Markov Decision Processes:
Making Decision in the Presence
of Uncertainty

(some of) R&N 16.1-16.6
R&N 17.1-17.4

Different Aspects of “Machine Learning”

e Supervised learning

— Classification - concept learning
— Learning from labeled data
— Function approximation

e Unsupervised learning

— Data is not labeled
— Data needs to be grouped, clustered
— We need distance metric

e Control and action model learning

— Learning to select actions efficiently
— Feedback: goal achievement, failure, reward
— Control learning, reinforcement learning

Decision Processes: General
Description

e Suppose you have to make decisions that impact your
future... You know the current state around you.

* You have a choice of several possible actions.

e You cannot predict with certainty the consequence of
these actions given the current state, but you have a
guess as to the likelihood of the possible outcomes.

 How can you define a policy that will guarantee that you
always choose the action that maximizes expected
future profits?

Note: Russel & Norvig, Chapter 17.

Decision Processes: General
Description

« Decide what action to take next, given:
— A probability to move to different states

— A way to evaluate the reward of being in different
states

Robot path planning

Travel route planning
Elevator scheduling

Aircraft navigation
Manufacturing processes
Network switching & routing

Example

Assume that time is discretized into discrete time steps

Suppose that your world can be in one of a finite number
of states s
— this is a major simplification, but let's assume....

Suppose that for every state s, we can anticipate a
reward that you receive for being in that state R(S).

Assume also that R(s) is bounded (R(s) < M for all s)
meaning that there is a threshold in reward.

Question: What Is the total value of the reward for a
particular configuration of states {s,,S,,...} over time?

Example

e Question: What is the total value of the reward
for a particular configuration of states {s,,s,,...}
over time?

e Itis simply the sum of the rewards (possibly
negative) that we will receive in the future:

U(s,,S,,.., Spy-.) = R(S)+R(S,)+..+R(S,) *+....

What is wrong with this formula???

Horizon Problem

U(Sg,-.., Sp) = R(Sp)+R(S,)+...+R(Sy)

Need to know N, the

length of the sequence
The sum may be (finite horizon)

arbitrarily large
depending on N

Horizon Problem

 The problem is that we did not put any limit on the
“future”, so this sum can be infinite.

 For example: Consider the simple case of computing
the total future reward if you remain forever in the
same state:

U(s,s,.., S,..) = R(s)+R(s)+..+ R(s) +......

IS clearly infinite in general!!

 This definition Is useless unless we consider a finite
time horizon.

e But, In general, we don’t have a good way to define
such a time horizon.

Discounting
U(sg,....)=R(Sy)+YR(S,)+..+YNR(Sy) +..

Discount factorO<y<1

The length of the
seqguence Is arbitrary
(infinite horizon)

Discounting

U(sq,.....) = R(Sp) + YR(Sy) +....+ YNR(S) + ...
Always converges if y < 1 and R(.) is bounded

y close to O = instant gratification, don’t pay
attention to future reward

v close to 1 = extremely conservative, big
iInfluence of the future

The resulting model is the discounted reward

— Prefers expedient solutions (models impatience)

— Compensates for uncertainty in available time
(models mortality)

Economic example:

— Being promised $10,000 next year is worth only 90%
as much as receiving $10,000 right now.

— Assuming payment n years in future is worth only
(0.9)" of payment now

Actions

e Assume that we also have a finite set of
actions a

e An action a causes a transition from a
state s to a state s’

The Basic Decision Problem

e Glven:

— Set of states S = {s}

— Set of actions A = {a} a.S—>S

— Reward function R(.)

— Discount factor y

— Starting state s,
* Find a sequence of actions such that the

resulting sequence of states maximizes
the total discounted reward:

U(Sg,....)=R(Sp)+YR(S)+..+YNR(S\) ..

