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ABSTRACT 
We present two studies that evaluate the accuracy of human 
responses to an intelligent agent’s data classification 
questions. Prior work has shown that agents can elicit 
accurate human responses, but the applications vary widely 
in the data features and prediction information they provide 
to the labelers when asking for help. In an initial analysis of 
this work, we found the five most popular features, namely 
uncertainty, amount and level of context, prediction of an 
answer, and request for user feedback. We propose that 
there is a set of these data features and prediction 
information that maximizes the accuracy of labeler 
responses. In our first study, we compare accuracy of users 
of an activity recognizer labeling their own data across the 
dimensions. In the second study, participants were asked to 
classify a stranger’s emails into folders and strangers’ work 
activities by interruptibility. We compared the accuracy of 
the responses to the users’ self-reports across the same five 
dimensions. We found very similar combinations of 
information (for users and strangers) that led to very 
accurate responses as well as more feedback that the agents 
could use to refine their predictions. We use these results 
for insight into the information that help labelers the most. 
Author Keywords 
Labeling Sensor Data, Active Learning 
ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  
General Terms 
Human Factors, Experimentation 
INTRODUCTION 
When collecting data from users for machine learning-
based applications, learning agents must acquire labels to 
train accurate supervised models. As many labels are hard 
to sense accurately and implicitly, users themselves often 
carry the burden of labeling their own data using a diary at 
the end of the day [5] or with feedback throughout the day 
[15]. Both of these data collection methods can be prone to 

inaccuracies if users forget the context of their activity, do 
not understand which data the system is requesting a label 
for, or have limited time to label data. 

While active learning provides support for prediction with a 
limited number of data labels, it still requires that users 
provide accurate labels and be available when a label is 
needed [18]. New techniques, like proactive learning, take 
active learning a step further and account for human 
inaccuracy by creating user models and determining from 
among a set of users, who to ask based on the need for 
accuracy [9][6]. Crowd-sourcing the data to websites like 
Amazon.com’s Mechanical Turk or with games like GWAP 
[30] has also become a popular option for acquiring labels 
from people other than the actual users or data creators, but 
can require several people to label the same data in order to 
ensure accuracy [30][31].  

While these techniques address the problem of labeling the 
data assuming that human inaccuracy is inevitable, we are 
interested in determining how the learning agent itself can 
affect the accuracy of the responses it receives. Concretely, 
the agent can vary the information it provides to labelers 
about the data as it asks questions, to maximize the 
accuracy of the labels it collects and the feedback it 
receives to refine it’s predictions. After analyzing previous 
agents that request classification labels, we focus on a set of 
information that has been commonly provided to labelers: 
1) varying number of contextual features of the data point 
2) high/low-level explanation of those features 3) 
classification prediction 4) uncertainty in the prediction and 
5) user feedback to weigh features used in classification. 

In this work, we present a set of studies that explore the 
impact of agents providing subsets of the above information 
to labelers with the goal of maximizing the accuracy of the 
labelers’ responses and encouraging feedback that would 
help a learning agent. We explore and identify the best 
subset for people labeling strangers’ email and 
interruptibility data, in addition to users labeling their own 
physical activity data. Interestingly, these two subsets were 
nearly identical.  

Our contributions are three-fold. First, we contribute a 
method for determining the combination of information that 
maximizes the accuracy of human responses by first testing 
all combinations and then validating the best combination 
against a combination suggested by experts. Second, we 
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contribute our best combinations for the types of tasks we 
tested and find that the combinations were nearly identical. 
Finally, we contribute an understanding of the value of 
different types of information and reasons for their impact 
so the information can be used consistently across 
applications for improving label accuracy.  

RELATED WORK 
While several different sets of guidelines have been 
proposed for agents’ label-gathering interactions with 
humans (e.g., [4], [10], [14] [25]), there are seven main 
types of proposed information: different amounts of 
context, human-understandable context, uncertainty, 
predictions, user control and feedback, action disclosure, 
and social interaction. Our work draws from areas of data 
collection and corrective feedback in determining which 
dimensions to focus on and how to implement them. Table 
1 outlines these dimensions and previous work that includes 
different subsets of them. We find that the first five types of 
information, operationalized and described below, are the 
most commonly used in current applications. While there is 
continuing work in understanding socially appropriate times 
to request labels [15] and in relaying to a user how their 
action will affect the application [23], we focus on only the 
most commonly used types of information in this work. 

Different Amounts of Context 
Many of the guidelines suggest that applications should 
provide labelers with some contextual information about 
the features of the data to be labeled. However, we found 
that applications interpret this principle differently. When 
BusyBody asks users to estimate their own interruptibility, it 
does not explain what it thinks the user is doing [15]. 
Hoffman et al. request help from Wikipedia users to fill in 
missing summary data as the users are reading an article 
[13]. When users are asked if the text they are reading in 
the article belongs in the summary, important keywords are 
not provided in the text. When reading the summary, users 
are provided with excerpts that could be added to make the 
summary more complete. In studies of interruptibility, it has 
been shown that people make judgments with relatively 
small amounts of context (15 seconds) and extra context 
(30 seconds) does not improve accuracy [12]. We define 
sufficient context such that if fewer features are provided, 
labeling the data is difficult. Extra context includes more 
features than necessary. In the interruptibility work, 15 
seconds of video is sufficient, while 30 seconds is extra. 

