
Markov Decision Processes:
Making Decision in the Presence

of Uncertainty
(some of) R&N 16.1-16.6

R&N 17.1-17.4

Different Aspects of “Machine Learning”
• Supervised learning

– Classification - concept learning
– Learning from labeled data
– Function approximation

• Unsupervised learning
– Data is not labeled
– Data needs to be grouped, clustered
– We need distance metric

• Control and action model learning
– Learning to select actions efficiently
– Feedback: goal achievement, failure, reward
– Control learning, reinforcement learning

Decision Processes: General
Description

• Suppose you have to make decisions that impact your
future... You know the current state around you.

• You have a choice of several possible actions.
• You cannot predict with certainty the consequence of

these actions given the current state, but you have a
guess as to the likelihood of the possible outcomes.

• How can you define a policy that will guarantee that you
always choose the action that maximizes expected
future profits?

Note: Russel & Norvig, Chapter 17.

Decision Processes: General
Description

• Decide what action to take next, given:
– A probability to move to different states
– A way to evaluate the reward of being in different

states
Robot path planning
Travel route planning
Elevator scheduling
Aircraft navigation
Manufacturing processes
Network switching & routing

Example
• Assume that time is discretized into discrete time steps
• Suppose that your world can be in one of a finite number

of states s
– this is a major simplification, but let’s assume….

• Suppose that for every state s, we can anticipate a
reward that you receive for being in that state R(s).

• Assume also that R(s) is bounded (R(s) < M for all s)
meaning that there is a threshold in reward.

• Question: What is the total value of the reward for a
particular configuration of states {s1,s2,…} over time?

Example
• Question: What is the total value of the reward

for a particular configuration of states {s1,s2,…}
over time?

• It is simply the sum of the rewards (possibly
negative) that we will receive in the future:

U(s1,s2,.., sn,..) = R(s1)+R(s2)+..+R(sn) +....

What is wrong with this formula???

Horizon Problem

U(s0,…, sN) = R(s0)+R(s1)+…+R(sN)

Need to know N, the
length of the sequence

(finite horizon)The sum may be
arbitrarily large
depending on N

Horizon Problem
• The problem is that we did not put any limit on the

“future”, so this sum can be infinite.
• For example: Consider the simple case of computing

the total future reward if you remain forever in the
same state:

U(s,s,.., s,..) = R(s)+R(s)+..+ R(s) +…...
is clearly infinite in general!!

• This definition is useless unless we consider a finite
time horizon.

• But, in general, we don’t have a good way to define
such a time horizon.

Discounting

U(s0,….)=R(s0)+γR(s1)+..+γNR(sN)+..

Discount factor 0 < γ < 1

The length of the
sequence is arbitrary

(infinite horizon)

Discounting
• U(s0,…..) = R(s0) + γR(s1) +….+ γNR(sN) + ….
• Always converges if γ < 1 and R(.) is bounded
• γ close to 0 instant gratification, don’t pay

attention to future reward
• γ close to 1 extremely conservative, big

influence of the future
• The resulting model is the discounted reward

– Prefers expedient solutions (models impatience)
– Compensates for uncertainty in available time

(models mortality)
• Economic example:

– Being promised $10,000 next year is worth only 90%
as much as receiving $10,000 right now.

– Assuming payment n years in future is worth only
(0.9)n of payment now

Actions

• Assume that we also have a finite set of
actions a

• An action a causes a transition from a
state s to a state s’

The Basic Decision Problem
• Given:

– Set of states S = {s}
– Set of actions A = {a} a: S S
– Reward function R(.)
– Discount factor γ
– Starting state s1

• Find a sequence of actions such that the
resulting sequence of states maximizes
the total discounted reward:
U(s0,….)=R(s0)+γR(s1)+..+γNR(sN)+..

