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Abstract

Radiometric methods for the extraction of shape from images, such as photomet-

ric stereo, make simplifying assumptions about the light transport effects underlying

those image. Among the most common assumptions are absence of interreflections

and Lambertian reflectance. These makes radiometric shape reconstruction tech-

niques unsuitable for many classes of common objects, including objects with glossy

surfaces or concave shapes. Our goal is to construct an inverse rendering framework

that can be used to reconstruct shape and reflectance properties without these as-

sumptions. Towards this goal, we develop a versatile, shape-differentiable, Monte

Carlo renderer, which can efficiently estimate the differentials of image intensity

values with respct to BSDF and local shape parameters. We combine this differen-

tiable renderer with stochastic optimization and surface reconstruction algorithms,

to develop a pipeline that estimates a 3D mesh that best explains captured image

measurements. We evaluate this pipeline in experiments using both simulated and

captured image datasets, and show that it can accurately reconstruct complex re-

flectance and shape even in the presence of strong global illumination. Finally, we

discuss future extensions towards enabling the application of our inverse rendering

framework to measurements from a large variety of 3D sensing systems.
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Chapter 1

Introduction

1.1 Overview

Photometric stereo, the de-facto term used for extracting shape from multiple directionally lit

images, is almost as old as computer vision itself. At its core, it is fundamentally the solution

to a linear system that relies on the fact that exitant radiance from a lambertian surface patch is

proportional to the dot product of incident light direction and the path normal. When it came out,

this algorithm was extremely powerful. For most objects, it could estimate a per-pixel normal,

leading to very accurate shape reconstructions.

It does, however, make several assumptions:

1. Distant lights (Directional lighting)

2. Convex shape (No multiple bounces/interre�ections)

3. Lambertian BSDF (n:l shading)

These assumptions rarely hold for common real world objects. For instance, the lambertian

BSDF assumption breaks down for even the most diffuse objects, because of a grazing-angle

Fresnelcomponent. This is the same phenomenon where seemingly rough surfaces start to be-

have like mirrors when viewed at an angle close to parallel with the surface.

The assumption of convexity also does not hold true for most objects, though its effects are

harder to pin down accurately. Interre�ections occur whenever two patches of an object face
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each other (n1:n2 > 0. This means they are most pronounced near sharp inward edges. There

also extremely concave surfaces like bowls and mugs that are rarely, if ever, used in photometric

stereo papers because of extreme inter-re�ections.

The �nal assumption, directional lighting, is something that this thesis does not explicitly

tackle, but will demonstrate that the framework can be trivially extended to handle any form of

lighting. Most photometric stereo methods are limited by assumption that light hits every patch

at the same angle. This simpli�es the optimization problem signi�cantly since the solution is

independent of the relative distance between the light and the mesh.

In practice, these assumptions can be ignored in a some cases, since grazing angle re�ections

don't account for much of the image, and based on the shape, interre�ections may only contribute

near sharp edges. In this thesis, we look at objects where we cannot ignore these assumptions.

This includes either specular surfaces or highly concave objects, or both.

1.2 Background

The following section contains some background information that are relevant to the components

of the framework presented in this thesis.

1.2.1 Monte Carlo path tracing

At the heart of any analysis-by-synthesis problem is thesynthesis. Since our framework aims to

account for as many light transport phenomena as possible, it makes sense to use a fully-�edged

physically-based rendering method, like path tracing.

Path tracing is an umbrella term for a family of Monte Carlo estimators that are used to sample

paths of light through a scene. One could �ll a book with the various sampling techniques, each

one better than the last. However, they all estimate the same fundamental recursive equation

known as therendering equation, one of the corner-stones of computer graphics.

Lo(x; ! o; �; t ) = Le(x; ! o; �; t ) +
Z

H 2
f r (x; ! i ; ! o; �; t )L i (x; ! i ; �; t )( ! i :n)d! i (1.1)
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where

1. Lo(x; ! o; �; t ) is the outgoing radiance at pointx in the direction! o

2. � is the wavelength (our algorithm uses luminance so this parameter is not used)

3. Le(x; ! o; �; t ) is the radiance emitted at pointx in the direction! o

4. f r (x; ! i ; ! o; �; t ) is the re�ectance function (BSDF) at pointx for light arriving in direction

! i and exiting in the direction! o.

5. L i (x; ! i ; �; t ) is the incoming radiance at pointx in the direction! i

6. n is the surface normal at pointx

7. H 2 represents the hemisphere of valid directions at pointx

For the purpose of this thesis, we use the popular algorithm BDPT [1], which represents a

sweet spot in the trade-off between complexity and sample ef�ciency.

However, we note that for our framework, we only require that the intensity be expressed as

an integral over a set of sampled paths and their probabilities. This means we do not necessarily

require BDPT. Any similar algorithm, like MLT or PSSMLT, that generates paths with their

probabilities, importances and intensity values can be substituted.

1.2.2 Surface integration

Surface integration is an key part of our framework since we require a full surface to account

for inter-re�ections. This requires the conversion of the normalsN at each step into consistent

depthsZ. Given that our algorithm produces noisy normal estimates (stochastic gradient de-

scent), a weighted integration algorithm like Poisson surface reconstruction [2] is a good �t for

our framework.

