Reinforcement Learning

- R&N Chapter 21

- Demos and Data Contributions from
 Vivek Mehta (vivekm@cs.cmu.edu)
 Rohit Kelkar (ryk@cs.cmu.edu)

- Same (fully observable) MDP as before except:
 - We don’t know the model of the environment
 - We don’t know \(T(\cdot, \cdot, \cdot) \)
 - We don’t know \(R(\cdot) \)

- Task is still the same:
 - Find an optimal policy

General Problem

- All we can do is try to execute actions and record the resulting rewards
 - World: You are in state 102, you have a choice of 4 actions
 - Robot: I’ll take action 2
 - World: You get a reward of 1 and you are now in state 63, you have a choice of 3 actions
 - Robot: I’ll take action 3
 - World: You get a reward of -10 and you are now in state 12, you have a choice of 4 actions
 - ……………

 Learning from experience ….

Classes of Techniques

- Reinforcement Learning
 - Model-Based
 - Try to learn an explicit model of \(T(\cdot, \cdot, \cdot) \) and \(R(\cdot) \)
 - Model-Free
 - Recover an optimal policy without ever estimating a model
Model-Based

- If we knew a good estimate $T_{\text{est}}(\cdot,\cdot,\cdot)$ of $T(\cdot,\cdot,\cdot)$ and $R(\cdot)$, we could evaluate the optimal policy by solving the fundamental MDP relations:

$$U_{\text{est}}(s) = R(s) + \gamma \max_a \left(\sum_{s'} T_{\text{est}}(s,a,s') U_{\text{est}}(s') \right)$$

$$\pi^*(s) = \arg\max_a \left(\sum_{s'} T_{\text{est}}(s,a,s') U_{\text{est}}(s') \right)$$

Model Estimation

I observed a trajectory during which, when I moved Up from $s = (1,1)$, I ended up in

- $s_1 = (1,2)$ 10 times
- $s_2 = (2,1)$ 2 times

$$T(s, \text{Up}, s_1) \sim 10/(10+2) = 0.83$$
$$T(s, \text{Up}, s_2) \sim 2/(10+2) = 0.17$$

Model-Based

- Move through the environment by executing a sequence of actions
- Evaluate T and R:
 - $R(s) =$ Reward received when visiting state s
 - $T_{\text{est}}(s, a, s') \sim (#\text{ times we moved from } s \text{ to } s' \text{ on action } a)/(#\text{ times we applied action } a \text{ from } s)$
- This gives us an estimated model of the Markov system

Model-Based

- Given T_{est} and R, we can now estimate the value at each state:

$$U_{\text{est}}(s) = R(s) + \gamma \max_a \left(\sum_{s'} T_{\text{est}}(s,a,s') U_{\text{est}}(s') \right)$$

- Value iteration
- Policy iteration
- This can be expensive if we do that at each step
- May require matrix inversion (size = number of states) or
- Many iterations of value iteration
A Review: Solving MDPs

- No actions: Value iterations
- With actions: Value iteration, Policy iteration

Stopping Value Iteration

\[J^1(S_i) = r_i \]
\[J^2(S_i) = r_i + \gamma \sum p_{ji} J^1(s_j) \]
\[J^{m+1}(S_i) = r_i + \gamma \sum p_{ji} J^m(s_j) \]

Remember, we have a converging function. We can stop when \(|P^{-1}(s_i)J(s_i)|_\infty < \epsilon\)

The Alternative: Policy iteration

- We can also compute optimal policies by revising an existing policy.
- We initially select a policy at random (mapping from states to actions).
- We re-compute the expected long term reward at each state using the selected policy.
- We select a new policy using the expected rewards and iterate until convergence.

Policy iteration: algorithm

1. Randomly choose \(\pi_0\); set \(t = 0\).
2. For each state \(s_i\), compute \(J^\pi(s_i)\), the long term expected reward using policy \(\pi\).
3. Set \(\pi_t(s_i) = \max_{a_j} \left(r_i + \gamma \sum_{s_j} p_{ji} J^\pi(s_j) \right) \).
Policy iteration: algorithm

1. Randomly chose \(\pi_t \); set \(t = 0 \)
2. For each state \(s \), compute \(J^*(s) \), the long term expected reward using policy \(\pi_t \).
3. Set \(\pi_t(s) = \max_a \left\{ \sum_s \rho(s,a,s') J^*(s') \right\} \)

Value iteration vs. policy iteration

- Depending on the model and the information at hand:
 - If you have a good guess regarding the optimal policy then policy iteration would converge much faster
 - Similarly, if there are many possible actions, policy iteration might be faster
 - Otherwise value iteration is a safer way

Best Policy?

