Informed Search

Day 2/3 of Search

Chap. 4, Russel & Norvig

Uninformed Search Complexity

- \(\text{N} \) = Total number of states
- \(\text{B} \) = Average number of successors (branching factor)
- \(\text{L} \) = Length for start to goal with smallest number of steps
- \(\text{Q} \) = Average size of the priority queue
- \(L_{\text{max}} \) = Length of longest path from \textit{START} to any state

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{B}^\text{L})))</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{B}^\text{L})))</td>
</tr>
<tr>
<td>BBFS</td>
<td>Y</td>
<td>Y</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{2B}^\text{L})))</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{2B}^\text{L})))</td>
</tr>
<tr>
<td>UCS</td>
<td>Y, if cost > 0</td>
<td>Y, if cost > 0</td>
<td>(\text{O}(\text{log}(\text{B}^\text{L})))</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{B}^\text{L})))</td>
</tr>
<tr>
<td>PCDFS</td>
<td>Y</td>
<td>N</td>
<td>(\text{O}(\text{B}^\text{Lmax}))</td>
<td>(\text{O}(\text{BL}_{\text{max}}))</td>
</tr>
<tr>
<td>MEMDFS</td>
<td>Y</td>
<td>N</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{B}^\text{Lmax})))</td>
<td>(\text{O}(\text{Min}(\text{N}, \text{B}^\text{Lmax})))</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y, if all trans. have same cost</td>
<td>(\text{O}(\text{F}))</td>
<td>(\text{O}(\text{BL}))</td>
</tr>
</tbody>
</table>

Search Revisited

1. Store a value \(f(s) \) at each state \(s \)
2. Choose the state with lowest \(f \) to expand next
3. Insert its successors

If \(f(\cdot) \) is chosen carefully, we will eventually find the lowest-cost sequence

Example:

- UCS (Uniform Cost Search): \(f(A) = g(A) \) = total cost of current shortest path from \textit{START} to \(A \)
- Store states awaiting expansion in a priority queue for efficient retrieval of minimum \(f \)
- Optimal \(\rightarrow \) Guaranteed to find lowest cost sequence, \textit{but}......
• Problem: No guidance as to how “far” any given state is from the goal
• Solution: Design a function $h(.)$ that gives us an estimate of the distance between a state and the goal

Our best guess is that A is closer to GOAL than B so maybe it is a more promising state to expand

Heuristic Functions

• $h(.)$ is a heuristic function for the search problem
• $h(s) =$ estimate of the cost of the shortest path from s to GOAL
• $h(.)$ cannot be computed solely from the states and transitions in the current problem → If we could, we would already know the optimal path!
• $h(.)$ is based on external knowledge about the problem → informed search
• Questions:
 1. Typical examples of h?
 2. How to use h?
 3. What are desirable/necessary properties of h?

Heuristic Functions Example

• $h(s) =$ Linear-geometric distance to GOAL

The straight-line distance is lower from s than from s' so maybe s has a better chance to be on the best path

Heuristic Functions Example

• How could we define $h(s)$?
First Attempt: Greedy Best First Search

- Simplest use of heuristic function: Always select the node with smallest $h(.)$ for expansion (i.e., $f(s) = h(s)$)

Initialize PQ
Insert $START$ with value $h(START)$ in PQ
While (PQ not empty and no goal state is in PQ)
 Pop the state s with the minimum value of h from PQ
 For all s' in $\text{succs}(s)$
 If s' is not already in PQ and has not already been visited
 Insert s' in PQ with value $h(s')$

Problem
- What solution do we find in this case?
- Greedy search clearly not optimal, even though the heuristic function is non-stupid

Trying to Fix the Problem
- $g(s)$ is the cost from $START$ to s only
- $h(s)$ estimates the cost from s to $GOAL$
- Key insight: $g(s) + h(s)$ estimates the total cost of the cheapest path from $START$ to $GOAL$ going through s
- $\rightarrow A^*$ algorithm

Can A^* Fix the Problem?
- $f(A) = h(A) + g(A) = 3 + g(START) + \text{cost}(START, A) = 3 + 0 + 2)$
- $f(B) = h(B) + g(B) + h(B) = 11$
- $f(C) = h(C) + g(C) = 1 + g(A) + \text{cost}(A, C) = 1 + 2 + 4)$
- $f(GOAL) = h(GOAL) = 0$
Can A* Fix the Problem?

\[f(A) = h(A) + g(A) = g(\text{START}) + \text{cost}(\text{START}, A) = 3 + 0 + 2 \]

\[f(C) = h(C) + g(C) = 1 + g(A) + \text{cost}(A, C) = 1 + 2 + 4 \]

\[f(C) = h(C) + g(C) = 1 + g(B) + \text{cost}(B, C) = 1 + 3 + 1 \]

\[(\text{GOAL}, 6) \]

A state that was already in the queue is re-visited.
How is its priority updated?

