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Abstract

The Internet has led to the development of on-line markets, and computer scien-
tists have designed various auction algorithms, as well as automated exchanges for
standardized commodities; however, they have done little work on exchanges for com-
plex nonstandard goods.

We present an exchange system for trading complex goods, such as used cars or
nonstandard financial securities. The system allows traders to represent their buy and
sell orders by multiple attributes; for example, a car buyer can specify a model, options,
color, and other desirable features. Traders can also provide complex price constraints,
along with preferences among acceptable trades; for instance, a car buyer can specify
dependency of an acceptable price on the model, year of production, and mileage.

We describe the representation and indexing of orders, and give algorithms for
fast identification of matches between buy and sell orders. The system identifies the
most preferable matches, which maximize trader satisfaction; it allows control over the
trade-off between speed and optimality of matching. It supports markets with up to
300,000 orders, and processes hundreds of new orders per second.

Keywords: E-commerce, exchange markets, indexing and retrieval, best-first search.

1 Introduction

The growth of the Internet has led to the development of electronic markets, and economists
expect that it will play an increasingly vital role in both wholesale and retail transac-
tions [Feldman, 2000]; the Internet marketplaces include bulletin boards, auctions, and
exchanges [Klein, 1997; Turban, 1997; Wrigley, 1997; Bakos, 2001].

Electronic bulletin boards help buyers and sellers to find each other; however, they often
require customers to invest time into searching among multiple ads, and many buyers prefer
on-line auctions, such as eBay (www.ebay.com). Auctions have their own problems, including
significant computational costs, lack of liquidity, and asymmetry between buyers and sellers.
Exchange-based markets support fast-paced trading and ensure symmetry between buyers
and sellers; however, they require rigid standardization of tradable items. For example, the
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New York Stock Exchange allows trading of about 3,100 securities, and a buyer or seller
must indicate a specific item, such as ibm stock.

For most goods, the description of a desirable trade is more complex; for instance, a car
buyer needs to specify a model, options, color, and other desirable features. An exchange
for nonstandard goods should satisfy the following requirements:

• Allow complex constraints in specifications of buy and sell orders.
• Support fast-paced trading for markets with millions of orders.
• Include optimization techniques that maximize traders’ satisfaction.

We have developed an automated exchange for complex goods, which allows traders to
represent buy and sell orders by multiple attributes. In particular, we have defined the related
trading semantics [Hu, 2002], created indexing structures for fast identification of matches
between buy and sell orders [Johnson, 2001; Fink et al., 2004], and analyzed the scalability
of the developed system [Johnson, 2001]. We now give algorithms for fast identification of
most preferable matches, which maximize the satisfaction of traders.

2 Previous work

Economists and computer scientists have studied a variety of trading models. The related
computer science research has been focused on effective auction systems, optimal match-
ing in various auctions, and general-purpose systems for auctions and exchanges. It has
led to successful Internet auctions, such as eBay (www.ebay.com) and Yahoo Auctions
(auctions.yahoo.com), as well as on-line exchanges, such as Island (www.island.com) and
NexTrade (www.nextrade.com). Recently, researchers have developed several combinatorial
auctions, which allow buying and selling sets of commodities rather than individual items.

Combinatorial auctions. A combinatorial auction allows bidding on a set of items; for
example, a car buyer can bid on a red Mustang and white Camaro for a total price of $35,000.
An advanced auction may allow disjunctions; for instance, a buyer may specify that she wants
either a red Mustang and white Camaro or, alternatively, two silver Corvettes. On the other
hand, standard combinatorial auctions do not allow incompletely specified items, such as a
Mustang of any color.

Rothkopf et al. [1998] gave a detailed analysis of combinatorial auctions and described
semantics of bids that allowed fast matching. Nisan discussed alternative bid semantics,
formalized the problem of searching for optimal and near-optimal matches, and proposed a
linear-programming solution [Nisan, 2000; Lavi and Nisan, 2000]. Zurel and Nisan [2001]
developed a system for finding near-optimal matches based on a combination of approximate
linear programming with optimization heuristics. It quickly cleared an auction with 1,000
items and 10,000 bids, and its average approximation error was less than 1%.

Sandholm [1999] developed several algorithms for one-seller combinatorial auctions, and
showed that they scaled to a market with about 1,000 bids. Sandholm and his colleagues later
improved the original algorithms and implemented a system that processed several thousand
bids [Sandholm, 2000a; Sandholm and Suri, 2000; Sandholm et al., 2001a]. They developed
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a mechanism for determining a trader’s preferences and converting them into a compact bid
representation [Conen and Sandholm, 2001]. They also described several special cases of bid
processing that allowed polynomial solutions, proved the np-completeness of more general
cases, and tested various heuristics for np-complete cases [Sandholm et al., 2001b].

Sakurai et al. [2000] developed an algorithm for finding near-optimal matches in com-
binatorial auctions based on a synergy of iterative-deepening A* with limited-discrepancy
search; it processed auctions with up to 5,000 bids, and its approximation error was un-
der 5%. Hoos and Boutilier [2000] applied stochastic local search to finding near-optimal
matches; it cleared auctions with up to 500 items and 10,000 bids. Akcoglu et al. [2000] rep-
resented an auction as a graph; its nodes were bids, and its edges were conflicts between bids.
This representation led to a linear-time approximation algorithm for clearing the auction.

Fujishima et al. [1999a; 1999b] proposed an approach for enhancing standard auction
rules, analyzed trade-offs between optimality and running time, and presented two related
algorithms. The first algorithm ensured optimal matching and scaled to about 1,000 bids,
whereas the second found near-optimal matches for a market with 10,000 bids.

