36, February 1995.

[Chen94] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson. RAID: High-Performance, Reliable Secondary Storage. ACM Computing Surveys, 26(2): 145-188, June 1994.

[Patt88] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks (RAID). In Internat. conf. on Management of Data, pages 109-116, June 1988.

[1] Jini Architectural Overview. http://www.sun.com/jini/whitepapers/
[2] Jini Technology Specification. http://www.sun.com/jini/specs/
[3] Online lecture notes for a course about Jini. http://www.eli.sdsu.edu/courses/spring99/cs696/notes/index.html

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

network

...

Figure 1

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

Network

...

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

...

Figure 2

Cheaper Storage Server

Powerful but expensive file Server

 Client

...

 Client

Directory

Service

Directory

Service

...

Storage

Service

Storage

Service

...

Network

Figure 3

Client

Directory

Service

Storage

Service

File name

Storage Service ID

Access file

Figure 4

Client

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Directory

Service

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Network

Figure 6

Directory

Service

Client

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Directory

Service

Client

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Directory

Service

Client

Storage

Service

� EMBED MS_ClipArt_Gallery ���

Network

Figure 5

� EMBED Excel.Sheet.8 ���

Figure 8

� EMBED Excel.Sheet.8 ���

Figure 7

� EMBED Excel.Sheet.8 ���

Figure 9

� EMBED Excel.Sheet.8 ���

Figure 10

� This is not totally true in our prototype, in which Storage Service also participate in directory management. We'll talk about this again later in this section.

� In the prototype, file naming does depend on the file system on which the Storage Service is running.

PAGE
5

[image: image13.wmf][image: image14.wmf][image: image15.wmf][image: image16.wmf][image: image17.wmf]5 Storage Servers, 5 Directory Servers

0

10

20

30

40

50

60

70

1

2

3

4

5

Client Numbers

Aggregate Small-write

Bandwidth(kb/s)

[image: image18.wmf]Single Storage Server, Single Directory Server

0

20

40

60

80

100

120

1

2

3

4

5

Client Numbers

Aggregate Small-Read

Bandwidth (kb/s)

[image: image19.wmf]5 Storage Servers, 5 Directory Servers

0

20

40

60

80

100

120

1

2

3

4

5

Client Numbers

Aggregate Small-Read

Bandwidth(kb/s)

[image: image20.wmf]5 Storage Servers, 5 Directory Servers

0

100

200

300

400

500

600

700

800

1

2

3

4

5

Client Numbers

Aggregate Large-Read

Bandwidth(kb/s)

[image: image21.wmf][image: image22.wmf][image: image23.wmf][image: image24.wmf]Single Storage Server, Single Directory Server

0

20

40

60

80

100

120

1

2

3

4

5

Client Numbers

Aggregate Small-Read

Bandwidth (kb/s)

[image: image25.wmf]5 Storage Servers, 5 Directory Servers

0

20

40

60

80

100

120

1

2

3

4

5

Client Numbers

Aggregate Small-Read

Bandwidth(kb/s)

[image: image26.wmf]5 Storage Servers, 5 Directory Servers

0

100

200

300

400

500

600

700

800

1

2

3

4

5

Client Numbers

Aggregate Large-Read

Bandwidth(kb/s)

[image: image27.wmf]5 Storage Servers, 5 Directory Servers

0

10

20

30

40

50

60

70

1

2

3

4

5

Client Numbers

Aggregate Small-write

Bandwidth(kb/s)

_987941060

_987942013

_987978290

_987982973.xls
Chart5

		45.68

		58.98

		62.86

		82.49

		95.58

Client Numbers

Aggregate Small-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet1

		single server

		19.16		25.61		23.98		45.08		80.32				1		80.32

		18.44		24.69		28.25		52.54						2		97.62

		19.04		22.46		37.76								3		89.99

		23.97		22.01										4		94.77

		14.38												5		94.99

		94.99		94.77		89.99		97.62		80.32

		5 servers, 5 dir server

		14.81		21.99		24.72		34.14		45.68				1		45.68

		14.4		28.01		19.04		24.84						2		58.98

		35.02		16.34		19.1								3		62.86

		14.93		16.15										4		82.49

		16.42												5		95.58

		95.58		82.49		62.86		58.98		45.68

		5 servers, 5 dir server, large read

		103.52		198.69		215.86		314.23		316.6				1		316.6

		97.45		171.27		148.35		192.87						2		507.1

		177.62		108.5		149.72								3		513.93

		121.52		123.73										4		602.19

		229.06												5		729.17

		729.17		602.19		513.93		507.1		316.6

Sheet1

		

Client Numbers

Aggregate Small-Read Bandwidth (kb/s)

Single Storage Server, Single Directory Server

Sheet2

		

Client Numbers

Aggregate Small-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet3

		

