Uninformed Search

Day 1 of Search

Russel & Norvig Chap. 3
Material in part from http://www.cs.cmu.edu/~awm/tutorials

Search

- Examples of Search problems?
- The Oak Tree
- Informed versus Uninformed
 - Heuristic versus Blind

A Search Problem

- Find a path from START to GOAL
- Find the minimum number of transitions

Example

- State: Configuration of puzzle
- Transitions: Up to 4 possible moves (up, down, left, right)
- Solvable in 22 steps (average)
- But: 1.8×10^5 states (1.3×10^{12} states for the 15-puzzle)
 → Cannot represent set of states explicitly

Example: Robot Navigation

States = positions in the map
Transitions = allowed motions
Navigation: Going from point START to point GOAL given a (deterministic) map
Example Solution: Brushfire...

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing

Route planning
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don't necessarily know explicitly the structure of a search problem

Other Real-Life Examples

Protein design
http://www.blueprint.org/proteinfolding/trades/trades_problem.html

Scheduling/Manufacturing

Route planning
http://www.ozone.ri.cmu.edu/projects/dms/dmsmain.html

Scheduling/Science
http://www.ozone.ri.cmu.edu/projects/hsts/hstsmain.html

Robot navigation
http://www.frc.ri.cmu.edu/projects/mars/dstar.html

Don't have a clue when you're doing well versus poorly!

10cm resolution
4km^2 ~ 4 \times 10^8 states

What we are not addressing (yet)

- Uncertainty/Chance → State and transitions are known and deterministic
- Game against adversary
- Multiple agents/Cooperation
- Continuous state space → For now, the set of states is discrete

Overview

- Definition and formulation
- Optimality, Completeness, and Complexity
- Uninformed Search
 - Breadth First Search
 - Search Trees
 - Depth First Search
 - Iterative Deepening
- Informed Search
 - Best First Greedy Search
 - Heuristic Search, A*

Don't necessarily know explicitly the structure of a search problem
A Search Problem: Square World

Formulation
- Q: Finite set of states
- $S \subseteq Q$: Non-empty set of start states
- $G \subseteq Q$: Non-empty set of goal states
- succs: function $Q \to P(Q)$
 - $\text{succs}(s) = \text{Set of states that can be reached from } s \text{ in one step}$
- cost: function $Q \times Q \to \text{Positive Numbers}$
 - $\text{cost}(s, s') = \text{Cost of taking a one-step transition from state } s \text{ to state } s'$
- Problem: Find a sequence $\{s_1, \ldots, s_K\}$ such that:
 1. $s_1 \in S$
 2. $s_K \in G$
 3. $s_{i+1} \in \text{succs}(s_i)$
 4. $\sum \text{cost}(s_i, s_{i+1})$ is the smallest among all possible sequences (desirable but optional)

What about actions?
- Q: Finite set of states
- $S \subseteq Q$: Non-empty set of start states
- $G \subseteq Q$: Non-empty set of goal states
- succs: function $Q \to P(Q)$
 - $\text{succs}(s) = \text{Set of states that can be reached from } s \text{ in one step}$
- cost: function $Q \times Q \to \text{Positive Numbers}$
 - $\text{cost}(s, s') = \text{Cost of taking a one-step transition from state } s \text{ to state } s'$
- Problem: Find a sequence $\{s_1, \ldots, s_K\}$ such that:
 - Actions define transitions from states to states.
 - Example: Square World

Example
- $Q = \{AA, AB, AC, AD, AI, BB, BC, BD, BI, \ldots\}$
- $S = \{AB\}$, $G = \{DD\}$
- $\text{succs}(AA) = \{AI, BA\}$
- $\text{cost}(s, s') = 1$ for each action (transition)

Desirable Properties
- Completeness: An algorithm is complete if it is guaranteed to find a path if one exists
- Optimality: The total cost of the path is the lowest among all possible paths from start to goal
- Time Complexity
- Space Complexity

Breadth-First Search
- Label all states that are 0 steps from S to G
 - Call that set V_0
Breadth-First Search