Leyton-Brown et al. [2000] investigated combinatorial auctions that allowed bidders to
specify a number of items; for instance, a buyer could bid on ten identical cars. They de-
scribed a branch-and-bound search algorithm for finding optimal matches, which quickly
processed markets with fifteen item types and 2,500 bids. Lehmann et al. [1999] studied
heuristic algorithms for combinatorial auctions and identified cases that allowed truthful
bidding, which meant that auction participants did not benefit from providing incorrect in-
formation about their intended maximal bids. Gonen and Lehmann [2000, 2001] studied
branch-and-bound heuristics for bid processing and integrated them with linear program-
ming. Mu’alem and Nisan [2002] described conditions for ensuring truthful bidding, and
proposed approximation algorithms for clearing the auctions that satisfied these conditions.

Yokoo et al. [2001a, 2001b] considered the problem of false-name bids, that is, manipula-
tion of prices by creating fictitious auction participants and submitting bids without intention
to buy; they proposed auction rules that discouraged such bids. Suzuki and Yokoo [2002]
studied another security problem; they investigated techniques for clearing an auction with-
out revealing bids to the auctioneer. They described a distributed dynamic-programming
algorithm that found matches without revealing the bids to auction participants or any
central auctioneer; however, its complexity was exponential in the number of items.

Andersson et al. [2000] compared the main techniques for combinatorial auctions and
proposed an integer-programming representation that allowed richer bid semantics. Wur-
man et al. [2001] analyzed a variety of previously developed auctions and identified the main
components of an automated auction, including bid semantics, clearing mechanisms, rules
for placing and canceling bids, and policies for hiding information from other bidders. Re-
searchers have also applied auction algorithms to nonfinancial settings, such as scheduling
problems [Wellman et al., 2001], management of resources in wide-area networks [Chen et
al., 2001], and co-ordination of services by different companies [Preist et al., 2001].

The reader may find a detailed survey of combinatorial auctions in the review article by
de Vries and Vohra [2003]. Although the developed systems can efficiently process several
thousand bids, their running time is super-linear in the number of bids, and they do not
scale to larger markets.
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Advanced semantics. Several researchers have studied techniques for specifying depen-
dency of item price on the number and quality of items. They have also investigated tech-
niques for processing “flexible” bids, specified by hard and soft constraints.

Che [1993] analyzed auctions that allowed negotiating not only price but also quality of a
commodity. A bid in these auctions was a function that specified a desired trade-off between
price and quality. Cripps and Ireland [1994] considered a similar setting and suggested
several strategies for bidding on price and quality.

Sandholm and Suri [2001b] described a mechanism for imposing nonprice constraints in
combinatorial auctions, such as budget constraints and limit on the number of winners. They
also studied auctions that allowed bulk discounts [Sandholm and Suri, 2001a]; that is, they
enabled a bidder to specify dependency of item price on order size. Lehmann et al. [2001]
also considered dependency of price on order size, showed that the problem of finding the
best matches was np-hard, and developed a greedy approximation algorithm.

Jones extended the semantics of combinatorial auctions and allowed buyers to use com-
plex constraints [Jones, 2000]; for instance, a car buyer could bid on a vehicle that was
less than three-years old, or on the fastest available vehicle. They suggested semantics for
compact description of complex bids; however, they did not allow complex constraints in sell
orders. They implemented an algorithm that found near-optimal matches, which scaled to
1,000 bids.

Bichler discussed a market that would allow negotiations on any attributes of a com-
modity [Bichler et al., 1999; Bichler, 2000a]; however, he did not propose any computational
solution. Boutilier and Hoos [2001] developed a propositional language for bids in combi-
natorial auctions, which allowed a compact representation of most bids. Conen and Sand-
holm [2002] described a system that elicited the preferences of an auction participant and
helped to specify appropriate bids.

This initial work leaves many open problems, which include the use of complex constraints
with general preference functions, symmetric treatment of buy and sell orders, and design
of efficient matching algorithms for advanced semantics.

Exchanges. Economists have extensively studied traditional stock exchanges; for example,
see the historical review by Bernstein [1993] and the textbook by Hull [1999]. They have
focused on exchange dynamics rather than on efficient algorithms [Cason and Friedman, 1996;
Cason and Friedman, 1999; Bapna et al., 2000]. Several computer scientists have also studied
trading dynamics and proposed algorithms for finding the market equilibrium [Reiter and
Simon, 1992; Cheng and Wellman, 1998; Andersson and Ygge, 1998].

Auction researchers have traditionally viewed exchanges as a variety of auction markets,
called continuous double auctions. Wurman et al. [1998a] proposed a theory of exchange
markets and implemented a general-purpose system for auctions and exchanges. Sandholm
and Suri [2000] developed an exchange for combinatorial orders, but it could not support
markets with more than 1,000 orders. Kalagnanam et al. [2000] investigated techniques
for placing orders with complex constraints and identifying matches between them, but the
resulting system did not scale beyond a few thousand orders.

The related open problems include development of scalable systems for large combinato-
rial markets, as well as support for orders with complex constraints.
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General-purpose systems. Computer scientists have developed several systems for auc-
tions and exchanges, which vary from specialized markets to general-purpose tools for build-
ing new markets. The reader may find a survey of most systems in the review articles by
Guttman et al. [1998a, 1998b] and Maes et al. [1999].

Kumar and Feldman [1998] built an Internet-based system that supported several stan-
dard auctions, including open-cry, single-round sealed-bid, and multiple-round auctions.
Chavez and his colleagues designed an on-line agent-based auction; they built intelligent
agents that negotiated on behalf of buyers and sellers [Chavez and Maes, 1996; Chavez et
al., 1997]. Vetter and Pitsch [1999] constructed a more flexible agent-based system that sup-
ported several types of auctions. Preist [1999a; 1999b] developed a similar distributed system
for exchange markets. Bichler designed an electronic brokerage service that helped buyers
and sellers to find each other and negotiate through auction mechanisms [Bichler et al., 1998;
Bichler and Segev, 1999].

