
Markov Decision Processes: 
Making Decision in the Presence 

of Uncertainty
(some of) R&N 16.1-16.6 

R&N 17.1-17.4



Different Aspects of “Machine Learning”
• Supervised learning

– Classification - concept learning 
– Learning from labeled data
– Function approximation

• Unsupervised learning
– Data is not labeled
– Data needs to be grouped, clustered
– We need distance metric

• Control and action model learning
– Learning to select actions efficiently
– Feedback: goal achievement, failure, reward
– Control learning, reinforcement learning



Decision Processes: General 
Description

• Suppose you have to make decisions that impact your 
future... You know the current state around you. 

• You have a choice of several possible actions.
• You cannot predict with certainty the consequence of 

these actions given the current state, but you have a 
guess as to the likelihood of the possible outcomes. 

• How can you define a policy that will guarantee that you 
always choose the action that maximizes expected 
future profits? 

Note: Russel & Norvig, Chapter 17.



Decision Processes: General 
Description

• Decide what action to take next, given:
– A probability to move to different states
– A way to evaluate the reward of being in different 

states
Robot path planning
Travel route planning
Elevator scheduling
Aircraft navigation
Manufacturing processes
Network switching & routing



Example
• Assume that time is discretized into discrete time steps
• Suppose that your world can be in one of a finite number 

of states s
– this is a major simplification, but let’s assume….

• Suppose that for every state s, we can anticipate a 
reward that you receive for being in that state R(s).

• Assume also that R(s) is bounded (R(s) < M for all s) 
meaning that there is a threshold in reward.

• Question: What is the total value of the reward for a 
particular configuration of states {s1,s2,…} over time?



Example
• Question: What is the total value of the reward 

for a particular configuration of states {s1,s2,…} 
over time?

• It is simply the sum of the rewards (possibly 
negative) that we will receive in the future:

U(s1,s2,.., sn,..) = R(s1)+R(s2)+..+R(sn) +....

What is wrong with this formula???



Horizon Problem

U(s0,…, sN) = R(s0)+R(s1)+…+R(sN)

Need to know N, the 
length of the sequence 

(finite horizon)The sum may be 
arbitrarily large 
depending on N



Horizon Problem
• The problem is that we did not put any limit on the 

“future”, so this sum can be infinite.
• For example: Consider the simple case of computing 

the total future reward if you remain forever in the 
same state:

U(s,s,.., s,..) = R(s)+R(s)+..+ R(s) +…...
is clearly infinite in general!!

• This definition is useless unless we consider a finite 
time horizon.

• But, in general, we don’t have a good way to define 
such a time horizon.



Discounting

U(s0,….)=R(s0)+γR(s1)+..+γNR(sN)+..

Discount factor 0 < γ < 1

The length of the 
sequence is arbitrary

(infinite horizon)



Discounting
• U(s0,…..) = R(s0) + γR(s1) +….+ γNR(sN) + ….
• Always converges if γ < 1 and R(.) is bounded
• γ close to 0 instant gratification, don’t pay 

attention to future reward
• γ close to 1 extremely conservative, big 

influence of the future
• The resulting model is the discounted reward

– Prefers expedient solutions (models impatience)
– Compensates for uncertainty in available time 

(models mortality)
• Economic example:

– Being promised $10,000 next year is worth only 90% 
as much as receiving $10,000 right now.

– Assuming payment n years in future is worth only 
(0.9)n of payment now



Actions

• Assume that we also have a finite set of 
actions a

• An action a causes a transition from a 
state s to a state s’



The Basic Decision Problem
• Given:

– Set of states S = {s}
– Set of actions A = {a}         a: S S
– Reward function R(.)
– Discount factor γ
– Starting state s1

• Find a sequence of actions such that the 
resulting sequence of states maximizes
the total discounted reward:
U(s0,….)=R(s0)+γR(s1)+..+γNR(sN)+..