- Label the successors of the states in V_0 that are not yet labelled → Set V_1 of states that are 1 step away from the start

- Label the successors of the states in V_1 that are not yet labelled → Set V_2 of states that are 1 step away from the start

- Stop when goal is reached in the current expansion set → goal can be reached in 4 steps

Recovering the Path

- Record the predecessor state when labeling a new state
- When I labeled GOAL, I was expanding the neighbors of f so therefore f is the predecessor of GOAL
- When I labeled f, I was expanding the neighbors of r so therefore r is the predecessor of f
- Final solution: $\{\text{START, e, r, f, GOAL}\}$

Using Backpointers

- A backpointer $\text{previous}(s)$ points to the node that stored the state that was expanded to label s
- The path is recovered by following the backpointers starting at the goal state
Example: Robot Navigation

States = positions in the map
Transitions = allowed motions

Navigation: Going from point START to point GOAL given a (deterministic) map

Breadth First Search

$V_0 \leftarrow S$ (the set of start states)

$\text{previous}(\text{START}) := \text{NULL}$

$k \leftarrow 0$

while (no goal state is in V_k and V_k is not empty) do

$V_{k+1} \leftarrow \text{empty set}$

For each state s in V_k

For each state s' in $\text{succs}(s)$

If s' has not already been labeled

Set $\text{previous}(s') \leftarrow s$

Add s' into V_{k+1}

$k \leftarrow k + 1$

if V_k is empty signal FAILURE

else build the solution path thus:

Define $S_k = \text{GOAL}$ and for all $i \leq k$, define $S_i = \text{previous}(S_{i+1})$

Return path $= \{S_1, ..., S_k\}$

Properties

- BFS can handle multiple start and goal states *what does multiple start mean?*
- Can work either by searching forward from the start or backward for the goal (forward/backward chaining)
- (Which way is better?)
- Guaranteed to find the lowest-cost path in terms of number of transitions??

See maze example

Complexity

- $N = \text{Total number of states}$
- $B = \text{Average number of successors (branching factor)}$
- $L = \text{Length from start to goal with smallest number of steps}$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Breadth First Search</td>
<td>Y</td>
<td>Y, if all trans. have same cost.</td>
<td>$O(\min(N,B))$</td>
</tr>
</tbody>
</table>

Bidirectional Search

- BFS search simultaneously forward from START and backward from GOAL
- When do the two search meet?
- What stopping criterion should be used?
- Under what condition is it optimal?
Complexity

- \(N \) = Total number of states
- \(B \) = Average number of successors (branching factor)
- \(L \) = Length for start to goal with smallest number of steps

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td>O(min((N,B)))</td>
<td>O(min((N,B)))</td>
</tr>
<tr>
<td>BiBFS</td>
<td></td>
<td></td>
<td>O(min((N,2B^{L/2})))</td>
<td>O(min((N,2B^{L/2})))</td>
</tr>
</tbody>
</table>

Major savings when bidirectional search is possible because \(2B^{L/2} \ll B^{L} \)

\[B = 10, L = 6 \rightarrow 22,200 \text{ states generated vs. ~}10^7 \]

Counting Transition Costs Instead of Transitions

- BFS finds the shortest path in number of steps but does not take into account transition costs
- Simple modification finds the least cost path
- New field: \(g(s) = \) least cost path to \(s \) in \(k \) or fewer steps
Uniform Cost Search

- Strategy to select state to expand next
- Use the state with the smallest value of \(g(s) \) so far
- Use priority queue for efficient access to minimum \(g \) at every iteration

Priority Queue

- Priority queue = data structure in which data of the form \((\text{item}, \text{value})\) can be inserted and the item of minimum value can be retrieved efficiently
- Operations:
 - \text{Init} (PQ): Initialize empty queue
 - \text{Insert} (PQ, item, value): Insert a pair in the queue
 - \text{Pop} (PQ): Returns the pair with the minimum value
- In our case:
 - \text{item} = state \quad \text{value} = \text{current cost} \(g(s) \)