Benyoucef et al. [2001] considered the problem of simultaneous negotiations for interde-
pendent goods in multiple markets, and applied workflow management to model the nego-
tiation process. Their system helped a bidder purchase a combinatorial package of goods
in noncombinatorial markets. Boyan et al. [2001] also built a system for simultaneous bid-
ding in multiple auctions; they applied beam search with simple heuristics to the problem
of buying complementary goods in different auctions. Babaioff and Nisan [2001] studied the
integration of multiple auctions across a supply chain, and proposed a mechanism for sharing
information among such auctions.

Wurman and Wellman built a general-purpose system, called the Michigan Internet Auc-
tionBot, that supported a variety of auctions [Wellman, 1993; Wellman and Wurman, 1998;
Wurman et al., 1998b; Wurman and Wellman, 1999a]; however, they restricted the auction
participants to simple fully specified bids. Their system included scheduler and auction-
eer procedures, related databases, and advanced interfaces. Hu and his colleagues created
agents for bidding in the Michigan Internet AuctionBot; they used regression and learn-
ing techniques to predict the behavior of other bidders [Hu et al., 1999; Hu et al., 2000;
Hu and Wellman, 2001]. Wurman [2001] considered the problem of building general-purpose
agents that simultaneously bid in multiple auctions.

Parkes built a system for combinatorial auctions, but it worked only for markets with up
to one hundred bidders [Parkes, 1999; Parkes and Ungar, 2000a]. Sandholm [2000a; 2000b]
created a more powerful system, configurable for a variety of markets, and showed its ability
to process several thousand bids.

All these systems have the same limitation as commercial on-line exchanges; specifically,
they require fully specified bids and do not support the use of complex constraints.

3 General exchange model

We describe a general model of trading complex commodities, which allows hard and soft
constraints in the order specification.
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Any-color Mustang,

0 miles,
made in 2003,

Sell:

$18,000$19,000
at most 20,000 miles,

made after 2000,
Red Mustang,

Buy: Sell:
Mustang
$18,000

$18,000

Fill:
Mustang

made in 2003,
Red Mustang,

Fill:

0 miles,
$18,500

Buy:
Mustang
$19,000

Mustang
$17,000

Sell:

(b) Choosing the best-price match.(a) Matching orders and the resulting trade.
Figure 1: Examples of trades in a used-car market.

Example. We begin with an example of an exchange for trading new and used cars. To
simplify this example, we assume that a trader can describe a car by four attributes: model,
color, year, and mileage. A prospective buyer can place a buy order, which includes a
description of the desired vehicle and a maximal acceptable price; for instance, she may
indicate that she wants a red Mustang, made after 2000, with at most 20,000 miles, and she
is willing to pay $19,000. Similarly, a seller can place a sell order; for instance, a dealer may
offer a brand-new Mustang of any color for $18,000.

An exchange system must search for matches between buy and sell orders, and generate
corresponding fills, that is, transactions that satisfy both buyers and sellers. In the previous
example, it must determine that a brand-new red Mustang for $18,500 satisfies both buyer
and dealer (Figure 1a). If the system finds several matches for an order, it should choose
the match with the best price; for instance, the buy order in Figure 1(b) should trade with
the cheaper of the two sell orders.

Market attributes. A specific market includes a certain set of items that can be bought
and sold, defined by a list of attributes. As a simplified example, we describe a car by four
attributes: model, color, year, and mileage. An attribute may be a set of explicitly listed
values, such as car model; an interval of integers, such as year; or an interval of real values,
such as mileage. We assume that the current year is 2003, and that the oldest available car
was made in 1901, which means that the years of production range from 1901 to 2003.

Cartesian products. When a trader makes a purchase or sale, she has to specify a set
of acceptable values for each attribute. She specifies some set I1 of values for the first
attribute, some set I2 of values for the second attribute, and so on. The resulting set I of
acceptable items is the Cartesian product I1 × I2 × ... × In. For example, suppose that a
car buyer is looking for a Mustang or Camaro, the acceptable colors are red and white, the
car should be made after 2000, and it should have at most 20,000 miles; then, the item set
is I = {Mustang, Camaro}×{red, white}×[2001..2003]×[0..20,000]. A trader can use specific
values or ranges for each attribute; for instance, she can specify a year as 2003 or as a range
from 2001 to 2003. A trader can also specify a list of several values or ranges; for example,
she can specify colors as {red, white}, and years as {[1901..1950], [2001..2003]}.

Unions and filters. A trader can define an item set I as the union of several Cartesian
products. For example, if she wants to buy either a used red Mustang or a new red Camaro,
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she can specify the set I = {Mustang}×{red}×[2001..2003]×[0..20,000] ∪ {Camaro}×{red}×
{2003}× [0..200]. The trader can also indicate that she wants to avoid certain items by
providing a filter function, which is a Boolean function on the set I that gives false for
undesirable items. A filter is encoded by a C++ procedure that inputs an item description
and returns true or false.

Price functions. A trader should specify a limit on the acceptable price; for instance,
a buyer may be willing to pay $18,500 for a Mustang, but only $17,500 for a Camaro.
Furthermore, she may offer an extra $500 if a car is red, and subtract $1 for every ten miles
on its odometer. Formally, a price limit is a real-valued function defined on the set I; for each
item i ∈ I, it gives a certain limit Price(i). If a price function is a constant, it is specified
by a numeric value; else, it is encoded by a C++ procedure that inputs an item and outputs
the corresponding limit. For a buyer, Price(i) is the maximal acceptable price; for a seller,
it is the minimal acceptable price.

