15-381 Artificial Intelligence: Representation and Problem Solving
Homework 5 Solutions

1 [20 pts] Naive Bayes

Consider the following set of training examples for the unknown target function < X1, X2 >— Y . Each
row indicates the values observed, and how many times that set of values was observed. For example, (+,
T, T ) was observed 3 times, while (-, T, T ) was never observed.

Y X; X3 | Count
+ T T 3
+ T F 4
+ F T 4
+ F F 1
- T 7T 0
- T F 1
F T 3
F F 5

Construct a Naive Bayes classifier for this data using the method described in the class and state the values
of the parameters learnt.

Solution

PXi=T)Y =4+)=7/12P(X; =T|Y =—)=1/9P(Xo =T|Y =4) =7/12 P(Xo = T|Y = —) = 3/9
P(Y =+)=12/21

2 [15 pts] Linear Regression

Consider a series of observations of the form (z1,y1), (x2,92), ... (Zn, yn). Given these observations(“training
data”), our aim is to find a function f of the form f(x) = wx such that f(z) is a good estimate of y for this
dataset. We saw this problem in class; this is just the problem of linear regression.

In class, we found the w that minimized the square error over the data(}_; (y; — wx;)?) and considered
that to be a good estimate. We will now see why that might be considered a good estimate.

Suppose the likelihood of the observation y; is a Gaussian distribution with mean wz; and variance o,

ie. P(Y = y;|w,z;) = 1/(2m/a)e~Wi—we)*/(20%)

1. Derive the expression for the conditional likelihood of the data assuming that each observation was in-
dependently generated. ie. write the expression for P(y1,ys,. .., yn|w, z1, 22, ... x,) = [[} P(ys|w, z;)

2. Now, using the expression for the conditional likelihood of the data, write down the expression for the
conditional log-likelihood, log(P(y1,y2, .-, Yn|w, 1, T2, ... Ty))



3. Show that computing the Maximum Likelihood Estimate of w is equivalent to finding the w that
minimizes the square error. Recall from earlier classes, that a Maximum Likelihood Estimate of a
parameter(in this case w) is the value of the parameter that maximizes the likelihood of the data.

Solution
L IT7 Plyilw, i) = TT7 1/ @ny/@)e @m0/ oD = (1/(2my/o))em (o0 e /207
2. 1=log([T} Pyilw, 1)) = nlog((1/(2mv/a)) — (S} (i — we)?)/20°

3. Need to maximize likelihood, or equivalently, the log-likelihood. nlog((1/(2m+/0))) is a constant inde-
pendent of w, therefore need to maximize —(}_; (y; — wx;)?)/20?, or(dropping minus sign), minimize
(> (yi — wx;)?) /202 Since o is a constant, this is equivalent to minimizing (3} (y; — wz;)?), i.e.
finding the w that minimizes the square error.

3 [15 pts] Learning Decision Trees

Consider the following training data and the following decision tree learned from this data using the algorithm
described in class. The decision tree predicts the value of the boolean attribute PlayTennis using the values
of the rest of the attributes.

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak es
D4 Rain Mild High Wealk Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13  Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Sunny Overcast Rain

Humidity Wind
| Humidiy | Yes | Wind_|

High Normal Strong Weak
/ \ / \
No Yes No Yes

1. Show that the choice of the Wind attribute at the second level of the tree is correct, by showing that
its information gain is superior to the alternative choices.

2. Add one new example to the above data set, so that the learned tree will contain additional nodes.



3. Is it possible to add new examples to the above training set, which are consistent with the above

tree, to produce a larger training set such that the algorithm will now learn a tree whose root node is
not Outlook?. (We say an example is consistent with the above tree if the tree classifies the example
correctly). Justify your answer by explaining informally why this is impossible, or explaining the new
data you would add.

Solution

4

1.