\((\text{Start} = S_1, \text{Action} = a_1, \text{Reward} = 10, \text{End} = S_2) \)
\((\text{Start} = S_2, \text{Action} = a_2, \text{Reward} = -10, \text{End} = S_1) \)
\((\text{Start} = S_1, \text{Action} = a_2, \text{Reward} = 10, \text{End} = S_1) \)
\((\text{Start} = S_1, \text{Action} = a_1, \text{Reward} = 10, \text{End} = S_1) \)
\((\text{Start} = S_1, \text{Action} = a_2, \text{Reward} = 10, \text{End} = S_1) \)
\((\text{Start} = S_2, \text{Action} = a_1, \text{Reward} = -10, \text{End} = S_2) \)
\((\text{Start} = S_2, \text{Action} = a_2, \text{Reward} = -10, \text{End} = S_2) \)
\((\text{Start} = S_1, \text{Action} = a_2, \text{Reward} = -10, \text{End} = S_1) \)

\(\pi^*(S_1) = a_2 \)
\(\pi^*(S_2) = a_2 \)
Problems
• Separates learning the model from using the model (not on-line learning)
• Expensive because entire set of equations is solved to find U^{est}
• How should the environment be explored? → No guidance until model is built
• Cannot handle changing environments

Solution
• Update U^{est} for some state s only instead of solving for all the states
 \[U^{est}(s) \leftarrow R(s) + \gamma \max_a \left(\sum_{s'} T^{est}(s,a,s') U^{est}(s') \right) \]
• Similar to one step of value iteration
• Terminology → “Backup step”
• Advantage:
 – Computation interleaved with exploration
 – Less computation at each step

Example: Model-Based Learning
• Update the current estimate of $U(s) = \text{expected sum of future discounted reward using estimated}\ T(\ldots,\ldots)$
 \[U^{est}(s) \leftarrow R(s) + \gamma \max_a \left(\sum_{s'} T^{est}(s,a,s') U^{est}(s') \right) \]
 \[\pi(s) = \arg\max_a \left(\sum_{s'} T^{est}(s,a,s') U^{est}(s') \right) \]

Two Problems
• Which states to update? U^{est} may have already converged for some states, so that the update does not make any difference
• How to explore the environment? We have not said how we generate the actions a
Which State to Update: Prioritized Sweeping

• Idea: Update the predecessors of the states that yield the largest change in U^{est}

After update of $U^{est}(s)$

$U^{est}(s) = 100$

$U^{est}(s) = 5$

So $U^{est}(s_1)$ is probably going to change a lot too so we should update it right away

$U^{est}(s)$ has not changed a lot and

$U^{est}(s_1) = R(s_1) + \ldots + T(s_1, a_1, s)U^{est}(s)$

So $U^{est}(s_1)$ is probably not going to change a lot so it’s not useful to waste time updating it

Prioritized Sweeping

• For each state: Remember $Pred(s) = \{visited\ states\ s’\ and\ action\ a\ such\ that\ a\ moves\ from\ s’\ to\ s\}$

• Store $P = priority\ queue\ with\ “most\ promising”\ state\ first$

1. $s = top\ of\ the\ queue; U^{old} = current\ value\ of\ U^{est}(s)$

2. Update the state value

 $U^{est}(s) \leftarrow R(s) + \gamma \max_a (\sum_{s'} T(s, a, s') U^{est}(s'))$

3. $\Delta = |U^{old} - U^{est}(s)|$

4. For every predecessor (s_p, a_p) in $Pred(s)$
 - Add s_p to P with priority:
 $T^{est}(s_p, a_p, s)\Delta$
Prioritized Sweeping

- For each state: Remember $\text{Pred}(s) = \{\text{visited states } s' \text{ and action } a \text{ such that } a \text{ moves from } s' \text{ to } s\}$
- Store $P = \text{priority queue with “most promising” state first}$

1. $s = \text{top of the queue}$;
2. Update the state value $U_{\text{est}}(s) = R(s) + \gamma \max_{a'} (\sum_{s'} T_{\text{est}}(s,a,s') U_{\text{est}}(s'))$
3. $\Delta = |U_{\text{old}} - U_{\text{est}}(s)|$
4. For every predecessor (s_p,a_p) in $\text{Pred}(s)$
 - Add s_p to P with priority: $T_{\text{est}}(s_p,a_p,s) \Delta$

Exploration Strategy

- In principle, we can compute a current estimate of the best policy:
 $$\pi^*(s) = \arg\max_a \left(\sum_{s'} T_{\text{est}}(s,a,s') U_{\text{est}}(s') \right)$$
- What is then the best strategy for exploration?
 - Greedy: Always use $\pi(s)$ when in state s?
 - Random
 - Mixed: Sometimes use the best and sometimes use random

Why Not Obvious?

- N-armed bandit problem:
 - We have N slot machines, each can yield $\$1$ with some probability (different for each machine)
 - In what order should we try the machines?
 - Stay with the machine with highest probability so far?
 - Random?
 - Something else?

Possible Solutions

- ε-greedy
 - Choose the (current) best one with probability $1 - \varepsilon$
 - Choose another one randomly with probability $\varepsilon / (\text{number of machines} - 1)$
- Boltzmann exploration
 - Choose machine k with $\text{Prob} \sim e^{-\varepsilon / T}$
 - Decrease T as time passes

What does this remind you of?
Maze Example
Current optimal action for this state is Up

Move Up with probability $1 - \varepsilon$
Move Right with probability $\varepsilon/3$
Move Down with probability $\varepsilon/3$
Move Left with probability $\varepsilon/3$

Other Solutions?

- ε-greedy
- “Cooling off”
- Ideas: welcome to research! What else should we think through trying?