Order sizes. If a trader wants to buy or sell several identical items, she can include their
number in the order specification. We assume that an order size is a natural number, thus
enforcing discretization of continuous commodities. The trader can specify not only an
overall order size but also a minimal acceptable size. For instance, suppose that a Toyota
wholesale agent is selling one hundred cars, and she works only with dealerships that are
buying at least twenty vehicles. Then, she may specify that the overall size of her order
is one hundred, and the minimal size is twenty. In addition, a trader can indicate that a
transaction size must be divisible by a certain number, called a size step; for example, the
wholesale agent may specify that she is selling cars in blocks of ten. To summarize, an order
includes six elements:

• Item set, I = I11×...×I1n ∪ ... ∪ Ik1×...×Ikn

• Filter function, Filter : I → {true, false}
• Price function, Price : I → R
• Overall order size, Max
• Minimal acceptable size, Min
• Size step, Step

Fills. When a buy order matches a sell order, the corresponding parties can complete a
trade; we use the term fill to refer to the traded items and their price (Figure 1). We define
a fill by a specific item i, its price p, and the number of purchased items, denoted size. If
(Ib,Priceb,Maxb,Minb, Stepb) is a buy order, and (Is,Prices,Maxs,Mins, Steps) is a matching
sell order, then a fill (i, p, size) must satisfy the following conditions:

• i ∈ Ib ∩ Is.
• Prices(i) ≤ p ≤ Priceb(i).
• max(Minb,Mins) ≤ size ≤ min(Maxb,Maxs).
• size is divisible by Stepb and Steps.
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fill-price(Priceb,Prices, i)
The algorithm inputs the price functions of a buy and sell order, and an item i that matches both orders.

If Priceb(i) ≥ Prices(i), then return Priceb(i)+Prices(i)
2 ; else, return none (no acceptable price)

fill-size(Maxb,Minb,Stepb,Maxs,Mins,Steps)
The algorithm inputs the size specification of a buy order, Maxb, Minb, and Stepb,

and the size specification of a matching sell order, Maxs, Mins, and Steps.

Let step be the least common multiple of Stepb and Steps

size := bmin(Maxb,Maxs)
step c · step

If size ≥ max(Minb,Mins), then return size; else, return none (no acceptable size)

Figure 2: Computing the price (fill-price) and size (fill-size) of a fill for two matching orders.

If the buyer’s price limit is larger than the seller’s limit, we split the difference between
the buyer and seller. Furthermore, we assume that the buyer and seller are interested in
trading at the maximal size, or as close to the maximal size as possible. In Figure 2, we give
procedures that determine the price and size of a fill.

Quality functions. Buyers and sellers may have preferences among acceptable trades,
which depend on a specific item i and its price p; for instance, a buyer may prefer a Mustang
for $18,000 to a Camaro for $17,000. We represent preferences by a real-valued function
Qual(i, p), encoded by a C++ procedure, that assigns a numeric quality to each pair of an
item and price. Larger values correspond to better transactions; that is, if Qual(i1, p1) >
Qual(i2, p2), then trading i1 at price p1 is better than trading i2 at p2. Each trader can
use her own quality functions and specify different functions for different orders. Note that
buyers look for low prices, whereas sellers prefer to get as much money as possible, which
means that quality functions must be monotonic on price:

• Buy monotonicity: If Qualb is a quality function for a buy order, and p1 ≤ p2,
then, for every item i, we have Qualb(i, p1) ≥ Qualb(i, p2).

• Sell monotonicity: If Quals is a quality function for a sell order, and p1 ≤ p2,
then, for every item i, we have Quals(i, p1) ≤ Quals(i, p2).

We do not require a trader to specify a quality function for each order; by default, the quality
is the difference between the price limit and actual price, divided by the price limit:

• Default for buy orders: Qualb(i, p) = Price(i)−p
Price(i)

.

• Default for sell orders: Quals(i, p) = p−Price(i)
Price(i)

.

Monotonic attributes. The value of a commodity may monotonically depend on some of
its attributes; for example, the quality of a car decreases with an increase in mileage. When
an attribute has this property, we say that it is monotonically decreasing. To formalize
this concept, suppose that a market has n attributes, and we consider the mth attribute.

8



We denote attribute values of a given item by i1, ..., im, ..., in, and a transaction price by p.
The mth attribute is monotonically decreasing if all price and quality functions satisfy the
following constraints:

• Price monotonicity: If Price is a price function for a buy or sell order, and im ≤ i′m,
then, for every two items (i1, ..., im−1, im, im+1, ..., in) and (i1, ..., im−1, i

′
m, im+1, ..., in),

we have Price(i1, ..., im, ..., in) ≥ Price(i1, ..., i
′
m, ..., in).

• Buy monotonicity: If Qualb is a quality function for a buy order, and im ≤ i′m,
then, for every two items (i1, ..., im−1, im, im+1, ..., in) and (i1, ..., im−1, i

′
m, im+1, ..., in),

and every price p, we have Qualb(i1, ..., im, ..., in, p) ≥ Qualb(i1, ..., i
′
m, ..., in, p).

• Sell monotonicity: If Quals is a quality function for a sell order, and im ≤ i′m,
then, for every two items (i1, ..., im−1, im, im+1, ..., in) and (i1, ..., im−1, i

′
m, im+1, ..., in),

and every price p, we have Quals(i1, ..., im, ..., in, p) ≤ Quals(i1, ..., i
′
m, ..., in, p).

Similarly, if the quality of commodities grows with an increase in an attribute value, we say
that the attribute is monotonically increasing; for example, the quality of a car increases
with the year of production.

4 Indexing structure

The system includes a central structure for indexing of orders with fully specified items. If
we can put an order into this structure, we call it an index order. If an order includes a
set of items, rather than a fully specified item, the system adds it to an unordered list of
nonindex orders. The indexing structure allows fast retrieval of index orders that match a
given order; however, the system does not identify matches between two nonindex orders.