Weighted Poisson surface reconstruction can be summarized as the linear least squares solu-

tion to a set of constraints that equates the X and Y differentials to the difference between the

center pixel with the vertical and horizontal neighbors respectively. We also constrain the total

depth to be 0 so that the linear system is not under-constrained.
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Z = arg min
Z

X

i � W;j � H

 

(zi;j � zi;j +2 ) �
� @z

@y

�

i;j +1

! 2

+
X

i � W;j � H

 

(zi +2 ;j � zi;j ) �
� @z

@x

�

i +1 ;j

! 2

(1.2)

subject to the constraint
X

i;j

zi;j = 0

where

1. The differentials@z
@yand @z

@x are simply determined bynz
ny

and nz
nx

, wheren is the normal at

that position.

2. Z is the depth matrix andzi;j is the depth at pixeli; j

1.2.3 Adaptive gradient descent

Gradient descent is a fundamental part of the non-linear optimization problem that is responsible

for inferring the normals as well as BSDF parameters.

� t+1 = � t � �
� @L

@�

�

� = � t

(1.3)

The need for adaptive gradient descent algorithms stems from the fact that some parameters

of a model can have a more drastic effect on the error than others, while also operating on the

same scale (and range of values). This discrepancy introduces a catch-22 situation where an

� (learning rate) that is too small will take forever to converge and an� that is too large will

cause some of the parameters to diverge quickly (or behave unpredictably). This necessitates

adaptive gradients, which take the form of many popular algorithms like AdaGrad, AdaDelta,

Adam [3] and RMSProp. [4] has a comprehensive evaluation of the various SGD algorithms that

we considered. Our algorithm uses a slightly modi�ed version of Adam since it has provably

good characteristics.
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1.3 Related Work

1.3.1 Photometric Stereo

This thesis is part of the photometric stereo family of algorithms that are characterized by input

images that have a �xed viewpoint and are obtained under different sets of lighting conditions.

Most photometric stereo algorithms work by computing the normal map rather than the depth

itself, including the algorithm presented in this thesis. The various classes of photometric stereo

can be classi�ed based on their assumptions.

1. Convex and lambertian surfaces: Methods such as classical photometric stereo [5] and

near-light photometric stereo [6] assume that the surface is lambertian (n:l lighting), as

well as convex (lack of interre�ections). Our method makes neither of these fundamental

assumptions.

2. Non-convex and lambertian surfaces: Shape from interre�ections [7] is speci�cally de-

signed to work with surfaces that are non-convex using inverse global illumination to

account for interre�ections. However, these methods use linear models for global illu-

mination like radiosity, which all assume lambertian surface properties. Our method is not

only designed to overcome this limitation, it also estimates the surface BSDF properties in

the process.

3. Convex and non-lambertian surfaces: Goldman et al.([8]) was one of the �rst methods to

estimate BSDF and normals in tandem, removing the need for reference objects. Alldrin

et al. ([9]) proposes a non-parametric model that builds a dictionary of BSDFs and esti-

mates a spatially varying set of weights. Since our method is focused on extracting shape

rather than BSDF, our method models the surface re�ectance as the linear combination

of a prede�ned dictionary of BSDFs, rather than estimating every input/output direction

pair. Our method also accounts for inter-re�ections (non-convexity) in the presence of

unknown surface re�ectance, making our error function highly non-linear and requiring a

more involved approach to estimate the surface.

Given the emphasis placed on accounting for inter-re�ections, this thesis is also related closely

to methods that eliminate global light transport from the measurements, like direct-global sep-
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aration [10], which eliminates interre�ections by projecting checkerboard light patterns. Other

examples of this class of algorithms include epipolar scanning [11] and continuous wave time-

of-�ight cameras.

1.3.2 Differentiable Light Transport

On the differentiable rendering side of things, there are a variety of frameworks built for speci�c

applications. Differentiable rasterizers (like OpenDR [12] and Neural 3D Mesh Renderer [13])

are popular new tools in inferring transformation matrices of scene objects. However, rasterizers

make no attempt to simulate global illumination (or even realistic re�ectance), and would be un-

suitable for shape optimization. The same goes for single bounce differentiable renderers ([14]

and [15]), since they do not account for interre�ections. One notable framework is the inverse

scattering algorithm described in Gkioulekas et al. ([16] and [17]), which uses the same differen-

tial formulation of the path integral for computing multi-bounce differentials. That formulation

uses transient instead of photometric imaging, and optimizes for heterogeneous volumetric prop-

erties rather than surface properties. The framework introduced by Li et al. [18] is the �rst

fully-differentiable path tracer that can theoretically optimize for shape in the presence of inter-

re�ections. However, their work considers a very limited number of scene parameters (various

transformation matrices and 3 BSDF parameters), and does not handle complex light paths, like

caustics (no path space sampling). In contrast, while our algorithm does not handle derivatives

w.r.t occlusions, it does handle differentiating per-pixel normals (about a million shape param-

eters) to extract precise shape, which makes it a better �t for mesh re�nement in a controlled

setting like photometric stereo. In addition, our algorithm is based on the path space formulation

of the derivatives, and uses BDPT, which allows for the sampling of complex paths.

1.4 Contributions

This thesis contributes to the �eld of physics-based computer vision by

1. Formulating and implementing a theoretically sound Monte Carlo estimator for the deriva-

tives of a physically-based renderer with respect to shape. This is a general-purpose ren-
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derer that can be extended to apply to most active shape estimation algorithms.