Levels of Context 
Recently, researchers demonstrated that labelers’ accuracy 
can depend on the level of contextual information they are 
provided. When users understand and use their own rules 
for classification, they are better at making those 
classifications compared to classifying based on the 
computers’ rules [28][29]. This finding is supported by 
work in feedback in information retrieval applications 
[21][22] which mask the low-level sensor-level features that 
computers use and collect (i.e., individual keywords in 
documents or accelerometer data) and allow users to search 
for information using high-level meaning attributed to the 
low-level data (i.e., summaries of documents or physical 
motion inferred from accelerometers). However, because it 
is often difficult to generate the high-level explanation of 
context, many applications provide only the low-level raw 
data, like pictures, to labelers instead of a summary with the 
assumption that they can find their own meaning [30][ 31].  

Prediction and User Feedback 
Other work has focused on making the classification task 
easier for labelers by providing a classification prediction. 
Here, the user only has to confirm an answer vs. generate 
one, simplifying their work (e.g., [28]). An interface may 
automatically fill in fields in a form or provide a prediction 
for which folder to sort a piece of email into (e.g., [8],[11]). 
Users could also provide corrective feedback for incorrect 
predictions to improve later classification [8]. In the active 
learning community, Raghavan asked people to label text 
documents as news articles, sports, etc., and also asked 
them to pick words (features of the classifier) that should 
have high weight for each class [20]. Participants knew the 
article words they were looking for and could identify them 
easily. The classifier could correctly weight the important 
features faster than asking for article labels alone, because 
people had narrowed down the important features. This 
same method can easily be used for email classification and 
the other domains. For example, in CueTIP, users see their 
handwriting and the word prediction and can make 
corrections [26]. The OOPS toolkit helps users “discover” 
if the learner’s prediction is incorrect and then provides a 
set of interaction techniques for the user to correct it [16]. 
Scaffidi allows users to provide feedback by creating rules 
for the classifier to make better predictions of phone 
numbers and other personal information [24]. By asking for 
feedback and providing predictions, an agent can correct 
errors and use feedback to improve its learning. 

Work Uncertainty Prediction Amount of 
Context 

High/Low 
Context User Feedback Action 

Disclosure 
Social 

Interaction 
Horvitz [14] X X X  X  X 
Bellotti and 
Edwards [4] 

 X X  X   

Erickson and 
Kellogg [10] 

X  X X X X  

Hoffman et. al [13] X X X X    
Mankoff et. al [16]  X X  X   
Cutlotta et. al [8] X X  X    

Table 1. Applications provide users with different types of information to help in labeling data. The most popular are Uncertainty, Prediction, 
Amount and Level of context, and User Feedback. 
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Uncertainty 
Finally, many agents calculate a prediction probability in 
order to decide whether it should ask for help. Studies of 
context-aware, expert, and recommender systems all show 
that providing users with the level of uncertainty in a 
system's predictions improves its overall usability (e.g., 
[3][17]), even if the learner does not provide the exact 
uncertainty value [1]. We compare the accuracy of 
responses from labelers who receive an indication of 
uncertainty vs. those that do not. 

While each guideline has been shown to affect usability or 
accuracy of responses, they are also already commonly 
calculated in the machine learning process. The learner uses 
the different weights calculated from user feedback on its 
contextual features to make predictions, must know its 
uncertainty to determine whether to ask for assistance, and 
must be able to explain those features to human helpers. 
Because the learner already calculates these parameters, it 
should require only minimal additional computation to 
generate the questions using them compared to high benefit 
of receiving more accurate responses.  

We are interested in determining which combination of this 
popular information maximizes the accuracy of responses 
to an agent’s questions. Additionally, with the recent 
popularity of crowd-sourcing data labels to people who 
have not witnessed the generation of the data (e.g., [12], 
[30], [31], [1]), we are interested in the best way to elicit 
responses from these strangers as well. Next, we present a 
set of studies to understand how the content of an agent’s 
questions affect the accuracy of labelers’ responses. 

STUDY DESIGN 
In order to investigate the impact of the varying the content 
of an agent’s questions along the five dimensions presented 
above, we designed a set of studies that compared the 
accuracy of labelers’ responses based on the information a 
learning agent provides. To understand information needs 
for both users labeling their own data and people labeling 
strangers’ data, we developed real tasks for labeler 
populations – physical activity recognition for users and 
email sorting and interruptibility estimation for strangers. 

Tasks and Materials 
Subjects were told that they were testing new technologies 
that learn by asking questions. They were to complete a 
primary task, and the application would classify their 
actions. The application would interrupt their task to ask 
them for help if it could not confidently label the data itself. 
They were informed that they could answer the questions if 
they had time, and that the application would continue to 
learn whether or not they answered. Participants were told 
that they would be given a second similar “performance” 
task that the application could help them complete more 
quickly if they helped it learn first. They were also 
reminded that answering was not their primary task and 
doing so may slow the completion of that task. In this way, 
we model tradeoffs of time versus improved performance 
that labelers might consider in real applications. 