Main loop. In Figure 3, we show the system’s main loop, which alternates between pro-
cessing new orders and identifying matches for old nonindex orders. When the system
receives a new order, it immediately searches for matching index orders. If there are no
matches, and the new order is an index order, then the system adds it to the indexing struc-
ture. Similarly, if the system fills only part of a new index order, it stores the remaining
part in the indexing structure. If it gets a nonindex order and does not find a complete fill,
it adds the unfilled part to the list of nonindex orders.

After processing all new orders, the system tries to fill old nonindex orders. For each
nonindex order, it identifies matching index orders. For example, suppose that the market
includes an order to buy any red Mustang, and that a dealer places an order to sell a red
Mustang, made in 2003, with zero miles. If the market has no matching index orders, the
system adds this new order to the indexing structure. After processing all new orders, it
tries to fill the nonindex orders, and determines that the dealer’s order is a match for the
old order to buy any red Mustang.
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search for matching index orders
For every nonindex order,Process every new order in

the queue of incoming orders

Figure 3: Main loop of the system.
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Figure 4: Indexing tree with seventeen sell orders. We illustrate the retrieval of matches for an
order to buy four Camries or Mustangs made after 2000. We show the matching nodes by thick
boxes, and the retrieved orders by thick circles.

Indexing trees. The indexing structure consists of two identical trees: one is for buy
orders, and the other is for sell orders. In Figure 4, we show a tree for sell orders; its depth
equals the number of market attributes, and each level corresponds to one of the attributes.
The root node encodes the first attribute, and its children represent different values of this
attribute. The nodes at depth 1 divide the orders by the second attribute, and each node
at depth 2 corresponds to specific values of the first two attributes. In general, a node at
depth (i − 1) divides orders by the values of the ith attribute, and each node at depth i
corresponds to all orders with specific values of the first i attributes. If some items are not
currently on market, the tree does not include the corresponding nodes.

Every nonleaf node includes a red-black tree that indexes its children by values of the
corresponding attribute, which supports fast addition and deletion of a child, retrieval of a
child with a given value, and identification of all children with values in a given range. Every
leaf node includes orders with identical items, sorted by price from the best to the worst;
that is, the system sorts buy orders from the highest to the lowest price limit, and sell orders
from the lowest to the highest price. We use a red-black tree to maintain this sorting, which
allows fast insertion and deletion of orders.
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Summary data. The nodes of an indexing tree include summary data that help to re-
trieve matching orders. Every node contains the following data about the orders in the
corresponding subtree:

• The minimal and maximal price of orders in the subtree.
• The minimal and maximal value for each monotonic attribute.
• The time of the latest addition of a new order.

For example, consider node 6 in Figure 4; the subtree rooted at this node includes nine
orders. If the newest of them was placed at 2pm, the summary data in node 2 are as follows:

• Prices: $13,000..21,000 • Mileages: 5,000..45,000
• Years: 1999..2003 • Latest addition: 2pm

The system also keeps track of the “age” of each order, and uses it to avoid repetitive
search for matches among the same index orders. Every order has two time stamps; the first
is the time of placing the order, and the second is the time of the last search for matches.

Additions and deletions. When a trader places an index order, the system adds it to the
corresponding leaf, and then updates the summary values of the ancestor nodes (Figure 5).
If the leaf is not in the tree, the system adds the appropriate new branch.

When an index order is filled, the system removes it from the corresponding leaf, and
then updates the summary values of the ancestor nodes (Figure 5). If the leaf does not
include other orders, the system deletes it from the tree. If the deleted node is the only leaf
in some subtree, the system removes this subtree; for example, the deletion of order J in
Figure 4 leads to the removal of nodes 7, 13, and 20.

5 Search for matches

We describe two algorithms that identify matches for a given order; the first algorithm is
based on depth-first search in an indexing tree, and the second is best-first search. In Fig-
ure 6, we present the notation for the order and node structures used by the algorithms. We
give the depth-first algorithm in Figures 7 and 8, and the best-first algorithm in Figures 9–11.

5.1 Depth-first search

The depth-first algorithm consists of two steps; it finds the leaves of an indexing tree that
match a given order (Figure 7), and selects the best matching orders in these leaves (Figure 8).

Matching leaves. The algorithm in Figure 7 retrieves the matching leaves for a given
item set, represented by a union of Cartesian products and a filter function.

The product-leaves subroutine finds the matching leaves for one Cartesian product
using depth-first search in the indexing tree. It identifies all children of the root that match
the first element of the Cartesian product, and then recursively processes the respective
subtrees. For example, suppose that a buyer is looking for a Camry or Mustang made after
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add-update(leaf)
The algorithm inputs the leaf that contains a newly added order.

Set new-min to the lowest price among leaf ’s orders
node := leaf
While node 6= none and Min-Price[node] > new-min:

Min-Price[node] := new-min
node := Parent[node]

del-update(leaf)
The algorithm inputs the leaf that contained a deleted order.

old-min = Min-Price[leaf]
Set Min-Price[leaf] to the lowest price among leaf ’s orders
node := leaf
While Min-Price[node]>old-min and Parent[node] 6=none and Min-Price[Parent[node]]=old-min:

node := Parent[node]
Min-Price[node] := +∞
For every child of node:

If Min-Price[node] > Min-Price[child], then Min-Price[node] := Min-Price[child]

Figure 5: Updating the minimal price after addition of a new order (add-update) and deletion
of an order (del-update); the update of the other summary data is similar.

2000, with any color and mileage, and the tree of sell orders is as shown in Figure 4. The
subroutine determines that nodes 2 and 4 match the model, and then processes the two
respective subtrees. It identifies three matching nodes for the second attribute, three nodes
for the third attribute, and finally four matching leaves; we show these nodes by thick boxes.

If the system already tried to find matches for a given order during the previous execution
of the main loop, it skips the subtrees that have not been modified since the previous search.
If the order includes a union of several Cartesian products, the system calls the product-
leaves subroutine for each product. If the order includes a filter function, the system uses
it to prune inappropriate leaves.