2. Applying the differentiable renderer to solve the dif�cult problem of simultaneously esti-

mating both the shape and re�ectance of objects that exhibit non-trivial global light trans-

port (inter-re�ections) as well as non-lambertian (view-dependent) surface re�ectance, in

the context of photometric stereo.
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Chapter 2

Differentiable Rendering

This chapter �rst de�nes the popularly used path integral formulation of light transport. From

there, we derive the equations that represent the derivative of this path integral w.r.t shape and

BSDF parameters. Further, we brie�y describe an augmented BDPT algorithm to ef�ciently

estimate this integral, and explain how to deal with some practical issues that arise during imple-

mentation.

2.1 The path integral

The path integral is a common and versatile way of expressing the general rendering equation

[19] shown in Chapter 1. Section 8.2 of [20] contains the complete derivation of the path integral,

but we reiterate some of the important parts since the path integral provides the foundation for

the derivative estimator.

We de�ne a path spacePk as the set of all paths of lengthk, which are of the form

�x = x0x1x2x3 : : : xk (2.1)

Thus the complete path spaceP can be written as

P =
1[

1

Pk (2.2)

For the path integral formulation, we need to convert the solid angle measure! that is used
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in the standard rendering equation to the area-product measure� k de�ned as

� k =
kY

i =0

A (2.3)

where the measureA denotes the area of all valid surfaces that contain pointsx i that con-

tribute to the integrand. The measureA is repeated for each pointx i since our integral contains

one surface integral for each point on the path.

Our differential measured� (�x) can be expressed as the product of differential area measures

d� k(�x) =
kY

i =0

dA(x i ) (2.4)

To derive the path integral, we start with the three-point integral that is very similar to the

rendering equation, but is de�ned on the area measure instead of the solid angle measure. The

radiance from pointx1 to x2 is expressed as

Lo(x1; x2) = Le(x1; x2) +
Z

M
f r (x0; x1; x2)L i (x0; x1)G(x0; x1)dA(x) (2.5)

where

1. Le(a; b) is the emitted radiance in the directiona ! b)

2. f r (a; b; c) is the re�ectance for the incident directiona ! b and exitant directionc ! b

3. L i (a; b) represents the incident radiance in the directiona ! b (this is the recursive part)

4. G(a; b) is the geometric function( l̂ :n̂ )( v :n̂ )
jj x i � x i +1 jj 2 , which accounts for the cosine angles between

the two surfaces as well as the distance between pointsa andb.

Expanding this function to account for paths of sizek, we can express the radiance along

size-k pathsL k as

L k = Lo(xk� 1; xk) =
Z

M k
Le(x0; x1)(G(x0; x1)f r (x0; x1; x2))( G(x1; x2)f r (x1; x2; x3))

(G(x1; x2)f r (x1; x2; x3)) : : : (G(xk� 2; xk� 1)

f r (xk� 2; xk� 1; xk))dA(x0)dA(x1)dA(x2) : : : dA(xk) (2.6)

which can be simpli�ed as

L k =
Z

M k
Le(x0; x1)

� Y

i

G(x i ; x i +1 )f r (x i ; x i +1 ; x i +2 )
�

d� (�x) (2.7)
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Figure 2.1: An illustration of the components that contribute to the radiance along a speci�c path.

Image credit: Eric Veach's PhD thesis

which is the path integral equation for paths of lengthk

The general path equation can be expressed as the sum of the contribution for each path size

k

L =
X

k

Z

M k
Le(x0; x1)

� Y

i

G(x i ; x i +1 )f r (x i ; x i +1 ; x i +2 )
�

d� (�x) (2.8)

More concisely, if we consider the setP to be the space of paths of all sizes, then

L =
Z

P
f p(�x)d� (�x) (2.9)

where the integrand is the path contribution functionf p(�x)

f p(�x) = Le(x0; x1)
� Y

i

G(x i ; x i +1 )f r (x i ; x i +1 ; x i +2 )
�

(2.10)

2.2 Estimating differentials

As shown in Section 2.1, the path integral formulation of the rendering equation can be written

as the sum of products of BSDF and the geometric term at each point on the path.

I =
Z

P
S(x0; x1)

Y

i

G(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )d� (�x) (2.11)

To simplify our explanation, the geometric termG(x i ; x i +1 ) can be replaced with two terms
( l̂ :n̂ i )( v :n̂ i +1 )
jj x i � x i +1 jj 2 V(x i ; x i +1 ) whereV(x i ; x i +1 ) is the visibility term that takes the value 1 if the ray

from x i to x i +1 has no occlusion, and 0 otherwise.
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V(x i ; x i +1 ) =

8
<

:
0 : ray fromx i to x i +1 is occluded

1 : otherwise

I =
Z

P
S(x0; x1)

Y

i

� (l̂ i :n̂ i +1 )( v̂ i :n̂ i )
jjx i � x i +1 jj 2

V(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )
�

d� (�x) (2.12)

We can express the Monte-Carlo estimator for the above integral as a summation overN

importance sampled pathsp from some arbitrary distribution�( P) over the complete path space

P

Î =
1
N

NX

�x � �( P )

S(x0; x1)
1

�(� x)

Y

i

� (l̂ i :n̂ i )( v̂ i :n̂ i +1 )
jjx i � x i +1 jj 2

V(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )
�

(2.13)

S(x(p)
0 ; x(p)

1 ) represents the illumination in the direction fromx(p)
0 andx(p)

1 wherep denotes a

path from a set of randomly sampled pathsP and�( p) represents the probability of sampling

pathp.