User Labels – Physical Activity Coach 
The sensors on mobile applications are often hidden and 
their data is hard to explain, but they capture activities that 
their users are aware of, such as exercise patterns [7]. In 
this task, a physical activity coach performs an activity 
recognition task using sensors from a mobile device to 
identify exercises the user performs. An application like 
this one may record users' activities for doctors to analyze 
physical activity levels, and thus users have an interest in 
answering its questions to ensure it correctly identifies their 
activities. We test our physical activity coach’s questions to 
show that users can accurately label their own physical data 
and can provide feedback to improve its predictions. 

Subjects were told they were testing a new physical activity 
coach on a handheld device that could detect the different 
activities they performed (Figure 1). The subjects' primary 
task was to perform each of the 12 physical activities from 
a list provided (Table 2). Subjects were given all equipment 
required to complete the activities, including a soccer ball, 
tennis balls, rackets, step stools, and golf clubs.  

They were required to carry a Nokia 770 Internet Tablet 
that would recognize their activities and beep when it had 
questions. They were to respond to questions on the tablet 
using a stylus on a virtual keyboard. We randomly pre-
selected 8 out of the 12 activities to ask participants about. 
Questions were sent from the experimenter’s computer, 10-
20 seconds after each activity was initiated. Subjects had 12 
minutes to complete as many activities as possible, while 
answering the agent’s questions when they had time.  

    
Figure 1: The agent interrupted a subjects’ task to ask which 

activity there were performing. 

 

Activity Description 
Walk Walk around the room once 

Soccer Dribble a soccer ball around the room once 
Steps Step up and down off a stool 10 times 

Tennis Bounce a tennis ball on a racket 10 times 
Golf Putt golf balls on a mini course 5 times 

Hula Hoop Use a hula hoop 10 times 
Read Sit and read 2 pages of a travel book 

Toss Ball Throw a ball in the air 10 times 
Bounce Ball Bounce a ball on the ground 10 times 

Jump Jump up and down 20 times 
Jumping Jacks Do 10 jumping jacks 
Push Objects Push 5 chairs from table to the wall 

Table 2. The participants were told that the Physical 
Activities Coach could detect these tasks. 
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Strangers’ Labels – Email Sorting 
While most users do not think of their desktop computers as 
learning from their actions, word processors learn to spell-
check new words and email applications learn which emails 
are spam and which are not. Because these labels are 
subjective, the user carries the burden of having to label 
their own data and may make mistakes. In this task, 
subjects take notes on a stranger’s non-personal emails. The 
email sorter tries to classify emails in the inbox into a 
folder. If it is uncertain, it requests help from the subject.  

The participants' primary email task is to read provided 
emails about an upcoming academic conference and 
consolidate all the changes that need to be made to the 
conference schedule and website [27]. They were given a 
spreadsheet with information about conference speakers, 
sessions, and talks, and asked to make changes to it based 
on change requests in the email, in 12 minutes.  The emails 
and task were modified from the RADAR dataset [27]. The 
emails in the data set were labeled with a folder name, 
which was removed to test the participants. Additionally, 
we added high-level summaries of the emails and low-level 
keywords for the agent to use to ask for help. 

They were given an email application with the emails and 
were told that the classifier had sorted most emails into 
folders based on the type of changes that needed to be made 
(schedule or website). The email interface was built with 
Adobe Flex and presented on a 15” Apple MacBook Pro. 
The participants should try to sort the “Unsorted” emails 
and answer the questions that popped up automatically 
when the participant read an email while updating the 
spreadsheet with the relevant information (primary task).  

Stranger’s Labels – Interruptibility 
With crowd-sourcing technologies widely available today, 
we conducted an additional task on Amazon.com’s 
Mechanical Turk, an actual system that is often used to pair 
label requestors with people willing to label data. The 
labelers on this website have never seen the applications 
that collect the data; they only fill out forms online for a 
small fee. These labelers are a perfect example of strangers 
who are willing to answer short questions like our agents’.  

The problem of recognizing when someone is interruptible 
has been widely studied in the literature (e.g., [12][15]). 
Specifically it has been shown that strangers are fairly 
accurate at rating someone else’s interruptibility. We 
recruited subjects from Amazon.com’s Mechanical Turk to 
estimate the interruptibility of office workers from video 
data previously collected. When the interruptibility video 
data was collected, office workers made the ratings without 
specifying who the interrupter was. Our dataset included 
586 45-second videos from 5 offices at a university that had 
been labeled with an interruptibility value from 1 (Highly 
Interruptible) to 5 (Highly Non-Interruptible) by the five 
office workers themselves. Twelve videos were selected 
from the data set and put on the Mechanical Turk website, 
two randomly chosen from each interruptibility level plus 
two more from randomly chosen levels. Participants on 

Mechanical Turk were asked to rate the person in each of 
the 12 videos on the same 1-5 scale (Figure 2).  
Varying Agent-Provided Information 
To understand what information an agent should provide to 
maximize the accuracy of labelers’ responses in each of 
these tasks, we vary the information the agent provides 
across the five dimensions presented above, namely 
providing uncertainty, different amounts of context, 
high/low-level context, predictions, and requesting user 
feedback. We examine all dimensions at once to find 
dependencies and correlations between them for a 
2x3x2x2x2 design. Table 3 describes each dimension, the 
possible values, and an example on how each was used for 
each task. Along the dimensions, our content serves as 
exemplars for the definitions above so our results can be 
easily generalized to other similar applications and tasks. 

