15-381 Artificial Intelligence: Representation and Problem Solving
Homework 2 - Solutions

1 [10 pts] Probability miscellany

Calvin wants to choose between his two pet activities: playing with his pet tiger Hobbes in the garden, and
tormenting his mom in the kitchen. He wants to choose uniformly at random between the two activities
and decides to toss a coin to decide. Since he is a kid and is broke, he gets a coin from his mom to do this.
However, he isn’t sure if the coin is unbiased. Can you help him “simulate” a fair coin toss by using this
coin? Explain how you would do this, and show that your procedure is indeed unbiased. While you don’t
know the bias of the coin, you may assume that the bias remains the same at all time. Some clarifications on
terminology: a coin is considered “fair” or unbiased if p, the probability of heads equals 0.5. The question
asks you to describe a procedure toss_unbiased coin() that returns “Heads” or “Tails” with probability
0.5. The only source of randomness that the procedure has access to, is a procedure toss_biased_coin()
that returns a “Heads” with some unknown probability p. Note: You aren’t allowed to use any source of
randomness other than the coin itself, so “call rand in matlab” is not a valid answer. :)

Solution

The key idea is to recognize that the events HT and T'H happen with equal probability p(1 — p). If we
associate a HT with a H and a TH with a T, then the algorithm is as follows

1. Toss coin twice

2. If HT return “Heads”, else if TH, return “Tails”, else go to 1.

2 [10 pts] Representation

Suppose we have a boolean variable X. To complete describe the distribution P(X), we need to specify one
value: P(X=0)(since P(X=1) is simply 1-P(X=0)) Thus, we say, this distribution can be characterized with

Figure 1: Bayesian network for Problem 3



one parameter. Now, consider N+1 binary random variables X7 ... Xy,Y that factorize according to Fig. 1

1. Suppose you wish to store the joint probability distribution of these N+1 variables as a single table.
How many parameters will you need to represent this table?

2. Now, suppose you were to utilize the fact the joint distribution factorizes accoording to the Bayes
Network. How many parameters will you need to completely describe the distribution if you use the
Bayesian Network representation? In other words, how many parameters will you need to fully specify
the values of all the conditional probability tables in this Bayesian Network.

Solution

1. There are N+1 boolean variables. If we have a parameter for every possible instantiation of the
variables, there will be 2V+! parameters. But these parameters need to sum to one, so we can drop
one parameter of the 2V+1. The answer is 2V — 1

2. The CPT of Y will need one parameter(its a boolean variable without any parents). For each X, we’ll
need 2 parameters(P(X|Y), P(X|-Y) for example). Therefore, we have 2N + 1 parameters in total.

3 [15 pts] Number of BNs

What is the maximum number of edges in a Bayesian network (BN) with n nodes? Prove that a valid
BN containing this number of edges can be constructed (remember that the structure of a BN has to be a
Directed Acyclic Graph)

Solution

n(n — 1)/2. Proof by construction: Consider a BN over X, Xs,...X,, such that there is an edge between
Xi, X;Vj > i. The total number of edges in this graph isn — 1+ (n —2) 4+ ... +0 = n(n — 1)/2. To show
that you cannot have a directed cycle in this graph, assume the contrary and suppose there is a cycle of the
form X;,, X;,,... X, ,Xi,; by construction of graph, we have i; < ia...%,, < i1 leading to 41 < ¢; which is
a contradiction. Therefore no cycle exists.

Additionally,you cannot construct a BN with more than n(n —1)/2 edges, since any directed graph with
more than n(n — 1)/2 edges should have atleast one pair of vertices for which there is more than one edge
implying that you have atleast one edge in both directions resulting in a cycle.

4 [15 pts] Conditional Independencies in Bayes Nets

(i) (ii) (iii)
Figure 2: Parts of the alarm network

The Bayesian networks in Fig. 2 are all part of the alarm network introduced in class and in Russell and
Norvig. We use the notation X LY to denote the variable X being independent of Y , and X L Y|Z to denote
X being independent of Y given Z.

1. For each of these three networks, write the factored joint distribution implied, in the form of p(X,Y") =
p(X)p(Y]X)

2. Using the joint distribution you wrote down for Fig. 2(i), write down a formula for P(B, E).



3. Now prove that B F.

4. Similarly, prove that BLM|A in the Bayesian network of Fig. 2(ii), and M LJ|A in the Bayesian
network of Fig. 2(iii).

Solution
1. (i) P(B,A,E) = P(B)P(E|B)P(A|B, E) (using chain rule) = P(B)P(E)P(A|B, E)(using fact that
B_LFE from BN structure). Similarly (ii) P(B, A, M) = P(B)P(A|B)P(M|A) and (iii) P(M,A,J) =
P(A)P(M|A)P(J|A)

2. P(BE) =), P(B,a,E) =), P(B)P(E)P(a|B,E) = P(B)P(E))_, P(a|B,E) = P(B)P(E). Since
P(a|B, FE) is a conditional probability distribution, the sum over all values of a is 1.