For clarity we de�ne the variableŝl i andv i

l̂ i = R(n̂ i ) ^(x i � x i � 1) (2.14)

v̂ i = R(n̂ i ) ^(x i � x i +1 ) (2.15)

where R(n̂ i ) is the rotation matrix that converts world coordinates to local coordinates

(where the normal is parallel to the z-axis). This rotation is dependent on the local normal

n̂ i

The goal of this framework is to estimate the differentials@I
@�,

@I
@̂n . To achieve this, we differ-

entiate the path integral,

@I
@�

=
@

@�

Z

P
S(x0; x1)

Y

i

� (l̂ i :n̂ i )( v̂ :n̂ i +1 )
jjx i � x i +1 jj 2

V(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )
�

d� (�x) (2.16)

An important property of this integral is that it isconvergingover its domain. This is because

this integral is equivalent to using the global illumination operators (K , G andM � 1) de�ned in

James Arvo's thesis [21]. The same thesis contains a proof that the linear operator formulation

of the integral converges for all values in its domain. In measure space theory, the derivative of
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a well-behaved (converging) integral over some measure (� (:)) can be written as the integral of

the derivative (a generalization of Leibnitz integral rule) [22]. In the case of the path integral, the

measure space of the integral is the space of all pathsP, which is independent of both� or n̂ .

@I
@�

=
Z

P

@
@�

S(x0; x1)
Y

i

� (l̂ i :n̂ i )( v̂ i :n̂ i +1 )
jjx i � x i +1 jj 2

V(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )
�

d� (�x) (2.17)

In a method similar to equation 2.13, we formulate a Monte-Carlo estimator using the sum

of samples drawn from an arbitrary distribution�( :).

@I
@�

=
1
N

NX

�x � �( :)

1
�(� x)

@
@�

�
S(x0; x1)

Y

i

(l̂ i :n̂ i )(v̂ i :n̂ i +1 )
jjx i � x i +1 jj 2

V(x i ; x i +1 ):f r (l̂ i ; v̂ i ; � )
�

(2.18)

Since both source lightingS(:) and visibility V(:) are independent of both� andn̂ , we can

use the product rule to write the following equation

@̂I
@�

=
1
N

NX

�x � �( :)

S(x0; x1)
1

�(� x)

� X

i

f 0
� (l̂ i ; v̂ i ; � )

f r (l̂ i ; v̂ i ; � )

� Y

i

V(x i ; x i +1 )
(l̂ i :n̂ i )( v̂ i :n̂ i +1 )

jjx i � x i +1 jj 2
f r (l̂ i ; v̂ i ; � )

(2.19)

where

f 0
� (l̂ i ; v̂ i ; � ) =

@fr (l̂ i ; v̂ i ; � )
@�

Most of the terms can be replaced by the path contribution functionf p(�x) (See equation

2.10). This gives us a simpli�ed form.

@̂I
@�

=
1
N

NX

�x � �( :)

f p(�x)
� X

i

f 0
� (l̂ i ; v̂ i ; � )

f r (l̂ i ; v̂ i ; � )

�
(2.20)

The same process can be repeated to produce the analytic differential for a normaln j . Note

that the surface contains many independent normals and@̂n i
@̂n j

= � ij , so differentiating with respect

to a normalnj that is never touched by a surface de�ned byni will cause the derivative to be 0.

@̂I
@̂n j

=
1
N

NX

�x � �( :)

f p(�x)
� X

i

f 0
n j

(l̂ i ; v̂ i ; � )

(l̂ i :n̂ i )( v̂ i :n̂ i +1 )f r (l̂ i ; v̂ i ; � )

�
(2.21)

where

f 0
n̂ j

(l̂ i ; v̂ i ; n̂ j ) =
@(l̂ i :n̂ i )( v̂ i :n̂ i +1 )f r (l̂ i ; v̂ i ; n̂ i +1 )

@̂n j
(2.22)
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For brevity, we rede�ne the additional term
� P

i
f 0

� ( l̂ i ;v̂ i ;� )

f r ( l̂ i ;v̂ i ;� )

�
as thescore throughputD(�x)

Thus, our �nal equations are

D� (�x) =
� X

i

f 0
� (l̂ i ; v̂ i ; � )

f r (l̂ i ; v̂ i ; � )

�
(2.23)

@̂I
@�

=
1
N

NX

�x � �( :)

f p(�x)D� (�x) (2.24)

The same score throughput can be de�ned for a normaln̂ j as

Dn̂ j (�x) =
X

i

� f 0
n̂ j

(l̂ i ; v̂ i ; � )

(l̂ i :n̂ i )( v̂ i :n̂ i )f r (l̂ i ; v̂ i ; � )

�
(2.25)

Note that our estimator works with any arbitrary path space probability distribution�( :).

Any path tracing algorithm can be applied as long as the score throughputD(�x) can be computed

ef�ciently along with the intensity estimatêI

2.3 Evaluating the integral

Our algorithm uses Bi-directional path tracing (BDPT) [1] to generate paths�x, their importances

�(� x), the radiance-along-pathL(�x), as well as the score throughput functionsD� (�x) andDn̂ j (�x)

in a single pass.