Maze Example: Utllity

1 2 3 4
3 +1

2 - -1

1

* Define the reward of being in a state:
— R(s) =-0.04 if s is empty state
— R(4,3) = +1 (maximum reward when goal is reached)
— R(4,2) = -1 (avoid (4,2) as much as possible)
e Define the utility of a sequence of states:
— U(Sq,---» Sy) = R(Sp) + R(S) +....+R(sy)

Maze Example: Utllity

1 2 3 4

I
3 If no uncertainty:
Find the sequence of
2 actions that maximizes
the sum of the rewards of
the traversed states
! START

* Define the reward of being in a state:
— R(s) =-0.04 if s is empty state
— R(4,3) = +1 (maximum reward when goal is reached)
— R(4,2) = -1 (avoid (4,2) as much as possible)
e Define the utility of a sequence of states:
— U(Sq,---» Sy) = R(Sp) + R(S) +....+R(sy)

Maze Example: No Uncertainty
1 2 3 4

3 — — — +1

-1

1
START

e States: locations in maze grid
e Actions: Moves up/left left/right

 If no uncertainty: Find sequence of actions from
current state to goal (+1) that maximizes utility
- We know how to do this using earlier search
technigues

What we are looking for: Policy

Policy = Mapping from states to action n(s) = a
- Which action should be taken in each state

In the maze example, n(s) associates a motion
to a particular location on the grid

For any state s, the utility U(s) of s Is the sum of
discounted rewards of the sequence of states
starting at s generated by using the policy &

U(s) = R(s) + Yy R(s,) + y* R(s,) +.....
Where we move from s to s1 by action n(s)
We move from s, to s, by action =(s,), etc.

Optimal Decision Policy

e Policy
— Mapping from states to action n(s) = a
 Optimal Policy

— The policy n* that maximizes the expected
utility U(s) of the sequence of states
generated by n*, starting at s

* In the maze example, n*(s) tells us which
motion to choose at every cell of the grid
to bring us closer to the goal

Maze Example: No Uncertainty
1 2 3 4

3 — | +1

T -1

1 — | T | —

START

2

e m*((1,1)) = UP
+ 7%((1,3)) = RIGHT
+ 7*((4,1)) = LEFT

Maze Example: With Uncertainty

Intended action:

Executed T
action:

Prob =0.8

I

|

Prob =0.0

Prob =0.1

Prob =0.1

* The robot may not execute exactly the action that is
commanded - The outcome of an action is no longer

deterministic
« Uncertainty:

— We know in which state we are (fully observable)
— But we are not sure that the commanded action will be executed

exactly

Uncertainty

 No uncertainty:

— An action a deterministically causes a
transition from a state s to another state s’

 With uncertainty:

— An action a causes a transition from a state s
to another state s’ with some probability
T(s,a,s’)

— T(s,a,s’) Is called the transition probability
from state s to state s’ through action a

— In general, we need |S|?x|A| numbers to store
all the transitions probabilities

Maze Example: With Uncertainty

1 2 3 4

3 — — — +1

T 1

1 — I —

 We can no longer find a unique sequence of
actions, but

e Can we find a policy that tells us how to decide
which action to take from each state except that
now the policy maximizes the expected utility

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
I ERREEE=
1

U(s) = Expected reward of future states starting at s
How to compute U after one step?

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) +

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) +

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +
0.1 x R(1,1)

Maze Example: Utlility Revisited

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.
Move up with prob. 0.8

U(1,1) = R(1,1)M U(1,2) + 0.1 x U(2,1) +
0.1 xR(1 1)

Move left with prob. 0.1 Move right with prob. 0.1

(notice the wall!)

