Shading

Flat shading Gouraud shading Phong shading

Flat Shading and Perception

- Lateral inhibition: exaggerates perceived intensity
- Mach bands: perceived "stripes" along edges

figure 6.28 Step chart.

figure 6.29 Perceived and actual intensities at an edge.

Icosahedron with Sphere Normals

Gouraud shading vs flat shading effect

One Subdivision

Two Subdivisions

• Each time, multiply number of faces by 4

Three Subdivisions

Reasonable approximation to sphere

Phong Shading Results

Michael Gold, Nvidia

Phong Lighting Gouraud Shading

Phong Lighting, Phong Shading

Texture and other Mappings

Texture Mapping
Bump Mapping
Displacement Mapping
Environment Mapping

We could specify all texture coordinates by hand...

Tools help us unroll an object to "paint" it

www.uvmapper.com

Uses for Texture Mapping

Use texture to affect a variety of parameters

- surface color
- surface reflectance
- normal vector
- geometry

- radiance of each point on surface (Catmull 1974)
- reflectance coefficients k_d , k_s , or n_{shiny}
- bump mapping (Blinn 1978)
- displacement mapping
- transparency transparency mapping (clouds) (Gardener 1985)
- light source radiance environment mapping (Blinn 1978)

Radiance vs. Reflectance Mapping

Texture specifies (isotropic) radiance for each point on surface

Sphere w/ Uniform Diffuse coefficient Reflectance (k_d) Map

Sphere w/ Reflectance Map

Texture specifies diffuse color (k_d coefficients) for each point on surface - three coefficients, one each for R, G, and B radiance channels

Bump Mapping

- Basic texture mapping paints on to a smooth surface
- How do you make a surface look rough?
 - Option 1: model the surface with many small polygons
 - Option 2: perturb the normal vectors before the shading calculation

Bump Mapping

- We can perturb the normal vector without having to make any actual change to the shape.
- This illusion can be seen through—how?

Original model (5M)

Simplified (500)

Simple model with bump map

Bump Mapping

Greg Turk

Another Bump Mapping Example

Displacement Mapping

• Use texture map to displace each point on the surface

 Texture value gives amount to move in direction normal to surface

How is this different from bump mapping?

Environment Mapping

Specular reflections that mirror the environment

Environment Mapping

Specular reflections that mirror the environment

eye Reflective object
Intermediate object

Cube is a natural intermediate object for a room

Environment Mapping: Cube Maps

Basics of Texture Mapping in OpenGL

```
Glubyte my texels[512][512][3];
Gluint texID;
glGenTextures(1, &texID);
glBindTexture(GL TEXTURE 2D, texID);
glTexImage2D(GL TEXTURE 2D, 0, GL RGB, 512, 512, 0,
             GL RGB, GL UNSIGNED BYTE, my texels);
/* level, components, w, h, border, format, type, atrray */
/* assign texture coordinates */
glEnable(GL TEXTURE 2D);
glBegin(GL QUAD);
      glTexCoord2f(0.0, 0.0);
      glVertex3f(x1,y1,z1);
      glTexCoord2f(1.0, 0.0);
      glVertex3f(x2,y2,z2);
      glTexCoord2f(1.0,1.0);
      glVertex3f(x3,y3,z3);
      glTexCoord2f(0.0,1.0);
      glVertex3f(x4,y4,z4);
glEnd();
glDisable(GL TEXTURE 2D);
```

Grungy details we've ignored

Figure 5.6. Image texture repeat, mirror, clamp, and border functions in action.

 Aliasing? Mapping doesn't send you to the center of a texel. Can average nearest 2x2 texels using GL_LINEAR

• Mipmapping: use textures of varying resolutions. 64x64 becomes 32x32,16x16,8x8,4x4,2x2 and 1x1 arrays with gluBuild2Dmipmaps

Texture Generation

Photographs Drawings

Procedural methods (2D or 3D)

(2D: stripe, wave, and noise patterns

3D: sculpting in marble and granite)

Procedural Methods

Reaction-Diffusion Greg Turk, Siggraph '91

Solid Textures

- Have a 3-D array of texture values (e.g., a block of marble)
- In practice the map is often defined procedurally
 - No need to store an entire 3D array of colors
 - Just define a function to generate a color for each 3D point
- The most interesting solid textures are random ones
- Evaluate the texture coordinates in object coordinates - otherwise moving the object changes its texture!

From: *An Image Synthesizer* by Ken Perlin, SIGGRAPH '85

Ken Perlin's talk "Making Noise"