Client Numbers

Aggregate Large-Read Bandwidth

5 Storage Servers, 5 Directory Servers

		

		

_987996149.xls
Chart9

		25.66

		31.4

		35.4

		45.1

		58

Client Numbers

Aggregate Small-write Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet1

		single server

		19.16		-5.16		23.98		45.08		57.3				1		57.3

		18.44		24.69		28.25		52.54						2		60

		-12.35		22.46		9.07								3		61.3

		23.97		22.01										4		64

		14.38						-37.62								63.6

		63.6		64		61.3		60		57.3

		5 servers, 5 dir server

		14.81		4.09		5.42		6.56		25.66				1		25.66

		14.4		8.52		10.88		24.84						2		31.4

		-2.56		16.34		19.1								3		35.4

		14.93		16.15										4		45.1

		16.42												5		58

		58		45.1		35.4		31.4		25.66

		5 servers, 5 dir server, large read

		103.52		198.69		215.86		314.23		316.6				1		316.6

		97.45		171.27		148.35		192.87						2		507.1

		177.62		108.5		149.72								3		513.93

		121.52		123.73										4		602.19

		229.06												5		729.17

		729.17		602.19		513.93		507.1		316.6

Sheet1

		0

		0

		0

		0

		0

Client Numbers

Aggregate Small-Read Bandwidth (kb/s)

Single Storage Server, Single Directory Server

Sheet2

		0

		0

		0

		0

		0

Client Numbers

Aggregate Small-write Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet3

		0

		0

		0

		0

		0

		0

Client Numbers

Aggregate Large-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

		

		

_987987712.xls
Chart6

		316.6

		507.1

		513.93

		602.19

		729.17

Client Numbers

Aggregate Large-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet1

		single server

		19.16		25.61		23.98		45.08		80.32				1		80.32

		18.44		24.69		28.25		52.54						2		97.62

		19.04		22.46		37.76								3		89.99

		23.97		22.01										4		94.77

		14.38												5		94.99

		94.99		94.77		89.99		97.62		80.32

		5 servers, 5 dir server

		14.81		21.99		24.72		34.14		45.68				1		45.68

		14.4		28.01		19.04		24.84						2		58.98

		35.02		16.34		19.1								3		62.86

		14.93		16.15										4		82.49

		16.42												5		95.58

		95.58		82.49		62.86		58.98		45.68

		5 servers, 5 dir server, large read

		103.52		198.69		215.86		314.23		316.6				1		316.6

		97.45		171.27		148.35		192.87						2		507.1

		177.62		108.5		149.72								3		513.93

		121.52		123.73										4		602.19

		229.06												5		729.17

		729.17		602.19		513.93		507.1		316.6

Sheet1

		

Client Numbers

Aggregate Small-Read Bandwidth (kb/s)

Single Storage Server, Single Directory Server

Sheet2

		0

		0

		0

		0

		0

Client Numbers

Aggregate Small-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

Sheet3

		0

		0

		0

		0

		0

		0

Client Numbers

Aggregate Large-Read Bandwidth(kb/s)

5 Storage Servers, 5 Directory Servers

		

		

_987982769.xls
Chart3

		80.32

		97.62

		89.99

		94.77

		94.99

Client Numbers

Aggregate Small-Read Bandwidth (kb/s)

Single Storage Server, Single Directory Server

Sheet1

		single server

		19.16		25.61		23.98		45.08		80.32				1		80.32

		18.44		24.69		28.25		52.54						2		97.62

		19.04		22.46		37.76								3		89.99

		23.97		22.01										4		94.77

		14.38												5		94.99

		94.99		94.77		89.99		97.62		80.32

		5 servers, 5 dir server

		14.81		21.99		24.72		34.14		45.68				1		45.68

		14.4		28.01		19.04		24.84						2		58.98

		35.02		16.34		19.1								3		62.86

		14.93		16.15										4		82.49

		16.42												5		95.58

		95.58		82.49		62.86		58.98		45.68

		5 servers, 5 dir server, large read

		103.52		198.69		215.86		314.23		316.6				1		316.6

		97.45		171.27		148.35		192.87						2		507.1

		177.62		108.5		149.72								3		513.93

		121.52		123.73										4		602.19

		229.06												5		729.17

		729.17		602.19		513.93		507.1		316.6

Sheet1

		

Client Numbers

Aggregate Small-Read Bandwidth (kb/s)

Single Storage Server, Single Directory Server

Sheet2

		

Client Numbers

Aggregate Small-Read Bandwidth

5 Storage Servers, 5 Directory Servers

Sheet3

		

Client Numbers

Aggregate Large-Read Bandwidth

5 Storage Servers, 5 Directory Servers

		

		

_987942015

_987978200

_987942014

_987942011

_987942012

_987942010

_987941058

_987941059

_987941057