Uncertainty 
Along this dimension, we varied whether the agent told 
subjects it was uncertain about which classification to 
make. Half of the participants were told by the agent that it 
"Cannot determine the activity." while the other half were 
given no uncertainty information. 

Amount of Context 
Participants received one of three conditions (split evenly 
across participants): no context, sufficient context , and 
extra context. Participants in the sufficient context 
condition received enough features to identify the label 
accurately using only that information. On average this was 
about two pieces of information, and subjects read 
statements like "Your feet are leaving the ground." or "This 
email is from X and is about their contact information”. 
Participants who received extra context received redundant 
information and saw statements like "Your feet are leaving 
the ground together repeatedly" or "This email is from X 
and about incorrect spelling of their name on the website". 
In the Interruptibility validation, participants were given 15 
seconds of video for sufficient context or 30 seconds for 
extra context; previous work found that people make 
interruptibility judgments in 15 seconds.  

High/Low-Level Context 
We also vary the context in terms of the feature level 
information that is provided. Subjects in the low-level 
context condition receive information about sensor readings 

 
Figure 2: The agent asked participants to judge whether 

people were interruptable in their offices. 
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on the activity recognizer, keywords in an email, and raw 
interruptibility video footage, to help them make their 
classifications. For instance if someone was jumping, the 
sensor might read “shaking” - we do not expect users to 
interpret exact numerical sensor readings or graphs. With 
high-level context, participants received explanations such 
as email summaries or body motions like “your feet are 
leaving the floor” that correspond to sensor readings. Note 
that if subjects are in the no context condition from the 
previous dimension, this dimension is not used. 

Prediction 
Along this dimension, we varied whether users received a 
prediction from the agent. Half of the users received a 
correct prediction from the agent (e.g., “Prediction: 
Jumping.”) and half did not receive any prediction. Because 
the agent always gave a correct prediction in our work, we 
can measure how often a human trusts the agent's prediction 
but cannot measure the impact of incorrect predictions.  

User Feedback 
After subjects gave a response to the agent’s question, half 
of them received a follow-up question to describe their 
actions in the activity or reasons for classifying the email or 
interruption level so it could be more easily identified in the 
future: “How can this activity be detected in the future?”. 
We use the quality of this supplemental information as a 
secondary quantitative measure to compare our conditions 
when users provide equivalent numbers of correct answers.  

Putting it Together 
In order to generate questions, we read down this table, top 
to bottom – provide 1) uncertainty 2) prescribed amount of 
3) high/low level context 4) ask question 5) prediction and 
6) request for user feedback. For example, when the activity 
recognizer combines all dimensions above, it might ask a 
user the following: 

Activity Recognizer: "Cannot determine your activity. 
Your feet are leaving the ground together repeatedly. 
What activity are you doing? Prediction: Jumping." 
Human: Answers 
Activity Recognizer Follow Up: "How can this action 
be detected in the future?" 

Each sentence in this interaction is based on one of the 
dimensions above. Based on the agent's capability to 
provide information on the dimensions (i.e., conditions of 
the study), the corresponding sentence can be removed or 
changed. For example, if the agent cannot provide high-
level information, cannot ask for user feedback and can 
only provide sufficient context, it might instead ask:  

Activity Recognizer: "Cannot determine your activity. 
Shaking motion is detected. What activity are you 
performing? Prediction: Jumping." 
Human: Answers, with no follow up 

Each participant experienced one of the 36 possible types of 
questions from the 2x3x2x2x2 design space for each task, 
removing 12 conditions for high/low-level context and the 
prediction (which is another form of context) when a 
participant receives the “no context” condition. 

METHOD 
The study was conducted in phases. For each population 
(users and strangers), we conducted an initial test (activity 
recognition and email sorting), varying the information that 
labelers received in all combinations. At the same time, 
HCI researchers who worked on applications similar to our 
tasks were brought together to come to a consensus on 
which information they thought would be best for each of 
our tasks – which we call the community advice. Then, to 
validate our results, a new set of participants completed the 
same task twice – once with our best combination from the 
initial test and once with the community advice. We 
validate against community advice instead of against 
questions without context for two reasons. We believe, and 

Dimension Description Activity Recognition Example Email Sorting Example Interruptibility Estimation 
Example 

Uncertainty Notify labeler that it is 
uncertain of the label 

"Cannot determine your activity." “Cannot confidently make a 
prediction.” 

“Cannot determine if the person 
is interruptible.” 

Amount of 
Context 

Provide varying 
amounts of contextual 

information (none, 
sufficient, extra) 

Sufficient: "Your feet are leaving 
the ground." 

Extra: "Your feet are leaving the 
ground together and repeatedly." 

Sufficient: “The email has 
keywords A and B.” 

Extra: “The email has keywords 
A, B, C, and D.” 

Sufficient: (15 seconds of video) 
Extra: (30 seconds of video) 

High/Low-
Level 

Context 

Give either low 
(sensor) level context 
or high (activity) level 

context 

Low: "Shaking motion detected." 
High: "Your feet are leaving the 

ground." 