3. From solution of (ii), P(B,E) = P(B) P(E), therefore BLE by definition of independence.

4. P(B)P(A|B) = P(A)P(B|A) from Bayes rule. Therefore P(B,A,M) = P(B)P(A|B)P(M|A) =
P(A)P(B|A)P(M|A). P(B,M|A) = P(B,A,M)/P(A) = P(A)P(B|A)P(M|A)/P(A) = P(B|A)P(M|A)
Therefore B1M|A.

P(M,A,J)=P(A)P(M|A)P(J|A). Therefore P(M, J|A) = P(M,J,A)/P(A) = P(A)P(M|A)P(J|A)/P(A) =
P(M|A)P(J|A). Therefore M LJ|A

5 [15 pts] Elimination

(i)

Figure 3: Bayesian networks for Problem 6

Consider the Bayesian Network given in Fig. 3(i). Assume that each of the variables are boolean valued.
For each of the following, state the total number of operations(multiplication and addition) the variable
elimination algorithm will take to compute the answer. For example, if A and B are binary variables,
> P(B)P(a|B) will take two multiplications(P(B)*P(A|B) and P(B)*P(—A|B)) and one addition(adding
those two terms). Assume that the algorithm avoids unnecessary computation, so any summations that are
irrelevant to the query will be avoided(see the textbook for an example of an irrelevant summation).

1. P(X3|X4) i.e., the probability that X3 is true given that X, is true. Assume that the variables are
eliminated in the order: X5, X7, Xo.



2. Solution:

P(X3|X4) = P(X3, X4)/P(X4) = P(X3, X4)/(P(X3, X4) + P(X3, 2 X4))

P(X3,X4) = > " P(x1, w2, X3, X4, 75)

o Xy s
P($1,$27X3,X47.’)3r) = P(LU )P(X3|.’L‘1)P(:L‘2|$1,Xg)P(X4|.’L‘2)P(:L‘5|{L‘2)
X3,X4 ZP X4|£E2 ZP xl X3|ZL‘1) (1‘2|$1,X3)ZP(1‘5|1‘2)
5

x5 is an irrelevant variable, so we can remove it immediately

Xg,X4 ZP X4|(E2 ZP CUl X3|£L'1) (CL’Q|£L’1,X3)

ZP 1’1 X3|.Z‘1) (1‘2‘I1,X3)

Computing fi(z2) for one choice of zo will take 2*2 multiplications and 1 addition = 5 opera-
tions. o can take two values, so in total, this will take 10 operations. Computing P(X3, X4) =
Zm P(X4|x2) f1(2z2) which will take another 1*2 multiplications and 1 addition = 3 operations. There-
fore, to compute P(X3, X4) will take 13 operations. Similarly P(X3,—X,) will take another 13 opera-
tions, and finally computing P (X3, X4)/(P(X3, X4) + P(X3,~X4)) will take another 1 addition (and
1 division). In total, this will take 27 operations(28 with div)

3. P(X3|X4) but this time, with the elimination ordering X, X1, X5

4. Solution:

P(X3|X4) = P(X3, X4)/P(X4) = P(X3, X4)/(P(X3, X4) + P(X3, 2 X4))

P(X3,X4) =Y > P(x1, w2, X3, X4, 75)

5 T1 T2

Xg,X4 ZZP 931 (X3|1171)ZP(£E5‘I2)P(£E2‘I1,X3)P(X4‘IQ)

T5 X1 Z2

g1(xs, 1) ZP xs|r2) P(x2|r1, X3)P(X4|2)

Computing g1 (x5, 1) takes 2*2 multiplications and 1 addition = 5 operations for each choice of x5, x;.
Since there are four such values, this will take 20 operations.

X3,X4 ZZP .Tl X3|I1)gl($571‘1)

T5 T1

ga(ws) = >, P(x1)P(Xs]|z1)g1(25, 21) will take 2*2 +1 = 5 operations for each choice of x5. Since
there are two such values of x5, this will take 10 operations. Computing 215 g2(x5) will take another
1 addition operation, leading to a total of 31 operations to compute P(X3, X4) Computing P(X3|X4)
will therefore take 31*2+1(addition)+1(division) = 63 operations(64 including div)

5. Now suppose that you had to answer the last two questions, this time with the Bayes Net given in
Fig. 3(ii). Would your answers change?(You don’t have to state the number of operations; just if they
will be different from previously with a brief explanation)