Same with Discount

1 2 3 4 Intended T(S’a,s’)
3 +1 action a: 0.8
0.1
2 - -1 T Oll —'-
1| S

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + vy (0.8 x U(1,2) +
0.1 x U(2,1) + 0.1 x R(1,1))

More General Expression

* If we choose action a at state s, expected future
rewards are:

U(s) = R(s) +y 2. T(s,a,s") U(s)

More General Expression

Expected sum of future
e |f we choose action g discounted rewards

starting at s’

Reward at current state s
N

U(s) = R(s) + y2.. T(s,a,s") U(S)

N

Expected sum of
future discounted
rewards starting at s

Probability of moving
from state s to state
s’ with action a

More General Expression

 If we are using policy z, we choose action
a=7(s) at state s, expected future rewards are:

U,(S) = R(S) + 7 ZeT(5,1(S),8) Uy(S)

Formal Definitions

Finite set of states: S
Finite set of allowed actions: A
Reward function R(S)

Transitions probabillities: T(s,a,s’) = P(s’|a,s)
Utility = sum of discounted rewards:
—U(sq,.....) = R(Sp) + YR(S)) *+....+ YNR(sS) + ...

Policy: t:.S 2> A

Optimal policy: n*(s) = action that maximizes the
expected sum of rewards from state s

Markov Decision Process (MDP)

o Key property (Markov):

P(St+1 | @ Sps--1Sp) = P(Spq | @5 S
* In words: The new state reached after
applying an action depends only on the

previous state and it does not depend on
the previous history of the states visited In

the past
- Markov Process

Markov Example

1 2 3 4
3 — +1

-1

 \When applying the action “Right” from state

S, = (1,3), the new state depends only on
the previous state s,, not the entire history

{S1, So!

Graphical Notations
(s,a5,8")=0.8 a, Prob.=0.8
(s’,a,,S) = 0.6
(s,a,,5) = 0.2

a, Prob. =04

3, Prob. =0.2 a, Prob.=0.6

e Nodes are states

e Each arc corresponds to a possible transition
between two states given an action

* Arcs are labeled by the transition probabillities

T(s, a,,8") =0.8

T(s’,a,,S) = 0.6
T(s,a,,s) = 0.2
a, Prob.=0.8
, Prob.=0.4
a, Prob.=0.6

a, Prob.=0.2

Example (Partial)

1 2 3 4

Intended
3 +1 action a:
2 1 I
1

Up, 0.8

Up, 0.1 @ @
Up, 0.1 II

T(s,a,s’)

0.1

0.8

'

Warning: The transitions are NOT all shown in this example!

0.1

Example

| run a company

| can choose to either save money or spend
money on advertising

f I advertise, | may become famous (50% prob.)
out will spend money so | may become poor

f | save money, | may become rich (50% prob.),
out | may also become unknown because | don’t
advertise

What should | do?

i - ; 1
Poor &

POoor & m Famous

Unknown

5 1/2

5 A5 Jy
et % T4

10 1 S

Famous

| Jaquuinp Aonod

e G @

Example Policies

e D @

& d

.-"'

Q'* ’“

Examples
= STATE
a S a
E I_l L
= =: A
o RU 2
& RF A
&N STATE — ACTION
X =1f A
5 PE A
=
3 RU A
S RF A

 Many policies

 The best po
e How to com

Icy?

pute the optimal policy?

Key Result

 For every MDP, there exists an optimal policy

* There is no better option (in terms of expected
sum of rewards) than to follow this policy

 How to compute the optimal policy? = We
cannot evaluate all possible policies (in real
problems, the number of states is very large)

Bellman’s Equation

If we choose an action a:

U(s) = R(s) + y2.. T(s,a,s") U(s)

Bellman’s Equation

If we choose an action a:

U(s) = R(s) + y2.. T(s,a,s") U(s)

In particular, If we always choose the action a

that maximizes future rewards (optimal policy),
U(s) Is the maximum U*(s) we can get over all
possible choices of actions:

U*(s) = R(s)+y maxa(ZS,T(s,a,s’)U*(s’))

Bellman’s Equation
U*(s)=R(s)+y maxa(zs, T(s,a,5")U*(s’))

 The optimal policy (choice of a that maximizes
U) is:

n*(s) = argmax, (2. T(s,a,s’) U*(s’))

Why it cannot be solved directly

U*(s) =_R(s) + y max, (Zs’ (s,a,s’) U*(s’))

: Set of |S| equations. Non-linear
» The optimal | pecause of the “max”: Cannot be

maximizes U solved directly!