If an order matches a large number of leaves, the retrieval may take considerable time. To
prevent this problem, we can impose a limit on the number of retrieved leaves; for instance,
if we allow at most three leaves, and a buyer places an order for any Camry, then the system
retrieves the three leftmost leaves in Figure 4. We use this limit to control the trade-off
between speed and quality of matches; a small limit ensures the efficiency but reduces the
chances of finding the best match.

Best matches. After the system identifies matching leaves, it selects the best matching
orders in these leaves, according to the quality function of the given order. In Figure 8, we
give an algorithm that identifies the highest-quality matches and completes the respective
trades. It arranges the leaves in a priority queue by the quality of the best unprocessed match
in a leaf. At each step, the algorithm processes the best available match; it terminates after
it fills the given order or runs out of matches.

12



Elements of the order structure:
Price[order] price function
Qual[order] quality function
Filter[order] filter function
Max[order] overall order size
Min[order] minimal acceptable size
Step[order] size step
Place-Time[order] time of placing the order
Search-Time[order] time of the last search for matches

Elements of the indexing-tree node structure:

Min-Price[node] minimal price of orders in the node’s subtree
Max-Price[node] maximal price of orders in the node’s subtree
Depth[node] depth of the node in the indexing tree
Product-Num[node] number of the matching Cartesian product in a given item set
Quality[node] for a nonleaf node, the quality estimate;

for a leaf, the quality of the best-price unprocessed order

Additional elements of the leaf-node structure:
Item[node] item in the leaf’s orders
Current-Order[node] best-price unprocessed order in the leaf

Figure 6: Notation for the main elements of the structures that represent orders and nodes of an
indexing tree. Note that the leaf-node structure includes the five elements of the node structure
and two additional elements. We use this notation in the pseudocode in Figures 7–11.

matching-leaves(order, root)
The algorithm inputs an order and the root of an indexing tree.

We denote the order’s item set by I11×...×I1n ∪ ... ∪ Ik1×...×Ikn.

Initialize an empty set of matching leaves, denoted leaves
For l from 1 to k, call product-leaves(Il1×...×Iln,Filter[order],Search-Time[order], root, leaves)
Return leaves

product-leaves(Il1×...×Iln,Filter,Search-Time,node, leaves)
The subroutine inputs a Cartesian product Il1× ...×Iln, a filter function, the previous-search time, a

node of the indexing tree, and a set of leaves. It finds the matching leaves in the node’s subtree, and

adds them to the set of leaves.

If Search-Time is larger than node’s time of the last order addition, then terminate
If node is a leaf and Filter(Item[node]) = true, then add node to leaves
If node is not a leaf:

Identify all children of node that match IDepth[node]+1

For each matching child, call product-leaves(Il1×...×Iln,Filter,Search-Time, child, leaves)

Figure 7: Retrieval of matching leaves. The algorithm identifies the leaves of an indexing tree that
match the item set of a given order. The product-leaves subroutine uses depth-first search to
retrieve the matching leaves for one Cartesian product.
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leaf-matches(order, leaves)
The algorithm inputs an order and matching leaves of an indexing tree.

Initialize an empty priority queue of matching leaves, denoted queue,
which prioritizes the leaves by the quality of the best-price unprocessed order

For each leaf in leaves:
Set Current-Order[leaf] to the first order among leaf ’s orders, sorted by price
Call leaf-priority(order, leaf, queue)

While Max[order] ≥ Min[order] and queue is nonempty:
Set leaf to the highest-priority leaf in queue, and remove it from queue
match := Current-Order[leaf]
Set Current-Order[leaf] to the next order among leaf ’s orders, sorted by price
Call trade(order,match)
Call leaf-priority(order, leaf, queue)

If Max[order] < Min[order], then remove order from the market
Else, set Search-Time[order] to the current time

leaf-priority(order, leaf, queue)
The subroutine inputs the given order, a matching leaf, and the priority queue of leaves. If the order’s

price matches the price of the leaf’s best-price unprocessed order, then the leaf is added to the queue.

match := Current-Order[leaf]
If match = none, then terminate (no unprocessed orders in leaf)
If order is a buy order, then p := fill-price(Price[order],Price[match], Item[leaf])
Else, p := fill-price(Price[match],Price[order], Item[leaf])
If p = none, then terminate (no orders with acceptable price)

Quality[leaf] := Qual[order](Item[leaf], p)
Add leaf to queue, prioritized by Quality

trade(order,match)
The subroutine inputs the given order and the highest-quality order with matching item and price.

If the sizes of these two orders match, the subroutine completes the trade between them.

If Search-Time[order] > Place-Time[match], then terminate
size := fill-size(Max[order],Min[order],Step[order],Max[match],Min[match],Step[match])
If size = none, then terminate
Complete the trade between order and match
Max[order] := Max[order]− size
Max[match] := Max[match]− size
If Max[match] < Min[match], then remove match from the market

Figure 8: Retrieval of matching orders. The algorithm finds the highest-quality matches for a
given order and completes the corresponding trades. The leaf-priority subroutine adds a given
leaf to the priority queue, arranged by the quality of a leaf’s best-price unprocessed match. The
trade subroutine completes the trade between the given order and the best available match. The
algorithm also uses the fill-price and fill-size subroutines (Figure 2).
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For example, consider the tree in Figure 4, and suppose that a buyer places an order for
four Camries or Mustangs made after 2000. We suppose further that she uses the default
quality measure, which depends only on price. The system first retrieves order A with price
$16,000 and size 2, then order B with price $16,500, and finally order O with price $19,000;
we show these orders by thick circles.