H(PlayTennis|Wind, Outlook = Rain)
= P(Wind = Strong|Outlook = Rain)H (PlayTennis|Wind = Strong, Outlook = Rain)
+P(Wind = Weak|Outlook = Rain)H (PlayTennis|Wind = Weak, Outlook = Rain)
= 2/5%0+2/5%0=0
H(PlayTennis| Humidity, Outlook = Rain) =
P(Humidity = High|Outlook = Rain)H (PlayTennis|Humidity = High, Outlook = Rain)

+P(Humidity = Normal|Outlook = Rain)H (PlayTennis|Humidity = Normal, Outlook = Rain)

= 2/5%(—1/2xlog(1/2)—1/2xlog(1/2))+3/5%(—1/3log(1/3)—2/3log(2/3)) = 2/5(1)+3/5(0.91) = 0.951
H(PlayTennis|Temperature, Outlook = Rain) =
P(Temperature = Hot|Outlook = Rain)H(PlayTennis|Temperature = Hot, Outlook = Rain)

+P(Temperature = Mild|Outlook = Rain)H (PlayTennis|Temperature = Mild, Outlook = Rain)

+P(Temperature = Cool|Outlook = Rain)H (PlayTennis|Temperature = Cool, Outlook = Rain)
= 043/5%(—2/3log(2/3)—1/3log(1/3))+2/5x(—1/2log(1/2)—1/2log(1/2)) = 3/5(0.91)+2/5(1) = 0.951

. Add D15 (a variant of D4) : Outlook=Sunny AND Temperature=Hot AND Humidity=High AND

Wind=Weak AND PlayTennis=No. The combination of Outlook=Sunny and Wind=Weak is no longer
enough to uniquely determine the value of PlayTennis (since D4 and D15 agree on Outlook and Wind,
but have different values for PlayTennis). There will have to be an additional decision incorporating
Temperature.

Add a large number of entries(say 500 each) having Outlook= Sunny and Humidity = High and
PlayTennis = No, and, Outlook = Sunny and Humidity = Normal and PlayTennis=Yes (and randomly
selected values for the rest of the attributes). Notice that that for these 1000 entries, splitting on
Humidity will give a one node Decision Tree. On the entire dataset(D1 through D14 plus the new
data), the information gain caused by splitting on Humidity will now be much higher(since it is a near
perfect indicator of PlayTennis on a huge number of data points) than splitting on Outlook.

[15 pts] Decision Trees to Rules

Any decision tree can be re-expressed as a set of rules, with one rule for each leaf. The preconditions of the
rule correspond to the sequence of attribute tests along the path from the tree root to the leaf. For example,
the leftmost leaf in the tree in Q. 3 corresponds to the rule IF (Outlook = sunny AND Humidity=High)
THEN PlayTennis=No

1.

Write the rules for the remaining leaves. Note this set of rules produces classifications that are identical
to the above tree, over the training data and over any other possible instance.

2. It is possible to translate any tree into a set of rules that represents an equivalent classifier. Is it

possible to translate any set of rules into an equivalent tree? Explain how or give a counterexample.
You may assume that all your attributes are boolean.



Solution:
1. (a) I
(b) I

(c) I

(d) I

F (Outlook = sunny AND Humidity=Normal) THEN PlayTennis=Yes
F (Outlook = sunny AND Overcast=Yes) THEN PlayTennis=Yes

F (Outlook = sunny AND Wind=Strong) THEN PlayTennis=No

F (Outlook = sunny AND Wind=Weak) THEN PlayTennis=Yes

2. Any classifier over boolean attributes can be thought of as a boolean function over the attributes
giving the label(0/1) as an answer. We will show that a Decision Tree can encode any truth table,
and therefore any boolean function. Therefore it can encode any set of (internally consistent) rules to
produce an equivalent classifier.

Consider a full Decision Tree as follows: The node at the root is “input 1”7, the nodes at the next
level represent splits on “input 2”, and so forth to the last level of internal nodes, which represent a
split on “input n”. It is easy to see that there are 2" leaves in this tree, each corresponding to a full
instantiation to the boolean attributes, ie, each leaf coresponds to one entry in the truth table. Now,
for each leaf, just run the rule-classifier on the input corresponding to the path to the leaf and store the
output of the rule-classifier as the label of the leaf. It is easy to see that this mimics the rule-classifier
on all possible inputs(by construction) and therefore is equivalent.