Low: “The email has keywords A 
and B.” 

High: “The email is best 
summarized by F and G.” 

Low: (raw video) 
High: “The door open and two 

people in the office.” 

Question Ask for a label “What activity are you doing?” “Where does this email belong?” “How interruptible is this 
person?” 

Prediction Share the expected 
label for the data “Prediction: Jumping." Prediction: “Sessions Changes.” “Prediction: 4” 

User 
Feedback 

Ask labeler to 
describe the important 

features 

“How can this action be detected in 
the future?” “Why is this folder correct?” “How did you make that 

determination?” 

Table 3. Scenario Content Dimensions, Description, and Example Sentences for each task  
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will show in our results, that asking for help with no context 
is confusing and would lead to poor accuracy. Also, it does 
not reflect what HCI researchers have done in the past when 
building systems that ask for help. Our community advice 
reflects a more realistic metric for response accuracy 
improvement to compare our results against. 

After completing this for both users and strangers, we 
conducted the third interruptibility test to further validate 
the combination for a larger set of strangers. We chose 
interruptibility because it is well known in the community 
and we can draw the following three parallels to the email 
task. Fogarty et al. tested their classifier on strangers, so 
there was a well-established baseline of accuracy to test 
against [12]. The raw low-level data (words/video) are 
human-understandable compared to the accelerometer data 
in the activity recognition domain. In email, participants 
could draw context from the emails just as interruptibility 
participants could use raw video. This is both a feature and 
a flaw in supplying raw data as there is no context lost in 
the explanation. Finally, participants in both tasks were 
tested on their ability to classify against subjective labels. 
For these reasons, we used the interruptibility task to 
validate the best combination from the email study. 

Procedure 
To ensure that all participants in all conditions of all tasks 
received the same information for the same dimensions, the 
questions were generated before the study began. We 
measure the proportion of correct answers labelers provide 
as well as the quality of their feedback when requested.  

Initial Tests 
For the initial tests, participants were assigned the order of 
tasks at random, but evenly. Participants were given an 
explanation of the study and signed a consent form on 
arrival. Subjects were given 12 minutes to complete their 
primary task and were told they would receive a 
“performance” task based on both the completion of the 
first one and on their responses to the agent.. After 
completing the task, participants were given a survey about 
their experiences with the questions. Then, they were given 
the second primary task with the same instructions and 
given a second survey. Upon completion, participants were 
told there was not time to complete the "performance" tasks 
and were dismissed after being paid $10. 

Validation 
Before the validation experiments were run, we sought 
advice from 3 HCI community members who work on 
projects similar to our email and activity recognition tasks 
about which information they believe each agent should use 
when asking for help. The community members understood 
both the technical data that could be collected from the 
domains and the usability requirements necessary for 
effective communication to users. We explained each type 
of information and how they could be combined together. 
Each group (email and activity) met separately to discuss 
the information and then reported their internal consensus 
about which combination they thought would elicit the most 

correct answers. In the end, we had two combinations of 
information – one for the email sorting task with strangers 
and one for the activity recognition task with users. 

We then analyzed the results from our initial tests to 
identify our best combinations of the information – one for 
the email sorting task and one for activity recognition. In 
both validation tests, participants were randomly but evenly 
assigned the order they would receive the two types of 
questions – our best combination vs. the community advice. 
Subjects performed the same procedure as the initial tests, 
except that they received the same task twice with different 
combinations of information. When they completed the 
second survey, they were paid $10 and dismissed.  

For reasons given above, we apply the same combinations 
(ours and community advice) from the email task to the 
final interruptibility validation. Participants were randomly 
assigned to receive only one of either our best combination 
or the community advice and received 12 videos to label. 
All participants were paid $5 for completing the study.  

We validate that our combinations are at least as good as, if 
not better than, the community advice for each task based 
on the proportion of correct answers and user opinions. 

Participants 
Participants, except for the interruptibility task, consisted of 
60 Pittsburgh residents ages 18-61 with a variety of 
occupations including students, bartenders, teachers, and 
salesmen. 37 subjects completed both initial tests, acting as 
users in the activity recognition task and as strangers in the 
email-sorting task.  Then, 11 additional subjects completed 
a validation of the activity recognizer task and 12 more 
subjects completed the email sorting validation. Only a few 
participants (15%) had experience with technology that 
learns, and all spoke fluent English. 180 participants in the 
Interruptibility task were recruited anonymously on 
Mechanical Turk, but were only allowed to complete the 
task once by comparing usernames.  

We use this experimental method to find the combination of 
information that maximizes the accuracy of responses and 
the amount of feedback from users to label their own data 
and from others who label strangers’ data. We will next 
describe the measures used to find the best combinations. 

Measures  
Because a machine-learning agent would benefit more from 
correct answers rather than incorrect ones, we assessed the 
user responses primarily based on correctness, but also on 
the quality of user feedback when available. We also gave 
subjects surveys about their opinions of the applications, 
including whether they found them to be annoying. 