Complexity: \(O(\log(\text{number of pairs in PQ})) \) for insertion and pop operations \(\rightarrow \) very efficient

http://www.lee.kilough.com/heaps/ Knuth&Sedwick

\(PQ = \{(\text{START},0)\} \)

1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)

\(PQ = \{(p,1)\} \)

1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)

\(PQ = \{(d,3)\} \)

1. Pop the state \(s \) with the lowest path cost from \(PQ \)
2. Evaluate the path cost to all the successors of \(s \)
3. Add the successors of \(s \) to \(PQ \)
PQ = \{(b,4) (e,5) (c,11) (q,16)\}
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

Important: We realized that going to e through d is cheaper than going to e directly ⇒ the value of e is updated from 9 to 5 and it moves up in PQ

PQ = \{(a,6) (h,6) (c,11) (r,14) (q,16)\}
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

PQ = \{(h,6) (c,11) (r,14) (q,16)\}
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ

PQ = \{(q,10) (c,11) (r,14)\}
1. Pop the state s with the lowest path cost from PQ
2. Evaluate the path cost to all the successors of s
3. Add the successors of s to PQ
1. Pop the state \(s \) with the lowest path cost from \(PQ \).
2. Evaluate the path cost to all the successors of \(s \).
3. Add the successors of \(s \) to \(PQ \).

Example: Robot Navigation

- States = positions in the map
- Transitions = allowed motions
- Navigation: Going from point START to point GOAL given a (deterministic) map

Final path: (START, d, e, h, q, r, f, GOAL)

- This path is optimal in total cost even though it has more transitions than the one found by BFS.
- What should be the stopping condition?
- Under what conditions is UCS complete/optimal?
Complexity

- \(N \) = Total number of states
- \(B \) = Average number of successors (branching factor)
- \(L \) = Length for start to goal with smallest number of steps
- \(Q \) = Average size of the priority queue

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td>(O(N))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>BIBFS</td>
<td>Y</td>
<td></td>
<td>(O(N))</td>
<td>(O(N))</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, if cost > 0</td>
<td>(O(N))</td>
<td>(O(N))</td>
<td></td>
</tr>
</tbody>
</table>

Limitations of BFS

- Memory usage is \(O(B^L) \) in general
- Limitation in many problems in which the states cannot be enumerated or stored explicitly, e.g., large branching factor
- Alternative: Find a search strategy that requires little storage for use in large problems

Philosophical Limitation

- We cannot shoot for perfection, we want good enough…

Depth First Search

- General idea:
 - Expand the most recently expanded node if it has successors
 - Otherwise backup to the previous node on the current path
DFS Implementation

DFS (s)
if s = GOAL
 return SUCCESS
else
 For all s' in succs(s)
 DFS (s')
 return FAILURE

s is current state being expanded, starting with START

DFS

In a recursive implementation, the program stack keeps track of the states in the current path.

Search Tree Interpretation

• Root: START state
• Children of node containing state s: All states in succs(s)
• In the worst case the entire tree is explored \(O(B^{L_{max}})\)
• Infinite branches if there are loops in the graph!

Complexity

- \(N = \) Total number of states
- \(B = \) Average number of successors (branching factor)
- \(L = \) Length for start to goal with smallest number of steps
- \(C = \) Cost of optimal path
- \(Q = \) Average size of the priority queue
- \(L_{max} = \) Length of longest path from START to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y, if all trans. have same cost</td>
<td>(O(\min(N,L)))</td>
<td>(O(\min(N,L)</td>
</tr>
<tr>
<td>BBFS</td>
<td>Y</td>
<td>Y, if all trans. have same cost</td>
<td>(O(\min(NL^{2+\epsilon})))</td>
<td>(O(\min(NL^{2+\epsilon})</td>
</tr>
<tr>
<td>UCS</td>
<td>Y (if cost > 0)</td>
<td>Y</td>
<td>(O(\log Q \cdot \min(N,L^{2+\epsilon})))</td>
<td>(O(\min(N,L^{2+\epsilon})</td>
</tr>
<tr>
<td>DFS</td>
<td>Y (if cost > 0)</td>
<td>Y</td>
<td>(O(\log Q \cdot \min(N,L^{2+\epsilon})))</td>
<td>(O(\min(N,L^{2+\epsilon})</td>
</tr>
</tbody>
</table>