6. Solution:
In general, ¢ would not be irrelevant and therefore, the answer would change.



Enumeration_Ask(X,e,bn) begin
Data: X, the query variable; e, the observed values for variables F; bn, a Bayes net with variables
XUEUY
Result: distribution over X
Q(X) < a distribution over X, initially empty;
foreach wvalue x; of X do
extend e with value z; for X;
Q(X;) < Enumerate_All(Vars[bn], e);
end
return Normalize(Q(X))
nd
numerate_All (vars, e) begin
if Empty?(vars) then
| return 1.0
end
Y « First(vars);
if Y has value y in e then
| return P(y|Parents(Y)) x Enumerate_All(REST (vars,e))
else
| return }: P(y|Parents(Y)) x Enumerate_All(Rest(vars),e,) where e is e extended with Y =y

end

M o0

end

6

Algorithm 1: The enumeration algorithm

[35 pts] Inference by enumeration

1. Implement exact inference by enumeration. Write a function that calculates the conditional probability
distribution of one query variable given a set of evidence variables in a Bayesian network. See Algorithm
1 for the pseudo-code and Russell and Norvig chapterl4.4(pp. 504) for reference. For simplicity, all
variables are binary, so all distributions mentioned in the pseudocode and in Russell and Norvig,
including the returned value of the function, can be represented by the probability of the variable
being true. Two sample Bayesian network will be given to you in the support archive, named alarm
and pedigree, details below. The following Matlab functions are provided, to access the Bayesian
network data structure:

e create_alarm_bn: creates the alarm Bayesian network.

e create_pedigree_bn: creates the pedigree Bayesian network.

e bn_vars: returns the variables in a Bayesian network, partially ordered from parents to children.
e bn_parents: returns the parents of a variable.

e bn_cpt: returns the conditional distribution of a variable, given the specified values of its parents.
This corresponds to one row of the conditional probability table(CPT).

See README and type help func name in Matlab (or read corresponding scripts) for documentations
and examples. Note that the recursive enumeration must be performed from parents to children, i.e.
the list of variables must be partially ordered such that parents are always before their children. The
function bn vars will provide the ordered variables list(actually the variable index itself in the Bayesian
networks given below are already ordered this way, so the ordered list is just 1,2,...,N). Please write
your code by modifying the provided file enumeration ask.m, which contains suggested API with
documentation. Matlab is STRONGLY recommended, particularly because writing necessary support
code in other languages is time consuming.



2. Run your exact inference implementation on the following two Bayesian network inference problems.
It should be straightforward for you to convert the question below into a function call to your code
(by using appropriate variable indexes labeled on the graph below); type “help enumeration_ask” for
an example. Both questions ask the conditional probability of one query variable being true given a
set of evidence variables. Report run time and results.

(a)

p(x,)=0.001
, —x,) = 0.001
x,) =0.29
. —x,) =0.94
x,) =0.95
p(x,—x,;) =0.05 p(=sl—x;) = 0.01
px, x;)=09 p(xsl =) =07

Figure 4: Bayesian network for Problem 3(a)

The first Bayesian network, created by create_alarm_bn, is the alarm network in Russell and
Norvig. As shown in Fig. 4, variable are indexed from 1 to 5 (denoted as X1 to X5), and CPT are
the same as in Russell and Norvig figure 14.2. Evidence variables are shaded, while query variables
are shaded and circled by a thick line. Calculate the conditional probability p(X1|X4,-X5). Hint:
verify with some queries that you know the answer first, e.g. p(X1|X4,X5) should be about 0.284.

Solution: p(X1]|X4,X5) = 0.0051
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Pedigree Bayesian network

Figure 5: Bayesian network for Problem 3(b)

The second Bayesian network, created by create_pedigree_bn, is about genetic inference. Consider
a victim V in a plane crash, whose only family members are his half-sister S and the sister’s
mother M (not V’s mother). Their pedigree is shown below. You need to determine whether
certain remains belong to V based on genetic fingerprints of S and M. This can be solved by a
Bayesian network shown in Fig. 5, indexed from 1 to 11. Evidence and query variables are shaded,
while normal circles are hidden variables. You do not need to worry about the CPT if you are
using Matlab; otherwise the CPT is explained in the documentation of create_pedigree_bn.m The
variables (X1,X2,...,X8) correspond to unobserved genetic information in the so-called Mendelian
inheritance: humans have two copies of each chromosome, one from the father and one from the



mother. During reproduction, one copy (chosen randomly) will be passed to the next generation.
Assume you cannot determine which copy is from which parent, but can only obtain partial
information in the observed variables (X9,X10,X11). However, you do not have to understand
Mendelian inheritance to solve this problem. Now using the structure and CPT provided in the
archive, calculate the conditional probability p(X10| = X9,X11).

(d) Solution: p(X1]X4,X5) = 0.0407