A* Termination Condition

- Stop when GOAL is popped from the queue!
Revisiting States

A state that had been already expanded is re-visited.
(Careful: This is a different example.)

A* Algorithm (inside loop)

- Pop state s with lowest $f(s)$ in queue
- If $s = \text{GOAL}$
 - return SUCCESS
- Else expand s':
 - For all s' in $\text{succs}(s)$:
 - $f' = g(s') + h(s') = g(s) + \text{cost}(s,s') + h(s')$
 - If (s' not seen before OR s' previously expanded with $f(s') > f'$ OR s' in PQ with $f(s') > f'$)
 - Promote/Insert s' with new value f' in PQ
 - $\text{previous}(s') \leftarrow s$
 - Else
 - Ignore s' (because it has been visited and its current path cost $f(s')$ is still the lowest path cost from START to s')

Under what Conditions is A^* Optimal?

- Problem: $h(.)$ is a poor estimate of path cost to the goal state

Admissible Heuristics

- Define $h^*(s) = \text{the true minimal cost to the goal from } s$
- h is admissible if
 - $h(s) \leq h^*(s)$ for all states s
- In words: An admissible heuristic never overestimates the cost to the goal. “Optimistic” estimate of cost to goal.

A^* is guaranteed to find the optimal path if h is admissible
Consistent (Monotonic) Heuristics

\[h(s) \leq h(s') + \text{cost}(s, s') \]

Sort of triangular inequality implies that path cost always increases + need to expand node only once

\[h(s) \leq h(s') + \text{cost}(s, s') \]

Pop state \(s \) with lowest \(f(s) \) in queue
If \(s = \text{GOAL} \)
return SUCCESS
Else expand \(s \):
For all \(s' \) in \(\text{succs} \) (s):
\[f' = g(s') + h(s') = g(s) + \text{cost}(s, s') + h(s) \]
If \(s' \) not seen before OR
\(s' \) previously expanded with \(f(s') > f' \) OR
\(s' \) in \(\text{PQ} \) with with \(f(s') > f' \)
Promote/Insert \(s' \) with new value \(f' \) in \(\text{PQ} \)
previous(\(s' \)) \(\leftarrow \) s
Else
Ignore \(s' \) (because it has been visited and its current path cost \(f(s') \) is still the lowest path cost from \(\text{START} \) to \(s' \))

Examples

For the navigation problem:
The length of the shortest path is at least the distance between \(s \) and \(\text{GOAL} \)
Euclidean distance is an admissible heuristic

What about the puzzle?
Comparing Heuristics

$\text{h}_1(s) = 7$

$\text{h}_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$

- h_2 dominates h_1 if $\text{h}_2(s) \geq \text{h}_1(s)$ for all s

Intuition: since $h \leq h^*$, a larger h is a better approximation of the true path cost.

Limitations

- Computation: In the worst case, we may have to explore all the states $\Rightarrow O(N)$

- The good news: A^* is optimally efficient \Rightarrow For a given $h(.)$, no other optimal algorithm will expand fewer nodes

- The bad news: Storage is also potentially exponential $\Rightarrow O(N)$
IDA* (Iterative Deepening A*)

- Same idea as Iterative Deepening DFS except use \(f(s) \) to control depth of search instead of the number of transitions.
- Example, assuming integer costs:
 1. Run DFS, stopping at states \(s \) such that \(f(s) > 0 \)
 Stop if goal reached
 2. Run DFS, stopping at states \(s \) such that \(f(s) > 1 \)
 Stop if goal reached
 3. Run DFS, stopping at states \(s \) such that \(f(s) > 2 \)
 Stop if goal reached
 Keep going by increasing the limit on \(f \) by 1 every time

- Complete (assuming we use loop-avoiding DFS)
- Optimal
- More expensive in computation cost than A*
- Memory order \(L \) as in DFS

Summary

- Informed search and heuristics
- First attempt: Best-First Greedy search
- A* algorithm
 - Optimality
 - Condition on heuristic functions
 - Completeness
 - Limitations, space complexity issues
 - Extensions

Chapters 3&4 Russel & Norvig