
15-381: Artificial Intelligence

Regression and cross validation
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Linear regression

• Given an input x we
would like to compute an
output y

• For example:
    - Predict height from age
    - Predict Google’s price

from Yahoo’s price
    - Predict distance from

wall from sensors
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Linear regression
• Given an input x we would like to

compute an output y
• In linear regression we assume

that y and x are related with the
following equation:

                       y = wx+ε

    where w is a parameter and ε
represents measurement or
other noise
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• Our goal is to estimate w from a training
data of <xi,yi> pairs

•  This could be done using a least squares
approach

• Why least squares?

    - minimizes squared distance between
measurements and predicted line

     - has a nice probabilistic interpretation

     - easy to compute

Linear regression
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If the noise is Gaussian
with mean 0 then least
squares is also the
maximum likelihood
estimate of w



Solving linear regression

• You should be familiar with this by now …

• We just take the derivative w.r.t. to w and set to 0:

!

!

! !

!

!!

=

"=

"=#

"##=#
$

$

i

i

i

ii

i i

iii

i

iii

i

iii

i

ii

x

yx

w

wxyx

wxyx

wxyxwxy
w

2

2

2

0)(2

)(2)(



Regression example

• Generated: w=2
• Recovered: w=2.03
• Noise: std=1



Regression example

• Generated: w=2
• Recovered: w=2.05
• Noise: std=2



Regression example

• Generated: w=2
• Recovered: w=2.08
• Noise: std=4



Affine regression
• So far we assumed that the

line passes through the origin
• What if the line does not?
• No problem, simply change the

model to
                   y = w0 + w1x+ε

• Can use least squares to
determine w0 , w1
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Affine regression
• So far we assumed that the

line passes through the origin
• What if the line does not?
• No problem, simply change the

model to
                   y = w0 + w1x+ε

• Can use least squares to
determine w0 , w1
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Just a second, we will soon
give a simpler solution



Multivariate regression

• What if we have several inputs?
    - Stock prices for Yahoo, Microsoft and Ebay for

the Google prediction task
• This becomes a multivariate regression problem
• Again, its easy to model:
                        y = w0 + w1x1+ … + wkxk + ε

Notations:

Lower case: variable or parameter (w0)

Lower case bold: vector (w)

Upper case bold: matrix (X)



Multivariate regression: Least
squares

• We are now interested in a vector wT = [w0, w1 ,… , wk]
• It would be useful to represent this in matrix notations:
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• We can thus re-write our model as y = Xw+ε

• The solution turns out to be: w = (XTX)-1XTy

• This is an instance of a larger set of computational solutions which
are usually referred to as ‘generalized least squares’



Multivariate regression: Least
squares

• We can re-write our model as y = Xw

• The solution turns out to be: w = (XTX)-1XTy

• The is an instance of a larger set of computational solutions which
are usually referred to as ‘generalized least squares’

• XTX is a k by k matrix

• XTy is a vector with k entries

Why is (XTX)-1XTy the right solution?

Hint: Multiply both sides of the original equation by  (XTX)-1XT



• Can also generalize these classes of functions to be
non-linear functions of the inputs x but still linear in the
parameters w.

Beyond linear regression
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Polynomial regression examples



Over fitting
• With too few training examples our polynomial
regression model may achieve zero training error but
nevertheless has a large generalization error

•  When the training error no longer bears any relation
to the generalization error we say that the function
overfits the (training) data
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• Cross-validation allows us to estimate the generalization
error based on training examples alone.
• We learn a model using a subset of the training data and
estimate the generalization error using the rest of the data
• We chose the model (for example polynomial order) that
minimizes the error on the held out data

Cross validation

Common strategies
    - Leave one out cross validation
    - Leave a bigger subset
    - Train and test sets



Cross validation: Example