We summarize the BDPT algorithm's contribution computation step as well our modi�ca-

tions to compute the differentials. The complete algorithm is contained in Lafortune's paper [1],

and the algorithm is used as is, except for the contribution step.

BDPT works by �rst sampling two paths, one from a light source (known as light subpath

y0y1 : : : ynL � 1) and one from the camera (known as eye subpathznE � 1 : : : z0).

The algorithm then generates paths by combining the �rsts vertices of the light subpath and

the lastt vertices of the eye subpath to create a pathx̂s;t . Once we have a set of paths, the next

steps are to compute the path probability�(^xs;t ) and the contributionCs;t . We will not discuss

the computation of path probability as it is exactly the same.
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The contribution toCs;t is computed as the product of a sampling weight fors; t paths and the

unweighted contributionCs;t = ws;t C �
s;t The unweighted contribution is computed as the product

of three components

C �
s;t = � L

s :cs;t :� E
t

where� L
s depends only on the light path vertices,cs;t depends only on the connecting path and

� E
t depends only on the eye path

At this point, we can compute the score throughputD� (�xs;t ) for the path�xs;t w.r.t � , in a

manner similar to the section above

D� (�xs;t ) =
sX

i =0

� f 0
� (y i � 3; y i � 2; y i � 1; � )

f (y i � 3; y i � 2; y i � 1; � )

�
+

tX

j =0

� f 0
� (zi � 1; zi � 2; zi � 3; � )

f (zi � 1; zi � 2; zi � 3; � )

�

+
f 0

� (ys� 2; ys� 1; zt � 1; � )
f (ys� 2; ys� 1; zt � 1; � )

+
f 0

� (ys� 1; zt � 1; zt � 2; � )
f (ys� 1; zt � 1; zt � 2; � )

(2.26)

@C�s;t

@�
= � L

s :cs;t :� E
t :D� (�xs;t ) (2.27)

Our version of BDPT uses this modi�ed contribution function and forms the �nal image by

summing the quantity
@C�

s;t

@� over various s-t paths�xs;t . The same process is used to obtainDn̂ j (�x),

only with f n̂ (:) (See equation 2.22)

2.4 Implementation considerations

In this section, we discuss some of the practical considerations of implementing the estimator

de�ned above.

2.4.1 Spherical projection of gradients

The normaln̂ has three componentsnx ; ny; nz. So the differential@̂I
@̂n is actually three compo-

nents @̂I
@nx

; @̂I
@ny

; @̂I
@nz

. These components are not independent of each other, because of the con-

straintn2
x + n2

y + n2
z = 1. One way to handle this situation is projected gradient descent which

has two steps

1. At iterationt, n̂ t+1 = ~nt + � @̂I
@̂n
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2. Project the new normal back onto the unit sphere by normalizing it~nt+1 = n̂ t +1

jn̂ t +1 j

This process is technically correct, however, it can be very slow to converge because the

progress made in step1 is partially reset in step2. A more ef�cient way would be to pre-project

the gradients on to the unit sphere using the vector triple product operator.

� @̂I
@̂n

�

tangential
= ~nt � ( ~nt �

@̂I
@̂n

) (2.28)

The resulting projected gradient is tangential to the unit sphere.

Note that step 2 (normalization) is still necessary to maintain correctness, but the progress is

much faster and well de�ned.

2.4.2 Mesh discretization

The theory laid out so far assumes that every pointx i on the path has its own unique normal.

In practice, we cannot de�ne a new normal for every possible point on a surface, and we rely

on discretizing the surface with atriangular manifold mesh. However, while the surface (and

normals) are present at discrete points, the points that are sampled are not discrete, which means

that the normal used by a point has to be interpolated from its nearest discrete normals. Our

algorithm uses linear interpolation that uses barycentric coordinates� , � and
 of the pointx i

w.r.t to the triangle verticesai , bi , ci and corresponding normalsnai , nbi andnci .

n i = � nai + � nbi + 
 nci

Once we compute differentials w.r.t interpolated normaln i , we need to propagate the gradi-

ents back to their discrete counterparts by multiplying the corresponding Jacobian

@L
@nai

=
@L
@n i

�

@L
@nbi

=
@L
@n i

�

@L
@nci

=
@L
@n i
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Chapter 3

Parametrizing the BSDF

In Chapter 2, we detailed a method for obtaining differentials w.r.t arbitrary BSDF parameters.

However, the BSDF is a 4D function that obviously has too many free variables if we were to

attempt to estimate every combination of� i ; � i ; � o and� o. In this chapter, we present the assump-

tions our algorithm makes about the BSDF, in order to create a system with fewer parameters,

which is also reasonably good at estimating real-world BRDFs. Further, we show the procedure

used to create this ef�cient dictionary of basis BSDFs.

3.1 Weighted average of BSDFs

As is fairly common, we restrict the algorithm to use isotropic BRDFs, since most real world

materials are isotropic, with the notable exception of brushed metals. This immediately reduces

the BSDF to a 3D function. However, given that our optimization problem is already the complex

interplay between thousands of normals, the depthand the BSDF, our model tries to further cut

down on the number of paramters by representing the BRDF as a linear combination ofB basis

functions.

f s(! i ; ! o ; � ) =
X

� i 2 �

� i f i (! i ; ! o)

In order to satisfy fundamental BSDF properties, eachf i (! i ; ! o) is also a valid BSDF (satis�es

reciprocity, energy conservationandnon-negativity). In addition to this, the following conditions
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are required for the compound BSDF to be valid.