5.2 Best-first search

If some attributes are monotonic, we can use best-first search to find optimal matches, which
is usually faster than depth-first search. The best-first algorithm uses a node’s summary data
to estimate the quality of matches in the node’s subtree; at each step, it processes the node
with the highest quality estimate.

Quality estimates. We can compute a quality estimate for a node only if all branching in
the node’s subtree is on monotonic attributes; a node with this property is called monotonic.
For example, node 6 in Figure 4 is monotonic; the branching in its subtree is on year and
mileage, which are monotonic attributes. On the other hand, node 2 is not monotonic
because its subtree includes branching on color.

In Figure 9, we give a procedure that inputs a monotonic node and constructs the best
possible item that may be present in the node’s subtree, based on the summary data. To
estimate the node’s quality, the system computes the quality of this item traded at the best
possible price from the summary data. For example, consider node 6 in Figure 4; all orders
in its subtree include red Camries, and the summary data show that the best year is 2003,
the best mileage is 5,000, and the best price is $13,000. Thus, the system computes the
quality estimate as Qual(Camry, red, 2003, 5,000, $13,000).

Search steps. The best-first algorithm consists of two steps, similar to the steps of the
depth-first algorithm. First, it finds all smallest-depth monotonic nodes that match a given
order (Figure 10); for example, if a buyer is looking for a Camry or Mustang made af-
ter 2000, and the tree of sell orders is as shown in Figure 4, then the algorithm retrieves
nodes 5, 6, and 9. Second, it finds the best matching orders in the subtrees of the selected
nodes (Figure 11). It arranges the nodes into a priority queue by their quality estimates;
at each step, it processes the highest-quality node. If this node is a leaf, the algorithm
identifies the best-price matching order in the leaf and completes the respective trade. If the
node is not a leaf, the algorithm identifies its children that match the given order, and adds
them to the priority queue. The algorithm terminates when it fills the given order or runs
out of matches.

6 Performance

We describe experiments with artificial market data and with two real-world markets, on
a 400-MHz Pentium computer with 1-Gigabyte memory. A more detailed report of the
experimental results is available in Gong’s [2002] masters thesis.
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best-item(node)
The algorithm inputs a monotonic node of an indexing tree.

For m from 1 to Depth[node]:
Set im to the mth-attribute value on the path from the root to node

For m from Depth[node] + 1 to n:
Set im to the best value of the mth attribute in node’s summary data

Return (i1, ..., in)

Figure 9: Construction of the best possible item. The algorithm inputs a monotonic node and
generates the best item that may be present in the subtree rooted at the node.

matching-nodes(order, root)
The algorithm inputs an order and the root of an indexing tree.

We denote the order’s item set by I11×...×I1n ∪ ... ∪ Ik1×...×Ikn.

Initialize an empty set of matching monotonic nodes, denoted nodes
For l from 1 to k, call product-nodes(Il1×...×Iln,Search-Time[order], root,nodes)
Return nodes

product-nodes(Il1×...×Iln,Search-Time,node,nodes)
The subroutine inputs a Cartesian product Il1×...×Iln, the previous-search time, a node of the indexing

tree, and a set of monotonic nodes. It finds the matching monotonic nodes in the subtree rooted at the

given node, and adds them to the set of monotonic nodes.

If Search-Time is larger than node’s time of the last order addition, then terminate
If node is monotonic:

Product-Num[node] := l

Add node to nodes
If node is not monotonic:

Identify all children of node that match IlDepth[node]+1

For each matching child, call product-nodes(Il1×...×Iln,Search-Time, child,nodes)

Figure 10: Retrieval of matching monotonic nodes. The algorithm identifies the smallest-depth
monotonic nodes that match the item set of a given order. The product-nodes subroutine uses
depth-first search to retrieve the matching monotonic nodes for one Cartesian product.
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node-matches(order, nodes)
The algorithm inputs an order and matching monotonic nodes of an indexing tree.

Initialize an empty priority queue of matching nodes, denoted queue,
which prioritizes the nodes by their quality estimates

For each node in nodes, call node-priority(order,node, queue)
While Max[order] ≥ Min[order] and queue is nonempty:

Set node to the highest-priority node in queue, and remove it from queue
If node is a leaf:

match := Current-Order[node]
Set Current-Order[node] to the next order among node’s orders, sorted by price
Call trade(order,match)
Call leaf-priority(order,node, queue)

If node is not a leaf:
l := Product-Num[node]
Identify all children of node that match IlDepth[node]+1

For each matching child:
If child is a leaf and Filter(Item[child]) = true:

Set Current-Order[child] to the first order among child’s orders, sorted by price
Call leaf-priority(order, child, queue)

If child is not a leaf:
Product-Num[child] := l

Call node-priority(order, child, queue)
If Max[order] < Min[order], then remove order from the market
Else, set Search-Time[order] to the current time

node-priority(order,node, queue)
The subroutine inputs the given order, a matching monotonic node, and the priority queue of nodes.

If the order may have matches in the node’s subtree, then the node is added to the priority queue.

i := best-item(node)
If order is a buy order, then p := fill-price(Price[order],Min-Price[node], i)
Else, p := fill-price(Max-Price[node],Price[order], i)
If p = none, then terminate
Quality[node] := Qual[order](i, p)
Add node to queue, prioritized by Quality

Figure 11: Retrieval of matching orders. The algorithm finds the best matches for a given order
and completes the corresponding trades. The node-priority subroutine adds a nonleaf node to
the priority queue, arranged by quality estimates. The algorithm also uses four other subroutines:
fill-price (Figure 2), leaf-priority (Figure 8), trade (Figure 8), and best-item (Figure 9).
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6.1 Artificial markets

We have implemented an experimental setup that allows control over the number of orders,
number of market attributes, number of values per attribute, and average number of matches
per order. We have tested the best-first search and two versions of the depth-first search. The
first version of the depth-first algorithm identifies all matching leaves, whereas the second
retrieves at most ten leaves; note that the second version may not find optimal matches.

