15-381: Artificial Intelligence

Regression and cross validation

Where we are

Today

Linear regression

- Given an input x we would like to compute an output y
- For example:
- Predict height from age
- Predict Google's price from Yahoo's price
- Predict distance from
 wall from sensors

Linear regression

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

Observed values

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of $\left\langle x_{i}, y_{i}\right\rangle$ pairs
- This could be done using a least squares approach

$$
\arg \min _{w} \sum_{i}\left(y_{i}-w x_{i}\right)^{2}
$$

-Why least squares?

- minimizes squared distance between measurements and predicted line
- has a nice probabilistic interpretation
- easy to compute

Solving linear regression

- You should be familiar with this by now ...
- We just take the derivative w.r.t. to w and set to 0 :

$$
\begin{gathered}
\frac{\partial}{\partial w} \sum_{i}\left(y_{i}-w x_{i}\right)^{2}=2 \sum_{i}-x_{i}\left(y_{i}-w x_{i}\right) \Rightarrow \\
2 \sum_{i} x_{i}\left(y_{i}-w x_{i}\right)=0 \Rightarrow \\
\sum_{i} x_{i} y_{i}=\sum_{i} w x_{i}^{2} \Rightarrow \\
w=\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}
\end{gathered}
$$

Regression example

- Generated: w=2
- Recovered: w=2.03
- Noise: std=1

Regression example

- Generated: w=2
- Recovered: w=2.05
- Noise: std=2

Regression example

- Generated: w=2
- Recovered: w=2.08
- Noise: std=4

Affine regression

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to

$$
y=w_{0}+w_{1} x+\varepsilon
$$

- Can use least squares to determine $\mathrm{w}_{0}, \mathrm{w}_{1}$

$$
w_{0}=\frac{\sum_{i} y_{i}-w_{1} x_{i}}{n}
$$

$$
w_{1}=\frac{\sum_{i} x_{i}\left(y_{i}-w_{0}\right)}{\sum_{i} x_{i}^{2}}
$$

Affine regression

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to

$y=u$ Just a second, we will soon

 give a simpler solution- Can use least squares to determine $\mathrm{w}_{0}, \mathrm{w}_{1}$

X

$$
w_{0}=\frac{\sum_{i} y_{i}-w_{1} x_{i}}{n}
$$

$$
w_{1}=\frac{\sum_{i} x_{i}\left(y_{i}-w_{0}\right)}{\sum_{i} x_{i}^{2}}
$$

Multivariate regression

- What if we have several inputs?
- Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

Notations:

$$
y=w_{0}+w_{1} x_{1}+\ldots+w_{k} x_{k}+\varepsilon
$$

Lower case: variable or parameter (w_{0})
Lower case bold: vector (w)
Upper case bold: matrix (\mathbf{X})

Multivariate regression: Least squares

- We are now interested in a vector $\mathbf{w}^{\top}=\left[\mathrm{w}_{0}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}\right]$
- It would be useful to represent this in matrix notations:

$$
X=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 k} \\
1 & x_{21} & \cdots & x_{2 k} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{n 1} & \cdots & x_{n k}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

- We can thus re-write our model as $\mathbf{y}=\mathbf{X w + \varepsilon}$
- The solution turns out to be: $\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- This is an instance of a larger set of computational solutions which are usually referred to as 'generalized least squares'

Multivariate regression: Least squares

- We can re-write our model as $\mathbf{y}=\mathbf{X w}$
- The solution turns out to be: $\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- The is an instance of a larger set of computational solutions which are usually referred to as 'generalized least squares'
- $\mathbf{X}^{\top} \mathbf{X}$ is a k by k matrix
- $\mathbf{X}^{\top} \mathbf{y}$ is a vector with k entries

Why is $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ the right solution?
Hint: Multiply both sides of the original equation by $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$

Beyond linear regression

- Can also generalize these classes of functions to be non-linear functions of the inputs x but still linear in the parameters w.

$$
f(x, w)=w_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{m} x^{m}
$$

Polynomial regression examples

Over fitting

- With too few training examples our polynomial regression model may achieve zero training error but nevertheless has a large generalization error

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; w_{0}, w_{1}\right)\right)^{2} \approx 0 \\
& E_{(x, y) \sim P}\left(y-f\left(x ; w_{0}, w_{1}\right)\right)^{2} \gg 0
\end{aligned}
$$

- When the training error no longer bears any relation to the generalization error we say that the function overfits the (training) data

Cross validation

- Cross-validation allows us to estimate the generalization error based on training examples alone.
- We learn a model using a subset of the training data and estimate the generalization error using the rest of the data
- We chose the model (for example polynomial order) that minimizes the error on the held out data

Common strategies

- Leave one out cross validation
- Leave a bigger subset
- Train and test sets

Cross validation: Example