8� 2 � ; � � 0

X

� 2 �

� � 1

For the purposes of this thesis, one of our basis functions is a completely dark BSDFf b,

which satis�es,

f b(! i ; ! o) = 0 8! i ; ! o

This allows us to modify the last constraint into,

X

� 2 �

� = 1

While this appears to be a fairly trivial modi�cation, this form makes it possible to useadap-

tive exponentiated gradient descent, a multiplicative form of the gradient descent operator that

makes optimization much more feasible when dealing with constrained parameters.

3.2 Basis functions

The BSDF parameterization described in the previous section did not elaborate on the actual

functions usedf i (! i ; ! o), just that they must be valid BSDFs. In this section, we propose a set of

basis functions. The bases are all instances of the GGX family of microfacet BRDFs. Microfacet

theory is a popular BSDF model that is based on the assumption that every patch contains a set of

miniature 'facets' (microfacets), each of which is oriented at a random direction that is sampled

from a normal distribution function. A GGX BSDF can be written in the following form:

f (l ; v ) =
D(h)F (v; h)G(l; v ; h)

4(n:l)(n:v)

The GGX BSDF has two major parameters that determine its re�ectance properties, the

roughness� and the Fresnel index of refraction� . Figure 3.1 shows the variation of re�ectance

with � and � . A pool of such BSDFs is created by sampling� s and� s in discrete steps

� 2 [0:01; 0:46]; � 2 [1:05; 1:95]. We then select a �xed set of these BSDFs by �nding the
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smallest set that can explain a real-world BSDF dataset, MERL. The elements with non-zero

coef�cients form the dictionary that will be used as the basis for our optimization problem.

1. D(h) is the normal distribution function evaluated at the half vectorh = l+ v
jl+ v j .

2. F (v; h) is the Fresnel function that depends only on the exitant directionv

3. G(l; v ; h) is the geometric visibility function that is dependent on both exitant and incom-

ing directions (v andl)

Note that alll , v , h are vectors represented in the space of the patch normaln (In this space,n

is exactly equal to the z-axis). Thus they are dependent on the normal and not free vectors. For

clarity, we denote the free vectors as~l, ~v, ~h and the relationship between the two forms is as

follows:

l = R(n)~l; h = R(n)~h; v = R(n)~v

whereR(n) is a rotation matrix to convert from global to local space.

Note that the BSDF must be differentiable w.r.t normalsn since we need@fs (l ;v ;h )
@n in order to

evaluate the differentials outlines in Chapter 2.

See Chapter 3.4 for the full derivation of the analytical differentials of GGX microfacet func-

tions. While the same procedure can be used with other microfacet models, the recommended

method is to use anauto-differentiatorpackage to avoid dealing with huge analytical differentials

by hand.

3.3 Dictionary reduction

In summary, the dictionary reduction procedure �rst instantiates a large number of candidate

BSDFs from the GGX family (by randomly sampling different� and� values). To select the

best candidates, we solve a quadratic programming problem to derive a linear combination of the

candidate BSDFs that best �ts a real world BSDF (in this case, the MERL database [23]). The

lowest weights are removed and the process is repeated till we have a reasonably small number

of BSDFs in the dictionary. For the results in this thesis, we use 40 dictionary elements.
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Figure 3.1: An example of the initial pool of candidate BSDFs generated by varying� and� . In

practice we generate several thousand candidates in order to obtain a more ef�cient dictionary

3.3.1 Initial candidatesP0

Since our dictionary is selected from the GGX family of BSDFs, the next step is to sample a

reasonably small dictionary of BSDFs that can best express real-world BSDFs. In order to select

an optimal set of BSDFs, we try to �rst start with a large poolP of possible candidates. We do

this by uniformly sampling the microfacet parameters: roughness� and the refractive index� .

3.3.2 Pruning the candidates

To prune the large candidate pool, we solve a minimization problem to �nd a linear combination

a of the BSDFs in the current setPk (at iterationk) that best �ts the MERL [23] database
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of measured real-world BSDFs. To formulate a cost function for this minimization problem,

a 'target' is required, which in this case is the MERL [23] database, which provides several

non-parametric real-world BSDFs represented using the re�ectance at a collection of discrete

(� o; � o; � i ) samples.

atotal =
X

i

arg min
a

(Y i � D T a)T W (Y i � D T a) (3.1)

where

1. Yi represents the elements of thei th BSDF in the MERL database.

2. D is the matrix of elements formed by the current dictionaryPk

3. W is the diagonal weight matrix formed by the product of two weight matricesWj and

Wt , whereWj is the Jacobian that results from non-uniform sampling on a sphere [24],

andWt = diag( 1
Y + � ), which is used to minimize relative error rather than absolute error

for better results.

atotal represents the linear �t coef�cient of each candidate BSDF averaged over all MERL

target BDSFs. This value represents the usefulness of the candidate BSDF, and the ones with the

lowest BSDFs are removed from consideration to form a new smaller active setPk+1 from Pk

The process described above is repeated until the active set is small enough for ef�cient

rendering.

3.4 The GGX BSDF Model

In this section we present the GGX BSDF speci�cation, as well as its analytical derivatives. The

differentiability of the BSDF with respect to the normal is an important precondition for the

feasibility of our algorithm.

