Markov Decision Processes: Making Decision in the Presence of Uncertainty

(some of) R&N 16.1-16.6 R&N 17.1-17.4

Different Aspects of "Machine Learning"

Supervised learning

- Classification concept learning
- Learning from labeled data
- Function approximation

Unsupervised learning

- Data is not labeled
- Data needs to be grouped, clustered
- We need distance metric

Control and action model learning

- Learning to select actions efficiently
- Feedback: goal achievement, failure, reward
- Control learning, reinforcement learning

Decision Processes: General Description

- Suppose you have to make decisions that impact your future... You know the current state around you.
- You have a choice of several possible actions.
- You cannot predict with certainty the consequence of these actions given the current state, but you have a guess as to the likelihood of the possible outcomes.
- How can you define a policy that will guarantee that you always choose the action that maximizes expected future profits?

Note: Russel & Norvig, Chapter 17.

Decision Processes: General Description

- Decide what action to take next, given:
 - A probability to move to different states
 - A way to evaluate the reward of being in different states

Robot path planning

Travel route planning

Elevator scheduling

Aircraft navigation

Manufacturing processes

Network switching & routing

Example

- Assume that time is discretized into discrete time steps
- Suppose that your world can be in one of a finite number of states s
 - this is a major simplification, but let's assume....
- Suppose that for every state s, we can anticipate a reward that you receive for being in that state R(s).
- Assume also that R(s) is bounded (R(s) < M for all s) meaning that there is a threshold in reward.

• Question: What is the total value of the reward for a particular configuration of states $\{s_1, s_2, ...\}$ over time?

Example

- Question: What is the total value of the reward for a particular configuration of states {s₁,s₂,...} over time?
- It is simply the sum of the rewards (possibly negative) that we will receive in the future:

$$U(s_1, s_2, ..., s_n, ...) = R(s_1) + R(s_2) + ... + R(s_n) +$$

What is wrong with this formula???

Horizon Problem

$$U(s_0,..., s_N) = R(s_0) + R(s_1) + ... + R(s_N)$$

The sum may be arbitrarily large depending on *N*

Need to know N, the length of the sequence (finite horizon)

Horizon Problem

- The problem is that we did not put any limit on the "future", so this sum can be infinite.
- For example: Consider the simple case of computing the total future reward if you remain forever in the same state:

$$U(s,s,...,s,...) = R(s)+R(s)+...+R(s)+....$$
 is clearly infinite in general!!

- This definition is useless unless we consider a finite time horizon.
- But, in general, we don't have a good way to define such a time horizon.

Discounting

Discount factor $0 < \gamma < 1$

The length of the sequence is arbitrary (infinite horizon)

Discounting

- $U(s_0,...) = R(s_0) + \gamma R(s_1) + ... + \gamma^N R(s_N) + ...$
- Always converges if γ < 1 and R(.) is bounded
- γ close to 0 → instant gratification, don't pay attention to future reward
- γ close to 1 → extremely conservative, big influence of the future
- The resulting model is the discounted reward
 - Prefers expedient solutions (models impatience)
 - Compensates for uncertainty in available time (models mortality)
- Economic example:
 - Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.
 - Assuming payment n years in future is worth only (0.9)ⁿ of payment now

Actions

- Assume that we also have a finite set of actions a
- An action a causes a transition from a state s to a state s'

The Basic Decision Problem

- Given:
 - Set of states $S = \{s\}$
 - Set of actions $A = \{a\}$ a: $S \rightarrow S$
 - Reward function R(.)
 - Discount factor γ
 - Starting state s₁
- Find a sequence of actions such that the resulting sequence of states maximizes the total discounted reward:

$$U(s_0,...)=R(s_0)+\gamma R(s_1)+..+\gamma^N R(s_N)+...$$

Maze Example: Utility

- Define the reward of being in a state:
 - -R(s) = -0.04 if s is empty state
 - -R(4,3) = +1 (maximum reward when goal is reached)
 - -R(4,2) = -1 (avoid (4,2) as much as possible)
- Define the utility of a sequence of states:
 - $U(s_0,..., s_N) = R(s_0) + R(s_1) + + R(s_N)$

Maze Example: Utility

- Define the reward of being in a state:
 - -R(s) = -0.04 if s is empty state
 - -R(4,3) = +1 (maximum reward when goal is reached)
 - -R(4,2) = -1 (avoid (4,2) as much as possible)
- Define the utility of a sequence of states:
 - $U(s_0,..., s_N) = R(s_0) + R(s_1) + + R(s_N)$

Maze Example: No Uncertainty

- States: locations in maze grid
- Actions: Moves up/left left/right
- If no uncertainty: Find sequence of actions from current state to goal (+1) that maximizes utility
 → We know how to do this using earlier search techniques

What we are looking for: *Policy*

- Policy = Mapping from states to action π(s) = a
 → Which action should be taken in each state
- In the maze example, $\pi(s)$ associates a motion to a particular location on the grid
- For any state s, the utility U(s) of s is the sum of discounted rewards of the sequence of states starting at s generated by using the policy π

$$U(s) = R(s) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

- Where we move from s to s1 by action $\pi(s)$
- We move from s_1 to s_2 by action $\pi(s_1)$, etc.