We have varied the number of orders from four to 218, that is, 262,144; we have randomly
generated these orders, which include an equal number of buy and sell orders. We have
considered artificial markets with one, three, and ten attributes, and we have experimented
with 2, 16, and 1,024 values per attribute. Finally, we have defined the matching density as
the mean percentage of sell orders that match a given buy order; in other words, it is the
probability that a randomly selected buy order matches a randomly chosen sell order. We
have experimented with four matching-density values: 0.001, 0.01, 0.1, and 1.

For each setting of control variables, we have measured the main-loop time and through-
put. The main-loop time is the time of one pass through the system’s main loop (Figure 3),
which includes processing new orders and matching old orders. The throughput is the max-
imal acceptable rate of placing new orders; if the system gets more orders per second, the
number of unprocessed orders keeps growing, and the system eventually has to reject some of
them. We give the dependency of these measurements on the control variables in Figures 12
and 13; the scales of all graphs are logarithmic.

In Figures 12(a) and 13(a), we show how the performance changes with the number of
orders. The main-loop time is approximately linear in the number of orders. The throughput
in small markets grows with the number of orders; it reaches a maximum at about two
hundred orders, and decreases with further increase in the number of orders.

In Figures 12(b) and 13(b), we give the dependency of the performance on the number
of attributes. The main-loop time is super-linear in the number of attributes, whereas the
throughput is in inverse proportion to the same super-linear function.

In Figures 12(c) and 13(c), we show how the system’s behavior changes with the matching
density. We have not found any monotonic dependency; the increase of the matching density
sometimes leads to faster matching and sometimes slows down the system.

The best-first search is much faster than the depth-first search that identifies all matching
leaves; the saving factor for large markets is between 1 and 750, and its mean value is 122.
The speed of the best-first search is usually close to that of the depth-first search with a limit
on the number of matching leaves. A notable exception is the performance in ten-attribute
markets with a large number of values per attribute. For these markets, the best-first search
is slower than the limited depth-first search by a factor of ten to hundred.
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Figure 12: Main-loop time in the artificial markets. We show the performance of the best-first
search (solid lines), depth-first search that identifies all matching leaves (dashed lines), and depth-
first search with a limit on the number of matching leaves (dotted lines).
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Figure 13: Throughput in the artificial markets; the legend is the same as in Figure 12.
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6.2 Real markets

We have applied the system to an extended used-car market and to a commercial-paper
market; the results are similar to that of the artificial tests.

Used cars. We have considered a used-car market that includes all models offered by
AutoNation (www.autonation.com), described by eight attributes: transmission (2 values),
number of doors (3 values), interior color (7 values), exterior color (52 values), model (257
values), year (103 values), option package (1,024 values), and mileage (500,000 values).

We have controlled the number of orders and matching density, and we show the results
in Figures 14 and 15. The system supports markets with 300,000 orders, and processes 40
to 4,000 new orders per second. The best-first search is more efficient than the depth-first
search that identifies all matching leaves; the saving factor in large markets varies from 1.0
to 8.4, with mean at 3.5. For markets with low matching density, the speed of the best-first
search is close to that of the depth-first search with limit on the number of matching leaves.
On the other hand, for large markets with high matching density, the best-first search is
about hundred times slower than the limited depth-first search.

Commercial paper. When a large company needs a short-term loan, it may issue com-
mercial paper, which is a fixed-interest “promissory note” similar to a bond. The company
sells commercial paper to investors, and later returns their money with interest; the pay-
ment day is called the maturity date. The main difference from bonds is duration of the loan;
commercial paper is issued for a short term, from one week to nine months. The appropriate
interest depends on the current rate of the us Treasury bonds, company’s reputation, and
paper’s time until maturity. After investors buy a commercial paper, they can resell it on a
secondary market before the maturity date. The resale price depends on the changes in the
bond rate and company’s reputation.

We have described commercial paper by two attributes: company (5,000 values) and
maturity date (2,550 values). We plot the dependency of the system’s performance on the
control variables in Figures 16 and 17. The best-first search processes 100 to 10,000 new
orders per second; it outperforms the depth-first search that identifies all matching leaves
by a factor of 2.3 to 8.8, with mean at 4.5. On the other hand, it is slower than the
depth-first search with limit on the number of matching leaves; thus, the search for optimal
matches takes more time than the suboptimal matching. This speed difference is especially
significant in markets with high matching density; in particular, if the matching density is 1,
the best-first search is hundred times slower than the limited depth-first search.

7 Concluding remarks

The reported work is a step toward the development of exchange markets for complex non-
standard goods. We have represented complex goods by multiple attributes, and allowed
price and quality functions in the description of orders. We have developed two algorithms
for identifying matches between buy and sell orders, which support markets with 300,000
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Figure 14: Main-loop time in the used-car market. We give the results for the best-first search
(solid lines), depth-first search that identifies all matching leaves (dashed lines), and depth-first
search with a limit on the number of matching leaves (dotted lines).
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Figure 15: Throughput in the used-car market; the legend is the same as in Figure 14.
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Figure 16: Main-loop time in the commercial-paper market; the legend is the same as in Figure 14.
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Figure 17: Throughput in the commercial-paper market; the legend is the same as in Figure 14.
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orders on a 400-MHz computer with 1-Gigabyte memory. The algorithms keep all orders in
the main memory, and their scalability is limited by the available memory.

The first algorithm is depth-first search in an indexing tree, whereas the second is best-
first search that utilizes monotonic dependency between attributes and price. When we use
the depth-first algorithm, we can control the trade-off between its speed and optimality, by
limiting the number of retrieved leaves of the indexing tree. If we allow suboptimal matches,
the depth-first search is usually faster than the best-first search. On the other hand, the
best-first search is more efficient for optimal matches.
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