Users’ responses were classified as correct answers if their 
last answer (some users changed their minds) was correct 
and incorrect otherwise. For example, if a subject disagreed 
with the prediction, but gave an equally correct reference, it 
was classified as correct. Synonyms were determined to be 
correct as long as they were not too vague. For example, 

264



 

“putting” was considered synonymous with the activity 
“golfing”, but “swinging arms” was not because it was not 
an accepted name for the activity (listed on instructions of 
activities to perform). While we do not expect participants 
to give exact answers, we also do not expect them to give 
completely incorrect or opposite values. 

If users can provide accurate labels for their data, their 
ability to give quality, or helpful, feedback is of particular 
interest to possibly speed learning [20]. If users received a 
request for feedback, their response was coded based on 
how many features about the data were provided. A value 
of 0 was given to a response that provided no additional 
information (e.g., "I don't know"). For every piece of valid 
information, the value increased by 1. For example, “I’m 
doing jumping jacks if my arms move up and down and my 
legs go in and out”, would be given a value of 2.  

After completing the task, participants were given 
questionnaires on their subjective experiences with each 
technology. They were asked about whether they thought 
the application’s questions were annoying and whether they 
found each dimension particularly useful. Responses were 
coded as either "Yes" or "No".  Participants were also asked 
whether it was easy or hard to answer the questions on a 
Likert scale from 1 (very easy) to 5 (very hard). 

RESULTS 
We analyze the results of the activity recognizer initial and 
validation task to determine a best combination of 
dimensions for users labeling their own data. Then we 
analyze the results of the email sorting initial and validation 
tasks to determine the best combination of dimensions for 
people labeling strangers’ data. We use the results of the 
interruptibility validation to extend the results beyond a 
single task and for a broader set of strangers.  

Analysis 
Initial Test Models - A McNemar test with the Chi-Square 
statistic was used to analyze the significance of the 
categorical response (correctness) against the categorical 
independent variables (our 5 dimensions) for each task. T-
tests and ANOVAs were used to analyze the significance of 
the secondary continuous response (quality of feedback) 
against the independent variables. Based on the results, we 
define a combination of information that agents should use 
to ask questions of labelers to maximize label accuracy.  

Validation Models - We conducted a within-subject study to 
validate that our guidelines result in more correct answers 
compared to the community input. We used T-tests to 
analyze the significance of the categorical response 
(correctness) against the two types of questions (our 
guidelines and the community advice). 

User Labels – Physical Activity Coach 
Initial Test Results 
We collected 119 responses from participants, including 8 
for which participants (6 of them) said they were too busy 
to respond. When we analyzed the remaining 111 responses 

for the effects of the individual dimensions on the 
proportion of correct labels users provided for their own 
data, we found that subjects were correct nearly 100% of 
the time and there was no effect of any of the dimensions or 
their combinations. However, we found that when an agent 
requests user feedback, subjects were able to provide on 
average of .81 pieces of quality feedback compared to 
almost 0 pieces without being asked (some subjects 
provided feedback without prompting). We include user 
feedback in our best combination, as this is a statistically 
significant difference (F[6,112] = 8.87, p< 0.001). 

We then used the McNemar test on the amount of feedback 
with all five dimensions as independent variables to analyze 
the significance. We find that subjects who received 
sufficient context provide a significantly larger amount of 
quality feedback (.77 pieces) compared to those provided 
either no context (.30 pieces) or extra context (.31 pieces) 
(F[2,2]=5.38, p<.002). Additionally, subjects who received 
low-level context provided statistically significantly greater 
amount of feedback (.58 pieces) compared to high-level 
context (.34 pieces) (F[1,1] = 3.33 p<0.05). There were no 
significant effects and no combined effects for providing 
predictions or uncertainty so we use qualitative results to 
understand the impact of those dimensions. 

We find that 25% of subjects who did not receive 
predictions reported it hard or very hard to answer the 
questions. Additionally, 0% of subjects with predictions 
reported the task difficult and 83% thought the questions 
were useful. There were no effects of uncertainty on the 
qualitative data so we do not include it in our best 
combination. Based on these results, we determine that the 
best combination for a user labeling their own data is the 
following: no uncertainty, do provide sufficient low-level 
context, predictions, and request user feedback. 

Validation Results 
We validate our best combination against the HCI 
community advice, which varies from our combination in 
two ways (with differences shown in bold): do not explain 
uncertainty, but provide high-level and extra context, 
predictions, and request user feedback. 

We collected 113 responses from participants including 11 
non-responses. Four participants were too busy to respond 
at least once. We found that for both conditions, subjects 
gave correct responses 100% of the time and there were no 
statistically significant effects on feedback quality, so we 
use the qualitative results to differentiate the conditions. 
Subjects found that our dimensions were useful but only 
30% realized they were receiving contextual information. 
Subjects did not prefer either system and could not identify 
which one learned more, but 70% of participants thought 
the system using our guidelines was smarter. Users that 
believe a computer is smarter will respond with more 
sophistication than to one they think is not as smart [19]. 
So, we conclude that our combination is at least as good as, 
if not better than, other combinations of the information. 
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Strangers’ Labels – Email Sorting 
Initial Results 
We collected 153 responses from participants including 13 
non-responses. Four participants answered that they were 
busy at least once. We first analyzed the effects of each 
individual dimension on the proportion of correct answers. 
Subjects answered a statistically significant larger 
proportion of questions correctly when given low-level 
context (63%) versus high-level context (54%) (χ2[2,2] = 
10.57, p<.01) (Figure 3a). Subjects had significantly fewer 
correct answers when they received no context (53%) or 
extra context (48%) compared to subjects who received 
sufficient context (60%) and this effect is heightened when 
combined with the level of context (χ2[4,2] = 11.04, p<.01) 
(Figure 3b). No other single dimension was significant.  

