This dissertation explores the implications of emergent non-volatile memory (NVM) technologies for database management systems (DBMSs). The advent of NVM will fundamentally change the dichotomy between volatile memory and durable storage in DBMSs. These new NVM devices are almost as fast as DRAM, but all writes to it are potentially persistent even after power loss. Existing DBMSs are unable to take full advantage of this technology because their internal architectures are predicated on the assumption that memory is volatile. With NVM, many of the components of legacy DBMSs are unnecessary and will degrade the performance of the data intensive applications.

We present the design and implementation of a new DBMS tailored specifically for NVM. The dissertation focuses on three aspects of a DBMS: (1) logging and recovery, (2) storage management, and (3) indexing. Our primary contribution in this dissertation is the design of a new logging and recovery protocol, called write-behind logging, that improves the availability of the system by more than two orders of magnitude compared to the ubiquitous write-ahead logging protocol. Besides improving availability, we demonstrate that write-behind logging extends the lifetime and increases the space utilization of the NVM device. Second, we propose a new storage engine architecture that leverages the durability and byte-addressability properties of NVM to avoid unnecessary data duplication. Third, the dissertation presents the design of a range index tailored for NVM that supports near-instantaneous recovery without requiring special-purpose recovery code.

Thesis Committee:
Andrew Pavlo, Chair
Todd Mowry
Greg Ganger
Samuel Madden, MIT
Donald Kossmann, Microsoft Research