Maze Example: Utility

• Define the reward of being in a state:
– R(s) = -0.04 if s is empty state
– R(4,3) = +1 (maximum reward when goal is reached)
– R(4,2) = -1 (avoid (4,2) as much as possible)

• Define the utility of a sequence of states:
– U(s0,…, sN) = R(s0) + R(s1) +….+R(sN)
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Maze Example: Utility

• Define the reward of being in a state:
– R(s) = -0.04 if s is empty state
– R(4,3) = +1 (maximum reward when goal is reached)
– R(4,2) = -1 (avoid (4,2) as much as possible)

• Define the utility of a sequence of states:
– U(s0,…, sN) = R(s0) + R(s1) +….+R(sN)
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If no uncertainty:
Find the sequence of 
actions that maximizes 
the sum of the rewards of 
the traversed states



Maze Example: No Uncertainty

• States: locations in maze grid
• Actions: Moves up/left left/right
• If no uncertainty: Find sequence of actions from 

current state to goal (+1) that maximizes utility 
We know how to do this using earlier search 

techniques
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What we are looking for: Policy
• Policy = Mapping from states to action π(s) = a

Which action should be taken in each state 
• In the maze example, π(s) associates a motion 

to a particular location on the grid
• For any state s, the utility U(s) of s is the sum of 

discounted rewards of the sequence of states 
starting at s generated by using the policy π

U(s) = R(s) + γ R(s1) + γ2 R(s2) +…..
• Where we move from s to s1 by action π(s)
• We move from s1 to s2 by action π(s1), etc.



Optimal Decision Policy
• Policy

– Mapping from states to action π(s) = a
• Optimal Policy

– The policy π* that maximizes the expected 
utility U(s) of the sequence of states 
generated by π*, starting at s

• In the maze example, π*(s) tells us which 
motion to choose at every cell of the grid 
to bring us closer to the goal



Maze Example: No Uncertainty

• π*((1,1)) = UP
• π*((1,3)) = RIGHT
• π*((4,1)) = LEFT
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Maze Example: With Uncertainty

• The robot may not execute exactly the action that is 
commanded The outcome of an action is no longer 
deterministic

• Uncertainty:
– We know in which state we are (fully observable)
– But we are not sure that the commanded action will be executed 

exactly

Intended action:

Executed 
action:

Prob = 0.8 Prob = 0.0 Prob = 0.1 Prob = 0.1



Uncertainty
• No uncertainty:

– An action a deterministically causes a 
transition from a state s to another state s’

• With uncertainty:
– An action a causes a transition from a state s

to another state s’ with some probability
T(s,a,s’)

– T(s,a,s’) is called the transition probability 
from state s to state s’ through action a

– In general, we need |S|2x|A| numbers to store 
all the transitions probabilities



Maze Example: With Uncertainty

• We can no longer find a unique sequence of 
actions, but

• Can we find a policy that tells us how to decide 
which action to take from each state except that 
now the policy maximizes the expected utility 
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Maze Example: Utility Revisited

U(s) = Expected reward of future states starting at s
How to compute U after one step?
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Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 
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Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 
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Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +
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Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) + 
0.1 x R(1,1)
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Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) + 
0.1 x R(1,1)
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Move up with prob. 0.8

Move right with prob. 0.1Move left with prob. 0.1 
(notice the wall!)



Same with Discount

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + γ (0.8 x U(1,2) + 
0.1 x U(2,1) + 0.1 x R(1,1))
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More General Expression

• If we choose action a at state s, expected future 
rewards are:

U(s) = R(s) + γ Σs’ T(s,a,s’) U(s’)



More General Expression

• If we choose action a at state s:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)

Expected sum of 
future discounted 
rewards starting at s

Reward at current state s

Probability of moving 
from state s to state 
s’ with action a

Expected sum of future 
discounted rewards 

starting at s’



More General Expression

• If we are using policy π, we choose action 
a=π(s) at state s, expected future rewards are:

Uπ(s) = R(s) + γ Σs’T(s,π(s),s’) Uπ(s’)



Formal Definitions
• Finite set of states: S
• Finite set of allowed actions: A
• Reward function R(s)

• Transitions probabilities: T(s,a,s’) = P(s’|a,s)
• Utility = sum of discounted rewards:

– U(s0,…..) = R(s0) + γR(s1) +….+ γNR(sN) + ….