(s) = argmax, (&g T(s,a,8") U(S"))

N\

Expected sum of rewards using policy =*
-> The right-hand depends on the
unknown. Cannot solve directly

First Solution: Value Iteration

» Define U,(s) = best value after one step
Uy(s) = R(s)
» Define U,(S) = best possible value after two
steps

Uy(s) = R(s) +y max, (Zg T(s,a,5") Uj(s))

» Define U,(s) = best possible value after k steps

Ui(s) = R(S) +y max, (Zg T(s,a,8") Ui 4(S))

First Solution: Value Iteration

» Define U,(s) = best value after one step
Ui(s) = R(s)
» Define U,(s) = best value after two steps

Maximum possible expected sum of S’) U (S’))
discounted rewards that | can get if | start at -
state s and | survive for k time steps.

\/

» Define U,(s) = best value after k steps

Ui(s) = R(S) +y max, (Zg T(s,a,8") Uy 4(S))

3-State Example — Value lteration
Computation for Markov chain (no policy)

1/2 12
1/2 (WIND HAIL 1/2
| Q/{ B
172 1/2

3-State Example: Values y = 0.5

lteration SUN WIND HAIL
0 0 0 0
1 4 0 -8
2 5.0 -1.0 -10.0
3 5.0 -1.25 -10.75
4 49375 -1.4375 -11.0
S 4.875 -1.515625 | -11.109375
6 4.8398437 | -1.5585937 | -11.15625
7 4.8203125 | -1.5791016 | -11.178711
8 4.8103027 | -1.5895996 | -11.189453
Q 4.805176 | -1.5947876 | -11.194763
10 4.802597 | -1.8973969 | -11.197388
11 4.8013 -1.5986977 | -11.198696
12 4.8006506 | -1.599349 | -11.199348
13 4.8003254 | -1.8996745 | -11.199675
14 4.800163 | -1.5998373 | -11.199837
15 4.8000813 | -1.5999185 | -11.199919

3-State Example: Vval

ues y=0.9

lteration SUN WIND HAIL
0) 0) 0 0)
1 4 0 -8
2 5.8 -1.8 -11.6
3 5.8 -2.6100001 | -14.030001
4 5.4355 -3.7035 -15.488001
S 4.7794 -4.5236254 | -16.636175
6 4.1150985 -5.335549 -17.521912
/ 3.4507973 | -6.0330653 | -18.285858
8 28379793 | -6.6757774 | -18.943516
Q 2.272991 -7.247492 -19.528683
50 -2.81629028 | -12.345073 | -24.633476
51 -2.8221645 | -12.351946 | -24.640347
52 -2.8283496 | -12.3581295 | -24.646532
86 -2.882461 -12.412242 | -24.700644
87 -2.882616 -12.412397 | -24.700798
38 -2.8827558 | -12.412536 -24.70094

3-State Example: Values y = 0.2

lteration SUN WIND HAIL
0 0 0 0
] 4 0 -8
2 4.4 -0.4 -8.8
3 4.4 -0.44000003 -8.92
4 4,396 -0.452 -8.936
5 4,3944 -0.454 -8.9388
6 4.39404 -0.45443997 | -8.93928
7 4.39396 -0.45452395 | -8.939372
8 4.393944 -0.4545412 | -8.939389
Q 4,3939404 | -0.45454454 | -8.939393
10 4,3939395 | -0.45454526 | -8.939394
17 4,3939305 | -0.45454547 | -8.939394
12 4.3939395 [-0.45454547 | -8.939394

Next

e More value iteration
e Policy iteration

