Abstract: Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family, and are surprisingly well-suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that, when the ‘statistical noise’ is small enough, SDP relaxations correctly detect the underlying combinatorial structures. I will present a few asymptotically exact predictions for the ‘detection thresholds’ of SDP relaxations, with applications to synchronization and community detection. Apart from being successful in theory, SDP-based methods can be implemented on large instances: I will discuss an implementation that can be used to cluster graphs of size 10^5 in a matter of minutes. [Based on Joint work with Adel Javanmard, Federico Ricci-Tersenghi and Subhabrata Sen]

BIO: Andrea Montanari received a Laurea degree in Physics in 1997, and a Ph. D. in Theoretical Physics in 2001 (both from Scuola Normale Superiore in Pisa, Italy). He has been post-doctoral fellow at Laboratoire de Physique Théorique de l'Ecole Normale Supérieure (LPTENS), Paris, France, and the Mathematical Sciences Research Institute, Berkeley, USA. Since 2002 he is Chargé de Recherche (with Centre National de la Recherche Scientifique, CNRS) at LPTENS. In September 2006 he joined Stanford University as a faculty, and since 2010 he is Associate Professor in the Departments of Electrical Engineering and Statistics. He was co-awarded the ACM SIGMETRICS best paper award in 2008. He received the CNRS bronze medal for theoretical physics in 2006, the National Science Foundation CAREER award in 2008, the Okawa Foundation Research Grant in 2013, and the Applied Probability Society Best Publication Award in 2015. He is an Information Theory Society distinguished lecturer for 2015-2016