• Policy: π :S A
• Optimal policy: π*(s) = action that maximizes the 

expected sum of rewards from state s



Markov Decision Process (MDP)

• Key property (Markov):

P(st+1 | a, s0,..,st) = P(st+1 | a, st)
• In words: The new state reached after 

applying an action depends only on the 
previous state and it does not depend on 
the previous history of the states visited in 
the past

Markov Process



Markov Example

• When applying the action “Right” from state 
s2 = (1,3), the new state depends only on 

the previous state s2, not the entire history 
{s1, s0}
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Graphical Notations

• Nodes are states
• Each arc corresponds to a possible transition 

between two states given an action
• Arcs are labeled by the transition probabilities

s

s’

a1 Prob. = 0.8

a2 Prob. = 0.2

a1 Prob. = 0.4

a2 Prob. = 0.6

T(s, a1,s’) = 0.8
T(s’,a2,s) = 0.6
T(s,a2,s) = 0.2



s

s’
a1 Prob. = 0.8

a2 Prob. = 0.2

a1 Prob. = 0.4

a2 Prob. = 0.6

T(s, a1,s’) = 0.8
T(s’,a2,s) = 0.6
T(s,a2,s) = 0.2



Example (Partial)
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(1,1)
(1,2)

Up, 0.8 

(2,1)
Up, 0.1

Up, 0.1

Warning: The transitions are NOT all shown in this example!



Example

• I run a company
• I can choose to either save money or spend 

money on advertising
• If I advertise, I may become famous (50% prob.) 

but will spend money so I may become poor
• If I save money, I may become rich (50% prob.), 

but I may also become unknown because I don’t 
advertise

• What should I do?
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Example Policies

• Many policies
• The best policy?
• How to compute the optimal policy?



Key Result

• For every MDP, there exists an optimal policy
• There is no better option (in terms of expected 

sum of rewards) than to follow this policy

• How to compute the optimal policy? We 
cannot evaluate all possible policies (in real 
problems, the number of states is very large)



Bellman’s Equation

If we choose an action a:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)



Bellman’s Equation
If we choose an action a:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)

In particular, if we always choose the action a
that maximizes future rewards (optimal policy), 
U(s) is the maximum U*(s) we can get over all 
possible choices of actions:

U*(s) = R(s)+γ maxa(Σs’T(s,a,s’)U*(s’))



Bellman’s Equation

U*(s)=R(s)+γ maxa(Σs’ T(s,a,s’)U*(s’))

• The optimal policy (choice of a that maximizes 
U) is:

π*(s) = argmaxa (Σs’ T(s,a,s’) U*(s’))



Why it cannot be solved directly

U*(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U*(s’))

• The optimal policy (choice of a that 
maximizes U) is:

π*(s) = argmaxa (Σs’ T(s,a,s’) U*(s’))

Expected sum of rewards using policy π* 
The right-hand depends on the 

unknown. Cannot solve directly

Set of |S| equations. Non-linear 
because of the “max”: Cannot be 
solved directly!



First Solution: Value Iteration
• Define U1(s) = best value after one step

U1(s) = R(s)
• Define U2(s) = best possible value after two

steps

U2(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U1(s’))

……………………………….

• Define Uk(s) = best possible value after k steps

Uk(s) = R(s) + γ maxa (Σs’ T(s,a,s’) Uk-1(s’))



First Solution: Value Iteration
• Define U1(s) = best value after one step

U1(s) = R(s)
• Define U2(s) = best value after two steps

U2(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U1(s’))

……………………………….

• Define Uk(s) = best value after k steps

Uk(s) = R(s) + γ maxa (Σs’ T(s,a,s’) Uk-1(s’))

Maximum possible expected sum of 
discounted rewards that I can get if I start at 
state s and I survive for k time steps.



3-State Example – Value Iteration
Computation for Markov chain (no policy)



3-State Example: Values γ = 0.5



3-State Example: Values γ = 0.9



3-State Example: Values γ = 0.2



Next

• More value iteration
• Policy iteration