As described in Section 3.2, microfacet BSDFs are usually made up of 3 functions, which we

describe for the GGX family here:

1. The GGX (Trowbridge-Reitz) [25] normal distribution functionD(h)

D(h; n) =
� 2

� ((n:h)2(� 2 � 1) + 1) 2
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2. The Cook-Torrance Fresnel function [26]F (v; h)

� =
1 +

p
F0

1 �
p

F0

c = v:h

g =
p

� 2 + c2 � 1

F (v; h; n) =
1
2

� g � c
g + c

� 2
 

1 +
� (g + c)c � 1

(g � c)c + 1

� 2
!

3. The GGX [25] geometric occlusion functionG(l; v ; h; n)

G(l; v ; n) = G1(l ; n):G1(v ; n)

G1(v ; n) =
2(n:v)

(n:v) +
p

(� 2 + (1 � � 2)(n:v)2)
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Chapter 4

Shape Optimization

This chapter elaborates on the non-linear optimizer that uses gradients obtained from the differ-

entiable renderer to iteratively update normals, BSDF and the shape of the object till we minimize

the error between the target and estimated images. We show the loss function formulation fol-

lowed by the details of the iterative process and the special gradient descent operators required

for the algorithm to converge.

4.1 Loss function

The notation for the following sections assume that we haveK images, each of sizeW � H , and

B basis BSDFs in our dictionary.

Our loss function is determined by the following equation

L =
X

l 2 L

X

i � W;j � H

(I (l )
i;j �

^
I (l )

i;j (N ; Z; � ; l ))2W (l )
i;j

where

1. N is aW � H � 3 tensor that represents the normal for each pixel

2. Z is aW � H matrix represents the depth at each pixel.N andZ together determine the

mesh uniquely.

3. � is the BSDF parameter vector withB elements, which are the coef�cients of theB basis

BSDFs.
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4. l is the light direction vector (depending on the estimatorÎ , this can also represent a set of

parameters for various lighting models)

5. W is theW � H � K per-pixel per-image weight tensor. The algorithm uses weighted

loss to deal with signi�cant variation in intensities as well as shadows.

4.2 Set-Adaptive gradient descent

To optimize for normals, we need to account for the constraint on the normals of the normalmap

N :

n2
x + n2

y + n2
z = 1

Differentiating our loss function w.r.tN , we have

@L
@N

=
X

l 2 L

X

i � W;j � H

2(Î (l )
i;j (N ; Z; � ; l ) � I l

i;j )W l
i;j

� @̂I l
i;j (N ; Z; � ; l )

@N

�

Once the gradients are computed, the next step is to use adaptive gradient descent (discussed

in Chapter 1) to move the normals in the direction of fastest descent. Adaptive algorithms like

Adam compute a per-parameter learning rate that allows much faster convergence in case of

disparate gradients, which is the case with normal optimization. One problem with vanilla Adam

is the assumption that parameters are independent of each other, which is true for something

like a neural network, but does not apply to the individual components of a normalmap. This is

because of the constraintn2
x + n2

y + n2
z = 1. We �nd that ignoring the effect of this constraint

quickly causes the optimization to fail and diverge because of biased gradients. To avoid this,

one simple method is to ensure that Adam uses a single effective learning rate for the three

components of a normal (the effective rate is still different for different normals). This makes

sure that thedirectionof the gradient is unaltered.

4.3 Exponentiated gradient descent

To optimize for BSDF parameters� , we need to satisfy the constraints:
X

� 2 �

� = 1
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8� 2 � ; � � 0

These constraints naturally lend themselves to a special gradient descent method that uses

multiplicative updates instead of additive updates, known asexponentiated gradient descent[27].

Given a set of parameters and their gradients, for the optimization of� i , the update rules are:

� t+1
i =

� t
i e

� � @L
@�i

P
j � t

i e
� � @L

@�j

where our our differentials are computed as

@L
@�

=
X

l 2 L

X

i � W;j � H

2(Î (l )
i;j (N ; Z; � ; l ) � I l

i;j )W l
i;j

� @̂I l
i;j (N ; Z; � ; l )

@�

�

This optimization strategy maintains both sum-to-1 and the non-negativity constraints. But

more importantly, it bypasses a lot of the problems with standard projected gradient descent,

which in this case was extremely impractical due to the nature of the BSDF updates. The repeated

projection of the updated vector back to the constrained vector space can lead to a situation

where there is either no progress at all or very slow progress. Exponentiated gradient avoids this

problem by using multiplicative updates that ensure progress no matter what the initialization is

(except for initializing any parameter to 0, which will cause the parameter to be discarded)

4.4 Accounting for shadows

A popular problem in a lot of photometric stereo problems is shadows. Most methods do not

account for occlusion, and it is impossible to reliably tell which pixels are occluded and by what

without �rst constructing a mesh, but then if the mesh was available, there would be no need for a

stereo algorithm. This is another chicken-and-egg problem. To deal with this, algorithm employs

a familiar strategy of starting with an initialization and iteratively improving it. However, one

problem is that the error from shadowed regions (FIGURE) is rather severe, and may cause the

mesh to diverge early in the iterative optimization. We employ the use of weighted loss functions

to tackle this. The weight functionW is de�ned as follows:

Wi;j;k =

8
<

:
0 : if I (k)

i;j is lower than 80% ofI i;j of all K images

1 : otherwise
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This process weighs down the shadowed/low-signal regions of the image, allowing the opti-

mization to focus on the brightly lit areas. This selective optimization technique usually applies

to most photometric stereo algorithms, and in most cases, provides robustness in the presence of

occlusion.