To understand how the other three dimensions affected user 
performance, we analyzed the effects of pairing them with 
the significant dimension and each other. Subjects provided 
statistically significantly more correct answers when they 
received a prediction with sufficient context (78%) 
compared to when they did not (50%) or when they 
received other amounts of context (55%) (χ2[2,2] = 7.72 
p<.01) (Figure 3c). We found that if we provide sufficient 
context, providing uncertainty increases the proportion of 
correct answers significantly from 46% to 70% (χ2[4,4] = 
11.56 p<.01). There is a significant paired effect of 
prediction with uncertainty (χ2[2,2] = 8.70 p<.01). Finally, 
we found that requesting user feedback resulted in an 
increase from 30% to 90% in correct answers when paired 
with uncertainty but a decrease from 87% to 45% when no 
uncertainty information is provided (χ2[2,2] = 12.21 p<.02). 

We analyzed the survey responses to understand how useful 
subjects felt each dimension was. We found that 50% of 
subjects thought the questions were useful to them during 
their task while 41% found answering them annoying. A 
majority of subjects who saw each dimension thought they 
were useful. 90% of subjects found context useful when 
they received at least sufficient context, and 100% of 
subjects who received predictions found them useful. 78% 
and 71% of subjects who were asked for feedback and who 
received uncertainty respectively, found it useful. We 
conclude that the agent should use the following 
combination when asking strangers questions: provide 
uncertainty, sufficient low-level context, predictions, and 
request user feedback.  

Validation Results 
HCI researchers that work in the email domain came to the 
following consensus on our dimensions (with differences 
shown in bold): provide uncertainty, low-level extra 
context, predictions, and do not request user feedback. 

We collected 301 responses including 4 non-responses. 
Three participants refused to respond at least once. We 
found a significant effect of the combination on the 
proportion of correct responses (t[2,250] = 2.48, p<.01). 
Subjects who received our combination were 100% correct, 
while those who received the community advice were 94% 
correct. A majority (8/11) people preferred the community 
advice but (7/11) people thought our agent was learning 
more. When we analyze the dimensions that differed 
between combinations, more people preferred our context 
(58% vs. 40%) and predictions (63% vs. 40%).  

Interruptibility Results 
Participants in this study were required to answer all 12 
questions. Half of our 180 participants estimated the 
interruptibility for 12 videos with the best combination 
from the email task and half received the email 
community’s advice. We analyzed the average mean 
squared error (MSE) of each participant’s estimation 
compared to the true interruptibility across the videos and 
performed a between-subjects ANOVA analysis to compare 
the error between the combinations. We removed 16 of the 
180 subjects that had MSE results that were more than 3 
times the median of the entire data set (average MSE=1.37, 
outliers > 4.11). Subjects who received our combination 
had a statistically significant lower average MSE (mean 
1.17, std. dev. 0.62) than those who received the 
community advice (mean 1.42, std. dev. 0.92) (F[1,164] = 
6.02, p < 0.01). Subjects who received our combination 
were correct or off by one level of interruptibility 85% of 
the time, while subjects that received the community advice 
were correct 80% of the time. Both of these are better than 
the previously published interruptibility result, reporting a 
65% off-by-one accuracy with only sufficient context. 
DISCUSSION 
Our results show that we were able to find a combination of 
information for agents to provide strangers that maximizes 
labeling accuracy. Additionally, our users were aware of 
their activity and had no trouble labeling it, so we can find a 
best combination that maximizes accuracy and amount of 

     

            (a) Subjects’ Correctness by Level of Context            (b) Subjects’ Correctness by Amount of Context                (c) Subjects’ Correctness by Prediction 
Figure 3: Using results from our study, we developed guidelines along our five dimensions for how an agent should ask questions. 
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feedback users give. Next, we discuss differences between 
users and strangers in each dimension to explain our results. 

Benefits of Providing Information to Labelers 
We found that each of the five dimensions – amounts of 
context, level of context, uncertainty, prediction, and 
requests for user feedback – had a positive effect on the 
labelers as they were performing their primary task. First, 
labelers used the context and prediction to match the 
agent’s focus. For example, many labelers used the key 
words and summaries of the emails when deciding on a 
label instead of reading the entire email. As a result, the 
questions did not take as long for labelers to answer 
compared when they had to pick out the important context 
themselves. Additionally, labelers checked to confirm their 
label was consistent with the given context.  

Although labelers were frequently interrupted with 
questions in their 12-minute tasks, they almost always 
answered when it was prefaced with uncertainty. For 
example, in the activity recognizer task, one participant 
who was interrupted only seconds after starting a task said, 
“It’s interrupting me again! Oh, well, I guess it must be 
hard to distinguish between these [activities].” This shows 
that users excused the interruption when they felt they 
could help the agent. However, when we asked participants 
whether they valued uncertainty, they did not remember if 
they had received that information and therefore reported it 
as being not useful. We believe labelers underestimated the 
usefulness of uncertainty for the usability of the questions. 