5 [15 pts| Neural Networks

Suppose that you have two types of activation functions at hand:
e Identity function: gr(z) =«
e Step function: gs(x) =1 if © > 0, 0 otherwise

So, for example, the output of a neural network with one input x, a single hidden layer with K units
having step function activations, and a single output with identity activation can be written as out(x) =

gr(wo + 3, wigs(w(()i) + w%i)x)), and can be drawn as in Fig. 5

1. Consider the step function: u(z) =y if < a, 0 otherwise.

Construct a neural network with one input x and one hidden layer whose response is u(x). Draw the
structure of the neural network, specify the activation function for each unit (either g; or gs), and
specify the values for all weights (in terms of a and y).

Solution:
g1(ygs(z — a))

2. Now, Construct a neural network with one input x and one hidden layer whose response for given real
values y, a, and b is y if « € [a,b), and 0 otherwise. Draw the structure of the neural network, specify
the activation function for each unit (either gy or gs), and specify the values for all weights (in terms
of a, b, and y).

Solution:
91(y/29s(x — a) +y/295(b — x))



Figure 1: Example Neural Network for Q. 5

6 [20 pts] DTrees vs Neural Networks

Consider the problem of learning a function Y = f(X1, X, ... X,,) over boolean valued attributes X1, Xo, ... X,,.
For each of the following cases, state if it is possible for a Decision tree and a Neural Network(NN) to compute
this function. If possible, describe/draw the resulting decision tree/neural network. Also, for the decision
tree, state the number of levels in the tree; for the NN, state the number of hidden layers that your NN uses.

1. f = Majority function. Le. f(X1, Xo,...X,,) = 1 if atleast half the X;s are 1; 0 otherwise.
2. f = Parity function. Le. f(X;, Xo,...X,) = 1 if the sum of all X;s is odd; 0 otherwise.

Solution

1. Decision Trees From solution to @ 3.2, any boolean function can be encoded as a Decision Tree.
Therefore both Majority and Parity can be encoded as DTrees. To implement the majority function:
Each leaf node in the complete DTree is reached by traversing a number of “true” splits and a number of
“false” splits. If the number of “true” splits is greater than the number of “false” splits, the assignment
to the leaf node should be “true”, else the assignment to the leaf node should be false. To implement
the parity function: Construct a full binary tree in the same manner as for the majority function.
Assign the following values to the leaf nodes: If the tree walk required to get to the leaf traverses an
odd number of “true” splits, the assignment to the leaf shall be “true”, else its value shall be “false”

2. Neural Networks The majority function is easy. You can a simple two layer Neural Network in the
following manner: g,(>_; gr(x;) — n/2)

The parity function is harder. You can show that you need atleast one hidden layer in order to encode
this. The network is a feed-forward network with n input units, n binary threshold units in the middle
layer, and a single binary threshold output unit. All weights from the inputs to the the middle layer
are set equal to 1, whilst those from the middle layer to the output are given the values + 1, -1, + 1,-1,
., respectively, that is, the weight from middle unit j to the output unit is set equal to (—1)7**



Figure 2: Neural network for n-bit parity

The threshold values of the middle units are 1-1/2,2-1/2, . . . , n-1/2 and that for the output unit
is set to 1/2 2. When k input units are “on”, i.e., have value 1, then the total input (net activation)
to the jth middle unit is equal to k. Thus the units 1, 2, . . . , k in the middle layer all fire (since k
-(j-1/2) > 0for all 1 < j < k). The middle units k + 1, . . . , n do not fire. The net activation

potential of the output unit is therefore equal to 1-1+1...(k terms) = 1 (if k is odd); 0 (if k is even)
See http://www.mth.kcl.ac.uk/ iwilde/notes/nn/nnnotespdf.pdf for a more detailed treatment.