Optimal Decision Policy

- Policy
 - Mapping from states to action $\pi(s) = a$
- Optimal Policy
 - The policy π^* that maximizes the expected utility U(s) of the sequence of states generated by π^* , starting at s
- In the maze example, $\pi^*(s)$ tells us which motion to choose at every cell of the grid to bring us closer to the goal

Maze Example: No Uncertainty

•
$$\pi^*((1,1)) = UP$$

•
$$\pi^*((1,3)) = RIGHT$$

•
$$\pi^*((4,1)) = LEFT$$

Maze Example: With Uncertainty

Intended action:

- The robot may not execute exactly the action that is commanded → The outcome of an action is no longer deterministic
- Uncertainty:
 - We know in which state we are (fully observable)
 - But we are not sure that the commanded action will be executed exactly

Uncertainty

- No uncertainty:
 - An action a deterministically causes a transition from a state s to another state s'
- With uncertainty:
 - An action a causes a transition from a state s
 to another state s' with some probability
 T(s,a,s')
 - T(s,a,s') is called the transition probability
 from state s to state s' through action a
 - In general, we need $|S|^2x|A|$ numbers to store all the transitions probabilities

Maze Example: With Uncertainty

- We can no longer find a unique sequence of actions, but
- Can we find a policy that tells us how to decide which action to take from each state except that now the policy maximizes the expected utility

U(s) = Expected reward of future states starting at s How to compute U after one step?

$$U(1,1) = R(1,1) +$$

$$U(1,1) = R(1,1) + 0.8 \times U(1,2) +$$

Intended
$$T(s,a,s')$$
 action a :
$$0.8$$

$$0.1 \longrightarrow 0.1$$

$$U(1,1) = R(1,1) + 0.8 \times U(1,2) + 0.1 \times U(2,1) +$$

$$U(1,1) = R(1,1) + 0.8 \times U(1,2) + 0.1 \times U(2,1) + 0.1 \times R(1,1)$$

Intended action *a*:

T(s,a,s')
0.8

 $0.1 \left| \begin{array}{c} \uparrow \\ \downarrow \\ 0.1 \end{array} \right|$

Suppose s = (1,1) and we choose action Up.

Move up with prob. 0.8

$$U(1,1) = R(1,1) + 0.8 \times U(1,2) + 0.1 \times U(2,1) +$$

 $0.1 \times R(1.1)$

Move left with prob. 0.1 (notice the wall!)

Move right with prob. 0.1

Same with Discount

$$U(1,1) = R(1,1) + \gamma (0.8 \times U(1,2) + 0.1 \times U(2,1) + 0.1 \times R(1,1))$$

More General Expression

 If we choose action a at state s, expected future rewards are:

$$U(s) = R(s) + \gamma \sum_{s'} T(s,a,s') U(s')$$

More General Expression

If we choose action a

Expected sum of future discounted rewards starting at s'

Reward at current state s

$$U(s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')$$

Expected sum of future discounted rewards starting at s

Probability of moving from state s to state s' with action a

More General Expression

• If we are using policy π , we choose action $a=\pi(s)$ at state s, expected future rewards are:

$$U_{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U_{\pi}(s')$$

Formal Definitions

- Finite set of states: S
- Finite set of allowed actions: A
- Reward function R(s)
- Transitions probabilities: T(s,a,s') = P(s'|a,s)
- Utility = sum of discounted rewards:

$$-U(s_0,...) = R(s_0) + \gamma R(s_1) + ... + \gamma^N R(s_N) + ...$$

- Policy: $\pi: S \rightarrow A$
- Optimal policy: π*(s) = action that maximizes the expected sum of rewards from state s

Markov Decision Process (MDP)

Key property (Markov):

$$P(s_{t+1} | a, s_0,...,s_t) = P(s_{t+1} | a, s_t)$$

 In words: The new state reached after applying an action depends only on the previous state and it does not depend on the previous history of the states visited in the past

→ Markov Process

Markov Example

When applying the action "Right" from state
 s₂ = (1,3), the new state depends only on the previous state s₂, not the entire history {s₁, s₀}

Graphical Notations

- Nodes are states
- Each arc corresponds to a possible transition between two states given an action
- Arcs are labeled by the transition probabilities

$$T(s, a_1, s') = 0.8$$

 $T(s', a_2, s) = 0.6$
 $T(s, a_2, s) = 0.2$

Example (Partial)

Warning: The transitions are *NOT* all shown in this example!

Example

- I run a company
- I can choose to either save money or spend money on advertising
- If I advertise, I may become famous (50% prob.)
 but will spend money so I may become poor
- If I save money, I may become rich (50% prob.), but I may also become unknown because I don't advertise
- What should I do?