Maze Example: Utility

• Define the reward of being in a state:
– R(s) = -0.04 if s is empty state
– R(4,3) = +1 (maximum reward when goal is reached)
– R(4,2) = -1 (avoid (4,2) as much as possible)

• Define the utility of a sequence of states:
– U(s0,…, sN) = R(s0) + R(s1) +….+R(sN)

+1

-1

3

2

1

1 2 3 4

Maze Example: Utility

• Define the reward of being in a state:
– R(s) = -0.04 if s is empty state
– R(4,3) = +1 (maximum reward when goal is reached)
– R(4,2) = -1 (avoid (4,2) as much as possible)

• Define the utility of a sequence of states:
– U(s0,…, sN) = R(s0) + R(s1) +….+R(sN)

START

+1

-1

3

2

1

1 2 3 4

If no uncertainty:
Find the sequence of
actions that maximizes
the sum of the rewards of
the traversed states

Maze Example: No Uncertainty

• States: locations in maze grid
• Actions: Moves up/left left/right
• If no uncertainty: Find sequence of actions from

current state to goal (+1) that maximizes utility
We know how to do this using earlier search

techniques

START

+1

-1

3

2

1

1 2 3 4

What we are looking for: Policy
• Policy = Mapping from states to action π(s) = a

Which action should be taken in each state
• In the maze example, π(s) associates a motion

to a particular location on the grid
• For any state s, the utility U(s) of s is the sum of

discounted rewards of the sequence of states
starting at s generated by using the policy π

U(s) = R(s) + γ R(s1) + γ2 R(s2) +…..
• Where we move from s to s1 by action π(s)
• We move from s1 to s2 by action π(s1), etc.

Optimal Decision Policy
• Policy

– Mapping from states to action π(s) = a
• Optimal Policy

– The policy π* that maximizes the expected
utility U(s) of the sequence of states
generated by π*, starting at s

• In the maze example, π*(s) tells us which
motion to choose at every cell of the grid
to bring us closer to the goal

Maze Example: No Uncertainty

• π*((1,1)) = UP
• π*((1,3)) = RIGHT
• π*((4,1)) = LEFT

START

+1

-1

3

2

1

1 2 3 4

Maze Example: With Uncertainty

• The robot may not execute exactly the action that is
commanded The outcome of an action is no longer
deterministic

• Uncertainty:
– We know in which state we are (fully observable)
– But we are not sure that the commanded action will be executed

exactly

Intended action:

Executed
action:

Prob = 0.8 Prob = 0.0 Prob = 0.1 Prob = 0.1

Uncertainty
• No uncertainty:

– An action a deterministically causes a
transition from a state s to another state s’

• With uncertainty:
– An action a causes a transition from a state s

to another state s’ with some probability
T(s,a,s’)

– T(s,a,s’) is called the transition probability
from state s to state s’ through action a

– In general, we need |S|2x|A| numbers to store
all the transitions probabilities

Maze Example: With Uncertainty

• We can no longer find a unique sequence of
actions, but

• Can we find a policy that tells us how to decide
which action to take from each state except that
now the policy maximizes the expected utility

+1

-1

3

2

1

1 2 3 4

Maze Example: Utility Revisited

U(s) = Expected reward of future states starting at s
How to compute U after one step?

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) +

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) +

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +
0.1 x R(1,1)

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

Maze Example: Utility Revisited

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + 0.8 x U(1,2) + 0.1 x U(2,1) +
0.1 x R(1,1)

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

Move up with prob. 0.8

Move right with prob. 0.1Move left with prob. 0.1
(notice the wall!)

Same with Discount

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) + γ (0.8 x U(1,2) +
0.1 x U(2,1) + 0.1 x R(1,1))

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

s

More General Expression

• If we choose action a at state s, expected future
rewards are:

U(s) = R(s) + γ Σs’ T(s,a,s’) U(s’)

More General Expression

• If we choose action a at state s:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)

Expected sum of
future discounted
rewards starting at s

Reward at current state s

Probability of moving
from state s to state
s’ with action a

Expected sum of future
discounted rewards

starting at s’

More General Expression

• If we are using policy π, we choose action
a=π(s) at state s, expected future rewards are:

Uπ(s) = R(s) + γ Σs’T(s,π(s),s’) Uπ(s’)

Formal Definitions
• Finite set of states: S
• Finite set of allowed actions: A
• Reward function R(s)

• Transitions probabilities: T(s,a,s’) = P(s’|a,s)
• Utility = sum of discounted rewards:

– U(s0,…..) = R(s0) + γR(s1) +….+ γNR(sN) + ….