For graphs without cycles
Is this a problem:
• L_{max} = Length of longest path from START to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>BIBFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, If cost > 0</td>
<td></td>
<td>$O(\log(Q\cdot\min(NL^2))$</td>
<td>$O(\min(NL^3))$</td>
</tr>
<tr>
<td>DFS</td>
<td>$\frac{N}{2}$</td>
<td></td>
<td>$O(L^{\min})$</td>
<td>$O(BL_{\text{max}})$</td>
</tr>
</tbody>
</table>

Complexity

• N = Total number of states
• $B = \text{Average number of successors (branching factor)}$
• $L = \text{Length for start to goal with smallest number of steps}$
• $C = \text{Cost of optimal path}$
• $Q = \text{Average size of the priority queue}$
• $L_{\text{max}} = \text{Length of longest path from START to any state}$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>BIBFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, If cost > 0</td>
<td></td>
<td>$O(\log(Q\cdot\min(NL^2))$</td>
<td>$O(\min(NL^3))$</td>
</tr>
<tr>
<td>PCDFS</td>
<td>Y</td>
<td></td>
<td>$O(L^{\min})$</td>
<td>$O(BL_{\text{max}})$</td>
</tr>
<tr>
<td>MEMDFS</td>
<td>Y</td>
<td></td>
<td>$O(L^{\min})$</td>
<td>$O(BL_{\text{max}})$</td>
</tr>
</tbody>
</table>

DFS Limitation 1

• Need to prevent DFS from looping
• Avoid visiting the same states repeatedly

Because L may be much larger than the number of states d steps away from the start.

• PC-DFS (Path Checking DFS):
 – Don’t use a state that is already in the current path
• MEMDFS (Memorizing DFS):
 – Keep track of all the states expanded so far. Do not expand any state twice

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>BIBFS</td>
<td>Y</td>
<td></td>
<td>$O(\min(NL))$</td>
<td>$O(\min(NL))$</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, If cost > 0</td>
<td></td>
<td>$O(\log(Q\cdot\min(NL^2))$</td>
<td>$O(\min(NL^3))$</td>
</tr>
<tr>
<td>PCDFS</td>
<td>Y</td>
<td></td>
<td>$O(L^{\min})$</td>
<td>$O(BL_{\text{max}})$</td>
</tr>
<tr>
<td>MEMDFS</td>
<td>Y</td>
<td></td>
<td>$O(L^{\min})$</td>
<td>$O(BL_{\text{max}})$</td>
</tr>
</tbody>
</table>

DFS Limitation 2

• Need to make DFS optimal

• IDS (Iterative Deepening Search):
 – Run DFS by searching only path of length 1 (DFS stops if length of path is greater than 1)
 – If that doesn’t find a solution, try again by running DFS on paths of length 2 or less
 – If that doesn’t find a solution, try again by running DFS on paths of length 3 or less
 – …………
 – Continue until a solution is found

Depth-Limited Search
Iterative Deepening Search

- Sounds horrible: We need to run DFS many times
- Actually not a problem:
 \[O(LB^i+(L-1)B^i+\ldots+B^i) = O(B^i) \]

- Compare \(B^i \) and \(B^{i_{\text{max}}} \)
- Optimal if transition costs are equal

Complexity

- \(N \): Total number of states
- \(B \): Average number of successors (branching factor)
- \(L \): Length for start to goal with smallest number of steps
- \(C \): Cost of optimal path
- \(Q \): Average size of the priority queue
- \(L_{\text{max}} \): Length of longest path from START to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiBFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMDFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiBFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEMDFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary

- Basic search techniques: BFS, UCS, PCDFS, MEMDFS, DFID
- Property of search algorithms: Completeness, optimality, time and space complexity
- Iterative deepening and bidirectional search ideas
- Trade-offs between the different techniques and when they might be used
Some Challenges

• Driving directions
• Robot navigation in Wean Hall
• Adversarial games
 – Tic Tac Toe
 – Chess