Finally, when labelers were asked to provide feedback 
about the label, they sometimes changed their labels to the 
correct answer when they thought about a reason for the 
label. While it may be difficult for a system to incorporate 
such freeform feedback, we find that the agent will benefit 
from increased response accuracy just by asking the 
question and irrespective of using the response. To make it 
easier to use such feedback, the agent could ask a multiple-
choice question. Overall, we found each piece of 
information was useful for both user and stranger labelers. 

Limitations of These Five Dimensions 
While the five dimensions we chose were able to help the 
labelers focus their answers, they did not provide any new 
information for users to use in the physical activity task. 
For example, when users were given context, they already 
knew what they were doing. As a result, we found that 
varying the dimensions had little impact on the user’s 
accuracy. We found that users pulled out the tablet and 
started typing often without even reading the question. We 
do not, however, believe this is universally true for all user 
tasks – users may misfile their emails in folders. 

Additionally, users had a lot of trouble giving feedback 
about their physical activities. While they knew that they 
were golfing and not playing soccer, they were not able to 
provide much information about what actions constituted 
the activity like swinging arms or kicking their leg. Often, 
users thought for a long time about what to write the first 

time they saw the request for feedback, because they do not 
usually think about what constitutes a physical activity. 
Participants had less trouble expressing their feedback in 
the email and interruptibility tasks, because they had to 
develop their classification rules while performing the task. 
While the feedback is useful to a machine learning 
application, it may be too difficult for labelers to provide if 
they are not consciously making the classification. 

Similar Combinations of Information 
We observe that the best combinations for both users and 
strangers were nearly the same – only differing by 
uncertainty. We had assumed that because strangers did not 
know the context the data was drawn from, the agent would 
need to provide extra context to maximize accuracy 
compared to users. However, because strangers had some 
existing domain knowledge about sorting email and 
determining if someone is interruptible before the study, 
they did not need as much context to be accurate. We also 
found that just as users did not require high-level context 
about their own activities, the strangers did not require 
high-level context in the email or interruptibility tasks 
because the raw data (email keywords and video clips) were 
already human-understandable. This is significant because 
it reduces computation time for constructing questions, and 
eliminates the need to translate low-level sensor data into 
high-level context, allowing more time for processing data.  

The only difference between the two combinations is 
uncertainty. Uncertainty offers no help to the labeler but 
indicates that the classification is hard. Users were aware of 
the difficulty of activity recognition without the 
acknowledgement from the system, reporting that they were 
impressed that a mobile device was able to recognize their 
activities. Receiving uncertainty did not change the users’ 
opinion and there were no significant changes in accuracy 
as a result. However, strangers saw human-understandable 
data and assumed the classification was, in fact, easy. When 
strangers received uncertainty, we believe they recognized 
the difficulty of the task and tried harder, resulting in higher 
accuracy responses. In general, labelers that realize the 
classification is hard do not require uncertainty information.  

Accuracy of the Agent 
In this work, we wizard-of-oz’d the agents’ questions to 
ensure they were timed correctly and included accurate 
information. The context that the agents provided did 
accurately represent the data and the high-level context 
appropriately summarized the sensors. As a result, the 
labelers could trust and use this data to their advantage 
when responding. In actual implementations, agents may 
not always be able to extract this information accurately. It 
is unclear how labelers would react to incorrect context.  

Additionally, the questions were asked in the middle of 
activities while users were performing them. Because users 
knew which activity they were currently performing, the 
agent’s information did not affect the user accuracy. If the 
questions were mistimed or delayed, it is unclear how this 
would affect the accuracy of users’ responses.  
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While all of the predictions that were provided were the 
correct, the labelers often did not trust the predictions. This 
could be because labelers were told the agent asked when it 
was not confident in its prediction. While the predictions 
were shown to increase accuracy, we do not believe this is 
due to their correctness. Rather, they helped labelers narrow 
down the labels from which they decided on their own. 

CONCLUSION 
Researchers often instrument an interface or environment 
with sensors to collect data for learning but it can be 
difficult to label that data accurately. To automate the 
process of collecting the most accurate labels possible, we 
use an agent to ask questions. The contribution of this work 
is three-fold. First, we contribute a two-step method to test 
combinations of information – an initial step and a 
validation. While users who label their own data were 
typically very accurate at labeling their physical activities, 
we contribute a combination of information that maximizes 
accuracy and the quality of feedback the user provides. 
Additionally, we found a combination of information that 
maximizes accuracy of people labeling strangers’ data. 
These more accurate labels and feedback can improve 
learning. Finally, we observed that the 2 combinations were 
nearly the same. We believe these validated combinations 
are applicable far beyond our 3 tasks and could be used 
today to collect more accurate labels when labelers have 
domain knowledge about the data they are working with. 
This work focuses on a specific set of dimensions for 
classification problems. Other dimensions may also impact 
how labelers answer questions and need to be validated 
using our approach. We would also like to see how well our 
results apply to other domains and tasks where users and 
strangers have less domain knowledge about the collected 
data. Future work is needed to test these questions in long-
term data collections and active learning applications and to 
understand the usability of proactively asking for help.  
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