Policy Number 1:

STATE → ACTION		
PU	S	
PF	Α	
RU	S	
RF	Α	

Policy Number 2:

STATE → ACTION		
PU	А	
PF	А	
RU	А	
RF	Α	

Example Policies

Examples

ər 1:	STATE →	ACTION
Number 1	PU	S
Nu	PF	А
Policy	RU	s
Ъ	RF	Α

STATE → ACTION		
PU	А	
PF	А	
RU	А	
RF	Α	

Many policies

Policy Number 2:

- The best policy?
- How to compute the optimal policy?

Key Result

- For every MDP, there exists an optimal policy
- There is no better option (in terms of expected sum of rewards) than to follow this policy

 How to compute the optimal policy? → We cannot evaluate all possible policies (in real problems, the number of states is very large)

Bellman's Equation

If we choose an action a:

$$U(s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')$$

Bellman's Equation

If we choose an action a:

$$U(s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')$$

In particular, if we always choose the action *a* that maximizes future rewards (optimal policy), **U**(*s*) is the maximum **U***(*s*) we can get over all possible choices of actions:

$$U^*(s) = R(s) + \gamma \max_{a} (\sum_{s'} T(s, a, s') U^*(s'))$$

Bellman's Equation

$$U^*(s)=R(s)+\gamma \max_{a}(\sum_{s'} T(s,a,s')U^*(s'))$$

The optimal policy (choice of a that maximizes
 U) is:

$$\pi^*(s) = \operatorname{argmax}_a(\Sigma_{s'} T(s, a, s') U^*(s'))$$

Why it cannot be solved directly

$$U^*(s) = R(s) + \gamma \max_{a} (\sum_{s'} T(s,a,s') U^*(s'))$$

The optimal | Set of |S| equations. Non-linear because of the "max": Cannot be solved directly!

$$\pi^*(s) = \operatorname{argmax}_a(\Sigma_{s'} T(s,a,s') U^*(s'))$$

Expected sum of rewards using policy π^* \rightarrow The right-hand depends on the unknown. Cannot solve directly

First Solution: Value Iteration

- Define U₁(s) = best value after one step
 U₁(s) = R(s)
- Define U₂(s) = best possible value after two steps

$$U_2(s) = R(s) + \gamma \max_a (\sum_{S'} T(s, a, s') U_1(s'))$$

• Define $U_k(s)$ = best possible value after k steps

$$U_k(s) = R(s) + \gamma \max_a (\sum_{s'} T(s, a, s') U_{k-1}(s'))$$

First Solution: Value Iteration

- Define U₁(s) = best value after one step
 U₁(s) = R(s)
- Define $U_2(s)$ = best value after *two* steps

Maximum possible expected sum of discounted rewards that I can get if I start at state s and I survive for k time steps.

$$s') U_1(s'))$$

• Define $U_k(s)$ = best value after k steps

$$U_k(s) = R(s) + \gamma \max_a (\sum_{S'} T(s, a, s') U_{k-1}(s'))$$

3-State Example – Value Iteration Computation for Markov chain (no policy)

3-State Example: Values $\gamma = 0.5$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.0	-1.0	-10.0
3	5.0	-1.25	-10.75
4	4.9375	-1.4375	-11.0
5	4.875	-1.515625	-11.109375
6	4.8398437	-1.5585937	-11.15625
7	4.8203125	-1.5791016	-11.178711
8	4.8103027	-1.5895996	-11.189453
9	4.805176	-1.5947876	-11.194763
10	4.802597	-1.5973969	-11.197388
11	4.8013	-1.5986977	-11.198696
12	4.8006506	-1.599349	-11.199348
13	4.8003254	-1.5996745	-11.199675
14	4.800163	-1.5998373	-11.199837
15	4.8000813	-1.5999185	-11.199919

3-State Example: Values $\gamma = 0.9$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.8	-1.8	-11.6
3	5.8	-2.6100001	-14.030001
4	5.4355	-3.7035	-15.488001
5	4.7794	-4.5236254	-16.636175
6	4.1150985	-5.335549	-17.521912
7	3.4507973	-6.0330653	-18.285858
8	2.8379793	-6.6757774	-18.943516
9	2.272991	-7.247492	-19.528683
•••			
50	-2.8152928	-12.345073	-24.633476
51	-2.8221645	-12.351946	-24.640347
52	-2.8283496	-12.3581295	-24.646532
86	-2.882461	-12.412242	-24.700644
87	-2.882616	-12.412397	-24.700798
88	-2.8827558	-12.412536	-24.70094

3-State Example: Values $\gamma = 0.2$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	4.4	-0.4	-8.8
3	4.4	-0.44000003	-8.92
4	4.396	-0.452	-8.936
5	4.3944	-0.454	-8.9388
6	4.39404	-0.45443997	-8.93928
7	4.39396	-0.45452395	-8.939372
8	4.393944	-0.4545412	-8.939389
9	4.3939404	-0.45454454	-8.939393
10	4.3939395	-0.45454526	-8.939394
11	4.3939395	-0.45454547	-8.939394
12	4.3939395	-0.45454547	-8.939394

Next

- More value iteration
- Policy iteration