• Policy: π :S A
• Optimal policy: π*(s) = action that maximizes the

expected sum of rewards from state s

Markov Decision Process (MDP)

• Key property (Markov):

P(st+1 | a, s0,..,st) = P(st+1 | a, st)
• In words: The new state reached after

applying an action depends only on the
previous state and it does not depend on
the previous history of the states visited in
the past

Markov Process

Markov Example

• When applying the action “Right” from state
s2 = (1,3), the new state depends only on

the previous state s2, not the entire history
{s1, s0}

+1

-1

3

2

1

1 2 3 4

s0

s1

s2

Graphical Notations

• Nodes are states
• Each arc corresponds to a possible transition

between two states given an action
• Arcs are labeled by the transition probabilities

s

s’

a1 Prob. = 0.8

a2 Prob. = 0.2

a1 Prob. = 0.4

a2 Prob. = 0.6

T(s, a1,s’) = 0.8
T(s’,a2,s) = 0.6
T(s,a2,s) = 0.2

s

s’
a1 Prob. = 0.8

a2 Prob. = 0.2

a1 Prob. = 0.4

a2 Prob. = 0.6

T(s, a1,s’) = 0.8
T(s’,a2,s) = 0.6
T(s,a2,s) = 0.2

Example (Partial)

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8
Intended
action a:

T(s,a,s’)

(1,1)
(1,2)

Up, 0.8

(2,1)
Up, 0.1

Up, 0.1

Warning: The transitions are NOT all shown in this example!

Example

• I run a company
• I can choose to either save money or spend

money on advertising
• If I advertise, I may become famous (50% prob.)

but will spend money so I may become poor
• If I save money, I may become rich (50% prob.),

but I may also become unknown because I don’t
advertise

• What should I do?

1 S ½ ½
A

1

A

½

½ S

½

½

S

1

A
½½

S½
½

A

Poor &
Unknown

Poor &
Famous

Rich &
Unknown

Rich &
Famous

0 0

10 10

Example Policies

• Many policies
• The best policy?
• How to compute the optimal policy?

Key Result

• For every MDP, there exists an optimal policy
• There is no better option (in terms of expected

sum of rewards) than to follow this policy

• How to compute the optimal policy? We
cannot evaluate all possible policies (in real
problems, the number of states is very large)

Bellman’s Equation

If we choose an action a:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)

Bellman’s Equation
If we choose an action a:

U(s) = R(s) + γΣs’ T(s,a,s’) U(s’)

In particular, if we always choose the action a
that maximizes future rewards (optimal policy),
U(s) is the maximum U*(s) we can get over all
possible choices of actions:

U*(s) = R(s)+γ maxa(Σs’T(s,a,s’)U*(s’))

Bellman’s Equation

U*(s)=R(s)+γ maxa(Σs’ T(s,a,s’)U*(s’))

• The optimal policy (choice of a that maximizes
U) is:

π*(s) = argmaxa (Σs’ T(s,a,s’) U*(s’))

Why it cannot be solved directly

U*(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U*(s’))

• The optimal policy (choice of a that
maximizes U) is:

π*(s) = argmaxa (Σs’ T(s,a,s’) U*(s’))

Expected sum of rewards using policy π*
The right-hand depends on the

unknown. Cannot solve directly

Set of |S| equations. Non-linear
because of the “max”: Cannot be
solved directly!

First Solution: Value Iteration
• Define U1(s) = best value after one step

U1(s) = R(s)
• Define U2(s) = best possible value after two

steps

U2(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U1(s’))

……………………………….

• Define Uk(s) = best possible value after k steps

Uk(s) = R(s) + γ maxa (Σs’ T(s,a,s’) Uk-1(s’))

First Solution: Value Iteration
• Define U1(s) = best value after one step

U1(s) = R(s)
• Define U2(s) = best value after two steps

U2(s) = R(s) + γ maxa (Σs’ T(s,a,s’) U1(s’))

……………………………….

• Define Uk(s) = best value after k steps

Uk(s) = R(s) + γ maxa (Σs’ T(s,a,s’) Uk-1(s’))

Maximum possible expected sum of
discounted rewards that I can get if I start at
state s and I survive for k time steps.

3-State Example – Value Iteration
Computation for Markov chain (no policy)

3-State Example: Values γ = 0.5

3-State Example: Values γ = 0.9

3-State Example: Values γ = 0.2

Next

• More value iteration
• Policy iteration