4.5 Remeshing

The �nal stage of the optimization loop is the remesher, which is simply the term used for the

process that retrieves depth from a normalmap. Chapter 1 introduced the weighted Poisson sur-

face reconstruction algorithm that uses a linear system to optimize for depthZ from a normal

mapN . In this section, we describe the weight vectorW that the framework uses. The rea-

son for using weighted Poisson reconstruction, instead of something like Framkot-Chellapa [28]

integration, is that not all of the normals in the normalmap are estimated with the same con�-

dence. Given that the gradients@z
@yand @z

@x are obtained by dividing thex andy components by

the z component. This introduces higher error for gradients where thez component is smaller

(normals that are close to perpendicular to the viewing direction). To combat this error we de�ne

our weightsW to be proportional to thez component of the normaln. This reduces the effect of

grazing angle normals, making the solution more robust.

Wi;j = n(i;j )
z

4.6 Multiresolution optimization

One technique that we �nd allows for faster and more robust convergence is the use of multi-

resolution optimization. All operations in a single iteration occur at a �xed resolutionW �

H , but the resolution can be varied in between two iterations. We �nd that this retrieves an

approximate mesh �rst and then proceeds to �ll in the details. It also prevents the optimization

from slowing down or getting stuck at local minima or saddle points. Our algorithm operates on

a �xed schedule. The �rstK 0 = 10 iterations occur atW4 � H
4 followed byK 1 = 10 iterations

at W
2 � H

2 . The remaining iterations are processed at fullW � H resolution. Figure (FIGURE)
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shows a case where the optimization gets stuck at a saddle point, and the same optimization with

multi-resolution enabled avoids this.

4.7 The Complete algorithm

In this section we describe the �ow of the algorithm in practice and how the various components

�t together.
Result: DepthZ

Z0; N 0 = PhotometricStereo(I ; L )

while jI � Î j2 � � do
~N 0 = N i

while j � Tn do

/ * Multiple updates to N * /
@̂L
@N =

P
l 2 L

P
i � W;j � H 2(Î (l )

i;j ( ~N j ; Z i ; � ; l ) � I l
i;j )W l

i;j

�
@̂I l

i;j (N ;Z ;� ;l )

@N

�

~N j +1 = Adam(~N j , @̂I
@N )

end

N i +1 = ~N Tn

~� 0 = � i

while j � T� do

/ * Multiple updates to � * /
@̂L
@� =

P
l 2 L

P
i � W;j � H 2(Î (l )

i;j ( ~N j ; Z i ; � ; l ) � I l
i;j )W l

i;j

�
@̂I l

i;j (N ;Z ;� ;l )

@�

�

~� j +1 = ExpGrad(~� j ; @̂I
@� )

end

� i +1 = ~� T�

Z i +1 = WeightedPoissonReconstruction(N i +1 )

end
Algorithm 1: Shape Optimization through Differentiable Rendering
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Input imagesI

Initialize shapeN 0 = arg minN (I � N T L )2

Render estimateŝI

Compute LossL = ( I � Î )2

Compute gradients@L
@N

UpdateN t+1 = Adam(N t ; @L
@N )

Compute gradients@L
@�

Update� t+1 = ExpGrad(� t ; @L
@� )

Z t+1 = integrate(N t+1 )

Repeat

TN

times

Repeat

T� times

Repeat

Ts times

Figure 4.1: Block diagram describing all the components of the shape optimization framework
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Chapter 5

Results

We present optimization results on multiple shapes and BSDFs. Our results at this point are

largely based on images rendered by a physically-based renderermitsuba. This is because of a

scarcity of public datasets that deal with concave objects.

But, considering the scope of applications for this speci�c optimization algorithm, a physically-

based renderer is suf�cient to capture the relevant lighting effects. Our algorithm does not cur-

rently deal with caustics (light paths that are the result of one specular re�ection followed by

one diffuse re�ection), so there are no major discrepancies between synthetic and real-world

datasets. To demonstrate this, however, we also include one instance from the publicly available

photometric stereo dataset 'DiLiGent' [29].

We do however, use captured BSDFs in our synthetic datasets, since analytical BSDF models

still do not satisfactorily explain real-world BSDFs.

5.1 Shape Reconstruction

We present results on 4 different datasets:

1. (Synthetic) Convex mask. A convex mask with the 'gray-plastic' MERL BRDF is used to

demonstrate the ability to optimize for BSDF parameters as well as shape in the presence

of highly specular surface and mild shadowing. Our algorithm also handles the inter-

re�ections in the concavities near the nose and lips.
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2. (Captured) Toy Bear. Taken from the DiliGenT benchmark dataset, this dataset demon-

strates our algorithms ability to work on real world photometric stereo data.

3. (Synthetic) Bowl. Thebowl dataset rendered with 'dark-blue-plastic' BSDF is the primary

tool to demonstrate our dataset's ability to account for interre�ections in the presence of

non-lambertian BSDF.

4. (Synthetic) Concave mask. The inverted mask dataset rendered with the 'dark-blue-

plastic' BSDF combines all the features of our algorithm, including complex shape, ar-

bitrary re�ectance and interre�ectons.
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